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Abstract

The discretization of the two-dimensional convection-diffusion equation usually
leads to a linear system whose matrix coefficient is block two-cyclic consistently or
dered. For the solution of the resulting linear system, several efficient stationary iter
ative methods were proposed, among others, by Chin and Manteuffel (1988), Elman
and Golub (1990), de Pillis (1991) and Eiermann, Niethammer and Varga (1992).
In the present work, we propose, as an alternative, the stationary Modified Succes
sive Overrelaxation (MSOR) method or an "equivalent" 2-step method applied to the
cyclically reduced linear system. It is shown both theoretically and experimentally
that the application of a "continuous" version of Manteuffel's algorithm to derive the
optimal parameters produces an iterative method that is asymptotically faster than
the previous methods.
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1 Introduction and Preliminaries

For the numerical solution of the singularly perturbed convection-diffusion equation

- EIl.U + a(x, Y)Ux + l3(x, y)uy + ,(x, y)u = f(x, y) (1.1)

on a bounded convex domain with Dirichlet boundary conditions, the discretization leads Lo
the solution of a real linear system of equations of order n of the general form

Ax ~ b. (1.2)

Under certain assumptions, the coefficient matrix A, in (1.2), is nOllsingular and block tridi
agonal, with an invertible block diagonal matrix D, and its associated block Jacobi iteration
matrix

B :=1 - D-1A (1.3)

has a spectrum u(B) contained in a "bow tie" region R ~ Rj1 j = 1,2, (see [2]), where

(see Fig. 1) or

R, := {z E c: Iz ± cl :S c< D
R,:={zEC: Iz±icl:Sc and IRezl<I}

(1.4)

(1.5)

(see Fig. 2). Note that since A is block two-cyclic consistently ordered, B in (1.3) is weakly
cyclic of index 2 (see, e.g., [15], [16] or [1]) and, therefore, can be transformed by a certain
permutation transformation into its normal form 13 (see, e.g., [15]). More specifically,

(1.6)

where P is the permutation transformation matrix and 0 1 , O2 are square nullmatrices of
orders nl and n2, respectively (nl + n2 = n). Under the same permutation transformation,
it is

PApT =: A, PDpT =: D. (1.7)

By seLLing x .- Px and b := Pb, (1.2) and (1.3) become Ax = band iJ 1 - D-1 A,
that is of exactly the same forms as before. To simplify the notation, we drop all the tildes
from the tilded symbols above and so we can refer again to (1.2) and (1.3), with B having
now the form of the right hand side of (1.6). In [2] the numerical solution to (1.2)-(1.3)
is found by the application of the optimal block Successive Overrelaxation (SOR) method.
The optimal relaxation factor W, in both cases of (1.4) and (1.5), is determined there by a
very ingenious but very complicated analysis. It is noted that the same optimal parameters
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wwere recovered in [6J by the application of a "continuous" version of the Young-Eidson's
algorithm [171 (see also [16]).

The solution of the discretized problem (1.2) was also considered by Elman and Golub
[5] who applied (convergent) block Jacobi iterations to the cyclically reduced linear system
resulting from (1.2), (1.3) and (1.6) by exploiting the expressions of the nonzero entries of
the Jacobi matrix which they derived explicitly. However, iterative methods analogous to the
one in [2], applied either to (1.2) or to its cyclically reduced system, have been considered,
to the best of our knowledge, only by de Pillis [3] and by Eiermann, Niethammer and Varga
[4]. We note that in the latter two works only the spectrum case (1.4) was examined.

It is the main objective ofthe present work to solve the linear system (1.2) by the Modified
(M)SOR iterative method (see, e.g., [16]) or, equivalently, in the Chebyshev sense (see [8]),
to solve its cyclically reduced linear system by a 2-step iterative method. As will be proven,
our method is asymptotically faster than any of the methods mentioned so far and can also
cover a wider class of matrices A.

For the solution of a linear system similar to (1.2), (1.3) and (1.6), derived from the cubic
Hermite collocation discretization method of a class of elliptic PDEs, the MSOR iterative
method was successfully applied in [7]. As was shown there to determine the two parameters
associated with the optimal2-cyclic MSOR method is equivalent to determining the two pa
rameters in the optimal Manteuffel's algorithm (see [10], [11], [12], [13]) or of a "continuous"
version of it. For this it can be shown that the MSOR method applied to (1.2) is equivalent
to applying a 2-step method to the equivalent to (1.2) linear system

(1 - B')x = (1 + B)D-' b. (1.8)

Moreover, it can be shown that the aforementioned 2-step method is equivalent to another



2-step one associated with the solution of the cyclically reduced linear system

(1, - B,B,)x, = h, + B,h l

4

(1.9)

where II and 12 are unit matrices of order nl and n2, respectively, and x = [xi xiY,
h = [hi hi] = [(D-'bJi (D-'b)iY, x" bl E JRn

" x" b, E JRn
,.

The material in this work is organized as follows. In Section 2 the MSOR method and its
equivalent 2-step method together with its cyclically reduced one are presented. In Section 3,
ManLeuffel's algorithm is briefly mentioned and its "continuous" counterpart is introduced.
In Section 4 some basic elements of the boundary curves of the regions R~ and .Hi in (1.4) and
(1.5) are given. These boundary curves, denoted by C1 = aR~ and C2 =am, are cardioids.
In Section 5 the optimal "continuous" Manteuffel's algorithms, first for spectra u(B) C R1

and then for spectra u(B) C R2, are developed. Finally, in Section 6, a discussion is made
and numerical examples, covering various cases, in two illustrative Tables are presented that
show the superiority of our method over the previous ones.

2 MSOR and Related 2-Step Methods

The MSOR method for the solution of the linear system (I - B)x = n-Ib, equivalent to
(1.2)-(1.3), is defined by (see, e.g., [16])

£nx(m) + (I - nLJ-1nD-Ib, m = 0,1,2, ... ,
:= (I - nL)-'(I - n +nUl,
:= diag(wlIl, w212), L + U =: B,

(2.1)

where Land U are strictly lower and strictly upper triangular matrices, respectively, x(O) E IRn

arbitrary and Wi, W2 E lR\{O} are the two relaxation factors. In [8] it was proved that in the
Chebyshev sense, the method (2.1) is equivalent to the 2-step method given below

x(m+l) = (w;1 +w;B')x(m) + (1 - w; - w;)x(m-l) +w;(I +B)D-1b (2.2)

where X(-l) I x(O) E lRn are arbitrary and

(2.3)

Since w~ =/: 0, the iterative method (2.2) is completely consistent with (1.8).
In view of (1.6), we partition x(m), m = -1,0,1,2, ... , in accordance with the 2-cyclic

partitioning of B and split iterative scheme (2.2) into the two uncoupled 2-step methods

and

(m+l) ('I 'B B) (m) (1 ' ') (m-l) '(-b B -b)Xl = WI I +W 2 I 2 Xl + - WI - W 2 Xl + W 2 I + I 2

(m+l) ('1 'B B) (m) (1 ' ') (m-I) '(-b B -b)X2 = WI 2 +W2 2 I X2 + - WI - W2 X 2 +W 2 2 + 2 I .

(2.4)

(2.5)



5

The pair of methods in (2.4) and (2.5) are completely consistent with the two linear systems
to which (1.8) is equivalent. It is clear that only one of the two methods (2.4) or (2.5) needs
to be applied to find a good approximation to one of the vector components of X, say X2.

Then, (2.5) is usually rearranged in the following way

(2.6)

to indicate that there are only two matrix-vector multiplications per iteration step involving
the matrices B1 and B2 . The other vector component Xl, of X, will then be found from
Xl = bi + B1X2·

To apply the best 2-step method (2.5) (or (2.6)) one has to find the best ellipse in the
spirit of Manteuffel (see, e.g., [11]) that captures the spectrum a(I2 - B2B1). However,
since ,,(B,B,)\{O} = ,,(B')\{O} it suffices to find the best ellipse that captures ,,(1 - B').
The ellipse in question is found by means of Manteuffel's algorithm ([10], [11]) in the way
described in [7]. Specifically, let ii, band d denote the lengths of the "real" semiaxis, the
"imaginary" semiaxis, and the distance of the center from the origin Z(O,O) of the best
capturing ellipse. According to [7], the optimal parameters w~ and W; of (2.6) will be given
by

., 2(J-l) ., 2
w, = J + (J' _ ii' +b')'/' w, = J + (,]2 _ ii' +b')'/'

while the optimal asymptotic convergence factor by

• ii + b
P = J + (J' - ii' +b')'/'

(2.7)

(2.8)

If needed, the corresponding relaxation factors for the optimal MSOR method will then be
found by using (2.7) in (2.3).

3 The "Continuous" Manteuffel Algorithm

To begin with our analysis let H+ denote the positive hull, that is the upper half of the
smallest convex polygon symmetric with respect to the real axis that contains the spectrum
(1'(1 - B 2 ) in the closure of its interior. As is known (see [10], [11]) Manteuffel's algorithm
distinguishes three basic cases. One of them is trivial and corresponds to the I-point case
that is when H+ has only one vertex. In the second one, the 2-point case, when H+ has
two vertices, the elements of the unique best ellipse are found as functions of the unique real
zero, lying in a specified interval, of a certain cubic or quintic polynomial. In the third case,
the many"point case, when H+ has more than two vertices, the elements of the best ellipse
are those of the unique 2-point ellipse that captures H+, if such an ellipse exists, or the
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unique ellipse among all the ellipses passing through three of the vertices of H+, capturing
H+ and corresponding to the smallest convergence factor p in (2.8).

To derive the "continuous" version of Manteuffe1's algorithm one has to examine some
llmiting cases. First, the limiting 2-point case will be that where one of the two points
(vertices of H+) moves along a continuous smooth curve and tends to the other. Secondly,
the limiting 3-point case will be that of an ellipse passing through three points (vertices)
when one of the points moves along a curve as before and tends to one of the others. It
can be very easily checked and found out analytically that the limiting 2-point best ellipse
turns out to be the trivial case of the I-point (double point, in this case) best ellipse. Also,
the limiting ellipse of one that passes through three points turns out to be an ellipse that
passes through two points (one is a double point) and shares with the aforementioned curve
the tangent at the double point. So, one can use all the formulas in the theory developed
and the algorithm given by Manteuffel. For example, in the 2-point case these formulas
depend on the coordinates of the points PI(XllYI), P2(X2,Y2), (Xl < X2) and specifically on
the quantities

A = X2 - Xl

2 '
S=Y2-YI

2 '
T = y, +YI

2
(3.1)

Under the assumption PI --7 P2 (or vice versa) it will be

(3.2)

and also,

lim AS = f'{XI)'
PI-P2

(3.3)

In (3.2) and (3.3), the double point is relabeled as PII if necessary, and Y = j(x) E C I is the
equation of the curve along which one of the two points moves and tends to the other. In the
3-point case, matters are a little more complicated. Here we present very briefly one of the
two cases of the limiting 3-point ellipse that passes through the points PI (Xl, Yl), P2(X2, Y2),
Pa(Xa, Ya) under the assumption that i) such an ellipse exists, ii) Xl < X2 < Xa, and iii)
P2 --7 P3 (or vice versa). As is known the elements d, a, b of such an ellipse are given by the
corresponding expressions in (4.12) of [11]. To derive the formulas for d, a , b in the limiting
case, first we rewrite the three different expressions that are present in the numerators and
denominators of the formulas (4.12) of [11] as follows

y;(x~ - xi) + yi(x; - xi) + y;(x; - x~) = (yi - y;)(x; - x~) + (yi - yD(x~ - xi), (3.4)

y;(x, - X3) + yi(X3 - Xl) + y~(XI - x,) = (yi - yi)(X3 - x,) + (yi - y;)(x, - xI), (3.5)

Y;X2X3(X2 - xa) + yiXIX3(X3 - xtl +Y5XIX2(Xl - X2)
= (yiXI - y;X')X3(X3 - x,) + [yi(X3 - x,) +x'(Yi - yDlxl(x, _ xI). (3.6)
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Then, we substitute the expressions in (3.4)-(3.6) into (4.12) of [11], divide each numerator
and denominator there by X3 - X2, simplify, if possible, take limits as P2 -;. P3 and relabel,
if necessary, to finally obtain

d

a'

b'

(y~ -Y?)Z2 -(~~-ZnY21'(':2)
M un 2(X2 XI )Y21'("'2) ,

iP _ (2Y~:&"lZ2-YIX~-Y~Xn-2(X2-.:z:Jl.:z:IX2Y21'(X2)
(Yz y?l 2(X2 XdY2J'(X2)

aZ (y~-yf)-2(:t"2-Xl)Y2I'(X2)

(X2 xd2

(3.7)

4 The Cardioids

The two cardioids C1 and C2 will be examined separately in Cases I and II below.
Case J: In polar coordinates the equation of the boundary aRl of the region R I in (1.4)

(see Fig. 1) is
1

r=2clcosOI. O<c< 2' OSO<2". (4.1)

Therefore, the equation of the boundary aR~ of the region R~ that will contain the spectrum
<T(B') will be

r' = 2c2 (1 +COS 01
), o<c<~, 0.::;0' <2n.

In cartesian coordinates, the equation of aR~ will be

(x' + y')' - 4c'x(x' + y') - 4c'y' = O.

(4.2)

(4.3)

As is known, equation (4.2), or (4.3), is that of a cardioid Cl. Since (4.3) is of even degree
with respect to y, Cl is symmetric with respect to the real axis. It can be found out that
the upper half part of Ct has tangents parallel to the imaginary axis at the points A(4c2

, 0)

and F (- c; 1 v;c2
) and a tangent parallel to the real axis at the point E (3~2 1 312 ). Since

we are interested in the eigenvalue spectrum u(I - B 2
) it is easy to see that this will be

contained in a cardioid, that is denoted again by Cll whose equation in cartesian coordinates
will be derived from (4.3) by setting 1- x for x. The equation for this new cardioid C1 will
be

[(1 - x)' +y']' - 4c'(1 - x)[(I- x)' +y']- 4c'y' = 0 (4.4)

and the characteristic points of Cl mentioned before will now have coordinates A(I- 4c2 , 0),

E (1- 3;, 31") and F (1 + 0; , 4") (see Fig. 3).

Case 11: The boundary 8R2 of the region R 2 in (1.5) has equation in polar coordinates

r=2clsinOI, O<c<l, 0$O<2'iT (4.5)
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(see Fig. 2). The boundary a-m of ~ will have equation

r' = 2c2 (1 - cosO'), 0< c < 1, 0:$ 0' < 271". (4.6)

In cartesian coordinates it will be

(x' + y')' +4c'x(x' + y') - 4c'y' = O. (4.7)

The cardioid Cz, whose equation is given in (4.6) or (4.7), is symmetric with respect to
the real axis. It can be found out that the images of the correspondin~ points A, "1:.F,
denotedagainbyA,E,F,havecoordinatesA(-4c2,O), E(- J; l 31c?), F(c;, ~2),

respectively. The spectrum a(I - B 2 ) is also contained in a cardioid, denoted again by Cz,
with equation

[(1- x)' +y'J' +4c'(1 - x)[(1 - x)' +y'J - 4c'y' = o. (4.8)

The previous characteristic points have now coordinates A(l +4c2 ,O), E (1 +
F (1 - <; , yin (see Fig. 4).

3.:2 3,p,?)
2' 2 '

5 Application of the "Continuous" Algorithm

The two cardioids C1 and Cz of the previous section, derived in the spectra cases (1.4) and
(1.5), respectively, will be considered and studied separately. However, most of the basic
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A Ra

results regarding the cardioid C1 can be applied almost directly to the case of the cardioid
C,.

Case I:
~

The arc AEF of the cardioid C1 is a smooth concave curve defined on the closed interval
[1_4c2

, 1 + ~]. As in Section 3, let 11+ be the upper half part of the hull of CJ(J - B 2
).

~

Obviously, its vertices will be points of the arc AEF. Consider the set of all possible 11+ with
~

a finite number of vertices that may lie anywhere on AEF. OUf problem will be then that
of determining the best elHpse that captures the set of all 11+. To determine it, it suffices to
consider the best ellipse that captures the "worst" possible 11+ case. In mathematical terms,
the problem just described can be defined as follows: Determine the asymptotic convergence
factor r that is defined via the formula

r= sup P
V H+CC j

(5.1 )

where PI given by (2.8)1 corresponds to the best capturing ellipse for H+ C C1 and which is
found by Manteuffel's algorithm.

As is well known, to determine completely an ellipse £ five independent elements of it
must be known. For the best ellipse in question, or for any other ellipse that is a potential
candidate for the best one, only three of its elements are to be determined. This is because
the other two are already knownj specifically, its center lies on the real axis and its "real"
semiaxis lies on the same axis too. Let F denote the set of all the ellipses that are potential
candidates for the best ellipse capturing the cardioid C1 and let £ denote any member of F.
Obviously, any £ and C1 cannot have more than fOUf points in common in the upper half



(5.2)
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plane. This is because the equations of C1 and E, in cartesian coordinates, are of degree four
and two, respectively, and the two curves are symmetric with respect to the real axis. Also,
any £ E :F that captures C1 cannot have with C1 fOUf or three points in common in the upper
half plane such that anyone of them is a single point. For if PI is one single common point of
£ and C1 the point PI will be a point of intersection of the two curves. This will imply that
points of E in an arbitrarily small neighborhood of PI will be interior and exterior points of
CI . As a consequence, E will not capture CI .

An immediate conclusion of the preceding analysis is that if £ E F captures C1 then, in
the upper half plane, £ and C1 will have i) at most two points in common PI and P2 (:;z§: Pd
that will be double ones (points of contact of the two curves), with PI and P2 being different
from A and F or ii) two points in common one of which will coincide with A and the other
one will be a double point. First, we shall consider the second case and use the notation
E p1P2 P:3 to denote that EplP2PJ E :F and passes through the points PI, P2 , P3 of the upper
half plane.

Below, we state and prove a statement that constitutes one of the basic tools for the
subsequence analysis.

Lemma 1: The ellipse CAEE, that is tangent to C1 at A and E, captures CI . (Note: In
fact three elements, besides the two already known, are given. EAEE passes through A and
E and CAEE is tangent to the cardioid CI at E. The fact that it is tangent at A as well is
not a new element since A lies on the common axis of symmetry of the two curves.)

Proof: Let EAEE be the ellipse, which passes through the points A(1-4c2 , 0), E (1 - 3;, 31.?)
and has "real" semiaxis a = 1 - 3; - (1 - 4c2 ) = 5~2 , "imaginary" semiaxis b = 31"'1 and

distance of its center from the origin d = 1 - 3~2. As is known, a point P(x,y) E EAEE if
and only if

4(x_1+ 3;)2 4y2
----'-----;,-;-:,---"-'- + - < 1.

25c' 27c'

Let P E Ct. Then, from (4.2), it will be

x = 1-2c2 (1 +cosO') cos 0', y = 2c2 (1 +cosO') sin 0'. (5.3)

Therefore P E EAEE if and only if its coordinates, given in (5.3), satisfy (5.2). Namely, if
and only if

4 [2c2(1 +cos 0') cos 0' - ¥] 2 4c4 (1 +cos 0')2 sin2 ()'

25c4 + 27c" ::; 1

or, equivalently, if and only if

[4(1 + cos 0') cos 0' - 31' [(1 + cos 0') sin 0']'
25 + 27 ::;1. (5.4)
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However, (5.4) is a valid relationship as this was proven in Thm. 8.1 of [3). This completes
the proof of the present lemma. 0

Let now B (1 + ;,0) be the projection of F onto the real axis and C(l + c2 , 0) be
the other vertex of [AEE on the real axis. Using, among others, these two points and the
theory developed so far Oile can prove a number of statements which will eventually lead
to the determination of the best ellipse that captures the cardioid C1 , in the sense already
explained.

Lemma 2: Let D be any point on the "real" semiaxis with abscissa XD ~ 1 + c;. Then
there exists a unique ellipse with "real" axis AD that, besides at A, is tangent to the cardioid
Ct at another point P and captures Ct.
Proof: For this, consider the family of all ellipses with "real" semiaxis a = (A

2
D). Let b

denote the length of the "imaginary" semiaxis of any member of the family. Assume that
b increases continuously from a to 00. For b = 0, the member of the family in question is
a degenerate ellipse, namely the double line segment AD, that intersects CI at two points;
at A and at the point 0(1,0). For b -10 00 the members of the family tend to a limiting
ellipse that consists of the pair of the parallel to the y-axis straight lines that capture CI and
are tangent to CI at A only. Therefore for D 't B there will be a member of the family
corresponding to the largest possible b, let it be denoted by b, with bE (0,00) such that for
all bE (0, b] each member of the family in question has two points in common with CI . In
view of the continuous increase of b and of the fact that for bl < b2 the ellipse corresponding
to b1 lies entirely in the interior of the one corresponding to b2 , while their only common
points are A and D, it is concluded that the ellipse corresponding to b = b is unique. 0

Based on continuity arguments one can formally prove that b is a continuous function
of (A,D) or of the abscissa XD of the pOlnt D. Also, i~ can be proved that the coordinates
of the point of contact P are continuous functions of b and therefore of XD. Furthermore,
as D moves continuously from the point B to C and then away from C the above point of
contact P will move continuously along the cardioid from F to E and then from E to A,
respecti vely.

Lemma 3: Let PI(XI,YI) and P2(X2,Y2) be any two distinct points on the arc AEF of
the cardioid CI . If Xl < X2 and Pt 't A, £APt?} and £AP2P2 intersect each other (at A and)
at a point with abscissa strictly between Xl and X2.
Proof: From Lemma 2 it foHows that £APIPI and £AP2P2 capture the cardioid. So, PI is a
strictly interior point of £AP2P2 while P2 is a strictly interior point of £APIPj • Since CAP}P1

and £AP2 P2 cannot have more than two common points in the upper half plane, they will
have one more common point, besides A, satisfying the restrictions of the statement of the
lemma. 0

Examining now the possibility of the existence of an ellipse from the set F, capturing C]
and having with CI two points of contact, PI, P2, both different from A, we can prove the
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following statement.

Theorem 4: There exists no ellipse E:PtPtP2 P2 that captures C1 and has with it two
distinct points of contact PI and P2 both different from A.
Proof: Let P1(XIIYt) and P2(X2IY2) be such that Xl < X2. Together with EptPtP2P2 let us
consider CAPt ?\" The point A lies strictly in the interior of £'PtPt P2 P2" Since the two ellipses
are symmetric with respect to the real axis and touch each other at PI it is implied that the

~

arc API of CAPt?} lies in the interior of EpjPjP2P2" So do the points of the arc of [APt?! that
are beyond PI and are arbitrarily close to it. However, since P2 of C1 (and of EPIPtP2P2) lies
in the interior of GAPI?j it follows that [API?} and EPIPtP2P2 will intersect each other at a
point strictly between PI and P2. But then [APIP1 and CPIP1P2P2 will have three points (one
simple and one double) in common in the upper half plane which is not possible. 0

Lemma 5 : Let P be any point of the arc AE of the cardioid CI . The best 2-point

ellipse tAP captures the entire arc AP.
Proof: From the analysis of Manteuffel's algorithm (see [10], [11] or [9]), it is implied that
since the abscissas and the ordinates of the points A(XA, YA) and P(xp, yp) satisfy XA < Xp
and 0= YA < Yp, the center of the best 2-point ellipse tAP will be to the right of the point
C~"~XP,O). Since tAP and CAPP cannot have any other point in common, in the upper half

plane, except A and P, the arc AP of tAP will be outside CAPpo However, since EAP? is a
~ ~ ~

capturing ellipse for CI and especially for the arc AP of CI so will be EAP for AP of CI . 0

From the theory so far it has become clear that in order to determine the best ellipse in
the spirit of Manteuffel that captures Clone must examine all possible 2-point best ellipses
that capture C1 , if such ellipses exist. It is also clear that one of the two points in a 2
point best ellipse must always be the point A. On the other hand, the other point must
be a double one, let it be p., if such a point exists. In the statement below, we prove the
existence and uniqueness of such a point p" and therefore the existence (and uniqueness) of
the best 2-point ellipse that captures the cardioid CI .

Theorem 6: There exists a unique point p. E C1 such that the best 2-point ellipse tAP·

is the best 2-point ellipse that covers CI - For this ellipse there holds tAP. =EAP• P.'
~

Proof: In view of the proof of Lemma 5, for all the points P on the arc AE of the cardioid
CI the best 2-point ellipse tAP not only intersects EAPP at A and P, but also captures the

~ ~

whole arcs AP of CAPP and AP of CI . Since the best 2-point ellipse t AF does not capture
~

the infinite(!) arc AF of the limiting ellipse EAFF (that is the pair of lines parallel to the
imaginary axis and tangent to the cardioid at A and F) there must exist at least a point

~ ~

on the arc EF of the cardioid CI , let it be P", such that EAp• = EAP• P .' Let P" be the
~

closest to E point on EF of CI with this property. Let also that there exists another point
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~

p./ on the arc p.F of C1 with the same property. That is tAP·' = EAPo,p'" Then, for the
triad of points A, p. , p.' there would be two best 2-point ellipses tAP· and tAP.'. However,
this contradiets the uniqueness of the best 2-point ellipse capturing the triad of the points
in question. 0

Remark: The determination of p. on C1 can be done only computationally. For this we
~

look for the unique point P on the arc EF on the cardioid C1 for which the following will
hold true. The value of the asymptotic convergence factor PAP of the best 2-point ellipse
tAP is equal to the value of the asymptotic convergence factor PAPP of the (limiting) 3-paint
ellipse CAPPo In Figure 5 the best ellipse has been drawn for c = 0.45.

From the analysis so far , in the present Case 1, one can also determine the best ellipse
~

in case the arc of the cardioid and therefore that of cr(I - B 2
) is limited to AP, where P is

~ ~

any point in the interior of AEp·FO. Apparently, for any position of P on p"FO the best
~

ellipse capturing AP, and therefore cr(I - B 2), will be tAP.' As P moves on the cardioid
towards A, continuity arguments can show that the best 2-point ellipse for a(I - B 2 ) will be
~ ~

CAP. However, since at the point G on the arc AE of the cardioid C1 for which (GA) = (GO)
~

the best ellipse for a(I - B 2 ) is the 3-point ellipse CAGO, there will be a point p •• on GP"
~

such that tAP" = CAP"O while for any point P on Gp·· the best ellipse will be CAPO' As P
moves on from G towards A, and since for P == A the best ellipse for a(I - B 2

) is tAO, there
~ ~ ~

will be a point on AG, let it be p ••• , such that CAP'" =CAP···O. Obviously, for P Ep......G
~

the best ellipse will be CAPO while for P EAp·...• it will be t po .



14

Case II:
Since Manteuffel's algorithm, with real parameters, works if and only if a(I - B 2

) is
strictly to the right of the imjj,inary axis, it is concluded that the leftmost point of the
cardioid C2 , that is F (1- C;, ;2), must have a strictly positive abscissa. In other words,

it must be c < -./2. However 1 this restriction is weaker than the one considered in [2] (c < 1)
and given in (1.5). As a result, the MSOR method and its "equivalentll 2-step method, we
propose in this work, can handle more general classes of problems, of type (1.1), (1.2), (1.3)
and (1.5), than similar methods in the literature can.

The theory developed in the Case I, with C1 being the cardioid, holds more or less in
the present case of the cardioid C2 . Some "obvious" slight changes and modifications are
presented in the sequel.

Lemma 1 holds as it stands. The only difference is that the ellipse £AEE, although
it is a capturing one for C2 , lies strictly to the right of the imaginary axis if and only
if the abscissa of the other vertex of its "real" axis is strictly positive. Namely, when
2 (1 + 3;) - (1 + 4c2

) = 1- c2> aor c < 1. In other words we "recover" the restriction
considered in [2]. In our case c < 1 does not constitute a restriction. It simply suggests
that there may be a class of ellipses of the type £AP?, with P strictly to the right of E, for
c < 1, or even strictly to the right of F, for c < v'2, which do not entirely lie strictly to
the right of the imaginary axis. To determine the point P in question, let it be denoted by
P(x,ii), we find the equation of the ellipse that shares with the cardioid C2 the tangent at
P and require that this ellipse passes through the origin Z(O,O). To determine P(x, y) for a
given c < V2 we find the unique solution of a nonlinear system of three equations with three
unknowns. To prove the uniqueness of the solution, we follow a reasoning similar to that
used in Lemma 2. Specifically, we consider the family of all the ellipses with "real" axis ZA
and imaginary serniaxis b which increases continuously from 0 to 00. It is obvious that there
exists a unique value of b, let it be b, such that the corresponding ellipse and the cardioid C2

touch each other at a unique point P(x, y) in the upper half plane. To determine the point
of contact P we consider the ellipse in question whose equation is

(5.5)
d = a= 0.5 + 2c2

Since the coordinates of P satisfy both (4.8) and (5.5) we will have

[(1 - x)' + 11'1' + 4c'(1 - x)[(1 - x)' + 11'1 - 4c'11' = 0

and
(x _ 0.5 _ 2c')' 11'

(0.5 +2c')' + b' = 1.

(5.6)

(5.7)



On the other hand, the slopes of the curves (4.8) and (5.5) at P(x, jj) are given by

3c'(1 - x)' + c'y' + (1 - x)y' + (1 - x)'
[(1 - xl' + y' +2c'(I- x) - 2c'Jy

and
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(5.8)

(5.9)
(x - 0.5 - 2c')b'

(0.5 + 2c'l'y

respectively. Equating the expressions in (5.8) and (5,9) gives the third equatioD, namely

3c'(1 - x)' + c'y' + (1 - x)y' + (1 - X)3

(1- x)' +y' +2c'(I- x) -2c'
(x - 0.5 - 2c')b'

(0.5 + 2c')'
(5.10)

which together ,,:!th (5.6) and (5.7) constitute the system of the three equations with the
three unknowns b, X, y. This system has three real solutions. The one that corresponds
Lo ii > a is that we seek. We simply note that in considering ellipses CA(}P as potential
candidates for the best (limiting) 3-point ellipse capturing Cz all ellipses with P on the arc

AP of the cardioid must be discarded.
Lemma 2 holds the same except that the abscissa of D is now xn ::; 1 - ;
Lemma 3 is exactly the same with the obvious change of Xl < X2 to Xl > X2.

Theorem 4 and Lemma 5 are identically the same with those in the previous Case 1.
From our analysis it follows directly that Theorem 6, with some obvious slight changes

in its proof, together with its Remark, are still valid in the present case of the cardioid C2•

In Figure 6 the best ellipse has been drawn for c = 1.00.
We conclude this part of Case II by noting that everything that was said in the previous

~

Case I regarding the best capturing ellipse, when only part of the arc AEFO of the cardioid
C2 constitutes the curved boundary for u(I - B 2

) in the upper half plane, is valid.
One more point before we close this section. In case c 2: V2 our problem does possess a

solution, in terms of the Manteuffel's algorithm if and only if 0'(1 - B 2 ) lies in a part of the
cardioid, which in turn, lies strictly to the right of the imaginary axis. In this case the arc of

the cardioid C2 to be considered is AP (the point P is excluded), where j5 is the intersection
~

of AEF with the positive imaginary semiaxis. From (4..8) it can be obtained that

if = [(2c' - 2c' -1) + 2c3 (c' _ 2)'/'J'/'.

6 Discussion and Numerical Examples

(5.11 )

First we try to compare theoretically the MSOR method, or rather the 2-step method (2.6),
and the optimal results obtained in this work to those in the works by de Pillis [3], Chin and
Manleuffel [2J (see also [6]) and Eiermann, Nielhammer and Varga [4].
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The two-step parallel stationary process (1.3) of [3] consists of two steps executed in
parallel; the first one of them requires two matrix-vector multiplications as ours but the
matrices and vectors involved are of full size n. So, the amount of work per iteration of the
scheme in [3J is much more than that in our (2.6) method. Moreover, the convergence results
obtained in [3] are based on the ellipse EAEE which, as was seen, is not the optimal one and
the parallel method, as analyzed there, has the disadvantage that does not always converge.
In our opinion the parallel method in question can be greatly improved if the presence of all
four real parameters (two complex ones) in (4.2) of [3] is fully exploited.

The SOR method in [2] can be written equivalently in the form of the 2-step method (2.6),
with w~ = w~ = w' (see also [4] and [14]). However, since it involves only one parameter,
instead of two, it cannot be better than ours. Besides, although it covers both basic Cases I
and II as well as their subcases, in the basic Case II it can only work for values of c < 1 (or
IRe zl < 1), in (1.5), compared to the larger set of values of c < .j2 (or IRe zl < .j2 ) for
which our method can work.

For the basic Case I, the 2-step stationary method (4.5) of [4], as was mentioned there,
is marginally faster than the SOR method of [2]. It is worth pointing out that despite
its disadvantages the method of [3] for values of c away from those for which it diverges
it is faster that the previous two ones. The method we developed in this work is as was
theoretically proved the fastest of them all. For the basic Case II our method is faster than
the only other available one [2] and converges also for values of c E [1, V2) for which the
method of [2] diverges.

Finally, it should be mentioned that with the exception of the analysis in [2], (see also
[6]), the analyses in [3J and [4J cover only the basic Case I or spectra of type (1.4).

To conclude this work, we present some numerical examples in two Tables that show the
superiority of our method over those in [3), [2] and [4]. Table 1 is an extension of Table 1 of
[4]. The entries in columns labeled (2] and [4J are the squares of the corresponding ones in
[4] as they should have been given there. Table 2 presents numerical examples of the only
(two) available best stationary methods. The one proposed in [2] and ours.

Before we close this section we would like to note that for nonstationary methods, one
should adopt and follow the analysis presented in [12].

Tahle 1
Asymptotic Convergence Factor

c [31 [2J [41 present method
0.2 0.10850 0.11696 0.11049 0.10794
0.4 0.53965 0.55520 0.53995 0.53340
0.45 0.74938 0.75020 0.73872 0.73362
0.495 No convergence 0.97208 0.97043 0.96967
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Table 2
Asymptotic Convergence Factor

c [2] present method
0.2 0.10533 0.09524
0.4 0.36411 0.32185
0.6 0.65746 0.56868
0.8 0.88836 0.76504
1.0 No convergence 0.89489
1.2 » 0.96870
1.4 » 0.99957
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