
HAL Id: hal-01159118
https://hal.inria.fr/hal-01159118

Submitted on 2 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Embedding Adaptivity in Software Systems using the
ECSELR framework

Kwaku Yeboah-Antwi, Benoit Baudry

To cite this version:
Kwaku Yeboah-Antwi, Benoit Baudry. Embedding Adaptivity in Software Systems using the ECSELR
framework. GECCO’15, Jul 2015, Madrid, Spain. �hal-01159118�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49518088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01159118
https://hal.archives-ouvertes.fr


Embedding Adaptivity in Software Systems using the
ECSELR framework ∗

Kwaku Yeboah-Antwi
INRIA

Rennes, France
kwaku.yeboah-antwi@inria.fr

Benoit Baudry
INRIA

Rennes, France
benoit.baudry@inria.fr

ABSTRACT
ECSELR is an ecologically-inspired approach to software
evolution that enables environmentally driven evolution at
runtime in extant software systems without relying on any
offline components or management. ECSELR embeds adap-
tation and evolution inside the target software system en-
abling the system to transform itself via darwinian evolu-
tionary mechanisms and adapt in a self contained manner.
This allows the software system to benefit autonomously
from the useful emergent byproducts of evolution like adap-
tivity and bio-diversity, avoiding the problems involved in
engineering and maintaining such properties. ECSELR en-
ables software systems to address changing environments
at runtime, ensuring benefits like mitigation of attacks and
memory-optimization among others while avoiding time con-
suming and costly maintenance and downtime. ECSELR
differs from existing work in that, 1) adaptation is embed-
ded in the target system, 2) evolution and adaptation hap-
pens online(i.e. in-situ at runtime) and 3) ECSELR is able
to embed adaptation inside systems that have already been
started and are in the midst of execution. We demonstrate
the use of ECSELR and present results on using the EC-
SELR framework to slim a software system.

Categories and Subject Descriptors
D.2 [Software Engineering]: Management—Life cycle,
Software configuration management ; D.2 [Software En-
gineering]: Search-based Software Engineering—software
evolution

General Terms
Theory, Software Engineering, Self-Adaptive Systems, Ge-
netic Improvement

Keywords
∗This work is supported by the EU FP7-ICT-2011-9 No.
600654 DIVERSIFY project

Software Evolution, Diversification, Software Slimming, Search
Based Software Engineering, Genetic Improvement, Self Adap-
tive Software Engineering

1. INTRODUCTION
The field of software engineering has been straining to deal
with the exponential growth of software systems. As com-
puter systems get more and more complex, maintaining them
requires a huge amount of human effort. Software Engineer-
ing may soon hit a complexity wall where our efforts will not
be able to scale up to highly complex software systems [2, 6,
14]. This has led to a rise in the amount of research being
done in automating software design and maintenance, with
software engineers increasingly seeking to design software
systems that autonomously evolve and adapt. Designing
such self-optimizing adaptive systems has been described as
one of the great challenges of the software engineering field
[4]. The holy grail sought at the end of this challenge by
software engineers would be a system that is self-contained
and is be able to self-modify, evolving itself autonomously at
runtime with minimal or no human input thereby allowing
it to self-optimize and self-adapt to its environment. One of
the most promising approaches to this challenge has been fo-
cused around the agenda of Dynamic Adaptive Search Based
Software Engineering (DASBSE). Research in DASBSE fo-
cuses on embedding adaptivity inside software systems to
allow self-contained evolution and adaptation in these soft-
ware systems. This is referred to as dynamic adaptivity [4,
10]. Implementation of dynamic adaptivity in a software
system will result in the system being able to autonomously
evolve and adapt in-vivo and in-situ,(ie. in place and online
at runtime) without relying on external aid from the pro-
grammer [5]. The mechanisms for evolution and adaptation
would be in essence, self-contained inside the application.
Such systems would be able to autonomously perform ac-
tions like mitigation of virii attacks and resource optimiza-
tion among others while avoiding time-consuming and costly
maintenance and downtime and also reducing the manpower
needed to supervise such activities as compared to current
systems.

Currently, one of the main focuses of DASBSE has been Ge-
netic Improvement(GI). Under Genetic Improvement(GI),
heuristic search based evolutionary algorithms/systems are
applied to extant software programs directly transforming
them [4]. The instructions making up the software sys-
tems are treated as the donor genetic material to be evolved
thereby genetically improving the software system. Research



into different GI methodologies is currently very young with
most work in the field currently falling short of full embed-
ded adaptivity. Current research in DASBSE in general falls
short of the fully conquering ”dynamic adaptivity”. Most
approaches so far still rely on offline adaptation and offline
evolution components and steps. Adaptation is not fully
embedded inside the software system; it happens outside
the software system being evolved. Adaptation also usually
tackles either the non-functional or the functional properties
of the system and but rarely both. There exists a need for
new solutions.

We present ECSELR, a new ecologically-inspired dynamic
software evolution framework model that aims to help bridge
the gap in methodologies that enable true dynamic adap-
tivity. ECSELR is a java based platform that allows extant
software systems to evolve themselves by autonomously self-
modifying their code at runtime. It transforms and evolves
the target software system in-vivo and in-situ via darwinian
evolutionary mechanisms. ECSELR takes as input, the sys-
tem process of the running program and inserts itself into
the process, imbuing the software system with the ability to
monitor its actions and its environment during the program
lifecycle. Based on these observations, the system stochas-
tically effects actions on its basic computational units(i.e.
jvm bytecode), transforming the structure and function of
the software system and thereby evolving it and enabling
it to dynamically self-adapt to its environment. The envi-
ronment of a software system is defined as the state of the
software system and the interactions between the compo-
nents of the software system. Evolution and self-adaptation
is embedded in the system, with everything happening on-
line (in-vivo and in-situ) without any external dependencies
and/or any human input. This makes the whole adaptation
process self-contained and fully dynamic/autonomous. A
software system running the ECSELR framework is able to
evolve and adapt online autonomously without any pauses
or breaks in system execution, thereby maintaining expected
system availability through the software system’s lifecycle.
ECSELR can also be easily coupled with other frameworks
to endow it with more capabilities among others.

We demonstrate the ease of use of the ECSELR platform
by using it to reduce the resource footprint of an existing
software system. We show that no domain knowledge is
needed to operate ECSELR and and that, it can be used by
both software programmers and software end users.

We believe that ECSELR is a major novel contribution to
the DASBSE and GI communities and that it provides an-
other avenue for future research into the uses of dynamic
adaptivity.

The paper is structured as follows. In Section 2 we present
ECSELR, describing its components and its mode of util-
ity. In Section 2.1, we present one(1) use scenario for EC-
SELR. In Section 3, we describe our experiment in utilizing
ECSELR to evolve a software system to optimize process
resources and change its attack surface, demonstrating the
use of ECSELR and presenting and discussing the results. In
Section 4, we present previous work and distinguish between
ECSELR and the methodologies and frameworks from these
previous work.

In Section 5, we reiterate our contribution and expand on
possible avenues of future work.

2. ECSELR
To implement dynamic adaptivity in a target complex soft-
ware system, the software system is first given the ability to
monitor and observe itself, its actions and environment at
runtime. This allows the system to be self aware [8] about
its functioning and its environment and the effects of the
environment on itself. Subsequently, the system is given
the mechanism to self-effect stochastic transformations. The
software system applies the transformation to itself based on
its relationship to its environment and also its understand-
ing of its own state, garnered from the ability to monitor
itself and the environment. Just like in natural evolution,
these transformatory changes are based on environmental
pressure and the stochasticity of the environment.

The ECSELR framework provides all the necessary compo-
nents needed for this to happen. The framework is com-
prised of four main components; an evolution driver called
EvoAgent, an evolution utility called EvoDaemon, transfor-
mation utilities called Evolution Operators and transforma-
tion guides called Evolution Strategies.

Given a running target software system, EvoAgent attaches
itself to the process, living in the same native OS memory
address space as the process. The attachment can be done
natively through OS level hooks or via java language mech-
anisms. EvoAgent is comprised of a series of native system
functions and data structures that enable it to monitor and
keep track of the state of the software system and its envi-
ronment at any point in time. Upon attachment, EvoAgent
probes and sets up its set of functions to profile the ba-
sic computational blocks of the software system and record
relevant information about the blocks. These blocks refer
to the lowest level of instructions that comprise the system
(i.e. a set of bytecode instructions in the JVM). This gives
the ECSELR platform the ability to monitor and observe
the system and its actions and interactions with its environ-
ments. ECSELR observes when blocks are called/executed,
what inputs the blocks are given and what they act on and
when they complete execution/exit. Since blocks correspond
to methods and fields in the JVM, ECSELR is thusly able
to observe the execution flow of the software system. EC-
SELR partitions the software system execution lifecycle into
discrete time periods called epochs. Each epoch represents
a generation in an evolutionary timeline. At the end of
each epoch, EvoAgent appraises itself of the state changes
in the lifecycle of the software system and its environment
and then invokes EvoDaemon to evolve the system based on
the changes.

EvoDaemon contains an engine for rewriting java bytecode
according to a set of given instructions/strategies. EvoDae-
mon evolves the software system according to a set of evo-
lutionary strategies that are supplied by EvoAgent.

The evolutionary strategies are stochastic conditions that
are created based on the history of observed system interac-
tion. They decide which parts of the system are transformed
and how they’re transformed. An evolutionary strategy
probabilistically selects which parts of the software system



it wants to evolve and an evolutionary operator is then used
to effect this evolution. An example evolutionary strategy
is one which probabilistically decides a method to remove
based on observed frequency of method usage.

The evolutionary operators are defined as the set of generic
transformatory mechanisms that modify the software blocks,
transforming them from one state to another and in essence
evolving the system over the course of the program lifecycle.
They are analogous to the evolutionary mechanisms/operators
that act on the genome of biological organisms and drive/effect
evolution. They are distinguished by their effect on the sys-
tem blocks and structure of the system as a whole. The
operators are grouped into four basic types:

Amorphic Operators which act by removing blocks from
the system.

Geomorphic Operators which act by combining blocks
in numerous ways.

Translocation Operators which change the structure and
execution flow of the program by moving blocks around.

Hypomorphic Operators which change the availability
of blocks, suppressing and inciting different function-
alities of the system.

Listed below is the set of evolutionary operators that are
currently implemented in ECSELR.

1. Merge Operator: Selects two software blocks/methods
A and B, and naively appends block B to block A and
subsequently replaces the original block A with this
new version of Block A. Block B is then deleted from
the software system.

2. Deletion Operator: Selects a method, and deletes the
byte code of the method from the software system,
thereby removing the method from the system.

3. Inversion Operator: Selects two locations correspond-
ing to two different software blocks (eg. blocks in a
method) and inverts their positions, placing the first
block in the second’s position and the second in the
first’s position. This changes the execution flow of the
software system.

4. Duplication Operator: Selects a software block and a
location. It duplicates the software block and inserts
the generated copy of block at the specified location.

5. Loop Perforation Operator: Selects a block of code
that runs in a loop and perforates the loop, reducing
the number of times the block is iterated.

6. PassThrough Operator: This operator returns an un-
modified clone of a given block.

Platforms that enhance software systems by providing a
measure of adaptability can be described and taxonomized
according to 4 facets/properties. These properties charac-
terize the level of adaptivity and evolvability in the enhanced

software systems, mapping adaptation to evolution and de-
scribing the degree to which adaptation is implemented,
governed and reasoned about via evolution. These prop-
erties are based on similar properties widely used by the
self-adaptive systems community [11] . The properties are
presented as follows, emphasizing how specifically they can
be used to describe self-adaptation:

• Temporality: Describes the temporal property of the
adaptivity, specifying when the adaptation changes are ap-
plied. The temporality of self-adaptivity is either Online(i.e.
the changes happen at runtime) or Offline(i.e. changes hap-
pens before runtime).
The ECSELR platform has an online temporality. Evolu-
tion and adaptation happens online at runtime.

• Locality: Describes the locality of software evolution and
adaptation, showing where in the system evolution happens
to lead to adaptation. The options encompass localities like
source code, binary or an AST/model of the system.
The ECSELR platform acts directly upon the binary. It
modifies and transforms the execution instructions in the
binary.

• Artifacity: Describes the scope of evolution, showing
what about/in the system is being evolved and benefitting
from adaptation. (i.e. Functional Properties vs Non-Functional
Properties).
ECSELR is able to evolve and adapt both functional and
non-functional properties of the target system. It is able
to change system functionality in addition to changing the
non-functional aspects of system design.

• Dynamicity: Describes how dynamic evolution is; show-
ing how automated evolution is. It quantifies the degree of
human intervention in evolution. A system with full dy-
namicity evolves and adapts with no human input while a
system with no dynamicity has its evolution and adaptation
managed by a human programmer(ie. the hand of god).
ECSELR is able to autonomously evolve and adapt the tar-
get application with minimal human intervention needed or
required. All though the framework supports input from the
human programmer, its does not require this and is able to
function without any help. ECSELR can be said to there-
fore have full dynamicity.

2.1 ECSELR Use Case
The ECSELR platform can be used to achieve tackle many
problems that benefit from dynamic adaptivity. In this sec-
tion, we present one(1) such use case.

2.1.1 Software Slimming
Software Slimming refers to the removal of unused and/or
underutilized parts of software systems at runtime for vari-
ous purposes.

A software library is always built to serve a large number
of use cases and therefore contains a wide range of compo-



nents for each of these various use cases. The engineers of
the library can rarely fully anticipate in which combinations
the different components will be used and therefore ship the
library with its full complement of components. Since the
rate of utilization of any of the components depend on the
application that is built on top of it, each software engineer
is responsible for narrowing down the sets of components
that are necessary for their application and discarding the
rest. Most software engineers usually just bundle the whole
library with their application. For any given application,
a number of these components from the library will never
be used at runtime and some of these components can be
detected statically. However, it is not always possible or
efficient to detect before runtime, all components that will
never be used due to a number of reasons that include sys-
tem structure(the language its written in and its form), un-
certainty about the projected use profile, lack of access to
the source of the system, lack of familiarity with the sys-
tem, lack of time, among others. This results in software
systems that are distributed with superfluous components
of libraries that are rarely or never used. These components
take up space, use up resources and also represent unknown
possible attack vectors.

Since ECSELR is able to observe the interactions of the com-
ponents in the software system, it is able to identify unused
and superfluous packages and instructions and remove them,
thereby reducing the space and memory resources needed
for the application and also removing possible attack entry
points in the software system. These software systems are
subsequently considered to be slimmed based on the system
use profile. ECSELR is also able to slim software services
according to other different criteria such as power consump-
tion, etc.

Another target example of software slimming is a software
system that is going to be used in a low-resource environ-
ment where the system engineer has no pre-conceived knowl-
edge about which part of the library is going to be more
utilized. When the software system is loaded and is be-
ing executed with the ECSELR framework embedded in it,
ECSELR is able to remove unused components reducing the
system’s resource usage and optimizing the software system.

Other concrete examples of targets for software slimming
can be found in the literature here in [9] and in [7].

3. EXPERIMENTS
In order to test how capable ECSELR is at Software Slim-
ming, we designed a test platform, jEvoTester, to simu-
late a large java software system, and run ECSELR on the
jEvoTester platform. We subsequently present this platform
in the next section.

3.1 Experimental Platform
jEvoTester was designed to micmic and reproduce the in-
terdependent relations and interactions present in software
systems. It simulates a software system platform that offers
services to a set of applications. It can also be considered
as a large library or framework that offers a wide range of
services to applications that need it.

Table 1: Evolutionary Operators in jEvoTester
Operator Name Function

Merge Methods Operator Merges two given methods
Method Deletion Operator Deletes a method.
Passthrough Operator Return an unmodified

clone of the object

jEvoTester is composed of 360 classes each offering 1000
methods. jEvoTester provides these methods and classes
as services to applications.

To simulate the interactions between applications and the
software system/library and also in between the components
of the system, we sampled the WorldCup ’98 website re-
quests dataset 1 [1]. This dataset captures the interactions
between users of the WorldCup ’98 web site. We equate
the visits by users in the dataset to interactions between
the classes and methods and the apps that request them,
with each visit being comprised of requests to objects that
in turn depend on other objects. Each user’s visit in the
dataset consists of a request for a combination of multiple
objects. Each unique user is equated to an application and
the objects requested are equated to methods.

An application therefore requests a combination of methods
that it requires, with the methods considered to be interde-
pendent on each other since they all need to be available for
the request to succeed. If a method is unavailable, the ap-
plication’s request fails. The applications were implemented
in jEvoTester as agents in a multi-agent system, each with
a non-static collection of methods required over the course
of its lifetime. All application requests are performed asyn-
chronously and independently of other applications.

During each run of jEvoTester, ECSELR is inserted into
jEvoTester in order to evolve and adapt it. jEvoTester is
unaware of the applications and also works asynchronously
and independent of system functioning(i.e. ECSELR does
not pause or half any system instructions whilst evolving the
system).

Table 1 lists the subset of operators used by ECSELR.

3.2 Results
We chose to utilise the jEvoTester platform to test EC-
SELR on the Software Slimming use case detailed in Sec-
tion 2.1.1. We tested whether ECSELR would be able to
slim jEvoTester during system execution. Our test harness
was run 200 times with the same interaction data in order
to verify the significance of our results.

For each test, the jEvoTester platform was executed. Dur-
ing the course of execution, the ECSELR platform was in-
serted into jEvoTester. Each application recorded the re-
sponse from jEvoTester to its requests, noting if jEvoTester
was able to provide a method being requested or not. In
jEvoTester, when a deleted method is called, a runtime ex-
ception is generated which is caught and returns a negative

1WorldCup ’98 dataset can be found here:
http://ita.ee.lbl.gov/html/contrib/WorldCup.html



Table 2: jEvoTester Data
Description Value

Classes 360
methods per class 1000
Total Methods 360000
Unique Applications 27500
Methods Called 4907
Number of method calls 1522111
Total method combina-
tions called

68084

Uncalled Methods 355093
Percentage of methods
never called

98%

Average Number of Meth-
ods slimmed

140206

Percentage of uncalled
methods slimmed

39.5%

Percentage of total meth-
ods slimmed

38.9%

Methods called after re-
moval

57

Percentage of methods re-
moved that were called af-
ter removal

0.04%

Number of experiments 200

answer to the application. In order to test how well EC-
SELR performs at software slimming, the jEvoTester plat-
form was designed to have a whole complement of methods,
some of which are utilised by applications and some of which
aren’t. The goal of the experiment was to test if ECSELR
would be able to remove a percentage of the unused methods
while ignoring methods that were being utilised. The rate
of usage of the methods were not static with some methods
used more frequently than others during different points in
jEvoTester’s lifetime.

For each test, there were 27,500 applications calling 4,907
methods. These methods were called a total of 1,522,111
times. The applications called these methods in 68,084 dif-
ferent configurations. The most popular method combina-
tion was called 15,517 times. It was called by 10,071 unique
applications.

355,093 out of 360,000 methods were never called during the
duration of our experiments. ECSELR was able to remove
an average of 140,206 methods during the course of each
run. On average, 57 of these methods were requested by
applications after their removal resulting in errors.

Our results are aggregated in Table 2.

3.3 Discussion
We used our results to answer three key questions which are
elucidated below.

• RQ1: Can ECSELR slim jEvoTester during its life-
cycle?

Our results confirmed that, yes, ECSELR is able to success-
fully slim jEvoTester.

ECSELR was able to remove an average of 140206 methods
in the jEvoTester software system during the runs.

• RQ2: How successful is ECSELR at slimming a
software system?
Our result show that ECSELR was able to remove approx-
imately 39% of all unused methods. This shrunk the appli-
cation reducing its footprint (ie. amount of memory needed
by the JVM to store the application byte code, class data,
etc).

• RQ3: Does software slimming through ECSELR
negatively affect the availability and usage of the soft-
ware system?
Analysis of our data showed that, during each run, approxi-
mately 57 methods that were required by applications were
slimmed and thus made unavailable to the applications re-
quiring them. A maximum of 4 applications were affected
by this problem. This represents an application request fail-
ure rate of 0.01% due to ECSELR.

Our results show and confirm that, ECSELR is able to au-
tonomously slim software systems with slimming controlled
and mediated by the state of the software system during its
lifecycle.

4. PREVIOUS WORK
Schulte, Forrest and Weimer in [13] and with DiLorenzo in
[12] presented a method of evolving assembly code and bi-
nary code to effect automatic software repair. Their method
evolved an AST of the extant program, converting that AST
back to a binary executable. Goues, Nguyen, Forrest and
Weimer in [3] presented GenProg, a platform for evolving C
source code to automatically fix bugs.

Unlike ECSELR, these approaches do not embed evolution
and adaption in the software systems being evolved. There-
fore evolution and adaptation doesn’t happen online. Also,
unlike ECSELR, these approaches are unable to evolve a
software system that already running.

Harman et al in [5] presented an outline of an approach
called Online Genetic Improvement(OGI), a methodology
in which an existing program is improved online by modify-
ing its existing code using evolutionary search mechanisms.
Their approach consists of an online and offline phase where
program execution is monitored online, this data is sent to
an offline component to learn from and expose implicit pa-
rameters that are sensitive to operational properties of inter-
est. These parameters are optimised and then deployed on-
line. Swan et al in [15], presented Gen-O-Fix, a framework
which consists of an agent that resides outside the binary
and proxies the instructions to the binaries serving as the
evolution agent. These two approaches differ from ECSELR
in that, adaptivity isn’t not embedded inside the applica-
tion. OGI also relies on an offline phase unlike ECSELR.
Although these frameworks are able to evolve running soft-



ware systems, they require the target software system to be
started with the framework. ECSELR on the other hand
is able to target software systems that have already started
execution.

5. CONCLUSION
In this paper, we presented the ECSELR platform, platform
for achieving dynamic adaptivity, i.e.. embedding adaptiv-
ity in a software system. We presented Software Slimming
as a use case for such a system and showed that, ECSELR is
able to perform admirably well in this use case. ECSELR is
demonstrated to be able to evolve and adapt already execut-
ing extant software systems with no human input. ECSELR
shows that it is infact possible to embed adaptivity in soft-
ware systems.

Although we describe the ECSELR framework in this paper,
we chose not to fully expand on all aspects of the frameworks
design. We aim to present a more detailed exposition and
study about the design decisions behind ECSELR in a sub-
sequent paper.

We hope that, with this paper, ECSELR will be seen as a
platform for more experiments and research into dynamic
adaptivity.

6. ACKNOWLEDGMENTS
The authors of this paper would like to note that, work done
for this paper is supported by the EU FP7-ICT-2011-9 No.
600654 DIVERSIFY project. More details can be found at
http://diversify-project.eu/

7. REFERENCES
[1] M. Arlitt and T. Jin. Workload characterization of the

1998 world cup web site. Technical report, IEEE
Network, 1999.

[2] P. Feiler, K. Sullivan, K. Wallnau, R. Gabriel,
J. Goodenough, R. Linger, T. Longstaff, R. Kazman,
M. Klein, L. Northrop, and D. Schmidt.
Ultra-Large-Scale Systems: The Software Challenge of
the Future. Software Engineering Institute, Carnegie
Mellon University, June 2006.

[3] C. L. Goues, T. Nguyen, S. Forrest, S. Member, and
W. Weimer. Genprog: A generic method for
automatic software repair.

[4] M. Harman, E. Burke, J. Clark, and X. Yao. Dynamic
adaptive search based software engineering. In
Proceedings of the ACM-IEEE International
Symposium on Empirical Software Engineering and
Measurement, ESEM ’12, pages 1–8, New York, NY,
USA, 2012. ACM.

[5] M. Harman, Y. Jia, W. B. Langdon, J. Petke, I. H.
Moghadam, S. Yoo, and F. Wu. Genetic improvement
for adaptive software engineering (keynote). In
Proceedings of the 9th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems, SEAMS 2014, pages 1–4, New York, NY,
USA, 2014. ACM.

[6] S. Herold, H. Klus, D. Niebuhr, and A. Rausch.
Engineering of it ecosystems: Design of
ultra-large-scale software-intensive systems. In
Proceedings of the 2Nd International Workshop on

Ultra-large-scale Software-intensive Systems, ULSSIS
’08, pages 49–52, New York, NY, USA, 2008. ACM.

[7] W. B. Langdon and M. Harman. Optimising existing
software with genetic programming. IEEE
Transactions on Evolutionary Computation. Accepted.

[8] M. Mowbray and A. Bronstein. What kind of
self-aware systems does the grid need? HP
Laboratories, 2005.

[9] J. Petke, M. Harman, W. B. Langdon, and
W. Weimer. Using genetic improvement and code
transplants to specialise a C++ program to a problem
class. In M. Nicolau, K. Krawiec, M. I. Heywood,
M. Castelli, P. Garcia-Sanchez, J. J. Merelo, V. M.
Rivas Santos, and K. Sim, editors, 17th European
Conference on Genetic Programming, volume 8599 of
LNCS, pages 137–149, Granada, Spain, 23-25 Apr.
2014. Springer.

[10] C. Raibulet and L. Masciadri. Evaluation of dynamic
adaptivity through metrics: an achievable target? In
Software Architecture, 2009 & European Conference
on Software Architecture. WICSA/ECSA 2009. Joint
Working IEEE/IFIP Conference on, pages 341–344.
IEEE, 2009.

[11] M. Salehie and L. Tahvildari. Self-adaptive software:
Landscape and research challenges. ACM Trans.
Auton. Adapt. Syst., 4(2):14:1–14:42, May 2009.

[12] E. Schulte, J. DiLorenzo, W. Weimer, and S. Forrest.
Automated repair of binary and assembly programs
for cooperating embedded devices. In Proceedings of
the Eighteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, pages 317–328, New
York, NY, USA, 2013. ACM.

[13] E. Schulte, S. Forrest, and W. Weimer. Automated
program repair through the evolution of assembly
code. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ASE
’10, pages 313–316, New York, NY, USA, 2010. ACM.

[14] M. Sipper. Ubiquity symposium: Evolutionary
computation and the processes of life: Darwinian
software engineering: The short term, the middle
ground, and the long haul. Ubiquity,
2012(December):2:1–2:6, Dec. 2012.

[15] J. Swan, M. Epitropakis, and J. R. Woodward.
Gen-o-fix: An embeddable framework for dynamic
adaptive genetic improvement programming. Technical
report, Technical Report January, Department of
Computing Science and Mathematics, University of
Stirling, Stirling, UK, 2014.


