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Abstract

Quasipel'i,odic strings were defined by Apostolico and EhrenfClJeht [3], a.'i st1-ings
which m'e enti1'ly covered by occurrences oj another (shorter) string. This paper surveys
a handful of resulls all the structure and detection of quasiperiodic strings and on
related string covers, attempting to simplify and present in a unifOl'ffi manner the
algorithms being surveyed.

1 Introduction

Periodi.cities and other regularities in strings arise in various disciplines such as combina
torics, automata and formal language theory, data compression, stochastic process theory,
symbolic dynamics, system theory and molecular biology. In the Summer of 1990, A. Ehren
feucht suggested that some repetitive structures defying the classical characterizations of
periods and repetitions could be captured by resort to a germane notion of "quasiperiod" .
In their paper "Efficient Detection of Quasipcriodicities in Strings)' [3J Apostolico and Ehren
feucht defined quasiperiodic strings as strings which arc entirely covered by occurrences oj
another (sho1'te1-) string. They also gave an O(nlog2 n) time algorithm to find all maximal
quasiperiodic substrings within a given string. Apostolico, l"arach and Iliopoulos [4] gave an
O(n) time algorithm that finds the quasiperiod of a given string, namely t.he shorlest string
that covcrli the string in question. This algorithm was subsequently simplified and improved
by Breslauer [9] who gave an O(n) time on-line algorithm, and parallelized by Breslauer
[10] and Iliopoulos and Park [19), the latter giving an optimal-speedup O(loglogn) time
parallel CRCW-PRAM algorithm. Moore and Smyth [24] gave an O(n) time algorithm that
finds all strings that cover it given string. These developments eventually led to the study

-Department of Computer Science, Purdue University, West Lafayette, TN 17907, USA and Dipartimento
di Elettronica e Informatica, Univcrsita di Padova, Padova, Italy. Partially supported hy NSF Grant CCR-92
01078, by NATO Grant eRG 900293, by British Engineering and Physical Sciences Research Council grant
GR/L19362, by the National Research Council of Italy, and by the ESPRIT lIT Basic Research Programme
of the EC under contract No. 9072 (Project GEPPCOM).

tZeta Information Systems, New York, USA.

1



by Iliopoulos, Moore and Park [18] and by Ben-Amram et al. [5] of covers which are not
necessarily aligned wit.h the ends of the string being covered, but are rather allowed to over
flow on either side. The sequential algorithm for this problem takes O(nlogn) time [18]
and the parallel counterpart [5] achieves an optimal speedup taking O(1ogn) time, but using
snpcrllnear space.

This paper surveys the above mentioned articles, attempting to put the different results
in a unified framework, and Lo simplify the algorithms. The main emphasis is put on some
of the sequential algorithms while the parallel counterparts are skcLched in lesser detail.

2 Preliminaries

We start by recalling the basic definitions and properties of strings that will be used through
oul. the paper. Lothcti]"(~'s book [21] provides an excellent overview of additioTlCtl periodicity
properties of strings.

2.1 Periods and Repetitions

Given a string w = tvt'lV2··· Wn, we denote its length by 1101 = n. The individual symbols W;

are assumed to be taken from some underlying alphabet B. Vole write W[i...il to specify the
substriTig 10;10;+1 - _. Wj, for i :; j, and deTiote by c the empty string.

The string 10 is said to have a period oj length IT, if Wi = Wi+;r, for all feasible values of
i. Clearly, by the definition above, IT = a is a period length of wand any IT ~ Iwl is also
a period length. In additions, IT < a is a period length if and only if -IT is a period length
as well. We shall restrict our attention, therefore, only to period lengths 7i' of w, such that
a:; IT :; jwl_ The integers aand [wi are always period lengths of tv, and are called the trivial
lJC1'iod lengths; any int.eger -in between mayor may not be a period length depending on the
structure of w.

1\ lIon-empty st.ring 'IL, lui ~ Iwi, will be called a period of 10 if tv is a substring of 1/,
for some integer k ~ 1. Clearly, if u is a period of w, then its length lui is a period length
of 10, since lui is a period length of Uk, Moreover, if u = xy, then any rotation yx of u is
also a period of w since (yx)k+1 = y(xy)kx = yukx contains w as·a substring. Note that. this
terminology is slightly different from the standard definition of a period, in that the latter
requires that u is also a prefix of w. In this paper, a period u of 10 that is also a prefix of 10

is called a left aligned period. Clearly, given any period length 'iT > a of 10, the prefix W[l...;r]

is a left aligned period of w.
1\ period u is in fad a l'cgulm' covel' of 'tV, where occurrences of u appear in tv spaced

exactly lui positions apart (other occurrences are also allowed) and the occurrences on the
sides can overflow. Gi\'en any period u of 10, consider the rotation t£ of 1l such t.hat 'tt. is also
a prefix of W (in other words, it is the rotation of 1l that is a left aligned period of w). If
w = tl

k for some integer k, namely if the regular cover of 10 by u is also right aligned, t.hen
tv is said to have an aligned regular cover 1t. If w has no proper aligned regular covers (w
itself is always a cover) t.hen 1.U is said 1.0 be primitive.
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The following Lemma is of fundamental imporLance in the study of periodic strings:

Theorem. 2.1 (Fine and Wilr [16]) If a sll'ing w has t'/Vo period oj lenglhs p and ql and
Iwl ~ p + q - gcd(p, q), then 10 has also a pC1'iod oj lcngth gcd(p, q).

The shorLest non-~cro period length of 10 will be called the period length of 10 and denoted
11(10). Astring 10 such that 1101 ~ 211(10) is said La be periodic. By Lhe theorem above, in a
periodic string 10, all periods lengths that are smaller thall Iwlf2, musL be multiples of lhc
period length ?r(w).

2.2 General Covers

One may generalize Lhe notion of a period u Lhat covers w wiLh regular occurrences that arc
lui positions apart in lV, to covers wherc thc occurrences of u in 10 are noL required to be
uniformly spaced, and are allowed, in addition, to overflow on eithcr side. For example, Lhe
string 10 = 'aabaabab' lIIay be covered by occurrences of u = 'a.ba.', bul, Lhe positions of these
occurrences in 10 are not regular and in fact aba is not a period of 1/J. This type of covers
were called geneml co'vers in [18] where a covering string such as our 'tl above is also termed
a seed of w.

2.3 Aligned Covers

Some noLable families of covers resulL by considering covering strings u for 10 Lhat are not
necessarily regularly spa,ccd but are aligned on boLh sides of 10 and are not allowed to overflow.
Such strings u are said to be aligned covers of w. Given Lhe similarity betwecn non-regular
covers and regular covers (periods), aligned covers 'tl of 1lJ were named q'llasipcl'iods of 10
by Apostolico and Ehrenfeucht [3]. In addition, strings Lha,L do not have any non-trivial
(shorter) aligned covers were called s1Lpcl·pl'imil.i"vc and sLrings that have shorLer aligned
covcrs were t.ermed fJ//f1.-;ipcriodic. Observe LhaL any pcriodic string is also quasiperiodic, but
not every quasiperiodic string is periodic. r'iIost of the treatment of the present paper is
confined to aligned covers, leaving general covers to a future extension.

2.4 Borders

We say that a non-empty string z is a border of a string w if w begins and ends with an
occurrence of z. Namely, 10 = zu and tv = vz for some possibly empLy sLrings 'It and v.
Clearly, a st.ring is always a border of itself. This border is called the l1'i1Jial border.

'We describe next few faets about periods, borders, and aligned covers.

Fact 2.2 J1 si1'ing 1V has a pcriod oj lenglh 11, s'ltch that 11 < Iw]' iJ anri o'llly iJ if lws a
non-trivial b01'der of I('/Igth Iw) - 7r.

Proof: Immediate f!"Olll the definitions of a border and a period. 0
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Fact 2.3 If a sl1'ing z aligned-coveTs a string w lhen. z is (/. border of lv.

Proof: Since the first symbol of lv must be covered by z, the string lv must start with an
occurrence of z. Since the last symbol of w must also be covered by z, the string tv must
also end with an OCCllrrence of z. That is, z is a border of lv. 0

Note that by this J(lst Fact any cover of a string W CiLn he represented by a single integer
that is the length of the border of w.

Fact 2.4 if a st17.ng :: cove1'S a string w, (hen z covers also any possible borde}' v oj w such

thatlvl? Izl·

Proof: Given any prefix of tv, it is covered by z except possibly at most the last Izl - 1
symbol!> of the prefix. Similarly, given any suffix of lV, it is covered hy z except possibly at
most the first Izl - 1 symbols or the suffix. Since v is a border of tv, it is both a prefix and
a suffix, 'Uld it must 1)(' covered by z. 0

Fact 2.5 Every string has a unique q'/la.<;i]H;'1'iod.

Proof: Assume that <I, string w is covered by two strings zt and v, and let w.l.o.g. Ill) ~ Ivl.
By Fact 2.3 v is a border of w. By Fad 2.4 1l covers tv. Since u ! v, then v is quasiperiodic.
o

Fact 2.6 If a stTing 'W has a b01y[e1' z, .'iuch lhat 21=1;:::: Iwl, then = coveTS w.

Proof: z covers the first half of w since it is a prefix of tv and the last half of tv since it is
also a suffix. Thereforc, all symbols of w arc covered by z. 0

3 The CRCW-PRAM Model

The parallel algorit.JlTllS described in this paper are for the concurrent-read concllrrent-write
parallel random access machine model. \~Te use the ,veakest version of this model called the
common CRCI'V-PRAilI. In this model many processors have (I,ccess to a shared memory.
Concurrent read and write operations are allowed at all memory locations. If several proces
sors attempt to write simultaneously to the same memory location: it is assumed that they
write the same value.

One of the major issues in the design of PRAr.ll algorithms is the assignment of processors
to their tasks. The problem is easier when the input is rigidly allocated, e.g., on an array, a.s
is the case with strings. In this case, we can effectively resort to a powerful general principle
which ignores the issup of processor assignment.

Theorem 3.1 [Bl'cnf [8)} Any synch1'Ono'us pamllcl algorithm of time t that consists of a
lolal oj x clemenlw'y operations can be implemented on p processors in fx/pl + t time.
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4 Finding Aligned Covers

The essentials of all the algor.ithms that find quasiperiods are extremely similar and were
described in the p<tper by Apostolico, Iliopolous and Farach [1]. \ll/e outline the ideas first
and thcTl present one algorithm in details.

1. Candidates. By Fact 2.3 only borders of tv are candidates to be aligned covers of w.

2. Elimination. Given two borders 'U and 1J of lV, such that lui < lvi, one of them can br:
eliminated as being the quasiperiod of tv by FeLet 2.4, since if 1L covers 'V then 17 canTloL

be the quasiperiod of wand if u does not cover v, then surely it cannot cover w.

4.1 Computing Borders and Periods

In order to utilize the ba."ic ideas mentioned above, the algorithms [or finding covers of a
string need first to find the borders of that string. There are well established algorithms
for the more or less explicit. computation of borders, and they will only be mentioned here
without. further details.

The classical Knuth-Morris-Pratt (20] string searching algorithm computes in its pattern
processing step t.he so called failure junction or the pattern string that is essentially a table
of border lengths of every prefix of Lhe pattern. As seen above, this is computaLionally
eqllivalent to computing the period lengths of all prefixes of the patLern. Tn fact, we can
interpret t.he Knuth, r.'fonis and Pratt [20] pat.tcrn preprocessing algorithm as an on-line
algorithm that finds the period length of each prefix of a st.ring W(I ...nJ while the string is
being read in one symbol at a time. The algorithm takes 0(17.) time and uses linear auxiliary
space. The number of symbol comparisons performed by the algorithm is less than 217..

The pa,rallel string cover algorithm uses the parallel CRc,~r-PRAM algorithm of Bres
lauer and Galil [2, 12] t.hat rinds <Lll periods of a string of length n in O(log log 17.) time using
17./ log log 17. processors.

4.2 Sequential Algorithm for Quasiperiods

The first algorithm for finding the quasiperiod of a string is due Lo Apostol-ico, Farach and
lliopoulos [4]. The algorithm used the ideas above in a recursive paradigm resulting in 0(17.)
time. Breslauer [9] dcviscd aT] algorit.hm that works on-line, i.e., it finds the quasiperiod of
all pattcrn prefixes as these prefixes are are produced consecutively, one symbol at a time.
This algorithm, which is outlined next, also requires fewer symbol comparisons.

The idea in tbe algorit.hm is t.o maintain on-line, as soon that the input prefix 'W(1...I.-J is
given, the quasiperiod of this prefix. Vlhen a longer prefix W[I ...q is given, its quasiperiod is
computed by observing that is must either be W[l...I.-) itself (whence 10(1...1.-) is superprimitive)
or it must be the quasipcriod of the longest non-trivial bordc!" of W[I...k) (in which case W[l...k)

is quasiperiodic).
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- The Quasi[i] CLlTay stores the quasiperiod of any prefix 111[1...il'
- The Reach[i] array stores only for superprimitivc prefixes n11 ... il the longest prefix

of 'IO[[. ..k), that is covered tL[1...il'
k=1
while k :S n do

Compute the period '1l"k of 'W[l ... kj I1sing the Knuth-Morris-Pratt
pattern preprocessing algorithm.

- If the prefix W[l ... kj has a non-trivial harder check if the quasiperiod
of thal border covers the whole prefix.

if'1l"k < k and Reach[QlLflsi[k - '1l"klJ ~ I" - Quasi[k - '1l"d then
- If t.he quasiperiod of the border 1ltl1...~'-;-rd covers the whole

prefix W[l...kj, then it is also the quasiperiod of l£..[1...k).

Quasi[k] = Quasi[k - ",.J
Reach [Quasi [kII ~ k

else
- If the prefix Ul1...kj docs noL have any non-trivial border

or if the quasiperiod of the border docs not cover t.he whole
prefix w[i ... kj, then it is superprimitive.

Quasi[k] = k
Reach[k] = k

end
k=k+l

end

Figure 1: The quasiperiodicity algorithm.

The algorithm scans the input string W[1...n) aile symbol at a time. It maintains two arrays:
Quasi[i] and Reach[-i]. The Quasi[i] array stores the qnasipcriod of any prefix W[1...i], for
1 ::; i ::; k. The Reach[i] array is uused only for sllperprimitivc prefixes of tv and it stores,
for every sl1ch pl'cI-ix W[I ... ij, the longest prefix of W[1...k] that is covered by W[l ...;I' Note that
the prefix W[l...i] is superprimitive if and only if Quasi[i] = ·i. '''lhen the algorithm proceeds
to the next symbol W[k] , it. has to compute the quasiperiod of W[l. ..k] and store it. in Quasi[k].

As soon that the next input symbol W[~.] is reached, the algorithm calls the Knuth-Morris
Pratt a.lgorithm to find the period length 7[1 of the prefix W[1...~'l- The only comparisons of
input symbols arc performed in these calls to the Knuth-1110rris-Pratt algorithm. Once
the period of the prefix W[I. ..kl is given, the algorithm can proceed to compute the values
of Quasi[k] and Reach[Quasi[klJ based only on the values of 7r~., Qllasi[1 ... k - 1] and
Rea.ch[1 ... k - 1]. There are two cases:

1. If'1l"k = k, then by Fact 2.2 the prefix tv[1...kl has no non-trivial border. By Fact 2.3 any
string that covers tv[1...~.] must also be a border. Thus, the prefix W[1...k] is covered only
by itself and therefore it is superprimitivc. In this case we define Qllas'i[k] = k and
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Rcach(kJ = k.

2. If 1rJ... < k, then by Fact 2.2 the prefix WI!. ..k] has a border of length k - '1r/:. Since 'irk

is the shortest period of to[l...!:], the border of length k - 'Irk is the longest non-trivial
horder of the prefix 'W[l...kj.

If the prefix 'W[l...k] is quasiperiodic, then by Fact 2.4 the border W[1...k-rriJ must also
be covered by the same quasipcriod. The algorithm checks if the quasiperiod of the
border W[1...k-rriJ can cover the whole prefix W[1...J..-]. If a cover of the prefix WIl...!:) by the
quasiperiod of W[I. ..k-rrk] is given, then a cover of a shorter prefix of W!1...}..-] is obtained
by removing the last occurrence of that quasi period. This means Lhitl, the quasiperiod
of W[I. ..k-rrkl covers a prefix of lOIl...k] that is long enough that with OTIC morc occurrence
of that quasiperiod, the whole prefix W[l...kl is covered.

Thus, all the algorithm has to do is to check if the quasiperiod of the border W[1...k-1fd

can cover a prcfi x of W[I ...k) that is long enough. That is, if Reach[Qtwsi[k - 1rk]] ~ k
Qlla",i[1l"k], then that quasi period covers W[l...~.l and we define Qttasi[k] = Qttasi[ It: - lI"k]
and update Reach[Quasi[klJ = k. Otherwisc, the prefix W[l...kl is sllperprimitive and
we define Qua"i[k) = k and Reach[kJ ~ k.

Theorem 4.1 The algorithm that is described above and in Figu'1'e 1 lake'" 0(11.) lime amI
llSCS linenr all.~iliaTY space. The number of comparisons of input symbols is at most :In.

4.3 Parallel Algorithm for Quasiperiods

The optimal speedup parallel quasi periodicity algorithm we describe next is a variation on
the algorithm given hy Tliopololls and Pctrk [19] improviTlg on <t similar non-optimal algorithm
by Brcsla.ucr [10], ut.iliJl;ing a newly discovered parallel string sca.rching algorithm. It uses
t.wo other parallel algorithms that are out of the scope of this paper.

1. The parallel strillg searching algorithm of Cole et. ill (14] that. finds all occurrences
of a pattcrn string of length rn in a text st.ring of length n in const.ant t.ime using
17. pl'Ocessors after a pattern preprocessing step that requires O(log log m,) t.ime using
mj log log m processors.

By a lower bound of Breslauer and Galil [11], this algorithm is the fastest possible
optimal parallel string matching algorithm on a general alphabet, where input symbols
arc a.cccssed only by pairwise comparisons. Brcslauer [10] shows that the samc lower
bound also applies to finding the quasiperiod of a string.

This algorithm is llsed in conjuction with the following algorithm to test if a given
string z covers <\.llother string u.

2. The algorithm of Fich, Ragde and Wigderson [15] to compute t.he minimum of n

integers between I and n in constant time using n processors.
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The parallel algorithm starts by computing all the horders of the input string W[l...n] in
O(log log 11.) time and n/log log 11. processors using the algorithm by Breslauer and Galil [12].
The borders are partitioned according to their length into at most log 11. groups [2' ... 2iH -1].
By Faet 2.6 and the observations above about climimttion of quasiperiodicity candidates, only
the shortest border in each group is it candidate to be the quasiperiod of w. This provides
an easy elimination of aU but at most logn candidates, which can be carried out in constant
time by n processors using the integer minima algorithm that is mentioned above, in each
interval seperatcly, but in parallel.

The main step thaI, underlies the rest of the algorithm is a procedure th,tt tests, given two
strings 1t and v, if 1t co\'ers v. This is carried out by using the constant time string searching
algorithm to find all occurrences of 1t in v using Ivl processors, provided that u has been
already preprocessed, and then applying the integer minima (maxima) algoriLllm mentioned
above in each interva.l of consecutive luI positions of v to check that the occurrences of u are
not spaced too far api:1l"L in v. Clearly, all the O(log 71,) candidates for the qnasipcriod can be
preprocessed for the string searching algorithm simultaneously in O(log log 11.) and using 11.
processors. This preprocessing can be later used for searching the same preprocessed pattern
on multiple occasions.

The algorithm first eliminates all but at most one candidate of those with length smaller
than or equal to n/log n. This is done by picking the longest candidate shorter than n/log 11.

and testing simultaneously in constant time using n-processors if each of the O(log 11.) shorter
candidates covers that longest candidate. The short.est c<tndidate to cover the longest c<tndi
date with length at most n/log 11. is the only remaining candidate among those with lengths
at most n/logn.

After this elimination step, we are left with at most 1 + loglogn quasiperiod candidates.
Specifically, there will he at most one candidate sllOrter t.llan n/logn and at mosL loglogn
longer candidates. The algorithm proceeds by picking in each step the shortest. two remaining
caTH..lidates and eliminating one of them using the cover test above. This takes constant time
for each step and O(log log 11.) time in Lot.al. The llumber of operations used sums up to be
O(n) since it is bounded by the sum of lengths of aU candidates.

The algorithm therefore is composed of several steps taking O(log log n) time, using
n/loglogn processors or steps taking O(loglogn) time and making 0(11.) operations. The
steps can be combined and slowed down to get. the fo]]owing result.

Theorem. 4.2 The ql/{/8ipe1'iod of a si1'ing c(rn be found in O(log log 11.) time using n/log log 11.

processors and linear space.

5 Finding All Covers

Moore and Smyth [24] gave an O(n) time algorithm that finds all covers of a given string.
At the heart of the algorithm is a procedl1l'c that finds the longest proper aligned cover of
a sLring in 0(11.) time. by looking, essentially, for the longest cover of the string which is
aligned on its left but may overflows on its right.
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'''-'e do not give the details of that algorithm in this short survey. 'vVe remark, however,
that OHe can also easily find all covers of a string in O(nlogn) time sequentially, and in
O(log log n) time with optimal speedup -in parallel, using the ideas presented in the sequential
and parallel algorithms above.

6 Finding Maximal Quasiperiodic Substrings

Assume that we are given a string w of length n = jwl. Consider a segment n = W[i... i+h-ll
of length h = Inl, starting at position i, and its quasiperiod z. Apostol-ico and Ehrenfeucht
named the triple (i, z, II) quasipc'l'iodic span, and say that the Cjuasiperiodicity is maximal if
the following two conditions arc sal.isfied:

1. The quasiperiodic span can not be extended on either side by more occurrences of z.
Namely, there is no other quasiperiodic span (i', z, h') such that i' ::; i and i'+h ~ i+h.

2. The quasiperiodic span can not be extended on the right by one more symbol when
the covering string is also extended by the saTTle symhol. Namely, if (l = wi+lub then
za docs not cover na, or in other words, ua docs not have the same quasiperiod as za.

Apostolico and Ehrcnfcucht were interested in finding all maximal quasiperiodic sub
strings of a given string. Their algorithm is based on suffix trees and properties of their
structures, which are given next.. For a survey of other applications of suffix trees sec [1, ]7J.

6.0.1 Suffix trees

Suffix trees are a compressed form of digital search trees that are very useful in many algo
rithms on strings. TIle usual definition of a suffix tree is the following:

Let w be a string having as il.s lasl. symbol a special marker '#' that does not appea.r
anywhere else in w. The suffix tTee of 'tV is a rooted Lree wiLh Iwllea.ves and Iwl- 1 internal
nodes such that:

1. Each edge is labded with a non-empty substring of w.

2. No two sibling edges arc labeled with substrings that start with the same symbol.

3. Each leaf is labeled wil.h a disl.inct position of w.

4. The concatenation of the labels of the edges OIl I.he path from the root 1,0 it leaf I(Lbcled
with position i yields precisely the suffix W[i... jwlJ.

An example of (t surfix tree is given in Figure 2. Note that a. suffix tree has no internal
nodes with one child. Subsl.rings of w can be represented by t.heir starting and ending
positions and therefore it suffix tree can be stored in O(lwl) space.

'vVe shall idenl.ify the name of a suffix tree node with the concateneLtion of the edge labels
from the rool. 1.0 thaI, llode. If I.wo suffixes wU...q and wU ...kl heLVe t.he same prefix, namely

9
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Figure 2: The suffix (,ree of 'W = 'abaababa#'. The edges a.re labeled with suhstrings of tv

and the leaves with the position ill w at which the corresponding snrfix starts.

if 1O[i... ;+1_1] = w[j .. .J+1-1) and w[i + I] i- w[j + ll, then the pa,ths from the rooL to the leaves
labeled with positions j and j share an initial scgmcnL. The concatenation of the labels of
the edges on this initia.l segment is equal 1,0 w[i ... i + [-1]. Similarly, [or any substring u
of 'lV, there must either be a unique node in tv such that the concatenation of labels on the
path [rom the root to t,he node is equal to uv with v being of minimal1cngth and possibly
empty. If there is such (t node labeled u, it is called the proper locus of u and if it is labeled
ltV with v -I (:, then it is called the extended loc'1ls or u.

The special alphahet symbol '#' that was assumed to be t.he last symbol of the string
w[1..k] is normally appended at the end of a given string to guarantee that the suffix tree
has distinct leaves that corrcspoml to each suffix. There exist several efficient a.lgorithms
to construct suffix trees and important related structures such as inverted files and subword
automata. [6, 7, 13, 2:3, 22, 25, 26].

6.1 Suffix Trees and Maximal Quasiperiodicities

vVc next give some relations, that were given by Apostolico and Ehrenfeucht, hetween suffix
trees and maximal ql1llsiperiodiciLics.

Lemma 6.1 Let U, z, luI) be a ma:6ma[ quasiperiodicity in w. Then,::: must have a proper
[OClIS in the suj]ix LI"(~( of w.

Proof: Assume on tlte contrary that z only has an extended locus :::'0 and let a be the
first symbol or v. By properties of the suffix tree, all occurrences of ::: in w must also
be occurrences or za and therefore the substring W[i...i+lull mllst be covered by :::a, whaL
contradicts the maxima.Iity of (i,z, luI). 0

10



By the last Lemma, it suffices to consider the superprimitivc node labels in the suffix
tree as superprimitive strings that have a maximal quasiperiodicity.

Given a node labeled z in the suffix tree, one might consider the substrings of tv that are
maximal quasiperiodic substrings with quasiperiod z. Clearly, there must be occurreTlces of
z that cover cach of these substrings, and by the definition of the suffix tree, ea,ch occurrence
of z in 10 will have a leaf corresponding to its starting position as a descendant of the node
z. Define a run at node z to be a maximal sequence of positions in tv where occurrences of
1L start and that are not mon'l than Izl positions apart from each other. A run corresponds
to a maximal substring of 10 that is covered by u and not contained in any longer substring
that is covered by z.

vVe say that a run coalesces at a node z of the suffix tree, if it is a nIn at z but not at allY
of its children. This terminology allows us to characterize the maximal qllasiperiodicities
precisely.

Theorem 6.2 (i,z,h) is a maximal quasipe'l'iodic'ily in'w -if and only ijthere is a node 'in
the suffi."C tree 0/10 'abeled z ami a I'll'll {i l < i 2 < ... < 'id, k 2: 2, that coalesces at z, such
that:

1. i = i 1 and i k =.; + 11. -Izl. Namely! u = W[il ...il+h-Il ca,n not be extended on cilhm· .'>idc
by m01'C occurrenccs of z.

2. Therc is no a.ncestor Zl of z where the position i1 is in lhe samc T'll'n with the position i 1+
lul-Iz'). lVamely. z i.., not covered by a shodeT st1'ing z' and lhereforc, is superp1'imitive.

The algorithm of Apostolico and Ehrenfeucht is built around the Theorem above and
it finds the maximal quasiperiodicities by ffictintaining the runs for each node of the suffix
tree while climbing bottom-up from the leaves. Observe that as the algorithm progresses
computing the runs ct!, fl node given the nIllS of their children, rullS of children split since the
length of the parent node label is shorter than the children, and other runs mcrge. Apostolico
and Ehrenfeucht gave an algori thm that takes O(n log2 n) time.

7 Open Questions

Some remaining open questions are the following:

1. Ali Aligned Cov(:,/'s. Finding <tIl aligned covers of all prefixes of a string in 0(11.) time;
TlCunely, the longest proper aligned cover of each quasiperiodic prefix. An optimal
parallel algorithm for finding all aligned covers of a string. These aTe probably the
easier problems in this list.

2. l11aximal Quasiperiodic Substrings. Improving on the O(n log2 n) algorithm that was
outlined above. Designing and dfisicnt parallel version of this afgorithm.

3. Gcncral CoveT,';. Tnlproving 011 the O(n log 11.) sequential algorithm and on t.he exisiting

parallel algorithm.
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