
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1997

Seed Sets and Search Structures for Accelerated Isocontouring Seed Sets and Search Structures for Accelerated Isocontouring

Chandrajit L. Bajaj

Valerio Pasucci

Daniel R. Schikore

Report Number:
97-034

Bajaj, Chandrajit L.; Pasucci, Valerio; and Schikore, Daniel R., "Seed Sets and Search Structures for
Accelerated Isocontouring" (1997). Department of Computer Science Technical Reports. Paper 1371.
https://docs.lib.purdue.edu/cstech/1371

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SEED SETS AND SEARCH STRUCTURES
FOR ISOCONTOURING

Chandrajit L. Bajaj
Valerio Pascucci

Daniel R. Schikore

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD·TR #97-034
June 1997

Seed Sets and Search Structures for Isocontouring

Chandrajit L. Bajajt Valerio Pascuccif Daniel R. Schikoret

Shastra Lab & Center for Image Analysis and Data Visualization
Department of Computer Sciences

Purdue University

Abstract

We present three algorithms for the construction of seed sets, a subset of a cell complex which contains at least
one cell for each connected component of each isocontour, for all possible isovalues. Seed sets reduce the storage
requirements of high performance search structures for isocontouring, such as the segment tree or the interval
tree. The three algorithms determine seed sets with varying properties. The first computes seed sets within a
constant factor of the optimal size, requiring O(nlogn) time, where n is the size of the mesh. A more conservative
approach computes seed sets of slightly larger size with O(n) processing time, and is very amenable to parallel
processing. The seeds produced follow a particular pattern which can be leveraged for performing out-of-core
isocontouring, dynamically loading only the data which is necessary from secondary storage or a remote server.
A specialized form of the second algorithm for regular grids computes seed sets of intermediate size, with only
slightly additional effort and the same computational complexity. We examine the use of three search structures
and compare their application to the seed sets and full sets of cells from a variety of computational grids.

1 Introduction
!socontouring is a widely used approach to the visualization of scalar data and an integral component of almost
every visualization environment. Computation of isocontours has applications in visualization ranging from ex­
traction of surfaces from medical volume data [16J to computation of stream surfaces for flow visualization [32J.
Inherent in the selection of an isocontour, defined by G(w) : {xl.r(x) - w = O}, is that only a selected subset
of the data is represented in the result. In many applications, the ability to interactively modify the isovalue w
while viewing the computed result is of great value in exploring the global scalar field structure. In fact, it has
been observed in user studies that the majority of the time spent interacting with a visualization is in modifying
the visualization parameters, not in changing the viewing parameters [8]. Hence there has been great interest in
improving the computational efficiency of contouring algorithms.

In the following subsections, we divide the principal components of cell-based isocontouring algorithms in the
following three stages:

• Cell Triangulation - Method of computation for determining the component of a contour which intersects a
single cell.

• Cell Search - Method for finding all cells which contain components of the contour

• Cell Traversal - Order of cell visitation may be integrated with (or decided by) the cell search technique,
however it nevertheless affects the performance of the isocontour extraction algorithm

In Section 1.1 we discuss the problem of cell triangulation and review several approaches which have been
presented in the literature. In Sections 1.2 and 1.3 we present the prior work on search and traversal schemes
which provides motivation for our work. We demonstrate that combinations of the approaches in each of these
three areas yield dramatic improvements in the interactivity of isocontouring with a small overhead in the required
data structures.

1.1 Cell Triangulation
Cell triangulation concerns the approximation of the component of a contour which is interior to the cell. Tri­
angulation has two distinct components, interpolation to determine a set of points and normals, and connectivity
to determine the local topology of the contour. While the use of linear interpolation edges of cells is a widely

1

accepted approach, other strategies have been developed to reduce this computational portion of isocontour ap­
proximation, such as selecting midpoints along intersected edges [21]. Here we present a summary of the work on
the topological aspect of contour triangulation.

•

.}----;----{ ,

/0---------
,

,}-------{

,

,

Figure 1: Standard cell representation for contour computation in a structured grid

Cell-based contouring algorithms generally begin with a classification of each vertex of a given cell as positive
(if greater than the isovalue) or negative (if less than or equal to the isovalue), which we will refer to as black and
white, respectively. Such a binary classification of the 8 vertices of a regular cell (as in Figure 1) leads to a total of
28 or 256 possible configurations. Taking rotational symmetry into account, this can been reduced to 22 distinct
cases (15, 27]. Based on linear interpolation, cell edges are called intersecting if the colors of the endpoints differ,
or non-intersecting if they are colored the same.

Marching Cubes [17] further reduces the number of base cases by assigning complementary triangulation for
complementary vertex configurations (black to white), resulting in 15 distinct colorings, as shown in Figure 2. The
full table of the 256 possible vertex configurations can easily be generated from this table of 15 cases.

The use of complementary triangulations reduces the number of base cases, but also introduces a well-know
topological inconsistency on certain configurations of shared faces between cubes [6], one case of which is illustrated
in Figure 3. A number of techniques have been proposed which offer solutions to this inconsistency, which we
group into two classes. The first class attempts only to provide consistency along all cell faces, while then second
class provides correctness with respect to a chosen model.

Consistency may be achieved simply by subdividing each cell into tetrahedra and wing a linear interpolant
within each tetrahedron [5J. An efficient approach to consistency is to adopt a consistent decision rule, such as
sampling the function at the center of the ambiguous face to determine the local topology [36].

Zhou et al. make the point that the tetrahedral decomposition and linear approximation change the function
and may still result in incorrect, though consistent, topology [37]. They propose that the tetrahedral decomposition
may he used, provided that intersections along the introduced diagonal are computed for the cubic function which
result.s from sampling the trilinear function across the diagonal of a cell, rather than applying linear interpolation
along all edges.

Matveyev sorts all intersections on a regular cell face with respect to an axial direction [18]. The nature of
the bilinear interpolant ensures that pairs in the sorting will be connected, as the asymptotes at a saddle point
for a bilinear function over an axis-aligned regular cell are parallel to the axes.

The core of the problem along shared cell faces lies in determining the topological connectivity of vertices which
are colored the same but which lie diagonally across a face of a cell. Nielson and Hamann propose generating a
consistent decision on connectivity by enforcing a topology which is correct with respect to the bilinear interpolant
along the face [24]. Kenwright derives a similar condition for disambiguating the connectivity on the faces in terms
of the gradient of the bilinear interpolant [13]. Natarajan further enforces consistency with the trilinear interpolant
for the case of ambiguities which are interior to a cell, which occur when diagonal vertices across the body of the
cell are similarly colored but have no edge-connected path of vertices of the same color between them [23]

Karron et al. further discuss the proper treatment of criticalities in isocontouring, proposing a digital morse
theory for describing scalar fields [12].

Wilhelms and Van Gelder provide a comprehensive review the topological considerations in extracting isosur­
faces, and demonstrate that gradient heuristics applied at the vertices of a cell are necessary and sufficient to
disambiguate the topology of functions which are quadratic (34, 28, 29].

2

(e)

,,,
,l _

--
(d)

,,,
.... L _

--
(e)

,,,,
,L _

--
(b)

,,,,
,L __

--
(0)

,,,,
.... L _

--

(i)

£ ~.
[P": ~~

1 ~ '!, ,
,l .~

--
(g) OJ

(k) (I) (m) (0) (0)

Figure 2: 15 distinct vertex colorings

The solution suggested by Natarajan [23] is particularly attractive due to its design to enforce consistency
with the trilinear interpolant, a commonly used interpolant for 3d reconstruction and visualization. The situation
on faces with colored vertices which are diagonally adjacent can be viewed in two dimensions as in Figure 4. The
unique saddle point at coordinate x. of the bilinear interpolant lies interior to the face, and the correct topology
can be determined by evaluating the function at the saddle point and comparing it with the isovaluc as shown.
This topological consistency is carried out further by considering the unique saddle point of the full trilinear
interpolant in addition to the six possible face saddles. A simple extension to the marching cubes case table
requires sub-cases only for configurations which contain saddles. The sub-cases are indexed by the saddle point
evaluations in order to determine a triangulation which is topologically consistl!nt with the trilinear interpolant [23J

For the inconsistent case illustrated in Figure 3, several distinct topological triangulations are possible, two of
which arc illustrated in Figure 5.

1.2 Cel1 Search
Because a contour only passes through a fraction of the cells of a mesh on average, algorithms which perform an
exhaustive covering of cells are found to be inefficient, spending a large portion of time traversing cells which do
not contribute to the contour.

The straightforward approach of enumerating all cells to extract a contour leads to a high overhead cost when
the surface being sought intersects only a small number of the cells.

Preprocessing of the scalar field permits the construction of search structures which accelerate the repeated
action of isocontouring, allowing for increased interactivity during modification of the isovalue. Many prepro­
cessing approaches and search structures have been presented, which are conveniently classified (similar to the
classification presented in [14]) based on whether the search is in domain space or range space.

1.2.1 Domain Search

• Octree search - A spatial hierarchy for accelerating the search process is a natural approach which has
been explored by Wilhelms and Van Gelder [35, 33J. For space efficiency considerations, a partial octree
decomposition was developed which groups all cells at the highest level and adaptively approximates the

3

I
I

I
I

L
/

/

/

Figure 3: Topological inconsistency associated with the original marching cubes

....

Saddle configuralion

,,, ,

, ,,,

",>1'"(:<.)

,,,,,

",,,,

UI < .:F(z.)

,,,,,,______ -1 _

,,,,,,,

Figure 4: A two dimensional bilinear saddle and its contour configurations

data through axis-aligned subdivisions which better approximate the data. At each level in the tree, min
and max values for the cells contained in the subtree are stored, providing a means to efficiently discard
large spatial regions in the search phase. An analysis presented in [14] suggests a worst-case computational
complexity of O(k + k log T), where k is the size of the output and 71~ is the number of cells.

1.2.2 Range Search

A large number of search techniques in the recent literature perform the search for intersected cells in the range
space of the function. As we are dealing only with scalar-valued functions, range space search techniques have
the advantage of being independent of the dimension of the domain. In range space, each cell c is associated with
the continuous set of values taken on by the function over the domain:

R(c) = [min .r(x), max .r(x)]
XEc xEc

There are two approaches for representing the range space, the 10 value-space, in which each range R(c) is
considered as a segment or interval along the real line, and the 20 8pan-space, in which each range R(e) is
considered as a point in 20 [14], as illustrated in Figure 7. While certain search structures are motivated by one
geometric representation or another, others may be effectively visualized in either representation.

We present a brief summary of the range space approaches which have been proposed in the literature.

• Min-Max lists - Giles and Haimes introduce the use of min-max sorted lists of cells to accelerate searching.
In addition to forming two sorted lists of cells, the maximum cell range, dW, is determined. Cells containing
an isosurface of value W must have minimum value in the range [w - dW, w}, which may be determined by
binary search in the min-sorted array. This active set of cells is purged of cells whose range does not contain
w. For small changes in w, the active list can be updated, rather than wholly recomputed, by adding and
purging new candidate cells to the active list. In the worst case, complexity remains O(tlc).

4

,,,,
L _,,,

,,,,,
l _,,,

Figure 5; Two topologically consistent triangulations with respect to the shared face. Note that additional distinct
topological configurations exist due to additional face saddles on the non-shared faces

,~-- ...

I

5*\\((~
. .

Figure 6: Spatial hierarchical cell decompositions for accelerating the search for isocontours.

• Span filtering - Gallagher describes an algorithm called span filtering[71, in which the entire range space
of the scalar function is divided into a fixed number of buckels. Cells are grouped into buckets based on the
minimum value taken on by the function over the cell. Within each bucket, cells arc classified into one of
several lists, based on the number of buckets which are spanned by the range of the cell. For an individual
isovalue, cells which fall into a given bucket need only be examined if their span extents to the bucket which
contains the isovalue. In the worst case, complexity remains O(nc).

• Sweeping simplices - Shen and Johnson describe a Sweeping Simplices algorithm [26], which builds on
the min-max lists of Giles and Haimes and augments the approach with a hierarchical decomposition of the
value--space. The min-sorted list is augmented by pointers to the associated cell in the ma2J-sorted list, and
the max>-sorted list is augmented by a ~dirty bit.~ For a given isovalue, a binary search in the min-sorted
list determines all cells with minimum value below the isovalue. Pointers from the minimum value list to
the mClJcimum value list are followed to set the corresponding dirty bit for each candidate cell. At the same
time, the candidate cell with the largest mClJcimum value which is less than tbe isovalue is determined. As a
result, all marked (candidate) cells to the right of this cell in the maximum list must intersect the contour,
as they have minimum value below the isovalue and maximum value above the isovalue. Optimizations may
be performed when the isovalue is changed by a small delta. One min-max list is created for each level of a
hierarchical decomposition of the min-max search space. The overall complexity remains O(ll c) in the worst
case analysis.

• Extrema graphs - Itoh and Koyamadacompute a graph of the extrema values in the scalar field [10]. Every
connected component of an isocontour is guaranteed to intersect at least one arc in the graph. Isocontours
are generated by propagating contours from a seed point detected along these arcs. Noisy data with many
extrema will reduce the performance of such a strategy. Livnat et al. note that in the worst case the number
of arcs will be O(nc), and hence straightforward enumeration of the arcs is equivalent in complexity to
enumeration of the cells.

• Kd-tree - Livnat, Shen, and Johnson desaibe a new approach which operates on the 2D min-max span
space [14]. Cells are preprocessed into a Kd-!ree which allows O(k+..;nJ worst case query time to determine

5

o

o

o

•
•

•

•

•

•
•

•

,
,

,
,

-J '. .,'. '.. ·.... ···········0..·.......... ··0······ I' 10 == 100•
•

• •

•
•

o

•

..~---.. ..~--- ..
Vll.Ju~

W="'O

•

o

o

o '
,,

,
o .-
,,

'mln=ma.x

(0) ''l

Figure 7: The (a) ID value space and (b) 2D span space representations for range-space searches

the cells which intersect the contour, where k is the size of the output. It is reported that in the average
case, k is the dominant factor, providing optimal average complexity.

• Lattice search - The same authoni, with Hansen, have described a technique which demonstrates improved
empirical results by using an L x L lattice search decomposition in span space, in addition to allowing
for parallel implementation on a distributed memory architecture [25]. With certain assumptions on the

distributions of points in the span space, the worst-case query time improves to O(k + T +*).
• Segment tree, interval tree - Several authors have recently developed improved worst-case performance

bounds with the use of the interoal tree and segment tree data structures. Both structures provide a search
complexity of O(k + logn..), where n .. is the number of unique extreme values of the segments which
define the tree and k is the number of reported segments intersected. In Bajaj et al. a segment tree is
constructed for a reduced set of seed cells which are extracted in a preprocessing stage [2]. van Kreveld also
developed seed sets for the specialized case of a triangular mesh in two dimensions (30). The interoal tree
used by van Kreveld provides the same search complexity with lower worst-case storage overhead, which
we will examine in Section 3. Cignoni et al. use an interval tree constructed for the entire set of cells in
a tetrahedral complex f3]. More recently Cignoni et al. extend their approach to efficiently handle large
regular grids by building an interval tree for a specialized subset of the cells [4].

1.3 Cell Thaversa!
The order in which cells are visited can impact the efficiency of contouring algorithms in several ways. In the
algorithms described above, cells may be traversed in marching order, through contour propagation (breadth first
in a connected component), or in random order. One issue is the efficiency of avoiding re-computation (recom­
puting intersection along shared edges of cells). Through marching order and contour propagation, information
can be saved more efficiently tban in a random order visitation which is caused by some search techniques.

Contour propagation [I, 9, la, 2] is a surface tracking method which is based on continuity of the scalar field,
and hence of the isocontours derived from the field. Given a single seed cell on a connected component of a contour,
the entire component is traced by breadth-first traversal through the face-adjacencies. The traversal is terminated
when a cell which bas already been processed is met again, which is usually determined by a set of mark bits,
which indicate for each cell whether processing has taken place. The procedure is illustrated in Figure 8. In a
contour propagation framework, as in a marching order traversaJ., optimization can be performed ba<;ed on the
fact that with each step, information from adjacent cells is available which can be used to avoid recomputation.
In addition, the extracted contours are more easily transformed into representations such as triangle strips for
efficient storage and rendering.

Several of the cell search techniques presented above depend upon a subsequent cell traversal algorithm such
as contour propagation. The use of a subsequent cell traversal algorithm allows a reduction in the size of the

6

"" ,, ,

"

c
Act;"" Coil Quoue:

ITDJ
I

ConloD< Ac,ion,

Dequeue A, Compule oon'OU<

Enquoue B, C

Dequouo B: Compu'. conlnur

Dequc"o C, Com puLe con'our

Figure 8: illustration of contouT propagation. The active surface is traced through adjacent cells.

search structure, because a cell which will be processed by trnversal need not be entered into the primary search
structure. The traversal stage can be considered a secondary search phase.

Itah and Kayamada compute extrema graphs of the scalar field which, combined with a search of boundary
cells, guarantees that each. contour component will intersect at least one seed cell [10]- More recently the same
authors describe a volume thinning approach to computing a seed set, which reportedly results in smaller seed
sets [11].

In [31], the theory of optimal seed sets is discussed, which suggests that optimal (minimal) seed sets can be
constructed in time which is polynomial in the number of cells, though the cost for minimal seed sets remains
prohibitive for most cases.

Cignoni et al. introduce a limited propagation scheme for regular grids based on a ucheckerboard" seed set,
as illustrated in Figure 9. By selecting a regular pattern of cells, it is guaranteed that all contours will intersect
a black or grey cell. Modified contour propagation rules arc applied to reach white cells from the selected black
or grey cells. Determining the seed set requires very little computation, thus preprocessing is essentially limited
to building the range search structure, in this case an interval tree. In Section 2.6 we will contrast this approach
with the seed selection algorithms presented here.

Figure 9: lllustration of the ucheckerboard" approach to sufficient seed sampling. Black cells are on the checkerboard,
while a number of grey cells are also required in the seed set.

7

1.4 Summary of Prior Work

A key to efficient computation is in exploiting coherence. The isocontouring approaches described above can be
loosely classified and analyzed based on the coherence which is exploited.

Spatial Coherence - We assume a minimum of CO continuity in our scalar field. Continuity along shared cell
faces is exploited by many contouring approaches described above. The octree decomposition exploits spatial
coherence in a hierarchical manner. As should be expected, the analysis in [14] reveals that the complexity
gain breaks down when the spatial frequency is high, forcing large portions of the octree to be traversed.

Range-Space Coherence - Searches in range-space have demonstrated improved worst-case query complexity
with performance which is independent of spatial frequency. Such advances, however, come at the cost of
decreased ability to exploit spatial coherence. Assuming a continuous scalar field over a cell representation,
cells which are spatially adjacent also overlap in the value space for the range of the shared face. However,
the construction of value-space search structures such as the interval tree and segment tree are completely
independent of assumptions such as scalar field continuity. While this may be an advantage in the case that
discontinuous fields or disjoint groups of cells are considered, for our purposes it usually means that spatial
coherence is under-utilized.

We see above that spatial and value-space searches exploit coherence in one sense by sacrificing coherence in
another. Qur approach is best understood as a hybrid of spatial and value-space approaches, with the goal and
result of exploiting both value-space and spatial coherence.

Our approach is based on a fragmentation of the search for intersected cells into mnge-space and gfQffle/ric
phases, taking advantage of coherence in both. RangG-space searches exhibit improved worst-case complexity
bounds due primarily to the fact that intersection of a contour with a cell is determined by range-space properties,
as opposed to geometric properties. The output, however, is geometric in nature. By adopting contour propagation
to compute each connected component, we take advantage of spatial coherence during cell traversal. Contour
propagation also has the advantage of requiring only one seed cell for each connected component from which to
begin tracing the contour. In our approach, preprocessing determines a subset S of the cells which are maintained
as candidate seed cells. For an arbitrary input isovalue, it is guaranteed that every connected component of the
isocontour will intersect at least one cell in S. A second preprocessing step constructs a range query structure for
the cells in S. In the contour extraction phase, the contour propagation algorithm sweeps out the contour from
each selected cell in the seed set. Thus, the search for intersected cells takes advantage of spatial coherence in the
use of contour propagation, and range-space coherence through the construction of a range-space search structure
for seed cells.

In Section 2 we present three approaches to the construction of seed sets. In Section 3 we describe three
alternative data structures for performing fast queries for intersected. seed cells. Together the presented algorithms
and data structures provide an array of possible combinations which vary in usefulness based on the relative
importance of computational, space, and query complexity.

2 Seed Set Construction
We introduce three alternatives for the construction of seed sets. Our primary concern is efficient approximation
algorithms for computing "good" seed sets. The problem of optimal seed sets is considered and shown to have
polynomial time complexity in f31], however the complexity may be considered excessive for many applications.
As with many approximation algorithms, we find that the performance in terms of the size of the seed set can be
balanced with the competing desire for low time/space complexity, resulting in three approaches which are useful
in a variety of settings and applications.

In sections 2.1 and 2.2 we provide some preliminary definitions which are derived from contour propagation
and give a more fonnal definition of seed sets, providing a foundation for seed set generation.

2.1 Cell Connectivity
We begin by extending the definitions of cell connectivity based on adjacency to encompass connectivity with
respect to a given scalar value of a function defined over the domain. In this way we can identify the cells which
can be reached in the cell traversal stage (i.e. by contour propagation) from those which must be part of the seed
set.

Based on propagation of contours through cell adjacencies (as presented in Section 1.3), the connectivity is
simply described by a labeled adjacency graph of the mesh cells. The use of a different propagation scheme would
require the construction of a connectivity graph different from the adjacency graph. In general, to define the
connectivity graph we assume:

8

1. The function F(x) defining the scalar field of our d-dimensional mesh is continuous.

2. All the cells of the mesh are connected.

3. A function R(c) is given which, for any given cell c of the mesh, returns the ronge of values assumed by F
over the domain of c. Note that, since F is continuous, the range returned is always an interval [minc, maxeJ.

4. For each pair of adjacent cells (Ci,Cj), let

lij = {xIx E Ci,X E Cj}

and define the conned1ng interval:

R(f;;)~ [minF(X),m=F(X)] <;R(,,)nR(,;)
>lEc, ::orEC;

xEcj xEcj

such that if the cell Ci(Cj) is processed for a value w E R(f;j), then the cell ci(Ci) will be also processed for
the same value w. This is essentially the information we get from the contour propagation scheme.

Based on the above assumptions, we construct a labeled graph G. Note that this graph need not be constructed
explicitly in practice. For each cell Cin the mesh, we have a node nc in G which is labeled T(nc) = R(c). For each
pair of adjacent cells (Ci, ci), there is an arc Ii} in G connecting nc; to 7lej which is labeled T(f'J') = R(fij). The
arc hi corresponds to the face which is shared by cells Ci and Cj.

Connectivity relations between nodes in the graph G are transfered to relations between the corresponding
cells of the underlying mesh. Based on propagation of contours through cell adjacencies we have the following
definition:

Definition 1 Consider a scalar value wand a connected sequence of nodes

P = {nil ,··ni.}

P is called a w-path if
wE R(fijij+L)' 'Vj E [1 ... k - 1]

A w-path represents a cell traversal sequence based on application of a contour propagation algorithm for a
given isovalue w. We further define:

Definition 2 Cons1der a scalar value wand two nodes ne" n Cj of G. nc, and 7l Cj are said to be w-connected if
there erist..s a w-path connecting them.

Note that Definition 2 is a transitive relation, and we can define:

Definition 3 A maximal set of nodes {nil" .ni.} which are w-connected is called a w-connectoo component.

A w-connected component defines precisely the set of cells which are processed by contour propagation from
a single cell in the set. Note that a w-connected component differs slightly from a connected component of the
isocontour, in that two separate connected components may intersect a common cell, forming a single w-connected
component, as illustrated in Figure 10.

We can extend the concept of w-connectivity between pairs of cells to the connectivity of a set of cells with
respect to a range of values.

Definition 4 COn8'ider a subset S of the nodes ofG and a node C E G. The node c is connected to S if, for any
wE R(c), there e:rist..s a node c' E S that is w-conneded to c.

2.2 Seed Sets
We now characterize some particular subsets, called seed set..s, of the cells of a mesh in terms of the connectivity
properties defined in the preceding subsection. Seed sets are important because all connected components of any
isocontour of the entire original mesh can be traced by contour propagating from the cells of any seed set.

Definition 5 A subset S of the nodes of G is a seed set of G if all the nodes of G are connected to S.

In order to quickly determine all cells whose range contains a particular scalar value w, we can proceed as
follows:

1. search for all the cells c E S such that w E T(c)j

9

'" '" 0"

\ : 1\ .:00

...... .0 o'•

"-v, ° ,/ 0. 00
'0 °

I"
I' - "I

\ I- -
\ J

Figure 10: D1ustration of w·connected components. On the left are four contour components for a particular isovalue
w. On the right a portion of the graph G is displayed, corresponding to the three w-connected components. Displayed
in green is a w-path between two of the nodes.

2. starting from the cells reported in step 1 and using the w-connectivity relation on the graph G (that is the
contour propagation scheme), we find all the cells of the mesh whose range contains w.

To reduce the search time and storage requirements it is desirable to reduce the cardinality of the seed set S
as much as possible. Toward this end we will apply the following property:

Property 1 If S is a seed set and c e S is a cell connected to S - {e}, then S - {c} is a seed set.

Proof: By hypothesis we have that c is connected to S - {c}. Also, from Definition 2, we have that any cell
which is w-connected to c is also w-connected to some cell in S - {c}. Hence S - {c} is a seed set. 0

Property 1 provides us with a method to reduce the size of a seed set. If we wish to find a small seed set, we
can start with the entire set of the cells - that is the largest seed set - and keep removing cells until we achieve a
minimal seed set. Note that a minimal seed set is not the seed set with the minimum number of cells but a seed
set from which we cannot remove any cell to obtain a new seed set.

The repeated application of Property 1 requires the knowledge at each step of the connectivity relations within
the current seed set. Thus, we may start from the initial graph G. At each step, we remove a selected cell c
along with all its incident arcs and add some new arcs between pairs of cells that were connected to c to take into
account the connectivity relations induced by c on G - {c}. In particular, if two cells Ci and Cj are both connected
to c" with arcs h" and lik, then the removal of c" requires also the removal of Ii" and lik and potentially the
insertion of a new arc lij connecting c; to Cj. This new arc hj needs to be inserted if R(/i) nR(Ii) #- 0 (a case
in which the transitivity of Definition 2 applies). If this condition is true, then the new arc is added with label
R(Jij) :0:: R(J;) n R(Ii). If we proceed in this way, it becomes simple to determine if Property 1 can be applied.
We can remove a cell c" of the current seed set if:

,
URU,,) ~ R(,,j
i=l

where /l, ... ,Ii are all the arcs incident to the cell Ck in the reduced graph of the current seed set.
Given this general reduction scheme, we still have freedom to select the cells to be removed in any order. We

can use a greedy approach, removing first the cells that we consider less likely to belong to a minimal seed set ­
for example the cells that have narrower range. In this way we can assume that the minimal seed set we achieve is
not much larger than the seed set with the minimum number of cells. On the other hand, we can use this freedom
to make the algorithm as simple as possible (a very important property in actual implementations).

10

In the following subsections we present three seed selection algorithms. In Section 2.3 we present a greedy
approach for constructing near-optimal seed sets for irregular or regular grids. In Section 2.4 we present a simple,
fast seed selection approach by a sweep traversal for both irregular and regular grids. In a regular grid the
sweep process can be simply implemented as a traversal of the grid by rows using a regular marching scheme.
In Section 2.5 we examine a modified case for grids of regular topology which achieves smaller seeds sets with
slightly larger temporary storage complexity.

In our seed set generation algorithms, we begin by considering the universal seed set, consisting of all cells in
the mesh. We associate with each seed cell a computed range T(c) ~ R(c), which represents the range of values for
which the given cell is a seed cell. Initially, we have T(c) = R(c), the entire range of the cell, hence S is trivially a
seed seed set. Algorithms for seed set generation can be viewed as seed set reduction techniques, which iteratively
apply Property 1 to the current seed set to reduce the size of S.

2.3 Greedy Climbing
For computation of a nearly optimal seed sets we develop a greedy technique which progressively covers the domain
with seed cells by explicitly computing the coverage of each seed cell introduced. This climbing algorithm can be
applied to any complex of cells provided that the appropriate function R is given which computes the range of
a cell or face. The main advantage of the seed cell selection algorithm presented in [31] is that it guarantees the
computation of a seed set nearly optimal in size (at most twice the size of the optimal seed set). What makes it
difficult to achieve such a goal is the problem of selecting the ubest" seed cells at the saddle points of the &ea1ar
filed. The cost of solving such "difficult" situations is:

• the necessity to build explicitly the contour tree [31] of the scalar field;

• the use of complex data structures as the union-find-split (generalization of the standard union-find);

• the use of involved routines like the tandem-search.

As a consequence it becomes difficult to use such an approach in practice even if the results it produces axe highly
desirable. Moreover we observe that in many scalar fields which arise in practice the number of saddle points is
relatively small and, more important, a greedy selection (not based on contour tree aud tandem search) gives in
practice very good results. As a consequence we have developed a "practical" algorithm which computes nearly
optimal seed sets (even if not guaranteed in theory) for general unstructured meshes. The generalization to the
unstructured grids is based on the application of:

• greedy seed cell selection

• contour driven advancing front

We begin by considering the universal seed set S with T(c) = R(c) for all cells c. In our algorithm processing
begins by selecting an arbitrary cell c. For the example in Figure 11 the first seed cell is the lower left cell of the
grid (in practice the quality of the result is not going to be greatly affected by the selection of the first cell). We
can trace as in Figure 11(a) the isocontour C(i) which bounds the range of the cell c. The cells intersected or
induded within the isocontour C(i) are processed so that their range is reduced only to the portion outside i, as
in Figure l1(b). At each step the two following operations are performed:

{i} Among the cells across the current Eront i we select as the next cell to process the one with larger residual
- range (T(c) - R(c)).

{ii} The Eront i is enlarged up to the isocontour that includes the newly selected seed cell.

The geometric interpretation of the algorithm is based on the idea of contour tree (31] (note that we use the
contour tree as algorithm aualysis tool, but we do not need to build it). The greedy choice is equivalent to selecting
each time the seed cell that allows to climb (descend) as fast as possible the contour tree (see Figure l1(c)(d)).
To achieve this without computing the contour tree we need to resort to the contour driven advancing front. The
contour front is realized using a priority queue in which we store the cells that are intersected by (but not included
in) the current front i. As the front i advances new cells are inserted in the priority queue while other are removed
(those included in the new advanced front). To access and efficiently update the cells within the priority queue
we compound a hashing scheme that allows access in average expected 0(1) time to auy cell in the queue. The
base algorithm consists of:

ContourClimbing(mesh)

select an initial cell c

insert c in the priority queue p with priority R(c)
while p is not empty

11

,
~,

(.}

(o}

,

,
~,,,

,

(b}

,

(d}

Figure 11: Greedy climbing approach to seed cell selection. Grey cells represent the selected seed cells. Yellow cells
have been processed and removed from consideration, while red cells represent the current front of cells from which
the next seed cell will be chosen.

12

do

extract the cell c with highest priority and associated range T(c)

{ cell c with range T(c) remains in the seed set }

PropagateRegion(mesh, c, T(c), p)
done

The function PropagateRegionO is an extension of contour propagation to the case of simultaneous propagation
of an interval of values. Similar to contour propagation, interval propagation uses a queue of cells and prOpagates
from cell to adjacent cell. Associated with each cell Ci in the queue is an interval P(c;), which represents the
interval range which has been propagated to cell c;. When intervals are passed from a cell Cj to a neighboring cell
cj, only values in the shared range R(f;i) can be propagated, as the purpose is to mimic contour propagation for
a range of values. The overall interval propagation algorithm is outlined as follows:

PropagateRegion(mesh, c, T(c), p)

insert c in the queue q with associated range T(c)

while q is not empty

do
extract the cell co and associated range P(co) from q

if cell Ci is in p

then

T(,,) ~ T(,,) - Pi,,)
if T(co) = 0
then

remove cell Ci from p

,],e

set priority of Ci to the new span of T(e;)

endif

endif

for each cell ci adjacent to c;

do

if Cj is in the queue q

then

P(Ci) = P(ci) + P(Ci) n R(fii)

,",
add ci to q with associated range P(ci) = P(co) n R(fij)

done

done

Figure 12 shows a sample seed set computed with the algorithm described above.

2.4 Sweep Filtering
Computation of seed sets need only be performed one time for any dataset, and the results can be stored olf-line.
In many cases a considerable amount of processing can be devoted to generating very small seed sets, and the
results can be used over and over again. However, in many practical situations, the maintenance of a priority
queue as described in the contour climbing algorithm may be prohibitively expensive. Such situations include:

1. time critical - The time complexity of the contour climbing algorithm may be prohibitive if results are
needed very quickly.

2. dynamic data - If the data are being collected an analyzed in real-time, contour climbing may be infeasible.

3. out-or-core - If the data are too large to be stored in main memory, a memory access pattern which exhibits
greater coherence than the random-access pattern of contour climbing would be desirable.

13

Figure 12: Results of seed selection by contour climbing (76/7938 cells)

We present a simple seed selection algorithm which is motivated by these practical considerations. The seed
selection is conceptually easiest to understand as a sweep of the cells in a particular direction. The algorithm has
the property that selected seeds fallon the extrema of the contours in the given sweep direction. Detection of
contour extrema is based on a simple comparison of the gradient within each cell and its immediate neighbors.
With such a seed set, contouring may be performed coherently and efficiently by executing a contouring sweep,
with only a slice of data required to be resident in memory at any given time, resulting in efficient computation
for visualization of large out-of·core datasets.

To understand the properties that such a seed set must have, we first consider the one pass contour tracing
algorithm. From its analysis we immediately observe the properties that an appropriate seed set must have.

2.4.1 One-pass Contour Tracing

Conceptually the one-pass contour tracing is based on a sweep of the cells along a particular direction. As
illustrated in Figure 13, a sweep line 1 (sweep plane in 3D) is moved from left to right along the x direction. The
isocontour G(w) of height w is built progressively as it is crossed by the sweep line t. Each time I is tangent to
the isocontour G(w) three situations may arise:

• G(w) attains a local minimum along the direction f.t (orthogonal to 1) as in Figure 14(a)-(b). A new portion
of G(w) starts to be traced.

• G(w) attains a local maximum along the direction l.l. as in Figure 14(c)-(d). Two separate portions of G(w)
may join or a loop may be closed.

• An inBection point is met that does not need any special processing, as in Figure 14(e).

To perform the contour sweep operation two conditions suffice:

• The dataset is stored with the cells sorted by maximum f..L so that by loading them into memory (from the
end to the beginning) we automatically perform a sweep. This means that in the contour tracing stage and
in the seed selection stage the sweep algorithm can be performed in linear time.

• Any local maximum along the G. direction of any isocontour can be immediately detected (that is, a proper
seed set is precomputed). This allows us to avoid loading in memory sections of the mesh where there is no
contour component.

2.4.2 Sweeping Seed Selection

The seed selection stage is performed witb a forward sweep as illustrated in Figure 15. Conceptually, the sweep
line 1 is moved from left to right to determine the order in which cells are processed. Note that this ordering is not
required by the selection algorithm, and so cells which are stored in main memory can be processed in any order,
or even in parallel. Since the cells are already sorted in the mesh, the sweep is achieved by simply loading them
into memory in the order they are stored. When a cell c is met which contains a local maximum of an isocontour
along the sweep direction f..L the cell c is added to the seed set.

14

-- y

Figure 13: illustration of one-pass contour sweeping. Contour components are computed as they are crossed by the
sweep line.

From the geometrical point of view the determination of a local maximum within a cell of an unstructured
mesh is based on the normal me of the contour within the cell c. Consider two adjacent cells c and d, as shown in
Figure 16. The normal me (md) of the contours within c (d) is the projection onto the mesh space of the nOfmal
of the scalar field in c (d). As in Figure 16 we can determine a fixed direction f along I and perform the following
test:

• if both me and md have positive (negative) scalar product with i then neither a maximum nor a minimum
is met;

• Assume that me· f;:: 0 and n1d· f:5 0 (the opposite case is symmetric). If the cross product me x ffld has
positive z direction then a minimum is met.

Note that in order to test whether a cell is a seed it is only necessary to examine the cell and its first neighboring
cells. For data stored in primary memory, this is not an issue. For the out-of-core extension to this approach,
we must ensure that when a cell is tested, all neighboring cells are available in primary memory as well. There
are essentially two approaches to solving this. In the first approach, we can determine the maximum difference
between the indices of adjacent cells, in order to compute the amount of primary memory necessary for the out-of­
core processing. A more attractive solution is to fix the amount of memory which is available for the out·of-core
processing, and adapt the seed selection to this limit. In this case, if an adjacent cell is not available in primary
memory during the seed selection, the shared face between the cells is treated as a border of the mesh. Applying
this approach, we may select more seed cells, with the advantage that the approach can adapt to situations in
which only a small fraction of the mesh can be stored in primary memory at any given time.

Sweep filtering requires O(nc) time for considering each cell, and no additional storage beyond that of the
extracted seed set (and the portion of the mesh kept in memory).

Note that in addition to facilitating out-of-core computation, in general the sweep filtering approach provides
an extremely efficient method for computing a small seed set. Moreover, due to the local criteria for seed selection,
cells may be considered in any order, allowing for parallel implementation with little or no communication overhead
during the preprocessing.

2.4.3 Special Cases

While the algorithm described above is general and independent of grid topology, special considerations for
particular types of data and grids may be worthwhile. The criteria given above for detecting a minima along the
sweep direction have a special condition in the case that me .r= 0 and md .r= 0, indicating that the contour is

15

f

(,)

f

(d)(0)

f
(bl(.)

Figure 14: Tangent conditions of contour with sweep direction

perpendicular to the sweep direction. While this special case may not occur frequently in a general data setting,
the frequency of occurrence is much greater in particular settings, such as integer-valued data defined over a
regular grid, which is often the case for digital terrain data and medical image data.

With such data, it is not uncommon for degenerate situations to occur, as illustrated in Figure 18. In this case,
a minimum along the sweep direction is an entire line, which may result in a calumn of seed cells for a particular
isovalue, though it is clear that the seed cells are w-connected. In higher dimensions, the problem remains that a
large number of cells along the d - 1 dimensional hyperplane may be selected.

This degenerate situation is easily and efficiently addressed by making slight modifications to the selection
criteria. By modifying the minima detection criteria that me .l? 0 and md .l < 0, (one perpendicular condition
is removed), only one seed along each flat minima region will be chosen, as illustrated in Figure 19. For regular
grids of higher dimension, similar consideration of special cases can be made.

A sample seed set computed by sweep filtering is shown in Figure 20.

2.5 Responsibility Propagation

The special case for regular grids may be extended to provide smaller seed sets with a constant increase in
computational complexity and only slightly greater storage. This technique can be viewed as a simplification
of the connectivity graph technique described in the Section 2.1 for determining a seed set 8. The algorithm
does not requite that we store the entire graph, but instead we maintain a subset of the information from the
graph which can be locally propagated from cell to cell using simple rules when marching in a regular order, with
temporary storage complexity of O(n(d-l)!d). We again begin with all cells c in the set S. We associate with
each seed cell a computed range r(c), which represents the range of values for which the given cell is a seed cell.
Initially, we have T(c) = R(c), the entire range of the cell, hence S is a trivially a seed seed set. We present an
incremental seed elimination technique to reduce the seed set S. The reduction and removal of seed cells is based
on propagation of re8ponsibility ronge.s of isovalues. The information propagated from cell to cell in marching
order is a range T for each dimension of the regular grid. An incoming ronge T represents the range of values w
for which responsibility has been propagated to the current cell from the neighboring cells. The incoming range is
always a subset of the range of the shared face in the direction of propagation. The complement of the incoming
range in the direction which varies fastest consists of values w for which the current cell is w-connected to either
(i) a processed cell which remains in the seed set or (ii) an unprocessed cell to which responsibility for the value w
has been propagated. An outgoing range represents the responsibility range which is propagated from the current
cell to a neighboring cell. Illustrated for the 2D case in Figure 21, the marching order is Y varying fastest, X
varying slowest.

We describe the processing of a cell c at index (i,j) in a topologically regular grid of dimension (n%,n~).

Boundary conditions are handled directly through the following notation, defined for simplicity:

1. T(fu) represents the range of the incommg face in the U direction, where U is an arbitrary dimension.

2. T(u) represents the incoming range propagated in the U direction. In the case of the boundary condition
u = 0, we take T(u) = T(Ju).

16

Figure 15: One-pass seed selection by forward sweep

3. T(U) represents the complement of T(u) with respect to the range T(I..) of the shared face, or T(f..) - T(u).
Note that the propagated range T(u) C T(f..).

4. T(I..,) represents the range of the outgoing shared face in the U direction. In the boundary case when
there is no adjacent cell in the outgoing U direction (u = n .. - 2), we assign T(f..,) = 0, indicating that no
propagation may occur in the given direction.

5. T(u') represents the range propagated from the current cell to the outgoing adjacent cell in the U direction.

We first compute the combined incoming range T(l), and corresponding complement range T(I):

T(l) ~ (T(y) UT(x)) - T(y)

T(l) ~ (T(I,) UT(I,)) - T(l)

(1)

(2)

T(I) represents the subset of incoming isovalues which cell c must either account for in the seed set S or defer
responsibility for by propagation through T(x') and T(Y). The removal of i(y) in Equation 1 above is justified
based on the algorithm for range propagation presented below. For all w E T(I), there either exists a processed
cell in S which is w-connccted to c or the value w has already been further propagated, and hence w E T(I) need
not be considered in processing c. This leads to the definition of i(R), representing the entire range of values
which make up the respoll5ihility range of cell c.

T(R) ~ R(,) - T(l) (3)

For w E T(R), we must take care that c remaill5 w-connected to S in order to maintain the property that
S is a seed set. We also compute i(P), which represents the combined range of isovalues which may he further
propagated through outgoing faces:

T(P)~T(I,,)UT(I,,) (4)

We arrive at the following greedy algorithm for deferring seed cell selection through propagation of responsi­
bility. Through the processing of a cell c, we maintain the invariant that S is a seed set.

if (T(R) ~ T(P» then
{ Cell c can be removed from S }
S=S-c
{ Propagate responsibility ranges }
T(x') ~ T(I,,) n T(R)
T(y') ~ T(I,,) n (T(R) - T(x')

17

"..,.,

(')

.,,····,

r

,, .,.

r

,,
,,,,,,,,..,,

(o)

'" ,'" ,'" ,, ., ,
, " ,, " ,
I , , ,

I I , ,

, ", , ,, .,

, "-, ~~--.,----, ,
" ,
" ," ',I' ,
I" ,
", I,I' ,

,
,,, ,,, , ,,, , ,, , ,
, , ,

m",, ,
,

m,

r r

(.) (')

Figure 16: Conditions for determining a local maxima along the G. direction. In linear cells (a-b) the maxima lie
along cell edges. With regular cells (e) the maxima remain along edges, though the the conditions may change along
the length of the edge. In non-linear cells as simple as the non-axis-aligned bi-linear cell (d), maxima may occur in
cell interiors.

,,
-~--_..1 ,,

" '
---~_ ... , , ,

,,,

••·,,,,,

Figure 17: Three dimensional examples of local minima along the sweep direction.

else
{ Cell c mU,5t remain in the seed set}
T(o) =T(R)
T(x') = 0
T(y) = 0

ond

Proof: (8 remains a seed set after processing of cell c)

Case 1 (r(R) ~ T{P)) - Recall that cell c is w-connected to a processed seed cell for w E T(I). Through
propagated responsibility ranges, we have that c is w-connected to the remaining (unprocessed) seed set for
wE T(X')UT(y') = [T(f")nr(R)]U[T(f")n(T(R)-T(x'))] =(T(f")UT(f.,))nr(R) = T(p)nT(R) =T(R) =
R(c) - T(I). Thus, c is connected to S - {e}, and by Property 1, S - {e} is also a seed set, maintaining the
invariant property.

Case 2 (Cell e remains in the seed set) - Cell e is trivially w-connected to S for w E T(e) = T{R) = R(e) - T(I).
From the input conditions, we have that e is w-eonneeted to a processed cell which remains in S for w E T(I).
Thus, cis w-connected to S for w E R(e), maintaining the invariant property that S is a seed set.

In the first case, the propagated range T(P) includes the responsibility range T{R) in its entircty, and cell
e is removcd from the 5Ccd set S. The responsibility range is propagated through thc outgoing faces by the

18

~

1/

r
Figure 18: Degenerate minima which occur with greater frequency in grids of regular topology with integer-valued
data

computation of T(z') and ICy'). Note that the propagated ranges are disjoint aud that the preference is to
propagate the range in the X direction. It is this preference which allows us to remove T(Y) in equation (1). For
all w E ICy), the associated w-connected component is either accounted for by a processed cell in the seed set 5,
or responsibility bas been pro~ted to an unprocessed cell, hence w need not be considered for the current cell.
The same cannot be said for lex), because the precedence of propagation indicates that responsibility for values
wE T(x) may, through some path of responsibility propagation, ultimately be propagated through ICy). Consider
the case of Figure 21, and suppose that the value A is a local minimum. Values w E i(:&') overlap with the range
i(y), providing incoming information which appears to conflict. In fact we cannot make use of the range T(u),
where u is other than the direction which varies fastest ill the marching order.

The second case above occurs when cell c cannot propagate the entire incoming range. Cell c remains in the
set S, though T(c) is reduced to exclude the complement ranges which have been propagated elsewhere. In this
case the empty set is propagated to outgoing edgcs, indicating that all values on shared faces are accounted for
in the seed set S.

As described above, the range propagation method for selecting seed cells requires O(n(d-lJ/d) storage to
maintain the propagated ranges for a sweeping line or plane in 2D or 3D. Note that our use of range subtraction
may result in ranges with two disconnected components. In practice, disconnected ranges may either be maintained
or closed by taking the smallest range which contains the entire disconnected range. Maintaining the disconnected
range effectively requires that multiple seeds be processed into the search structure, increasing the number of seeds,
wbile merging disconnected ranges simply means that two or more cells which are w-connected may be selected
for inclusion in the seed set S. Of course, this greedy technique does not guarantee the selection of a single cell
for each connected component in the case that disconnected ranges are maintained. In our implementation, we
maintain disconnected ranges through the seed cell selection, closing each range which is ultimately selected to
remain in the seed set S. In practice the number of seed cells with disconnected ranges does not exceed 10% of
the seed cells, and the number of seed cells does not exceed 10% of the data, as presented in the results.

Results for a our 2D sample function are illustrated in Figure 22. The relatively smooth function is sampled on
a grid of size 64 x 64. Figure 22 shows the 206 seed cells chosen by the range propagation seed selection method.

2.6 Seed Set Results
Table 1 presents the comparative sizes of seed sets for the three seed selection algorithms applied to a variety of
input 2D and 3D meshes.

19

I

Figure 19: The cells on the current sweep plane are processed in regular order. A bit flag is turned on when a local
maximum exists on the top edge of a cell.

Dataset Climbing Propagation Sweeping Checker Total Cells
Eagle Pass Terrain 1872 7151 29356 720000 1440000
Sample Function 59 177 238 1985 3969

Hipip 529 2212 6397 62559 250047
Climate Data 177 602 1916 4760 19040

SOD 2308 9944 18608 264960 1059840

Table 1: Seed set sizes for the three presented algorithms, compared with the checkerboard approach and the total
number of cells.

3 Range Queries

The fundamental isocontouring query concerns the enumeration of all cells c such that W E R(c) for the input
isovalue w. In this section, we compare the use of three data structures supporting this mnge query operation
in terms of the storage complexity and the time complexity for both creation of the structure and for perform­
ing individual queries. \Vhile the characteristics of the search structures being studied are easily understood
and compared in theory, characteristics of our data and seed sets lead us to examine the practical application
considerations. A primary consideration is that of the data type. Note that for integer-valued data, the search
structures listed below all simplify to the same complexity, both in space and query time. A second consideration
is the size of the seed sets. While in the worst case n. = O(T1e) (note that we always have that n. :5 nc as S is
a subset of all cells), we have demonstrated in practice that n. is often smaller than TIe by one or more orders of
magnitude. This leads us to consider search structures of greater space complexity, which may lead to improved
query complexity or practical demonstrated performance.

In the following sections we review the interval tree, segment tree, and bucket search structures as applied
to the contour query problem described. Example search structures are illustrated for the input set of intervals
shown in Figure 23. For each search structure, we describe:

• Data structures
Basic C/C++ data structures for representing the search structure

• Construction
The algorithm for creating a search structure from a set of input intervals. The search structures are not
created iteratively, and so balancing of the trees is not an issue.

• Querying
The algorithm for processing an input query for a given isovalue w is considered.

20

Figure 20: Results of seed selection by directional sweep (296/7938 cells)

~._=
"''''''''f,., 0<,--- Tf'"}

, "!Tfw

D "

D

Figure 21: TIlustration of responsibility propagation. Each cell processes input responsibilities and produces output
responsibilities

Our analysis and data s~ructures are based on the general definitions of the data structures, without respect
for the data from which they are derived. In particular, the search structures are designed such that queries can
be resolved without referencing the original data.

3,1 Interval Tree
An interval tree is made up of a binary tree over the set of interval min/max values [19). Each internal node holds
a split value s, witb which intervals are compared during insertion into the tree. If the interval is entirely less
than the split value it is inserted into the left subtree, while intervals greater than the split value are recursively
inserted into the right subtree.

In the case that the interval spans the split value (min < S < max), the recursion terminates and the given
interval is stored at the current node. Each nodes maintains two list of spanning cells. The first list is stored. in
increasing order by the min, the second in decreasing order by the max value. Because the intervals are not split
in the recursive insertion, each interval is stored only twice, and the storage complexity is O(n.).

3.1.1 Interval Tree Data Structure

The data structure for the interval tree is relatively simple. The tree structure is implicit, with no need for pointers
(in the case that the intervals are static).

struct IT_IntervalList {

21

Figure 22: Results of seed selection by range propagation (206/3969 cells)

..
I 6 7

Figure 23: A set of segments representing cell ranges

};

struct IT_Node {
float split_value;
int n_intervale;
IT_IntervalLiet min_list;
IT_IntervalLiet max_list:

};

struct IT_Interval {
float min;
float max;
int celLid:

};

IntervalTree {
n_intervale;

.intervals;

struct
int
IT_Interval

n_uniq_va1;
.nodesj

};

22

~,1~'/3' I
i4) 13,12.11./~

Figure 24: Interval tree for the intervals given in Figure 23

The total storage requirements can be broken down into per intenJal and per node costs. For each interval
(seed cell), there are two Boat values for the extrema of the interval, one integer to store the cell identifier, and
two indices in the sorted lists, for a total of 5n~ words of storage. Each node in the tree contains a split value,
an integer number of cells stored at the node, and two pointers to the sorted lists of intervals, for a total of 4nu
words of storage. The total storage requirement is 5n. +4nu.

3.1.2 Interval Tree Construction

An interval tree is constructed in three steps. First, a sorted list of unique extreme values of intervals is created.
This list forms an implicit binary tree, with the root node for the list [ia , ibl taken as imid = l(ia + ib)j2J with
left child [ia,imid -1] and right child [imid + l,ib]. The second step for interval tree construction requires the
iterative insertion of each interval into the tree. Finally, the min-list and max-list associated with each node is
sorted as described above. The overall algorithm can be described as follows:

Insertlnterval(tree, left, right, intenJal)

mid = Weft + right)j2J
if tree.1ntenJals[intenJaij.maz < tree.nodea[midj.spliLtialue

then

InsertInterval(tree, left, m1d-l, intertlal)

else if tree.intenJals[intenJaij.min > tree.nodea[midj.spliLtialue

then

InsertInterval(tree, mid+l, right, interval)

.~.

add interval to tree.nodes[midj

endif

BuildIntervalTree(tree)

sort list of interval values

store unique sorted list in spliLvalue

for each interval i

do
Insertlnterval(tree, 0, tree.n_uniq_tlal-l, 1)

done

for each node n

do
sort tree.nodes[nJ.min..list by increasing maximum value
sort tree.nodes[n].max..list by decreasing minimum value

23

split_value;
Ith_listj
leq_list;
geq_list;

done

The overall cost of building the interval tree is O(n. log n.), dominated by the initial cost of sorting the interval
values.

3.1.3 Int;ervaI Tree Queries

For a given query value w, the reporting of intersected intervals is performed by a modified binary search for w:

QueryIntervalTree(tree, w)

left = 0
Tight = tree.n_uniq_1I11l-1
while left < right

do
mid = l(left + right)/2J

if w > tree.nodes[midJ.spliLlIlllue

then
traverse tree.nodes[midJ.min..list reporting intervals with m1n < w

right = mid-l
,ffi,

traverse tree.nodes{midJ.mwdist reporting intervaIs with max> w

left = mid+l

endif
done

The total cost for resolving the query is O(k + lognu), where k is the size of the output and n u is the number
of unique values from the set of min/ma:J; values.

3.2 Segment Tree
A segment tree also consists of a binary search tree over the set of min and max values of all the seed cells [20, 22].
The primary difference from the interval tree is the manner in which the segments are stored. Nodes in a segment
tree form a multiresolution hierarchy of intervals, with the root representing the infinite line, and with each node
dividing the parent interval at a split value (see Figure 25). When a segment is inserted into the tree, it is
recursively split and propagated downward in the tree to be inserted into the group of nodes whose intervals
collectively sum to the entire range of the segment. Each segment will be stored at most O(log nu) times, where
log nu is the height of the tree, resulting in worst case storage complexity of O(n. lognu) in the improbable case
that all min-max values are distinct, and all intervals filter all the way down to the leaves. The query complexity
for reporting the k intersected cells for a given isovalue w is O(k + lognu).

3.2.1 Segment Tree Data Structure

The segment tree data structure is similar to that of the interval tree. Note that for the segment tree there is no
need to explicitly store the min/ma:J; values for each segment. As illustrated in Figure 25, there are three principal
lists of cells associated with each unique interval value. We group these three lists into one segment tree node, as
shown below. The tree structure is again implicit in the sorted ordering of the unique values.

struct ST_CellList {
int n_cells;
int "cell_id;

};

struct ST_Node {
float
ST_CellList
ST_CellList
ST_CellList

};

24

Figure 25: Segment tree for the segments given in Figure 23

struct
int

SsgmentTree {
n_intervsls;

};

n_uniq_vsl;
*nodes;

In the case of the segment tree, total storage is dependent on the number of times each interval is split. We
will introduce ni. as the total number of cell identifiers stored in all li.st.s of cells. For each node of the tree, we
have the float split value, three pointers to cells and three counters for the number of cells in each list, for a total
of ni. + 6nu words of storage overall.

3.2.2 Segment Tree Construction

Construction of a segment tree is very similar to construction of an interval tree. The same binary structure
is constructed over the unique extreme values of the seed cells. The primary difference is that each interval is
recursively split and propagated down the tree from the root, rather than terminating at the first usplit.value~

which is spanned by the interval. The algorithm is sketched below:

InsertSegment(tree, left, right, ceiLid, min, mo.z, imin, imaz)

mid = l(left + right)/2J

split-value = tree.nodes[midj.split_value

if left = right

then

if min < imlU

then
add cell to tree.nodes[midJ.lth..fist

.],e

add cell to tree.nodes[midJ.geq_list

endif

return

endif

if min:::; imin AND max ;::: imlU

then

add cell to tree.nodes[midJ.leq_list

return

25

endif

if min < tree.nades[midj.spliLvalue

then

InsertSegment(tree, left, mid, celLid, min, MIN(max, spliLvalue),
spliLvalue, imax)

endif

if max > tree.1wdes[midj.spliLvalue

then

InsertSegment(tree, mid+l, right, celLid, MAX(min, spliLvalue), max,
imin, split~value)

endif

BuildSegmentTree(tree)

sort list of interval values

store unique sorted list in spliLlJalue

for each interval i

do

InsertSegment(tree, 0, tree.Jl..uniq_lJal-l, cellid, min, max, -00,00)
done

3.2.3 Segment Tree Queries

Traversal of a segment tree is much like traversal of an interval tree. For a given query value w, the reporting of
intersected intervals is performed by a modified binary search for w. As each node is traversed, the associated
list of cells is selected. At the conclusion of the traversal, one or both of the remaining two lists is selected, as
outlined below:

QuerySegmentTree(tree, w)

left = 0
right = tree.n_uniq_val-l

while left < right

do

mid = l(Ieft + right)/2J
traverse tree.nades[mia].leq_list and report all cells

if w ::; tree.nades[mia].spliLvalue

then

right = mid,,,.
left = mid+l

endif

traverse tree.nodes[left].1th..list and report all cells

if w = tree.nodes[left].spliLvalue

then

traverse tree.nodes[left].geq_list and report all cells

done

The total cost for resolving the query is O(k + !ognu), where k is the size of the output and n u is the number
of unique values from the set of min/max values.

26

min. maJ:.;
.lists;

3.3 Bucket Search
Much of the scientific data that we are concerned with comes in the form of integer values in a small range.
For example, Computed Tomography (CT) data generally have a 12·bit integer range of values. This regular
subdivision allows a simple bucket search strategy with n u -1 buckets each representing a unit interval (h, h+ 1).
For each cell, an identifier is stored in each bucket which is spanned by the cell. Clearly, the worst case storage
complexity of this strategy is O(n.nu), which may be infeasible in the case in which all cells are stored. Given
the approach of forming a small set of seed cells, such a technique may prove feasible, with the added benefit of
allowing intersected cells to be reported in O{k) time, linear in the number of reported cells.

10,12. /8 10,1,,13 14,10

" I 10,/',[6I /0,1,,10II f f
, , , • , ,

Figure 26: Bucket search structure for the intervals given in Figure 23

3.3.1 Data Structure

s~ruc~ B_CellLis~ {
in~ n_cellsi
int .cell_list i

};

s~ruct BucketSearch {
in~

B_CellList
};

As in the case of a segment tree, each cell may be stored several times, and 50 we will \l5e ni~ to represented
the total number of cell identifiers stored. In addition, we have one list for each unique extreme value, and so the
total measured storage is ni~ + 2n...

3.3.2 Building a Bucket Structure

The creation of a bucket data structure is straightforward. For each bucket spanned by a cell, it is added to the
associated list.

InsertInBuckets(bucket, celLid, min, maz)

Cor b = min to maz-l

do
add cell to bucket.lists[b).ceILlist

done

BuildBucketSearch(bucket)

sort list of interval values

store unique 50rted list in splil-value

for each interval i

do

InsertInBuckets(lree, celLid, min, max)

done

The time required for building the search structure is proportional to the total number of buckets spanned by
all cells, in worst case O(n~n..).

27

3.3.3 Bucket Search Queries

The advantage of the bucket search structure is that the range query complexity is entirely output 5eIl5itive, O(k).
The procedure is outlined below:

QueryBucket(sean::h, w)

bucket = w - bucket. min

traverse search.lists[bucketJ.celUt.at and report all cells

3.4 Search Structure Discussion
In this section we discuss the storage cost of each of the three presented search structures. Table 2 summarizes
the theoretical space and query complexities.

Search Structure Storage Complexity Query Complexity
Interval Tree O(n.) O(k + !ogn.)
Segment Tree O(n.lognu) O(k +lognu)

Bucket O(n.nu) O(k)

Table 2: Comparison of the theoretical complexities of the three search structures for performing an interval query.

In examining the practical considerations, we have measured the storage of each data structure as shown in
Table 3.

Search Structure Storage Measure
Interval Tree Sn. + 4nu
Segment Tree ni. + 6nu

Bucket nib + 2nu

Table 3: Comparison of the storage requirements in typical implementation of the three search structures.

It is clear from both the theoretical complexities and the empirical storage measures that the actual search
structure size will depend on certain characteristics of the data. In particular, if R u bounded (such as in the case
of integer data), the theoretical storage and query complexities are the same for all three search structures.

Empirical results from the three seed set construction algorithms are given in Figures 27·31. We also compare
the results with the size of an interval tree for the the checkerboard seed set as well as the entire set of cells. Note
that for data with integer values (the terrain data and the SOD data), the size of the segment tree is smaller than
that of the interval. tree, contrary to what the theoretical complexities might lead. one to expect. In Figures 32­
34 we compare the total preprocessing times for each seed selection algorithm. All times in these graphs arc
computed using the interval tree as a search structure. Note, in particular, that the total preprocessing time for
the directional sweep is actually less than using the checkerboard approach or using the entire set of cells, simply
because the directional sweep has time complexity O(ne) and the construction of the interval tree is O(n. lognu).
The directional sweep is extremely fast and reduces size of the seed set sufficiently to actually provide an observed
time cost advantage over all other approaches tested. Figure 35 displays an average cost of performing isovalue
queries for an MID dataset of size 256x256. Note that due to the fast inner loop of the segment tree and bucket
search structure query algorithms, both exhibit an advantage in query time over the interval tree.

References
[IJ E. Artzy, G. Frieder, and G. T. Herman. The theory, design, implementation and evaluation of a three­

dimensional surface detection algorithm. In Computer Graphics (SIGGRAPH '80 Procee!lingsJ, volume 14,
pages 2-9, 1980.

[2] C. L. Bajaj, V. Pascucci, and D. R. Schikore. Fast isocontouring for improved interactivity. In Proceedings
of 1996 Symposium on Volume Visualization, pages 39-46, October 1996.

[3J P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. Optimal isosurfacc extraction from irregular volume
data. In Procee!lings of 1996 Symposium on Volume Visualization, pages 31-38, October 1996.

28

,"""'"',----------------------,
"''''''''

"""""

•
8100000o

], """'"'
1600000

1872 7151
OL-__~~---~-~~- .,

(al

"""""',-----------------~----,
~

'''''''''''''

" """"'"
15OCKK)OO
~
~ 400000o

~."""""""
~

~'''''''''''''

"""'''''''

Propaga~on Sweepjng Ched<er
Seed 5eJ&clIGn Msthod

(b)

Figure 27: Number of seeds (a) and search structure storage requirements (b) for the Eagle Pass USGS Terrain Data
(1201x1201)

29

,ooo,-----~--- _

•~ 2500

~""'"o

11500•
H""

,+---~--~----~---~-CliITlbing

(a)

,l----..-..---.- _
'''''''

C~mblng PrupagBlion Sweeping Checker

Seed ConatruClIon Mvthod

(b)

.,

Figure 28: Number of seeds (a) and search structure storage requirements (b) for a sample function (64x64)

30

"""""',--------------------,

""""

""

"''''''''

529 2212
, l--""-~---~~---~-

Climbing

(al

.,Propagation Sweeping Chedlor
Seed COIlSUUClIGII Method

Climbing
,L_~--<_;_---~

"""'''''
""''''''''
,""""',----------------="

11400000.""""""m

, ''''''''''
1800000
<,
~ """"'"

(b)

Figure 29: Number of seeds (a) and search structure storage requirements (b) for the Hipip data (64x64x64)

31

"""" 1'""'"
'""'"

.!! 14000

li l2000
I
~'OOOOo

m

C~mbln!il

(a)

'''''''''
""'"
""'"..
""""•!

~ """'",
"""'",

",• ""'"<,
• """"~

""""
","'"

0
Climbing Propagafion Sweeplng CMckor All

Seed ConstnJetion Malhod

(b)

Figure 30: Number of seeds (a) and search structure storage requirements (b) for the LAMP Climate Data (35x41x15)

32

"",..,

.... """

''''''''''
""""'"

~ """""
J

"""""<;

.ii,,
"""""•

"""'"

"""0
a.... Propa9ll1lon SwoopIng Checker All

SDItd $e18C'l1on MathDd

(a)

""""""~---------------~'­;;,
"""'000

i """"""
1500000O

~
~ <00000O

~.""""'"
L=

Propaga~on Sweeping Checker
seed saklctlon M81tlocl

Slf'IIervaITj·
.Segmerrt Tree
OBuckal
-- --

(b)

Figure 31: Number of seeds (a) and search structure storage requirements (b) for the SOD data (97x97x116)

33

". r---------------------,

".

•
PropillJB~OO S~ Checker

S8ed SGlectlon M8Ihod

(a) Eagle Pass Data (120Ix1201)

"r--~-----------------_,

•
Climbing PlOpagIIlIon Sweepng Ch9ckIlr

Se&d 8el&cllon Method

.,

!Iillnlelllal Tree Constructloo I
iIilSeed Conslruclion !

(b) Sample Function (64x64)

Figure 32: Comparison of preprocessing time required for the 5 seed cell extraction algorithms. The interval tree is
used as the search structure in all cases.

34

'"0''------------------

""
,"0

"
°

1_1oI.81V81Tree Conslruction!
B5eed ConsIn.dIon~

C~mblng P'opagaIion Sweeping Chedle<

Seed selection Ikthod

(a) Hipip Data (64x64x64)

°,-------------------,
,
,

,

°

IliIlnlervai Tree Construo;!JooI
~5eed CoosuucIion-- - -

CUmblng PropagaIIcIn Sweeplng Checker

Seed selection Method

(b) LAMP Climate Model (35x41x15)

Figure 33: Comparison of preprocessing time required for the 5 seed cell extraction algorithms. The interval tree is
used as the search structure in all cases.

35

"0

E200

~
•r
~ 100

o
C~mting Propagalial Sweeping Chadcet

Seed SeIectIGn Melhod

<aJ

l-lnIeNaI Tree ConstruClion I
I ~SetId_Conslrudion _ J

Figure 34: Comparison of preprocessing time required for the 5 seed cell extraction algorithms. The interval tree is
llsed as the search structure in all cases.

o InlelVal Tree

x Segment Tree

Buckel Search

0.9

0.8

0.7

0.6

0.5
•E

0.'

0.3

0.2

0.'

~
0 SO "0 'SO

Isovalue
200 2SO

Figure 35: Comparison of query time for the interval tree, the segment tree, and the bucket search structures. Query
time computed as an average over 1000 searches and is plotted as a function of isovalue.

36

[4] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. Speeding up isosurface extraction using interval trees.
IEEE TIunsactions on Visualization and Computer Graphics, 3(2):158-170, 1997.

[5J A. Doi and A. Koide. An efficient method of triangulating equi-valued surfaces by using tetrahedral cells.
IEIGE funs. Commun. Etu. Tnf. Syst., E-74(1):214-224, 1991.

[6] M. J. DUI5t. Additional reference to marching cubes. Computer Graphics, 22(2):72-73, 1988.

[7] R. S. Gallagher. Span filtering: An efficient scheme for volume visualization of large finite element models.
In G. M. Nielson and L. Rosenblum, editors, Proceedings of IEEE Visualization '91, pages 68-75, October
1991.

[8] R. Haimes. Techniques for interactive and interrogative scientific volumetric visualization. Available from
http~//raphae1.mit .adll/ visue.13/visual3 .html, October 1991.

[9] C. T. Howie and E. H. Blake. The mesh propagation algorithm for isosurface construction. Computer
Graphics Forum, 13(3):65-74, 1994. Eurographics '94 Conference issue.

[lOJ T. Itoh and K. Koyamada. Automatic isosurface propagation using an extrema graph and sorted boundary
cell lists. IEEE funsacHons on Visualization and Computer Graphics, 1(4):319-327, December 1995.

[l1J T. Itoh, Y. Yamaguchi, and K. Koyamada. Volume thinning for automatic isosurface propagation. In
Proceedings of IEEE Visualization '96, pages 303-310, October 1996.

[12] D. B. Karron, J. Cox, and B. Mishra. New findings from the spiderweb algorithm: Toward a digital Morse
theory. In VisualizaHon in Biomedical Computing, volume 2359, pages 643--657. SPIE, October 1994.

[13} D. Kenwright. Dual Stream FUnction Methods for Generating Three-Dimensional Streamlines. Ph.D. thesis,
University of Auckland, Australia, 1993.

[14] Y. Livnat, H.-W. Shen, and C. R. Johnson. A near optimal isosurface extraction algorithm for unstructured
grids. IEEE Transactions on Visualization and Computer Gmphics, 2(1):73-84, 1996.

[15] S. Lobregt, P. W. Verbeek, and F. C. A. Groen. Three-dimensional skeletonization: Principle and algorithms.
IEEE funsactioRS on Pattern Analysis and Machine Intelligence, 2(1):75-77, 1980.

[16] W. E. Lorensen. Marching through the visible man. In G. M. Nielson and D. Silver, editors, Proceedings of
IEEE Visualization '95, pages 368-373, October 1995.

[17J W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface construction algorithm.
In Maureen C. Stone, editor, Computer Graphics (SIGGRAPH '87 Proceedings), volume 21, pages 163-169,
July 1987.

118] S. V. Matveyev. Approximating of isosurface in the marching cube: Ambiguity problem. In R. D. Bergeron
and A. E. Kaufman, editors, Proceedings of Visualization '94, pages 288-292. IEEE Computer Society, IEEE
Computer Society Press, October 1994.

[19] E. M. McCreight. Priority search trees. SIAM J. Comput., 14:257-276, 1985.

[20J K. Mehlhorn. Data Structures and Algorithms 3: Multi·dimensional Searching and Computational Geome­
try, volume 3 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg, West
Germany, 1984.

[21] C. Montani, R. Scateni, and R. Scopigno. Discretized marching cubes. In R. D. Bergeron and A. E. Kaufman,
editors, Proceedings of IEEE Visualization '94, pages 281-287. IEEE Computer Society, IEEE Computer
Society Press, October 1994.

(22] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice Hall,
Englewood Cliffs, NJ, 1994.

[23J B. K. Natarajan. On generating topologically consistent isosurfaces from uniform samples. The Visual
Computer, 11(1):52--62, 1994.

[24) G. M. Nielson and B. Hamann. The asymptotic decider: Resolving the ambiguity of marching cubes. In
G. M. Nielson and L. Rosenblum, editors, Visualization '91 Proceedings, pages 83-91, October 1991.

[25] H.-W. Shen, C. D. Hansen, Y. Livnat, and C. R. Johnson. Isosurfacing in span space with utmost efficiency.
In Visualization '96 Proceedings, pages 287-294, October 1996.

[26] H.-W. Shen and C. R. Johnson. Sweeping simplices: A fast iso-surface extraction algorithm for unstructured
grids. In G. M. Nielson and D. Silver, editors, Proceedings of IEEE Visualiza!ion '95, pages 143-150, October
1995.

[27] S. N. Srihari. Representation of three-dimensional digital images. Computin9 Surveys, 13(4):399---424, 1981.

37

[28] A. Van Gelder and J. Wilhelms. Topological considerations in isosurface generation. Technical Report
UCSC-CR.L-94-31, University of California at Santa Cruz, June 1994.

[29] A. Van Gelder and J. Wilhelms. Topological considerations in isosurface generation. ACM 7hmsactiona on
Graphics, 13(4):337-375, October 1994.

(30] M. van Kreveld. Efficient methods for isoline extraction from a digital elevation model based on triangulated
irregular networks. International Journal of Geographical In/oTTTlation Systcrrn>, 10:523-540, 1996. Also
appeared as Technical Report UU-CS-1994-21, University of Utrecht, the Netherlands.

[311 M. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. R. Scbikore. Contour trees and small seed
sets for isosurface traversal. In 13th ACM Symposium on Computational Geometry, pages 212-220. ACM,
1997.

[32) J. J. van Wijk. Implicit stream surfaces. In PT'fJCUdings of IEEE Visualiza!ion '93, pages 245-252, October
1993.

[33] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface generation extended abstract. Computer
Graphics (Scm Diego Workshop on Volume Visualization), 24(5):57--62, November 1990.

[34] J. Wilhelms and A. Van Gelder. Topological considerations in isosurface generation: Extended abstract.
Computer Grophics (San Diego Workshop on Volume Visualization), 24(5):79-86, November 1990.

[35] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface generation. ACM TInnaactiona on Graphics,
11(3):201-227, 1992.

[361 G. Wyvill, C. McPheeters, and B. Wyvill. Data structure for soft objects. The Visual Computer, 2:227-234,
1986.

[37] Y. Zhou, W. Chen, and Z. Tang. An elaborate ambiguity detection method for constructing isosurfaces
within tetrahedral meshes. Computers and Graphics, 19(3):355-364, 1995.

38

	Seed Sets and Search Structures for Accelerated Isocontouring
	Report Number:
	

	tmp.1307986960.pdf.1aKOh

