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Abstract

We present three algorithms for the construction of seed sets, a subset of a cell complex which contains at least
one cell for each connected component of each isocontour, for all possible isovalues. Seed sets reduce the storage
requirements of high performance search structures for isocontouring, such as the segment tree or the interval
tree. The three algorithms determine seed sets with varying properties. The first computes seed sets within a
constant factor of the optimal size, requiring O(nfogn) time, where n is the size of the mesh. A more conservative
approach computes seed sets of slightly larger size with O(r) processing time, and is very amenable to parallel
processing. The seeds produced follow a particular pattern which can be leveraged for performing out-of-core
isocontouring, dynamically loading only the data which is necessary from secondary storage or a remote server.
A specialized form of the second algorithm for regular grids computes seed sets of intermediate size, with only
slightly additional effort and the same computational complexity. We examine the use of three search structures
and compare their application to the seed sets and full sets of cells from a variety of computational grids.

1 Introduction

Isocontouring is a widely used approach to the visualization of scalar data and an integral component of almost
every visualization environment. Computation of isocontours has applications in visualization ranging from ex-
traction of surfaces from medical volume data [16) to computation of stream surfaces for flow visualization [32].
Inkerent in the selection of an isocontour, defined by C(w) : {x|F(x) ~ w = 0}, is that only a selected subset
of the data is represented in the result. In many applications, the ability to interactively modify the isovalue w
while viewing the computed result is of great value in exploring the global scalar field structure. In fact, it has
been observed in user studies that the majority of the time spent interacting with a visualization is in modifying
the visualization parameters, not in changing the viewing parameters [8]. Hence there has been great interest in
improving the computational efficiency of contouring algorithms.

In the following subsections, we divide the principal components of cell-based isocontouring algorithms in the
following three stages:

e Cell Triangulation — Method of computation for determining the component of a contour which jntersects a
single cell.

» Cell Search - Method for finding all cells which contain components of the contour

e Cell Traversal — Order of cell visitation may be integrated with (or decided by) the cell search technique,
however it nevertheless affects the performance of the isocontour extraction algorithm

In Section 1.1 we discuss the problem of cell triangulation and review several approaches which have been
presented in the literature. In Sections 1.2 and 1.3 we present the prior work on search and traversal schemes
which provides motivation for our work. We demonstrate that combinations of the approaches in each of these
three areas yield dramatic improvements in the interactivity of isocontouring with a small overhead in the required
data structures.

1.1 Cell Triangulation

Cell triangulation concerns the approximation of the component of a contour which is jnterier to the cell. Tri-
angulation has two distinct components, interpolation to determine a set of points and normals, and connectivity
to determine the local topology of the contour. While the use of linear interpolation edges of cells is a widely




accepted approach, other strategies have been developed to reduce this computational portion of isocontour ap-
proximation, such as selecting midpoints along intersected edges [21]. Here we present a summary of the work on
the topological aspect of contour triangulation.

Figure 1: Standard cell representation for contour computation in a structured grid

Cell-based contouring algorithms generally begin with a classification of each vertex of a given cell as posiiive
(if greater than the isovalue) or negative (if less than or equal to the isovalue}, which we will refer to as black and
white, respectively. Such a binary classification of the 8 vertices of a regular cell {as in Figure 1) leads to a total of
28 or 256 possible configurations. Taking rotational symmetry into account, this can been reduced to 22 distinct
cases (15, 27]. Based on linear interpolation, cell edges are catled intersecting if the colors of the endpoints differ,
or non-intersecting if they are colored the same.

Marching Cubes [17] further reduces the number of base cases by assigning complementary triangulation for
complementary vertex configurations (black to white}, resulting in 15 distinct colorings, as shown in Figure 2. The
full table of the 256 possible vertex configurations can easily be generated from this table of 15 cases.

The use of complementary triangulations reduces the number of base cases, but also introduces a well-know
topological inconsistency on certain configurations of shared faces between cubes (6], one case of which is illustrated
in Figure 3. A number of techniques have been proposed which offer solutions to this inconsistency, which we
group into two classes. The first class attempts only to provide consistency along all cell faces, while then second
class provides correctness with respect to a chosen model.

Consistency may be achieved simply by subdividing each cell into tetrahedra and using a linear interpolant
within each tetrahedron [5}. An efficient approach to consistency is to adopt a comsistent decision rule, such as
sawpling the function at the center of the ambiguous face to determine the local topology [36].

Zhou et al. make the point that the tetrahedral decomposition and linear approximation change the function
and may still result in incorrect, though consistent, topology [37]. They propose that the tetrahedral decomposition
may be used, provided that intersections along the introduced diagonal are computed for the cubic fanction which
results from sampling the trilinear function across the diagonal of a cell, rather than applying linear interpolation
along all edges.

Matveyev sorts all intersections on a regular cell face with respect to an axial direction [18). The nature of
the bilinear interpolant ensures that pairs in the sorting will be connected, as the asymptotes at a saddle point
for a bilinear function over an axis-aligned regular cell are parallel to the axes.

The core of the problem along shared cell faces lies in determining the topological connectivity of vertices which
are colored the same but which lie diagonally across a face of a cell. Nielson and Hamann propose generating a
consistent decision on connectivity by enforcing a topology which is correct with respect to the bilinear interpolant
along the face [24]. Kenwright derives a similar condition for disambiguating the connectivity on the faces in terms
of the gradient of the bilinear interpolant [13]. Natarajan further enforces consistency with the trilinear interpolant
for the case of ambiguities which are interior to a cell, which occur when diagonal vertices across the body of the
cell are similarly colored but have no edge-connected path of vertices of the same color between them [23]

Karron et al. further discuss the proper treatment of criticalities in isocontouring, proposing a digital morse
theory for describing scalar fields [12].

Wilhelms and Var Gelder provide a comprehensive review the topological considerations in extracting isosur-
faces, and demonstrate that gradient heuristics applied at the vertices of a cell are necessary and sufficient to
disambiguate the topology of functions which are quadratic {34, 28, 29].




Figure 2: 15 distinct vertex colorings

The solution suggested by Natarajan [23] is particularly attractive due to its design to enforce consistency
with the trilinear interpolant, a commeonly used interpolant for 3d reconstruction and visualization. The situation
on faces with colored vertices which are diaponally adjacent can he viewed in two dimensions as in Figure 4. The
unique saddle point at coordinate x, of the bilinear interpolant lies interior to the face, and the correct topology
can he determined by evaluating the function at the saddle point and comparing it with the isovalue as shown.
This topological consistency is carried out further by considering the unique saddle point of the full trilincar
interpolant in addition to the six possible face saddles. A simple extension to the marching cubes case table
requires sub-cases only for configurations which contain saddles. The sub-cases are indexed by the saddle point
evaluations in order to determine a triangulation which is topelogically consistent with the trilinear interpolant [23]

For the inconsistent case illustrated in Figure 3, several distinct topological triangulations are possible, two of
which are illustrated in Figure 5.

1.2 Cell Search

Because a contour only passes through a fraction of the cells of a mesh on average, algorithms which perform an
exhaustive covering of cells are found to be inefficient, spending a large portion of time traversing cells which do
not contribute to the contour.

The straightforward approach of enumerating ail cells to extract a contour leads to a high overhead cost when
the surface being sought intersects only a small number of the cells.

Preprocessing of the scalar field permits the construction of search structures which accelerate the repcated
action of isocontouring, allowing for increased interactivity during modification of the isovalue. Many prepro-
cessing approaches and search structures have been presented, which are conveniently classified (similar to the
classification presented in [14]) based on whether the search is in domain space or range space.

1.2.1 Domain Search

* Octree search — A spatial hierarchy for accelerating the search process is a natural approach which has
been explored by Wilhelms and Van Gelder [35, 33]. For space efficiency considerations, a partial octree
decomposition was developed which groups all cells at the highest level and adaptively approximates the
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Figure 4: A two dimensional bilinear saddle and its contour configurations

data through axis-aligned subdivisions which better approximate the data. At each level in the tree, min
and maz values for the cells contained in the subtree are stored, providing a means to efficiently discard
large spatial regions in the search phase. An analysis presented in [14) suggests a worst-case computational
complexity of O(k + klog =), where k is the size of the output and n, is the number of cells.

1.2.2 Range Search

A large number of search techniques in the recent literature perform the search for intersected cells in the ronge
space of the function. As we are dealing only with scalar-valued functions, range space search techniques have
the advantage of being independent, of the dimension of the domain. In range space, each cell ¢ is assoctated with
the continuous set of values taken on by the function over the domain:

R(c) = [min F(x), max F(x)]

There are two approaches for representing the range space, the 1D valuespace, in which each range R{c) is
considered as a segment or interval along the real line, and the 2D span-space, in which each range R(c) is
considered as a point in 2D [14], as illustrated in Figure 7. While certain search structures are motivated by one
geometric representation or another, others may be effectively visualized in either representation.

We present a brief summary of the range space approaches which have been proposed in the literature.

¢ Min-Max lists - Giles and Haimes introduce the use of min-maz sorted lists of cells to accelerate searching.
In addition to forming two sorted lists of cells, the maximum cell range, Aw, is determined. Cells containing
an isosurface of value w must have minimum value in the range [w — Aw, w), which may be determined by
binary search in the min-sorted array. This active set of cells is purged of cells whose range does not contain
w. For small changes in w, the active list can be updated, rather than wholly recomputed, by adding and
purging new candidate cells to the active list. In the worst case, complexity remains O(n.).




Figure 5: Two topologically consistent triangulations with respect to the shared face. Note that additional distinet
topological configurations exist due to additional face saddles on the non-shared faces

Figure 6: Spatial hierarchical cell decompositions for accelerating the search for isocontours.

¢ Span filtering — Gallagher describes an algorithm called span filtering[7), in which the entire range space
of the scalar function is divided into a fixed number of buckels. Cells are grouped into buckets based on the
minimum value taken on by the function over the cell. Within each bucket, cells are classified into one of
several lists, based on the number of buckets which are spenned by the range of the cell. For an individual
isovalue, cells which fall into a given bucket need only be examined if their span extents to the bucket which
contains the isovalue. In the worst case, complexity remains O(n.).

* Sweeping simplices - Shen and Johnson describe a Sweeping Simplices algorithm [26], which builds on
the min-maz lists of Giles and Haimes and augments the approach with a hierarchical decomposition of the
value-space. The min-sorted list is augmented by pointers to the associated cell in the maz-sorted list, and
the maz-sorted list is augmented by a “dirty bit.” For a given isovalue, a binary search in the min-sorted
list determines all cells with minimum value below the isovalue. Pointers from the minimum value list to
the maximum value list are followed to set the corresponding dirty bit for each candidate cell. At the same
time, the candidate cell with the largest maximum value which is less than the isovalue is determined. As a
result, all marked (candidate) cells to the right of this cell in the maximum list must intersect the contour,
as they have minimum value below the isovalue and maximum value above the isovalue. Optimizations may
be performed when the isovalue is changed by a small delta. One min-maz list is created for each level of a
hierarchical decomposition of the min-maz search space. The overall complexity remains O(n.) in the worst
case analysis.

s Extrema graphs - Itoh and Koyamada compute a graph of the extrema values in the scalar field [10]. Every
connected component of an isocontour is guaranteed to intersect at least one arc in the graph. Isocontours
are gencrated by propagating contours from a seed point detected along these arcs. Noisy data with many
extrema will reduce the performance of such a strategy. Livnat et al. note that in the worst case the number
of arcs will be O(n.), and hence straightforward enumeration of the ares is equivalent in complexity to
coumeration of the cells.

» Kd-tree - Livnat, Shen, and Johnson describe a new approach which operates on the 2D min-maz span
space [14]. Celis are preprocessed into a Kd-tree which allows O(k + /fiz) worst case query time to determine
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Figure 7: The (a) 1D value space and (b) 2D span space representations for range-space searches

the cells which intersect the contour, where k is the size of the output. It is reported that in the average
case, & is the dominant factor, providing optimal average complexity.

¢ Lattice search - The same authors, with Hansen, have described a technique which demonstrates improved
empirical results by using an L x L lattice search decomposition in span space, in addition to allowing
for parallel implementation on a distributed memory architecture [25]. With certain assumptions on the
distributions of points in the span space, the worst-case query time improves to Ok + 5=+ -"‘%5-)

s Segment tree, interval tree - Several authors have recently developed improved worst-case performance
bounds with the use of the inierval tree and segment tree data structures. Both structures provide a search
complexity of O(k + logn,), where n, is the number of unique extreme values of the segments which
define the tree and & is the number of reported segments intersected. In Bajaj et al. a segment tree is
constructed for a reduced set of seed cells which are extracted in a preprocessing stage [2]. van Kreveld also
devcloped seed sets for the specialized case of a triangular mesh in two dimensions (30). The interval free
used by van Kreveld provides the same search complexity with lower worst-case storage overhead, which
we will examine in Section 3. Cignoni et al. use an interval tree constructed for the entire set of cells in
a tetrahedral complex {3]. More recently Cignoni et al. extend their approach to efficiently handle large
regular grids by building an interval tree for a specialized subset of the cells [4].

1.3 Cell Traversal

The order in which cells are visited can impact the efficiency of contouring algorithms in several ways. In the
algorithms described above, cells may be traversed in marching order, through contour propagation (breadth first
in a connected component), or in random order. One issue is the efficiency of avoiding re-computation (recom-
puting intersection along shared edges of cells). Through marching order and contour propagation, information
can be saved more efficiently than in a random order visitation which is caused by some search techniques.

Contour propagation [1, 9, 10, 2] is a surface tracking method which is based on continuity of the scalar field,
and hence of the isocontours derived from the field. Given a single seed celion a connected component of a contour,
the entire component is traced by breadth-first traversal through the face-adjacencics. The traversal is terminated
when a cell which has already been processed is met again, which is usually determined by a sct of mark bits,
which indicate for each cell whether processing has taken place. The procedure is illustrated in Figure 8. In a
contour propagation framework, as in a marching order traversal, optimization can be performed based on the
fact that with each step, information from adjacent cells is available which can be used to avoid recomputation.
In addition, the extracted contours are more easily transformed into representations such as triangle strips for
efficient storage and rendering.

Several of the cell search techniques presented above depend upon a subsequent cell traversal algorithm such
as contour propagation. The use of a subsequent cell traversal algorithm allows a reduction in the size of the
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Figure 8: Ilustration of contour propagation. The active surface is traced through adjacent cells.

search structure, because a cell which will be processed by froversal need not be entered into the primary search
structure. The traversal stage can be considered a secondary search phase.

Itoh and Koyamada compute extrema graphs of the scalar field which, combined with a search of boundary
cells, guarantees that each contour component will intersect at least one seed cell [10]). More recently the same
authors describe a volume thinning approach to computing a seed set, which reportedly results in smaller seed
sets f11].

In [31], the theory of optimal seed sets is discussed, which suggests that optimal (minimal) seed sets can be
coostructed in time which is polynomial in the rumber of cells, though the cost for minimal seed sets remains
prohibitive for most cascs.

Cignoni et al. introduce a limited propagation scheme for regular grids based on a “checkerboard” seed set,
as illustraced in Figure 9. By selecting a regular pattern of cells, it is guaranteed that all contours will intersect
a black or grey cell. Modified contour propagation rules are applied to reach white cells from the selected black
or grey cells. Determining the seed set requires very little computation, thus preprocessing is cssentially limited
to building the range search structure, in this case an interval tree. In Section 2.6 we will contrast this approach
with the seed selection algorithms presented here.

Figure 9: Tllustration of the “checkerboard” approach to sufficient seed sampling. Black cells are on the checkerboard,
while a number of grey cells are also required in the sced set.




1.4 Summary of Prior Work

A key to efficient computation is in exploiting coherence. The isocontouring approaches described above can be
loosely classified and analyzed based on the coherence which is exploited.

Spatial Coherence —~ We assume a minimum of C° continuity in our scalar field. Continuity along shared cell
faces is exploited by many contouring approaches described above. The octree decomposition exploits spatial
coherence in a hierarchical manner. As should be expected, the analysis in [14] reveals that the complexity
gain breaks down when the spatial frequency is high, forcing large portions of the octree to be traversed,

Range-Space Coherence - Searches in range-space have demonstrated improved worst-case query complexity
with performance which is independent of spatial frequency. Such advances, however, come at the cost of
decreased ability to exploit spatial cokerence. Assuming a continuous scalar field over a cell representation,
cells which are spatially adjacent also overlap in the value space for the range of the shared face. However,
the construction of value-space search structures such as the interval tree and segment tree are completely
independent of assumptions such as scalar field continuity. While this may be an advantage in the case that
discontinuous fields or disjoint groups of cells are considered, for our purposes it uwsually means that spatiat
coherence is under-utilized.

Ve see above that spatial and value-space searches exploit coherence in one sense by sacrificing coherence in
another. Qur approach is best understood as a hybrid of spatial and value-space approaches, with the goal and
result of exploiting both value-space and spatial coherence.

Qur approach is based on a fragmentation of the search for intersected cells into range-space and geomelric
phases, taking advantage of coherence in both. Range-space searches exhibit improved worst-case complexity
bounds due primarily to the fact that intersection of a contour with a cell is determined by range-space properties,
as opposed to geometric properties. The output, however, is geometric in nature. By adopting coniour propagation
to compute each connected comporent, we take advantage of spatial coherence during cell traversal. Contour
propagation also has the advantage of requiring only one seed cell for each connected component from which to
begin tracing the contour. In our approach, preprocessing determines a subset § of the cells which are maintained
as candidate seed cells. For an arbitrary input isovalue, it is guaranteed that every connected component of the
isocontour will intersect at least one cell in §. A second preprocessing step constructs a range query structure for
the cells in S, In the contour extraction phase, the contour propagation algorithm sweeps out the contour from
each selected cell in the seed set. Thus, the search [or intersected cells takes advantage of spatial cohercnce in the
use of contour propagation, and range-space coherence through the construction of a range-space search structure
for seed cells.

In Section 2 we present three approaches to the construction of seed sets. In Section 3 we describe three
alternative data structures for performing fast queries for intersected seed cells. Together the presented algerithms
and data structures provide an array of possible combinations which vary in usefulness based on the relative
importance of computational, space, and query complexity.

2 Seed Set Construction

We introduce three alternatives for the construction of seed sets. Qur primary concern is efficient approximation
algorithms for computing “good” seed sets. The problem of optimal seed sets is considered and shown to have
polynomial time complexity in {31], however the complexity may be considered excessive for many applications.
As with many approximation algorithms, we find that the performance in terms of the size of the seed set can be
balanced with the competing desire for low time/space complexity, resulting in three approaches which are useful
in a variety of settings and applications.

In sections 2.1 and 2.2 we provide some preliminary definitions which are derived from contour propagation
and give a more formal definition of seed sets, providing a foundation for seed set generation.

2.1 Cell Connectivity

We begin by extending the definitions of cell connectivity based on adjacency to encompass connectivity with
respect to a given scalar value of a function defined over the domain. In this way we can identify the cells which
can be reached in the cell traversal stage (i.e. by contour propagation) from those which must be part of the seed
set.

Based on propagation of contours through cell adjacencies (as presented in Section 1.3}, the connectivity is
simply described by a labeled adjaceney graph of the mesh cells. The use of a different propagation scheme would
require the construction of a conuectivity graph different from the adjacency graph. In general, to define the
connectivity graph we assume:




1. The furction F(x} defining the scalar field of our d-dimensional mesh is continuous.
2. All the cells of the mesh are connected.

3. A function R(c) is given which, for any given cell ¢ of the mesh, returns the range of values assumed by F
over the domain of c. Note that, since F is continuous, the range returned is always an interval [ming, maz.].

4. For each pair of adjacent cells (¢, ¢;), let
fis = {x|x € ci,x € ¢}

and define the conrnecting interval:

R(fi;) = min 7 (x), max F (x)| € R{e:) 0 Ric;)

xEC; XEcy

such that if the cell ¢i{¢;) is processed for a value w € R(f;;), then the cell ¢;{ci) will be alse processed for
tke same value w. This is essentially the information we get from the contour propagation scheme.

Based on the above assumptions, we construct a labeled graph . Note that this graph need not be constructed
explicitly in practice. For each cell c in the mesh, we have a node 5. in ¢ which is labeled T(r:} = R(¢). For each
pair of adjacent cells (c;, ¢;), there is an ar¢ fi; in G connecting n., to ne; which is labeled T(fi;} = R(fi;). The
arc fi; corresponds to the face which is shared by cells ¢; and c;.

Connectivity relations between nodes in the graph & are transfered to relations between the corresponding
cells of the underlying mesh. Based on propagation of contours through cell adjacencies we have the following
definition:

Definition 1 Consider a scalar value w and o connected sequence of nodes
P ={ni, - -n;,}
P is called a w-path if
we R(fl'jl',‘+|)|vj € [1 ook — 1]

A w-path represents a cell traversal sequence based on application of a contour propagation algorithm for a
given isovalue w. We further define:

Definition 2 Consider a scalar value w and two nodes Te;yTie; of G- me; and ng; are seid to be w-connected if
there ezists a w-path connecting them.

Note that Definition 2 is a transitive relation, and we can define:
Definition 3 A mazimal set of nodes {n;, -+ ni,} which are w-connected is called a w-connected component.

A w-conuected component defines precisely the set of cells which are processed by contour propagation from
a single cell in the set. Note that a w-connected component differs slightly from a connecied component of the
isocontour, in that two separate connected components may intersect a common cell, forming a single w-connected
component, as illustrated in Figure 10.

We can extend the concept of w-connectivity between pairs of cells to the connectivity of a set of cells with
respect to a range of values.

Deflnition 4 Consider a subset S of the nodes of G and o node c € G. The node ¢ is connected fo § if, for any
w &€ R(c), there exists ¢ node ¢’ € 5 that i3 w-connected to c.

2.2 Seed Sets

We now characterize some particular subsets, called seed sets, of the cells of 2 mesh in terms of the connectivity
properties defined in the preceding subsection. Seed sets arc important because all connected components of any
isocontour of the entire original mesh can be traced by contour propagating from the cells of any seed set.

Definition 5 A subset S of the nedes of G is a seed set of G if all the nodes of G are connecled to 5.

In order to quickly determine all cells whose range contains a particular scalar value w, we can proceed as
lollows:

1. search for all the cells ¢ € S such that w € T{c);
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Figure 10: Illustration of w-connected components. On the left are four contour components for a particular isovalue
w. On the right a portion of the graph @ is displayed, corresponding to the three w-connected components. Displayed
in green is a w-path between two of the nodes.

2. starting from the cells reported in step 1 and using the w-connectivity relation on the graph & (that is the
contour propagation scheme), we find al the cells of the mesh whose range contains w.

To reduce the search time and storage requirements it is desirable to reduce the cardinality of the seed set §
as much as possible. Toward this end we will apply the following property:

Property 1 If S is a sced set and ¢ € S is a cell connected to S — {c}, then § — {c} is o seed sal.

Proof: By hypothesis we have that c is connected to S — {c}. Also, from Definition 2, we have that any ccll
which is w-connected to ¢ is also w-connected to some cell in 5 — {c}. Hence S — {¢} is a seed set. °

Property 1 provides us with a method to reduce the size of a seed set. If we wish to find a small seed set, we _
can start with the entire set of the cells — that is the largest seed set - and keep removing cells until we achieve a :
minimnal seed sef. Note that a minimal seed set is not the seed set with the minimum number of cells but a seed |
set from which we cannot remove any cell to obtain a new seed set.

The repeated application of Property 1 requires the knowledge at each step of the connectivity relations within
the current seed set. Thus, we may start from the initial graph G. At each step, we remove a selected cell ¢
along with all its incident arcs and add some new arcs between pairs of cells that were connected to c to take into
account. the connectivity relations induced by ¢ on G —{c}. In particular, if two cells ¢; and ¢; are both connected ;
to cx with arcs fix and fji, then the removal of cx requires also the removal of f;x and fix and potentially the :
insertion of a new arc f;; connecting ¢; to ¢;. This new arc fi; needs to be inserted if R(f;) N R(f;) # 0 (a case
in which the transitivity of Definition 2 applies). If this condition is true, then the new arc is added with label
R{fij} = R(f;) N B(f;)- Il we proceed in this way, it becomes simple to determine if Property 1 can be applied.
We can remove a cell ¢r of the current seed set if:

U R(six) = R(cx)

i=1

where fi,..., fj are all the arcs incident to the cell ¢, in the reduced graph of the current seed set.

Given this general reduction scheme, we still have freedom to select the cells to be removed in any order. We
can use a greedy approach, removing first the cells that we consider less likely to belong to a minimal seed set —
for example the cells that have narrower range. In this way we can assume that the minimal seed set we achieve is
not much larger than the seed set with the minimum number of cells. On the other hand, we can use this freedom
to make the algorithm as simple as possible (a very important property in actual implementations). i
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In the following subsections we present three seed selection algorithms. In Section 2.3 we present a greedy
approach for constructing near-optimal seed sets for irregular or regular grids. In Section 2.4 we present a simple,
[ast seed selection approach by a sweep traversal for both irregular and regular grids. In a regular grid the
sweep process can be simply implemented as a traversal of the grid by rows using a regular marching scheme.
In Section 2.5 we examine 2 modified case for grids of regular topology which achieves smaller seeds sets with
slightly larger temporary storage complexity.

In our seed set generation algorithms, we begin by considering the universal seed set, consisting of all cells in
the mesh. We associate with each seed cell a computed range T{¢) C R(c), which represents the range of values for
which the given cell is a seed cell. Initially, we have T(c) = R(c}), the entire range of the cell, hence § is trivially a
seed seed set. Algorithms for seed set generation can be viewed as seed set reduction techuiques, which iteratively
apply Property 1 to the current seed set to reduce the size of S.

2.3 Greedy Climbing

For computation of a nearly optimal seed sets we develop a greedy technique which progressively covers the domain
with seed cells by explicitly computing the coverage of each seed cell introduced. This climbing algorithm can be
applied to any complex of cells provided that the appropriate function R is given which computes the range of
a cell or face. The main advantage of the seed cell selection algorithm presented in [31] is that it guarantees the
computation of a seed set nearly optimal in size (at most twice the size of the optimal seed set). What makes it
difficult to achieve such a goal is the problem of selecting the “best” seed cells at the saddle points of the scalar
filed. The cost of solving such “difficult” situations is:

» the necessity to build explicitly the contour tree [31] of the scalar field;
» the use of complex data structures as the union-find-split (generalization of the standard union-find);
+ the use of involved routines like the tandem-search.

As a consequence it becomes difficult to use such an approach in practice even if the results it produces are highly
desirable. Moreover we observe that in many scalar fields which arise in practice the number of saddle points is
relatively small and, more important, a greedy selection (not based on contour tree and tandem search) gives in
practice very good results. As a consequence we have developed a “practical” algorithm which computes nearly
optimal seed sets (even if not guaranteed in theory) for general unstructured meshes. The generalization to the
unstructured grids is based on the application of:

e greedy seed cell selection
& contour driven advancing front

We begin by considering the universal seed set § with T(c) = R(c) for all cells . In our algorithm processing
begins by selecting an arbitrary cell ¢. For the example in Figure 11 the first seed cell is the lower left cell of the
grid (in practice the quality of the result is not going to be greatly affected by the selection of the first cell). We
can trace as in Figure 11(a) the isocontour C{(i) which bounds the range of the cell ¢. The cells intersected or
included within the isocontour C(i) are processed so that their range is reduced only to the portion outside 1, as
in Figure 11{b). At each step the two following operations are performed:

(i} Among the cells across the current front i we select as the next cell to process the one with larger residual
range (T{c) — R(c)).
(i) The front i is enlarged up to the isocontour that includes the newly selected seed cell.

The geometric interpretation of the algorithm is based on the idea of contour tree [31) {note that we use the
contour tree as algorithm analysis tool, but we do not need to build it). The greedy choice is equivalent to selecting
each time the seed cell that allows to climb {descend) as fast as possible the contour tree (see Figure 11{c)(d)).
Te achieve this without computing the contour tree we need to resort to the contour driven advancing front. The
contour front is realized using a priority queue in which we store the cells that are intersected by (but not included
in) the current front 7. As the front i advances new cells are inserted in the priority gueue while other are removed
(those included in the new advanced front). To access and efficiently update the cells within the priority queue
we compound a hashing scheme that allows access in average expected O(1) time to any cell in the queue. The
base algorithm consists of:

ContourClimbing{mesk)

select an initial cell ¢
insert ¢ in the priority queue p with priority R(c)
while p is not empty
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do
extract the cell ¢ with highest priority and associated range T(c)
{ cell ¢ with range T(c) remains in the seed set }
PropagateRegion(mesk, ¢, T(c), p)

done

The function PropagateRegion() is an extension of contour propagation to the case of simultaneous propagation
of an interval of values. Similar to contour propagation, interval propagation uses a queue of cells and propagates
from cell to adjacent cell. Associated with each cell ¢; in the queue is an interval P{c;), which represents the
interval range which has been propagated to cell ¢;, When intervals are passed from a cell ¢; to a neighboring cell
¢;, only values in the shared range R(f;;) can be propagated, as the purpose is to mimic contour propagation for
a range of values. The overall interval propagation algorithm is outlined as fellows:

PropagateRegion(mesh, ¢, T(c), p)
insert ¢ in the queue ¢ with assaciated range T(c)
while g is not empty
do
extract the cell ¢; and associated range P(c;) from g
ifcell ¢;isin p

then
T(e:} = T(ei) — Plci)
ifT(e:) =10
then
remove cell ¢; from p
else
set priority of ¢; to the new span of T{c:)
endif
endif
for each cell ¢; adjacent to ¢;
do

if ¢; is in the queue g

then
P(cj) = Plc;) + P(ci) N R(fij)
else
add ¢; to g with associated range P(c;) = P{c;) N R{f;;)
done

done

Figure 12 shows a sample seed set computed with the algorithm described abave.

2.4 Sweep Filtering

Computation of seed sets need only be performed one time for any dataset, and the results can be stored off-line.
In many cases a considerable amount of processing can be devoted to generating very small seed sets, and the
results can be used over and over again. However, in many practical situations, the majntenance of a priority
queue as described in the contour climbing algorithm may be prohibitively expensive. Such situations include:

1. time critical -~ The time complexity of the contour climbing algorithm may be prohibitive if results are
needed very quickly.

2. dynamic data ~ If the data are being collected an analyzed in real-time, contour climbing may be infeasible.

3. out-of-core - If the data are too large to be stored in main memory, a memory access pattern which exhibits
greater coherence than the random-access pattern of contour climbing would be desirable.
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Figure 12: Results of seed selection by contour climbing (76/7938 cells)

We present a simple seed selection algorithm which is motivated by thess practical considerations. The seed
selection is conceptually easiest to understand as a sweep of the cells in a particular direction. The algorithm has
the property that selected seeds fall on the extrema of the contours in the given sweep direction. Detection of
contour extrema is based on a simple comparison of the gradient within each cell and its immediate neighbors.
With such a seed set, contouring may be performed coherently and efficiently by executing a contouring sweep,
with only a slice of data required to be resident in memory at any given time, resulting in efficient computation
for visualization of large out-of-core datasets.

To understand the properties that such a sced set must have, we first consider the one pass contour tracing
algorithm. From its analysis we immediately observe the properties that an appropriate seed set must have.

2.4.1 Omne-pass Contour Tracing

Conceptually the one-pass contour tracing is based on a sweep of the cells along a particular direction. As
illustrated in Figure 13, a sweep line { (sweep plane in 3D) is moved from left to right along the z direction. The
isocontour C(w) of height w is built progressively as it is crossed by the sweep line I. Each time [ is tangent to
the isocontour C(w) three situations may arise:

e C(w) attains a local minimum along the direction [} {orthogonal to {} as in Figure 14(a)-(b). A new portion
of C'(w) starts to be traced.

» C(w) attains a local maximum along the direction I; as in Figure 14(c)-(d). Two separate portions of C(w)
may join or a loop may be closed.

* An inflection point is met that does not need any special processing, as in Figure 14(e).
To perform the contour sweep operation two conditions suffice;

¢ The dataset is stored with the cells sorted by maximum I\ so that by loading them into memory (from the
end to the beginning) we automatically perform a sweep. This means that in the contour tracing stage and
in the seed selection stage the sweep algorithm can be performed in linear time.

» Any local maximum along the I, direction of any isocontour can be immediately detected (that is, a proper
seed set is precomputed), This allows us to avoid loading in memory sections of the mesk where there is no
contour component.

2.4.2 Sweeping Seed Selection

The seed selection stage is performed with a forward sweep as illustrated in Figure 156. Conceptnally, the sweep
line { is moved from left to right to determine the order in which cells are processed. Note that this ordering is not
required by the selection algorithm, ard so cells which are stored ir main memory can be processed in any order,
or even in parallel. Since the cells are already sorted in the mesh, the sweep is achieved by simply loading them
into memory in the order they are stored. When a cell ¢ is met which contains a local maximum of an isocontour
along the sweep direction I, the cell ¢ is added to the seed set.
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Figure 13: Illustration of one-pass contour sweeping. Contour components are computed as they are crossed by the
sweep line.

From the geometrical point of view the determination of a local maximum within a cell of an unstructured
mesh is based on the normal ni. of the contour within the cell e. Consider two adjacent cells ¢ and d, as shown in
Figure 16. The normal 7% (n74) of the contours within ¢ (d) is the projection onto the mesk space of the normal
of the scalar field in ¢ {d). As in Figure 16 we can determine a fixed direction I along { and perform the following
test:

» if both 77. and niy have positive (negative) scalar product with { then meither a maximum nor a minimum
is met;

e Assume that n3. - [ > 0 and nia-{ < 0 (the opposite case is symmetric). If the cross product ni. x 77y has
positive z direction then a minimum is met.

Note that in order to test whether a cell is a seed it is only necessary to examine the cell and its first neighboring
cells. For data stored in primary memory, this is not an issue. For the out-of-core extension to this approach,
we must ensure that when a cell is tested, all neighboring cells are available in primary memory as well. There
are essentially two approaches to solving this. In the first approach, we can determine the maximum difference
between the indices of adjacent cells, in order to compute the amount of primary memory necessary for the out-of-
core processing. A maore attractive solution is to fix the amount of memory which is available for the cut-of-core
processing, and adapt the seed selection to this limit. In this case, if an adjacent cell is not available in primary
memory during the seed selection, the shared face between the cells is treated as a border of the mesh. Applying
this approach, we may select more seed cells, with the advantage that the approach can adapt to situations in
which only a small fraction of the mesh can be stored in Primary memory at any given time.

Sweep filtering requires O{n.) time for considering each cell, and no additional storage beyond that of the
extracted seed set (and the portion of the mesh kept in memory).

Note that in addition to facilitating out-of-core computation, in general the sweep filtering approach provides
an extremely efficient method for computing a small seed set. Moreover, due to the local criteria for seed selection,
cells may be considered in any order, allowing for paralle] implementation with little or no communication overhead
during the preprocessing.

2.4.3 Special Cases

While the algorithm described above is general and independent of grid topology, special comsiderations for
particular types of data and grids may be worthwhile. The criteria given above for detecting a minima along the
sweep direction have a special condition in the case that m2. - I =0 and miy - [ =0, indicating that the contour is
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Figure 14: Tangent conditions of contour with sweep direction

perpendicular to the sweep direction. While this special case may not occur frequently in a general data setting,
the frequency of occurrence is much greater in particular settings, such as integer-valued data defined over a
regular grid, which is often the case for digital terrain data and medical image data.

With such data, it is not uncommon for degenerate situations to occur, as illustrated in Figure 18. In this case,
2 minimum aleng the sweep direction is an entire line, which may result in a column of seed cells for a particular
isovalue, though it is clear that the seed cells are w-connected. In higher dimensions, the problem remains that a
large number of celis along the d — 1 dimensional hyperplane may be selected.

This degenerate situation is easily and efficiently addressed by making slight modifications to the selection
criteria. By modifying the minima detection criteria that 777 -{ > 0 and ;- [ < 0, (one perpendicular condition
is removed), only one seed along each flat minima region will be chosen, as illustrated in Figure 19. For regular
grids of higher dimension, similar consideration of special cases can be made.

A sample seed set computed by sweep filtering is shown in Figure 20.

2.5 Responsibility Propagation

The special case for regular grids may be extended to provide smaller seed sets with a constant increase in
computational complexity and only slightly greater storage. This technique can be viewed as a simplification
of the connectivity graph technique described in the Section 2.1 for determining a seed set S. The algorithm
does not require that we store the entire graph, but instead we maintain a subset of the information from the
graph which can be locally propagated from cell to cell using simple rules when marching in a regular order, with
temporary storage complexity of O(n%d~1/7). We again begin with all cells ¢ in the set 5. We associate with
each seed cell a computed range T{c), which represents the range of values for which the given cell is a seed cell.
Initially, we have T(c) = R(c), the entire range of the cell, hence S is a trivially a seed seed set. We present an
incremental seed elimination technique to reduce the seed set §. The reduction and removal of seed cells is based
on propagation of resporsibilily ranges of isovalues. The information propagated from cell to cell in marching
order is a range T for each dimension of the regular grid. An incoming range T represents the range of values w
for which responsibility has been propagated to the current cell from the neighboring cclls. The incoming range is
always a subset of the range of the shared face in the direction of propagation. The complement of the incoming
range in the direction which varies fastest consists of values w for which the current cell is w-connected to either
(i) a processed cell which remains in the seed set or {ii) an unprocessed cell to which responsibility for the value w
has been propagated. An outgoing range represents the responsibility range which is propagated from the current
cell to a neighboring cell. Illustrated for the 2D case in Figure 21, the marching order is Y varying fastest, X
varying slowest.

We describe the pracessing of a cell ¢ at index (i, f) in a topologically regular grid of dimension (nz,n,).
Boundary conditions are handled directly through the following notation, defined for simplicity:

1. T(f.) represents the range of the incoming face in the U direction, where I/ is an arbitrary dimension.

2. T(u) represents the incoming range propagated in the If direction. In the case of the boundary condition
u = 0, we take T(u) = T(f,). .
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Figure 15: One-pass seed selection by forward sweep

3. T(u) represents the complement of T{u) with respect to the range T(f.) of the shared face, or T(f.,) - T(w).
Note that the propagated range T(u) € T(f.).

4. T(f.r) represents the range of the outgoing shared face in the U direction. In the boundary casc when
there is no adjacent cell in the outgoing U direction (x = n, — 2), we assign T(f.r) = 8, indicating that no
propagation may occur in the given direction.

5. T(u') represents the range propagated from the current cell to the outgoing adjacent cell in the {J direction.

We first compute the combined incoming range T(I), and corresponding complement range T(I):
T(I) = (T(y) U T(z)) - T(y) (1)
T(I) = (1(f=) UT(S,)) — (1) 2)

T(I) represents the subset of incoming isovalues which cell ¢ must either account for in the seed set § or defer
responsibility for by propagation through T(z') and T{y). The removal of T{y) in Equation 1 above is justified
based on the algorithm for range propagation presented below. For all w € T(I ), there either exists a processed
cell in § which is w-connected to ¢ or the value w has already been further propagated, and hence w € T(I} need
not be considered in processing ¢. This leads to the definition of T(R), representing the entire range of values
which make up the responsibility range of cell c.

T(R) = R(c) - T(T) ®
For w € T(R), we must take care that ¢ remains w-connected to S in order to maintain the property that

S is a seed set. We also compute T(P), which represents the combined range of isovalues which may be further
propagated through outgoing faces:

T(P) = T(fzr) U T(_fyr) (4)
We arrive at the following greedy algerithm for deferring seed cell selection through propagation of responsi-
bility. Through the processing of a cell ¢, we maintain the invariant that S is a seed set.
if (T(R) C T(P)) then
{ Cell ¢ can be removed from § }
§=5-c¢
{ Propagate responsibility ranges }
(') = T(for) N T(R)
T(y') = T(f,r} N (T(R) - T("))
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Figure 16: Conditions for determining a local maxima along the [) direction. In linear cells (a-b) the maxima lie
along cell edges. With regular cells (c) the maxima remain along edges, though the the conditions may change along
the length of the edge. In non-linear cells as simple as the non-axis-aligned bi-linear cell (d), maxima may occur in
cell interiors.
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Figure 17: Three dimensional examples of local minima along the sweep direction.

else
{ Cell ¢ must remain in the seed set }

T(c) = T(R)

T(z'} =0

Ty')=0
end

Proof: {5 remains a seed set after processing of cell c)

Case 1 (T(R) C T(P)) - Recall that cell ¢ is w-connected to a processed seed cell for w € T(I). Through
propagated responsibility ranges, we have that c is w-connected to the remaining {unprocessed) seed set for
w € (@ )UT(Y') = [T(f ) TR U(T{f, IN(T(R) — T(2))] = (T(fo)UT(S, INT(R) = T(P)NT(R) = T(R) =
R(c) — T(I). Thus, cis connected to § — {c}, and by Property 1, 5 — {c} is also a secd set, maintaining the
invariant property.

Case 2 (Cell ¢ remains in the seed set) - Cell ¢ is trivially w-connected to S for w € T(c) = T(R) = R(e) —@.
From the input conditions, we have that ¢ is w-connected to a processed cell which remains in § for w € T(I).
Thus, c is w-connected to § for w € R(c), maintaining the invariant property that S is a seed set.

-]

In the first case, the propagated range T(P) includes the responsibility range T{R) in its entirety, and cel
¢ is removed from the seed set 5. The responsibility range is propagated through the outgoing faces by the

18




Figure 18: Degenerate minima which occur with greater frequency in grids of regular topology with integer-valued
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computation of T(z') and T(y"). Note that the propagated ranges are disjoint and that the preference is to
propagate the range in the X direction. It is this preference which allows us to remove T(y) in equation (1). For
all w € T(y), the associated w-connected component is either accounted for by a processed cell in the seed set § :
or responsibility has been propagated to an unprocessed cell, hence w need not be considered for the current cell.
The same cannot be said for T(z), because the precedence of propagation indicates that responsibility for values
w € T(z) may, through some path of responsibility propagation, ultimately be propagated through T(y). Consider
the case of Figure 21, and suppose that the value A is a local mirimum. Values w € T(x) overlap with the range
T(y), providing incoming information which appears to conflict. In fact we canrnot make use of the range T(u),
where u is other than the direction which varies fastest in the marching order.

The second case above occurs when cell ¢ cannot propagate the entire incoming range. Cell ¢ remains in the
set .S, though T(c) is reduced to exclude the complement ranges which have been propagated elsewhere. In this
case the empty set is propagated to outgoing edges, indicating that all values on shared faces are accounted for
in the seed set S.

As described above, the range propagetion method for selecting seed cells requires O(n@~ 1/} storage to
maintain the propagated ranges for a sweeping line or plane in 2D or 3D. Note that our use of range subtraction
may result in ranges with two disconnected components. In practice, disconnected ranges may either be maintained
or closed by taking the smallest range which contains the entire disconnected range. Maintaining the disconnected
range effectively requires that multiple seeds be processed into the search structure, increasing the number of seeds,
while merging disconrected ranges simply means that two or more cells which are w-connected may be selected
for inclusion in the seed set S. Of course, this greedy technique does not guarantee the selection of a single cell
for each connected component in the case that discornected ranges are maintained. In our implementation, we
maintain disconnected ranges through the seed cell selection, closing each range which is ultimately selected to
remain in the seed set 5. In practice the number of seed cells with disconnected ranges does not exceed 10% of
the seed cells, and the number of seed cells does not exceed 10% of the data, as presented in the results.

Results for a our 2D sample function are illustrated i Figure 22, The relatively smooth function is sampled on
a grid of size 64 x 64. Figure 22 shows the 206 seed cells chosen by the range propagation seed selection method.

2.6 Seed Set Results

Table 1 presents the comparative sizes of seed sets for the three seed selection algorithms applied to a variety of
input 2D and 3D meshes.
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Figure 19: The cells on the current sweep plane are processed in regular order. A bit flag is turned on when a local

3

-

maximum exists on the top edge of a cell.

Dataset Climbing | Propagation | Sweeping | Checker | Total Gells
Eagle Pass Terrain 1872 7151 29356 720000 1440000
Sample Function 59 177 238 1985 3969
Hipip 229 2212 6397 62559 250047
Climate Data 177 602 1916 4760 19040
S0D 2308 9944 18608 264960 1059840

Table 1: Seed set sizes for the three presented algorithms, compared with the checkerboard approach and the total
number of celis.

3 Range Queries

The fundamental isocontouring query concerns the enumeration of all cells ¢ such that w € R(c) for the input
isovalue w. In this section, we compare the use of three data structures supporting this range guery operation
in terms of the storage complexity and the time complexity for both creation of the structure and for perform-
ing individual queries. While the characteristics of the search structures being studied are easily understood
and compared in theory, characteristics of our data and seed sets lead us to examine the practical application
considerations. A primary consideration is that of the data type. Note that for integer-valued data, the search
structures listed below all simplify to the same complexity, both in space and query time. A second consideration
is the size of the seed sets. While in the worst case n, = O(n.) (note that we always have that n, <ncas Sis
a subset of all cells), we have demonstrated in practice that n, is often smaller than n. by one or more orders of
magnitude. This leads us to consider search structures of greater space complexity, which may lead to improved
query complexity or practical demonstrated performance.

In the following sections we review the interval iree, segment free, and bucket search structures as applied
to the contour query problem described. Example search structures are illustrated for the input set of intervals
shown in Figure 23. For each search structure, we describe:

* Data structures
Basic C/C++ data structures for representing the search structure

» Construction
The algorithm for creating a search structure from a set of input intervals. The search structures are not
created iteratively, and so balancing of the trees is not an issue.

¢ Querying
The algorithm for processing an input query for a given isovalue w Is considered.
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Figure 20: Results of seed selection by directional sweep (296/7938 cells)
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Figure 21: Illustration of responsibility propagation. Each cell processes input responsibilities and produces output
responstbilities

Our analysis and data structures are based on the general definitions of the data structures, without respect
for the data from which they are derived. In particular, the search structures are designed such that queries can
be resolved without referencing the original data.

3.1 Interval Tree

An interval tree is made up of a binary tree over the set of interval min/mez values {19]). Each internal node holds
a split value 3, with which intervals are compared during insertion into the tree. If the interval is entirely less
thar the split value it is inserted into the left subtree, while intervals greater than the split valuc are recursively
inserted into the right subtree.

In the case that the interval spans the split value (min < g < rmaz), the recursion terminates and the given
interval js stored at the current node. Each nodes maintains two list of spanning cells. The first list is stored in
increasing order by the min, the second in decreasing order by the maz value. Because the intervals are not split
in the recursive insertion, each interval is stored only twice, and the storage complexity is O(nr,).

3.1.1 Interval Tree Data Structure

The data structure for the interval tree is relatively simple. The tree structure is implicit, with no need for pointers
{in the case that the intervals are static).

struct IT_Intervallist {
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Figure 23: A set of segments representing cell ranges

int *intervael_id;

Y

struct IT_Node {
float split_value;
int n_intervals;

IT Intervallist min_list;
IT Intervallist max list;

) H

struct IT_Interval {
float min;
float max;
int cell_id;
};
struct IntervalTree {
int n_intervals;

IT_Interval #intervals;

int b_uniq_val;
IT_Node wpodas;
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Figure 24: Interval tree for the intervals given in Figure 23

The total storage requirements can be broken down into per interval and per node costs. For each interval
{seed cell), there are two float values for the extrema of the interval, one integer to store the cell identifier, and
two indices in the sorted lists, for a total of 5n, words of storage. Each node in the tree contains a split value,
an integer number of cells stored at the node, and two pointers to the sorted lists of intervals, for a total of 47,
words of storage. The total storage requirement is 5n, + 4r,.

3.1.2 Interval Tree Construction

An interval tree is constructed in three steps. First, a sorted list of unique extreme values of intervals is created.
This list forms an implicit binary tree, with the root node for the list [ia, s} taken as imjg = L{fa + 1b)/2] with
left child [ia,imi¢ — 1] and right child [imis + 1,4s). The second step for interval tree construction requires the
iterative insertion of each interval into the tree. Finally, the min-list and maz-list associated with each node is
sorted as described above. The overall algorithm can be described as follows:
InsertInterval(iree, left, right, inlerval)
mid = {(left + right)/2]
if tree.intervais[interval].maz < tree.nodes[mid).split_value
then
InsertInterval(iree, left, mid-1, interyal)
else if tree.intervals|intervall.min > tree.nodes[mid).split_value
then
InsertInterval(free, mid+1, right, interval)
else
add interval to lree.nodes[mid)
endif

BuildIntervalTree(tree)

sort list of interval values

store unique sorted list in split_value

for each interval ¢

do
InsertInterval({tree, 0, tree.n_unig_val1, 4)

done

for each node n

do
sort iree.nodes[n].min_list by increasing maximum value
sort tree.nodes[n].-maz_list by decreasing minimum value
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done

The overali cost of building the interval tree is O(n, log n,), dominated by the initial cost of sorting the interval
values.

3.1.3 Interval Tree Queries
For a given query value w, the reporting of intersected intervals is performed by a modified binary search for w:
QuerylInterval Tree({ree, w)
leff =10
Tight = tree.n_unig_yall
while left < right
do
mid = |{left + right)/2]
if w > tree.nodes[mid].sphil_value

then
traverse free.nodes[mid].min_list reporting intervals with min < w
right = mid—1

else
traverse free.nodes{mid]. maz_list reporting intervals with maz > w
left = mid+1

endif

done

The total cost for resolving the query is O(k + log n, ), where k& is the size of the output and 7, is the number
of unique values from the set of min/maz values.

3.2 Segment Tree

A segment; tree also consists of a binary search tree over the set of min and maz values of all the seed cells (20, 22).
The primary difference from the interval tree is the manner in which the segments are stored. Nodes in a segment
tree form a multiresolution hierarchy of intervals, with the root representing the infinite line, and with each node
dividing the parent interval at a split value (see Figure 25). When a segment is inserted into the tree, it is
recursively split and propagated downward in the tree to be inserted into the group of nodes whose intervals
collectively sum to the entire range of the segment. Each segment will be stored at most O{log n,) times, where
log n, is the height of the tree, resulting in worst case storage complexity of O(n, log n,) in the improbable case
that all min-maz values are distinct, and all intervals filter all the way down to the leaves. The query complexity
for reporting the k intersected cells for a given isovalue w is O(k + logn).

3.2.1 Segment Tree Data Siructure

The segment tree data structure is similar to that of the interval tree. Note that for the segment tree there is no
need to explicitly store the min/maz values for each segment. As illustrated in Figure 25, there are three principal
lists of cells associated with each unique interval value. We group these three lists into one sepment tree node, as
shown below. The tree structure is again implicit in the sorted ordering of the unique values.

atruct ST_CellList {
int n_cells;
int *cell_id;

};

struct ST_Nede {
float split_vaelus;
ST_Calllist 1th_list;
ST_Celllist leq_list;
ST.Celllist geq.list;

ki
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Figure 25: Segment tree for the segments given in Figure 23
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atruct SegmentTrea {

int n_intervals;
int n_unig_val;
S5T_Node *nodes;

};

In the case of the segment tree, total storage is deperdent on the number of times each interval is split. We
will introduce i, as the total number of cell identifiers stored in all lists of cells. For each node of the tree, we
have the float split value, three pointers to cells and three counters for the number of cells in each list, for a total
of n;, + 6n, words of storage overall,

3.2.2 BSegment Tree Construction

Counstruction of a segment tree is very similar to construction of an interval tree. The same binary structure
is constructed over the unique extreme values of the seed cells. The primary difference is that each interval is
recursively split and propagated down the tree from the root, rather than terminating at the first “split-value”
which is spanned by the interval. The algorithm is sketched below:
InsertSegment(tree, left, right, cellid, min, masz, imin, imaz)
mid = |(lefi + right)/2]
split_value = tree.nodes[mid].splif_value
if left = right
then
if mir < imaz
then
add coll to iree.nodes[mid).lith_list
else
add cell to free.nodes[mid). geg_list
endif
return
endif

if min < imin AND maz > imaz
then
add cell to tree.nodes|mid).leg_list
return
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endif

if min < tree.nodes[mid).split_velue

then
InsertSegment(iree, left, mid, cellid, min, MIN(maz, split_value),
sphit_value, imoz)

endif

if maz > tree, nodes[mid).split_value

then
InsertSegment(tree, mid+1, right, cell_id, MAX(min, split_value), maz,
imin, split_value)

endif

BuildSegmentTree(lree)

sort list of interval values

store unique sorted list in split_value

for each interval ¢

do
InsertSegment(tree, 0, iree.n.unigval-1, cellid, min, maz, ~co, 0o0)

done

3.2.3 Segment Tree Queries

Traversal of a segment tree is much like traversal of an interval tree. For a given query value w, the reporting of
intersected intervals is performed by a modified binary search for 1. As each node is traversed, the associated
list of cells is selected. At the conclusion of the traversal, one or both of the remaining two lists is selected, as
outlined below:

QuerySegment Tree{ tree, w)

left=10

right = iree.n_unig_val-l

while left < right

do
mid = [(left + right)/2)
traverse tree.nodes[mid].leg_list and report all cells
if w £ tree.nodes[mid). split_value

then

right = mid
else

lefl = mid+1
endif

traverse tree.nodes|left].ith_list and report all cells
if w = tree.nodes[left).split_value
then
traverse tree.nodes{lefl].geg_list and report all cells
done

The total cost for resolving the query is O(k +logn,), where & is the size of the output and n, is the number
of unique values from the set of min/maz values.
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3.3 Bucket Search

Much of the scientific data that we are concerned with comes in the form of integer values in a small range.
For example, Computed Tomography (CT) data generally have a 12-bit integer range of values. This regular
subdivision allows a simple bucket search strategy with n, — 1 buckets each representing a unit interval (h, h+1).
For each cell, an identifier is stored in each bucket which is spanned by the cell. Clearly, the worst case storage
complexity of this strategy is O(n.n,), which may be infeasible in the case in which all cells are stored. Given
the approach of forming a small set of seed cells, such a technique may prove feasible, with the added berefit of
allowing intersected cells to be reported in O(k) time, linear in the number of reported cells.
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Figure 26: Bucket search structure for the intervals given in Figure 23

3.3.1 Data Siructure

struct B_Celllist {
int n_cells;
int *cell_list;

};

struct BucketSearch {
int min, max;
B_CellList wlists;

};

As in the case of a segment tree, cach cell may be stored several times, and so we will use n;, to represented
the total number of cell identifiers stored. In addition, we have one list for each unique extreme value, and so the
total measured storage is n;, + 2n,.

3.3.2 Building a Bucket Siructure

The creation of a bucket data structure is straightforward. For each bucket spanned by a cell, it is added to the
assaciated list.
InsertInBuckets(bucket, cell_id, min, maz)
for & = min to maz—1
do
add cell to bucket. lists[b].cell_list
done
BuildBucketSearch(bucket)
sort list of interval values
store umique sorted list in split_value
for each interval {
do
InsertInBuckets(tree, cell id, min, max)
done

The time required for building the search structure is proportional to the total number of buckets spanned by
all cells, in worst case O{n,n,).
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3.3.3 Bucket Search Queries

The advantage of the bucket search structure is that the range query complexity is entirely output sensitive, O(k).
The procedure is outlined below:

QueryBucket(searck, w)

bucket = w - bucket.min
traverse search.lists[buckef].cell_list and report all cells

3.4 Search Structure Discussion

In this section we discuss the storage cost of each of the three presented search structures. Table 2 summarizes
the theoretical space and query complexities.

Search Structure || Storage Complexity | Query Complexity
Interval Tree || O(n,) O(k + logn,,)
Segment Tree || O(n, logn,) O(k + logn,)

Bucket | O{n,ny) O(k)

Table 2: Comparison of the theoretical complexities of the three search structures for performing an interval query.

In examining the practical considerations, we have measured the storage of each data structure as shown in

Table 3.
Search Structure || Storage Measure
Interval Tree 9ng +4n,
Segment, Tree n;, +6n,
Bucket ni, + 2n,

Table 3: Comparison of the storage requirements in typical implementation of the three search structures.

It is clear from both the theoretical complexities and the empirical storage measures that the actual search
structure size will depend on certain characteristics of the data. In particular, if n, bounded (such as in the case
of integer data), the theoretical storage and query complexities are the same for all three search structures.

Empirical results from the three seed set construction algorithms are given in Figures 27-31. We also compare
the results with the size of an interval tree for the the checkerboard seed set as well as the entire set of cells. Note
that for data with integer values (the terrain data and the SOD data), the size of the segment tree is smaller than
that of the interval tree, contrary to what the theoretical complexities might lead one to expect. In Figures 32-
34 we compare the total preprocessing times for each seed selection algorithm. All times in these graphs are
computed using the interval tree as a search structure. Note, in particular, that the total preprocessing time lor
the directional sweep is actually less than using the checkerboard approach or using the entire set of cells, simply
because the directional sweep has time complexity O(r.) and the construction of the interval tree is O(n, logn).
The directional sweep is extremely fast and reduces size of the seed set sufficiently to actually provide an observed
time cost advantage over all other approaches tested. Figure 35 displays an average cost of performing isovalue
queries for an MRI dataset of size 256x256. Note that due to the fast inner loop of the segment tree and bucket
search structure query algorithms, both exhibit an advantage in query time over the interval tree.
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