
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1996 

Web Intelligent Query - Disconnected Web Browsing Using Web Intelligent Query - Disconnected Web Browsing Using 

Cooperative Techniques Cooperative Techniques 

Ramanathan Kavasseri 

Todd Keating 

Michael Wittman 

Anupam Joshi 

Sanjiva Weerawarana 

Report Number: 
96-002 

Kavasseri, Ramanathan; Keating, Todd; Wittman, Michael; Joshi, Anupam; and Weerawarana, Sanjiva, 
"Web Intelligent Query - Disconnected Web Browsing Using Cooperative Techniques" (1996). Department 
of Computer Science Technical Reports. Paper 1258. 
https://docs.lib.purdue.edu/cstech/1258 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


WEB INTELLIGENT QUERY ­
DISCONNEcrED WEB BROWSING

USING COOPERATIVE TECHNIQUES

Ramanathan Kavasseri
Todd Keating
Mike Witbnan
Anupam Joshi

Sanjlva Weerawarana

Purdue University
Department of Computer Sciences

West Lafayette, IN 479807

CSD TR-9<Ml02
January 1996

(Revised April!9%)



Web Intelligent Query - Disconnected Web Browsing Using Cooperative
Techniques

Ramanathan Kavasseri, Todd Keating. Michael Wittman, Anuparn Joshi, Sanjiva Weerawarana

Department Of Computer Sciences

Purdue University

{rrk,keatinwt,wittmarnr,joshi,saw} @cs.purdue.edu

Abstract

Mobile computers operate in callsta""y changing net­
work ellvirollmellts. It is possible/or a mobile computer to
become temporarily "disconnected" from a network IVI,ell
it challges base slali01ls or goes Olll ofrange ofa base sco­
tinll. A mobile host //lay also "doze off' 10 preserve bat·
rery power. If at the lime it "goe... dOlVn", a mobile
computer is involved in a tral/saction process with
aI/other cOlI/pllter (mobile or stalle), it should be able to
tolerate the ''fault'' of temporary' discormection. This
work focuses Oil discOIlI/ecled web browsing from a
mobile host. The clIrrem model of web browsing if; inher­
ently sequential, and wasteflll of bandwidth. This paper
investigates a/l efficient model for browsing and presems
a preliminary' implemematioll.

1.0 Introduction

Recent years have seen a significant increase in interest
generated by mobile computing. Users are increasingly
looking for mobile aware applications[2][3]. With the
advent of the World Wide Web[13J. browsing (surfing)
the web is becoming an increasingly common activity for
computer users.

The current model of browsing the web leaves most of
the burden of finding the relevant information on the user
and his computer. The user is expected to know starting
poinl~, and then search through documenls to find the
information s/he needs. While the user searches for infor­
mation, a network connection needs to be constantly
maintained. Moreover, a lot of (potentially) useless infor­
mation is transmitted over the network, wasting precious
bandwidlh.

This mode of information access is clearly not suitcd
for web browsing from a mobile platform. Mobile plat-

forms, for one. are connected over wireless links. Wire­
less networks lypically provide far lower bandwidth than
wired networks. Wireless LANs typically provide a total
bandwidth of 2Mbps, and throughpuls in the hundreds of
Kbps range. Wide area wireless networks (mostly cellu­
lar) operate at tens of Kbps. Moreover. unlike wired net­
works, disconnections are a frequent phenomenon in
wireless networks. These occur while a host is between
base-stations, or when it falls in a "radio-shadow" area.
Disconnections in the mobile environment can also be
elective. In other words, the mobile hosl may chose to
"switch off' certain partes) of iLS functionality in order 10
preserve battery power. We refer the reader to [14] for
details of the mobile computing scenario. Providing a rea­
sonable level of performance in the face of frequent dis­
connections and restricted bandwidth is a major issue in
mobile computing. In this paper. we describe a system
called WebIQ which facilitates disconnected mobile
browsing.

A widely accepted model of operation in the mobile
computing domain is the MSS-MH model[12j. In this
class of models, each Mobile Ho~·t (MH) is assumed to
have a wireless link to a Mobile Support Srario/l (MSS).
The MSS acLS as a gateway to the wired world. Based on
such a model, we investigate in this work the effecls of an
asynchronous mode communication protocol, imple­
mented by a proxy server system we call WebIQ (Web
Intelligent Query), in offsetting the effects of the mobile
environment. WebIQ runs on MSSs, and provides an
interface to the Web for a browser on a MH. The objective
of the WebIQ system is to allow a different model of web
access suited for disconnected browsing. In this model,
we view web access as a sequence of small, atomic trans·
actions. The connection between the MH and the WebIQ
system need only be maintained during such transactions,
there is no need for a continuous connection. These trans­
actions consist of the following functions:



• Providing WebIQ with a request for information and
parameterize information quality

• Retrieving appropriate links provided by WebIQ

• Extracting information from links as desired

• Providing WebIQ ratings aboul the quality of the info­
response to a query (responses are quality-rated
URLs).

Such a model, in conjunction with local caching of
information and media transformation [15], will prove
useful for disconnected browsing. We posit that any sys­
tem which supports disconnected browsing by mobile
hosts should meet the following requirements:

• operation in the presence of frequent disconnections.

• minimizing wireless bandwidth usage and conse­
quently MH power consumption - this can be done by
weeding out information which has a low probability
of use at the MSS itself using user profiles.

• usefulness/quality rating of retrieved URLs - this gives
the user control over the information he would like
reLrieved, and allows the system to infer a user's pref­
erences.

• detection/automation of oft-repeated user paUerns. e.g.
fetching the stock-market URLs every morning before
9am. thus enabling information retrieval during peri­
ods of low activity, saving time and CPU cycles.

• cooperative information gathering - this requires
maintaining a ranking of WebIQ peers, as well as
external information brokers, based on the volume of
information requested, quality value required for the
results, etc. Such information can be used to guide a
query to a particular search engine, based on past
information.

• amortizing the cost of information retrieval and reduc­
ing search-time by caching URLs at the MSS, thereby
redirecting queries away from overloaded information
resources.

• simple user-interface, requiring nothing more complex
than forms-capable browers.

The WebIQ system was thus developed with the fol­
lowing goals in mind:

• to enable disconnected browsing without impeding
browsing on static hosts.

• to create a network of WebIQ servers, with each
WebIQ server handling queries from a small group of
MH,.

• to create a user profile for each user, ba.~ed on associa­
tions between keywords (which are used for search­
ing) and the URLs relrieved for these keywords.

• associating a quality rating with each metadata key­
word <-> URL association in each user's profile.

• to use a cooperative information gathering slrategy
that first queries information resources close to the
WebIQ server. especially other WebIQ servers, then
moves on to more central sources of information if
necessary.

• to allow use from any forms capable browser.

2.0 Related work

There is very little extant work in the area of discon­
nected browsing. Most such work ha.~ been limited 10 the
notion of caching URLs using some kind of fish search.
Locating specific informalion in the Internet is becoming
more difficult due to the its explosive growth and diver­
sity. Many search engines and research papers have
attempted to address this problem. However. these works
for the most pan view this as an information retrieval
problem. Little previous effort has been directed at adapt­
ing the underlying model of web browsing, which is
flawed from a mobile context, to disconnected browsing.

Oates et al. [8J have concentrated on cooperalive infor­
mation gathering. This information gathering (lG) tech­
nique involves the pro-active acquisition of information,
but may require analysis of intermediate results and a sat­
isficing search.

SavvySearch[16] allows parallel searching on multiple
information resources. The user chooses information
resources to be searched. This architecture does incorpo­
rates parallelism. but still requires brute-force searching
for each query. No attempt is made to categorize the infor­
mation in order to develop an efficient method of search­
ing.

NEXOR's ALIWEB[6] requires a site to create a file,
containing a description of their services in a standard for­
mal. The site then registers with ALIWEB, which rou­
tinely retrieves them and creates a searchable database of
the services. This is a method ofcategorizing infonnation.
but it does not allow any details aboul the quality of Ihe
services. The Harvest architecture[18], like ALIWEB,
requires sites (0 create a resource index. A gatherer then
retrieves these indices and passes the infonnation, after
filtering. to brokers. A search is then conducted by con-



Static Net

mobile hosts /
/

/

I'
(mh)

WebIQ proxy server

Figure 3.1

lacting a broker who may have lhe required information
or can contact other brokers if necessary. Like ALIWEB,
Harvest lacks relevance feedback.

WebHound[17] requests quality rankings on retrieved
documents, thus implementing user profiling. WebHound,
however, does not act 0... a web searcher based on these
quality ralings.

DeBra and Post[4] suggest the use of the fish-search
algorithm. The fish-search algorithm is an IG type of
search wherein documents relevant to users' requests are
recursively searched for links to other documents. Search­
ing links from a relevant document uses less resources
than brute force searches, and is more likely to provide
relevant documents.

Pitkow and Recker[7l's study of document access and
usage patterns confirms the ability to identify user pat­
terns for use in prefetching documents or automating tem­
poral events.

A combination of the above methods can lead to a
more effective web search engine, which, along with dis­
connected browsing, are the major goals of WebIQ. pro­
posed in this paper. The WebIQ system focuses on
bandwidth conservation by retrieving only a prespecified
number of links over the MSS·MH link. Such links are
selected based on a user profile, as in WebHound. User
profiling facilitates temporal pattern identification, thus
opening the door to possible information prefe~ching ~nd

automation of services. WebIQ implements a hierarchical
system of collaborative information sharing to reduce
congestion (and consequently, delays) at ex.isting web­
searchers like Yahoo. We also propose information shar­
ing among WebIQ clients, in the hope of amortizing infor­
malion retrieval costs.

3.0 WebIQ design specifications

3.1 WebIQ software architecture

The software architecture of the WebIQ system is
based on the model [12] shown in Figure 3.1. The MHs
communicate to the Static internet through MSSs. On the
static net bandwidth (volume of information transmilled)
is not too big a concern, as compared [Q the same over a
wireless channel. Hence a MSS can receive large volumes
of data from the Internet, but must transmit conservatively
over the wireless link to a MH. A MSS filters out unnec­
essary information retrieved from the static nel before
passing the information on to a MH. Thus a MSS is a cli­
ent to a server on the static net, but acts as a proxy server
to the MHs associated with it.

The WebIQ project has been divided into three compo­
nents - the user, the filter. and the server. The user can be
anyone on the Internet (provided that they use a HTML
forms-capable browser). The filter acts as the user inter­
face. The filter interprets all user requests, which it
receives from an HlTP server via CGI. The filter then
translates the user request into an internal query represen­
tation [9,10] used by WebIQ servers. The server receives
the request from the filter and acls on it. The server
maintains its own database from which to answer queries,
but also connects to other servers and infonnation
resources on the Internet when necessary.



• Storing and Retrieving URLs Using a Links Database

• Maintaining a Keyword <-> User Database

them to the server. It also receives information from the
server and translates it into a form suitable for viewing by
the user (HTML).

In order to answer these requests, the server mUSl
maintain two different databases: a Hnks database and a
user profile database. Since it may also need to find infor­
mation from outside sources, the server has interfaces to
these information resources. Specifically, then, there arc
three main functions of the server:

recognizesserver

• to log a user on to the server,

• or to change defaults settings.

• to create an account,

• to perform a query,

• to return results of a query,

• to rate links,

3.2.3 Server functionality. The
requests from the fi Iter:

The links database contains mappings from keywords
to links. The links database is a public database, which
can be searched by the WebIQ server, on behalf of other
users. This database is implemented as a set of tables,
reduced to me third-normal form [19]. The first table con­
tains a mapping from keywords to links, with a quality
rating for each keyword-URL pair (note that the same
URL can have a different quality rating when associated
with another keyword). One such table is allocated to
each user. When a query is received, the server looks for
the document URLs with the highest weighted links to the
metadata keywords given and returns these URLs. URLs
are primarily added to the database by getting results of
user queries from either another WebIQ server or from an
outside information source.

We maintain a separate table associatin!l each retrieved
URL with information like time elapsed since last use,
use-count, etc.

We need a way of aggregating similar profiles of dif­
ferent users. This will enable a search based on profiles to
be conducted. In our system, the user profile revolves
around the metadata keywords which each user uses for a
query. In order to link together similar user profiles, we
form a mapping from keywords to user names. When a
user requests a search on a keyword, we append the user

3.2 WebIQ functionality

The specific function of each part of the WebIQ system
is discussed below.

3.2.1 User fundionality. The user connects to a web
pa!le containing an HTML form, which he uses to log on
to and query the system. Once the query is registered, the
user can disconnect and do other local work. At some
later time, the user reloads (or reconnects to) the HTML
form, whereupon he receives a list of all pending results
from previous queries. Each result has a keyword, and a
number of URLs associated with it. The user is asked to
rate URLs of interest based on the degree to which it is
appropriate for the particular metadata keyword(s) he
queried on. Unrated URLs are discarded. Thus a step-by­
step procedure a typical user would follow in the WebIQ
system would be:

I. Lo!l on to the system with a password/create a new
account and then log on.

2. Specifying keyword(s) to search on. At this time the
user musl also specify the minimum quality level of
links he wants retrieved (new links are rated as a
default 5, until the user changes their rating).

3. Specifying the maximum number of URL links to
return.

4. Submitting the query. (Note that till this point, the user
follows exactly the same procedure that he would with
any other search engine).

5. Now the user is free to disconnect from WebIQ and do
other work. At a laler time, the user will reconnect by
clicking on "reload" or logging on again.

6. When the user reconnects, he sees a list of all previous
queries, and he can click on any query to view the
results (the results are formatted as a HTML document
that the user can easily follow).

7. Next to each URL in the result listing, the user wiII
also see a list ofradio-buHons numbered from I to 10.
These are for quality rating feedback, and the user can
click on one of these buttons, if he decides to rate the
links.

8. Finally, after viewing his results, the user needs to
specify the time -to-live for the rated results of this
query.

3.2.2 Filter functionality. The filter's primary purpose is
communicating between the user interface and the server.
It does this by translating the user requests (received by
forms submission) into the query language, and sending



name to the end of a list associated wilh that key. Note
that a user name can appear many times in this database.
but only once per keyword. Also, each keyword can
appear only once in this database.

• Interfacing with Other Information Resources

In order to answer queries that extend beyond its
knowledge base, the server queries other sources of infor­
mation. These sources are other web search engines, espe­
cially other WebIQ servers. The algorithm used to
implement a lookup for links is given below:

J. The user's links database is queried for the required
number of links

2. If step I fails. a search is made on the keyword <->
user database. A list of other users is extracted, and a
search is conducted in their links database. If the num­
ber of requested links is found, the results are returned
to the user.

3. If the user's query cannot be satisfied using the data­
bases of the local WebIQ server. the server tries to
query other WebIQ servers that are known to it.

4. If step 3 fails to yield the required number of links,
then the original WebIQ server tries to query oilier
web information sources. Currently lhese are Infoseek
and Yahoo, but any search engine can be used, given
that a proper interface to it is wriuen.

URLs retrieved by the server are rated and stored in the
links database, along with an initial quality rating. In this
way, a WebIQ server for a group of users will. after a
period of time. reflect the query interests of this group of
users. Thus each server will acquire area" of expertise for
which it knows where information can be found.

4.0 Implementation

The implementation was split up into four modules.
These were:

• the filter-user interface,

• server internals - parsing requests from the filter, data­
base implementation etc.,

• interfacing with other information resources. and

• interfacing with other WebIQ servers.

4.1 Filter - user interface

The filter-user interface takes a form-based input from
the user. This is translated into the WebIQ query lan-

guage. The filter-user interface was intended to support
the following interactive operation modes:

• Account creation.

• Login process.

• Query submission

• Result retrieval

• Rating process

• Default updating

The filter - user interface is implemented through
HTML documents and car scripts. The WebIQ query
language was designed to facilitate very short, atomic
transactions between the filter and the server. Its structure
is broken up into four pans:

UserName - used to identify which user generated the
query.

Password - necessary for user authentication.
Information domain - this describes the type of query,

which is split four classes: administrative, query_data,
links_data and automation_data.

Information type - this describes the particular service
that is being performed.

The query types are based on the purpose of each
query, and fall into four separate domains, e.g creation of
accounts and login are administrative functions, involving
access policy and usage restrictions. Query submission
and results-requests are classified as query_data and
links_data, respectively. Automation data involves infor­
mation about processes which the user initiates often
enough thalthey can be automated, thus moving lhe bur­
den of initiation from the user to the WebIQ system. The
query domain information is stored in the Information
domain field of each packet. We send the password either
way as a consistent packet representation. The Informa­
tion type field distinguishes the subdomain that the query
addresses, e.g. - the administrative domain has account
creation, account login and account default information a"
subdomains. For further information on the internal query
language, the reader is referred to [9] and [10].

4,2 Server internals

The server internals are comprised of a number of
ORACLE scripts that manipulate the databases. The data­
base is currently being poned from simple TCL managed
files to Oracle [I9}. We will explain the Oracle implemen­
tation in this work.



4.2.1 Links database. The Links database uses a table
representation to map a Keyword-URL pair to ilS user­
specific information. It is implemented using commercial
software (to improve search times and allow for future
upgrades). Each user has a table mapping keywords (from
previous queries) to links. Each such entry has a rating
associated with it, an access count to tally the number of
times the user accessed this link, a time-to-live and a
time-stamp for the time of last access. The fields of this
table arc thus : "KEYWORD", "URL", "RATING",
"ACCESS-COUNT", TlME-TO-LIVE", "LAST­
ACCESS", which is the simplest relation between a key­
word-URL pair and ilS associated metadata information,
especially quality rating. For example, a single entry
could be "keyword =boilermakers", "URL =hUp:/1
www.yahoo.comlRecreationlSportslBaskefbaWCol­
legelMen", "raling = 10", "access-count = 3", ''Time-fo­
live =2 Days","last-access = Thu Dec 1411:28:18 EST
1995" .

We maintain another table mapping links to informa­
tion about them, like a string describing the associated
URL. time-to-live (which is the maximum of the TILs
specified in each keyword-URL mapping the that link is
associated with), and access count. This is useful in gen­
erating statistics about system usage.

4.2.2 Mutual exclusion & data consistency. Since mul­
tiple users can be accessing the WebIQ system at the same
time, mutual exclusion must be enforced when reading
and writing data. In our implementation, data consistency
is maintained by the commercial database soflware, (Ora­
cle).

4.2.3 The key to user map & other tables. The map­
ping from keywords to UserNames is stored in a separate
table common to all users. A password table stores the
mapping from users to their encrypted passwords. Fur~

ther, system management tables hold information for all
users, like usage statistics, information about other serv­
ers, etc.

4.2.4 Format of retrieved resuIls. The resulls which
have been retrieved need to be checked for repeated
URLs, as they have (possibly) been compiled from multi­
ple. independent sources. Results from within the WebIQ
databases are pruned for repetitions, and likewise results
from other servers. In the current implementation how­
ever, there is no effort to prune repetitions across local (i.e
from the WebIQ servers) and global (from other servers)
servers simultaneously. So there is still a possibility that
links will be repeated (by being retrieved from the WebIQ
system and also retrieved from central information
resources like Yahoo). The retrieved results are parsed by

the filler, and converted into a HTML hypertext docu­
ment, which the user can then follow and rate.

4.2,5 Query slatus information. The WebIQ server
maintains starns information as follows:

I. Whenever a new request comes in, a unique identi­
fier is created for it. All the keywords the user has sup­
plied for the query are associated with this identifier.
During the search process, this list of keys can expand if
related keys are found (this is done by requesting key­
words using URL links as the search key - a dual to the
problem of searching links from keywords - as such, this
is done only if search requests fail to retrieve appropriate
links).

2. Associated with each request (Le. the keywords to
search) are the and/or boolean combinaLions (which are
not yet fully supported by WebIQ), and reqestcd number
of links. Also, work is in progress to permit the user to

search specific information resources, as is allowed in
Savvy Search.

3. User-specific information is kept about pending
resullS from previous queries, and is sent to the user each
time he logs on/reloads the forms document, so he knows
the status of the queries.

4.3 Interfacing with other information resources

Interfacing with other information resources is accom­
plished using a customised interface for each information
resource. For each keyword the script opens a socket and
connects to a search engine. For each keyword, we cycle
through all the search engines in our list, before cycling to
the next keyword. We continue cycling until we either run
out of keywords, or we retrieve the desired number of
goals. Currently the server will use Infoseek or Yahoo, but
the addition of other information resources is simple, as
we maintain a consistent interface between the server and
script. We also provide a degree of fault-tolerance by
allowing connections to multiple resources, so should one
fail, we can skip to another information resource.

4.4 Interfacing with other WcbIQ servers

Interfacing with other WeblQ servers is fairly easy,
since WebIQ speakers speak the same query language.
We use HTTP to talk between servers, similar to the
working of the filler.

5.0 Conclusion

The WebIQ system is a tool to supporl disconnected
browsing. It provides a mechanism to implement the dis-



connected browsing model. At anolher level, however, it
can also be viewed as a sophisticated cooperative search
engine for the Web. Unlike most search engines, the user
can specify in advance the number of links he wishes to
relrieve. This, coupled with disconnected browsing, make
the WebIQ system very appealing for mobile computing.
Disconnected browsing means that the user no longer
needs to remain connected to the search engine while a
search is being conducted. The ability to specify a maxi­
mum number of links means that we wont be flooding the
mobile host with tons of links which the user will never
access - battery lifetimes for mobile hosts last typically
for a couple of hours, and the amount of web surfing that
can be done is limited in such a short lime span. WebIQ
focuses on retrieving links based on past user history. The
user can also associate a measure of usefulness with each
retrieved link, and can cache the links he likes for future
reference. The user can specify minimum rating values
(i.e a user can instruct the WebIQ system nol to return
links below a particular rating value). This ensures that
the user will not receive a flood of unwanted results.

Thus we have introduced features to make the WebIQ
system powerful for mobile environments, namely:

1. disconnected browsing

2. cooperative information sharing within users of a par­
ticular system

3. accessin!l remote search engines based on the volume
of links requested.

The current implementation of WebIQ, however, still
does not faithfully implement all its design objectives. In
our continuing work, we hope to address the following
constraints imposed by the current implementation:

I. There is a lack of boolean operators which can be used
to link keywords, e.g a user cannot "and" two key­
words, and combine them into a single search request.
The only mode of operation supported is a hierarchical
GRing, where the links for the first keyword are
searched, then links for the second keyword,etc. To
account for boolean operators, the keyword - URL
relationship should be replaced by a "query • URL"
relationship, which will require slightly more complex
algorithms to match query patterns.

2. The user should be able to delete all the links
retrieved, without raling them. At present, the user is
forced to rate at leasl one link.

3. There should be an efficient way to browse through a
user's links database.

4. Cooperative browsing among WebIQ servers ­
although the interface for this feature has been written,
il has not been linked to the query process(i.e to the
search algorithm) Right now, the search melhod
searches cooperatively within a server, and the jumps
out to non-WebIQ servers directly.

5. The user might want to specify that he wants to skip
searches within his server, or that he wants to search
only Yahoo, or Yahoo and Infoseek, etc. All these
access methods must be provided to the user.

6. Privacy issues - We are considering how to incorporate
privacy into the database. Users may not want certain
linkslkeywords/data to be accessible to others, and a
means of locking such information needs to be incor­
porated.

7. Scalability - to ensure scalability, we need to delete
cached information periodically. The framework for
lhis is in place (lime-to-live, time-stamps and access
counts). Using these, we plan to test various cache
pruning strategies, like least-recently used, least fre­
quently accessed, etc.

Acknowledgments
This work was supported in part by NSF award ASC

9404859, and a grant from the Intel Corporation. The
authors wish to thank Peeyush Ranjan for valuable tips on
improvements to the WebIQ user interface (and being the
first user of the system), and Shalab Goel for information
on database management.

6.0 References

I. Bowman, C. M. el. al. The Harvest Information Discovery
and Access System. Proceedings of the Second bill. WWW
COllference, Chicago, 1994,763-771

2. Dr.lShansky, T., Weerawarana, S., Joshi, A., Weera~inghe,
R., Houstis, E. Software ArehiteClure of Ubiquitous
Scicntific Computing Environments for Mobile Platforms,
Technical Report CSD-TR·95-065. Department of
Computer Sciences, Purdue University.

-3. Joshi, A., Weerawarana, S., Drashansky, T., Houstis, E.,
ScicncePad: An Intelligent Electronic Notepad for
Scicntific Computing, Proc. 11111. Coni Illlelligellt
InfonnariOlI Management Syslems, Washington, D.C.,
1995,107·1I0.

4. DeBra, P.M.E., and R.D.J. Post. Information RClrieval in
the World-Wide Web: Making Client-based searching
feasible. Eindhoven University of Technology Dcpartment
of Computing Science. Netherlands.

5. Ken!, Robert E., and Christian Neuss. Conceptual
Analysis of Resource Meta-information.



6. NEXOR Ltd. Introduction (0 ALIWEB. NOltingham, UK.
1995

7. Pitkow, James E., Recker, and Mimi Recker. Integrating
Bouom-Up and Top-Down Analysis For Intelligent
Hypertext. Georgia Institute of Technology College of
Computing Graphics, Visualizalion &Usability Cenler.
Atlanla. 1994.

8. Tim Oales, MV Nagendra Prasad, and Vielor R. Lesser.
Cooperative Information Gathering: A Distributed
Problem Solving Approach. UMass Department of
Computer Science. Amhers!. 1994.

9. Ramanathan Kava%eri, Todd Keating, and Mike
Wiltmann. WeblQ internal document for server-filter
communication. hup:l!www.cs.purdue.edulwitlrnarnr/
WebIQ/fiiler_server.hlml.

to. Ramanalhan Kavasseri, Todd Keating, and Mike
Wittmann. WebIQ internal document for server-server
communicalion. hup:llwww.es.purdue.edulwillmamrl
WebIQ/server-server.html.

II. A. Joshi, "To Learn or not to Learn ...", JJCAJ Workshop
011 Leamillg and At/aplalion in Mulliagem Syslems,
Montreal, 1995 (to appear in Springer's LNAI series).

12. T. Imielinski and B. Badrinalh, Mobile Wircless
Computing: Challenges in Data Managemcnt,
COIlrllllmir;otiollS ofACM 37 (1994), 18-28.

13. T. Bemers-Lee, R. Cailliau, J.F. Groff and B. Pollermann,
World Wide Web: The Information Universe. Elecrrollic
NellVorkillg: Research, Applicatiolls, and Policy, 2 (1992),
52-58.

14. G. Forman and J. ZahOljan, The Challenges of Mobile
Computing, /EEE Compliler, April 1994.

15. A. Joshi, R. Weerasinghe, S. Weerawarana, Mowser: A
Web Browser for mobile platforms (manuscript under
preparalion), http://www.es.purdue.edulrcsearchlesel
mobildrnowser.hlmJ

16. D. DreiJinger, SavvyScarch, http://www.cs.eoJostale,eduf
-drcilinglsmarlfonn.html

17. Y. Lashkari, WEBHOUND, hllp:!1
wcbhound.www.media.mit.cdulprojects/wcbhouml/

18. Harvest System. htlp:llharveSl.cs.colorado.edul

19. George Koch & Kevin Loney, "ORACLE, The Complete
Reference", 3rd Edition, Osborne-McGraw Hill.


	Web Intelligent Query - Disconnected Web Browsing Using Cooperative Techniques
	Report Number:
	

	tmp.1307986960.pdf.1yXbr

