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A Geometric Approach to Molecular Docking and Similarity

Abstract

We present efficient algorithms coupled to geometric data structures for computation of
protein-ligand binding sites (docking) and geometric structure similarity checks for large biopoly­
mers and siloxane based liquid crystals. Our teclmiques are novel and based on combinatorial
geometry computations of regular triangulations, a-shapes and embedded sub-graph isomor­
phism (matching). While there's a lot more than geometry to the solution of molecular docking
and similarity computation problems the approach presented in this paper can be used as the
geometric kernel of a more complex methodology including biochemical and energetic consider­
ations.

1 Introduction

Structure based drug design has come to the fore with advances in molecular structural determi­

nation and molecular docking strategies[10, 17]' Our goal here is to present efficient algorithms

coupled to geometric data structures for computation of protein"ligand binding sites (docking) and

structural similarity checks for large biopolymers and siloxane based liquid crystals. Our techniques

are novel and based on combinatorial geometry computations of regular triangulations, a-shapes

and embedded sub-graph isomorphism (matching).

Various substructure search and energy analysis approaches have been used in the past to

compute binding sites of a protein (see for e.g. (11,12,15,14,16]). An example docking program

is DOCK [4J which is used to search a database of commercially available compounds that are

complementary to the shape of the active sites of computer models of enzymes. Comparative

molecular field analysis (CoMFA) [2] compiles the interaction energy of a probe atom placed on a

regular lattice surrounding the ligand. Statistical analysis is then used to correlate these compiled

energies with the biological potency. A program such as ALADDIN [5J is used to identify ligands

for specific binding sites by matching to three-dimensional substructures of compounds having

specific geometric and steric criteria. Comparative and homological modeling at times permit the

construction of protein structure from knowledge of its sequence, and both structure and sequence

of other members of its homological family [13J.

In section 2 we introduce regular triangulations and a-shapes which we use to impose geometric

structure on both proteins and known compounds. An a-shape is a polytope associated with a set
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of balls. It coincides with the support space of a particular subcomplex of the regular triangulation

of the set of balls, regarded as weighted points. The regular triangulation of a set of n weighted

points in IR3 can be computed in O(n2 Iogn) time. The postprocessing required to compute the

(finite) family of all possible a-shapes takes time proportional to the number of simplices in the

triangulation ( O(n2 ) in the worst case). An a-shape can be viewed as a way of representing the

geometric structure on the set of balls. We will show in section 4 how this structure can be used

to search for a "good" match.

In section 3 we present an efficient solution to a three dimensional geometric pattern match

operation. The geometric pattern match operation is based on the solution of the following sub­

problem - "Given a labelled embedded graph G = (V,E,a) and a labelled pattern P = (C,Ip),

find all edges in E ofG that are consistent with (C,Ip)". This problem is related to the subgraph

isomorphism problem, but much easier because of the given embeddings of the graph and the

pattern. In our solntion to this problem the total number of label comparisons required for any n

vertex embedded graph G is no more than 4n, independent of the size of the pattern.

In section 4 we present our algorithms for molecular docking and geometric similarity using the

computations of three dimensional a-shapes and the three dimensional geometric pattern match

operations of the prior sections. Finally, in section 5 we present details of our implementation of

all the above algorithms in our X-ll window based, distributed (client-server) molecular modelling

and visualization toolkit called RASAYAN.

The approach of this paper is purely geometric. Of course there's a lot more than geometry to

the solution of these problems. However, we think that the approach presented in this paper can

be useful in two ways. On one side, it can be thought of as a preprocessing step, in which the space

of possible solutions is restricted to a number of localized regions of the space, in which docking is

possible or most likely to occur. On the other side it could be used as the geometric kernel of a

more complex methodology including chemical and energetic considerations.

2 Molecular Geometric Structure

The concept of shape has no formally defined geometric meaning. a-Shapes are a generalization

of the convex hull of a point set, that permits to associate a shape to a finite point set in the d­

dimensional Euclidean space. a-Shapes have been introduced by [8], generalized to three-dimensions
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by [9] and then extended to weighted point sets in the d-dirnensional space by [6]. One can intuitively

think of the a-shape of a point set S c md as of a polytope obtained in the following way: consider

all the k-simplices (0 :::; k ~ d) belonging to the Delaunay triangulation of S. Now think of a sphere,

of radius a, which can be everywhere in space except at positions such that it contains points of S.

Suppose this sphere "erases" all simplices it can pass through. Then all simplices remaining form

the a-shape for that value of a.

Weighted a-shapes are the extension of a-shapes to a weighted point set S. A point with an

associated weight w can be thought of as a ball of radius ..;w (when w ~ 0). The weighted a-shape

of S is a polytope, obtained in a way similar to the non-weighted case, whose shape depends on

the parameter a as well as on the weights associated to the points of S. The presence of weights

permits to control the level of detail one wants to achieve in different regions of space, as well as

to model the different influence of points on the shape. When all the weights are zero then the

weighted a-shape coincides with the unweighted a-shape.

Various papers related with a-shapes have recently appeared. Among these see [71, where

efficient algorithms for computing topological, combinatorial and metric properties of the union

of a finite set of balls are given, and [3], where a method for computing the betti numbers of the

homology groups of a simplicial complex is described.

We summarize the definitions of concepts that will be used in the following. A detailed expla­

nation of these concepts are found in [6].

Weighted point p = (pi, p") is the pair formed by a location pi E JRd and a weight p" E JR..

In the following we will sometime simply write point instead of weighted point. When the

weight is positive, we can think of a weighted point p as of a ball centered in pi and of radius

H. In such a case we will use the words weighled point or ball interchangeably. We will

use the notation T ' to denote the set of unweighted points obtained dropping the weights

from T = {pi}' In the following we will assume points of S being in general position. By

this we mean that any k + 1 :::; d + 1 points of S' are affinely independent, that for every

subset of d + 1 points of S there exists a unique x = (x', x") that is orthogonal to all points

of this subset, and that XII '# a. Suitable perturbation schemes can be used to remove these

degenerate cases.

Weighted distance 1i"(p,q) = [p'q'1 2 - pl/ - ql/, where Ixy] is the Euclidean distance.
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Orthogonal points are two points p and q such that 1r(p, q) = O. or, equivalently, two balls p and

q that intersect at a right angle.

k-Simplex is the set b.T = conv(T1
) where T' is a set of k + 1 affinely independent points.

Orthogonal center YT of ad-simplex b.T is the unique weighted point that is orthogonal to all

pET. Notice that when all the weights are zero this corresponds to the circumscribing ball.

We will extend tills definition to k-simplices, for k < d: in this case the orthogonal center

of 6.T is the point of minimum weight orthogonal to all PET. Size aT of a simplex b.T is

the weight Y~ of YT. For any U C T (b.u is a proper face of b.T), au < aT (monotonicity

property).

Conflict . A point q E S - T is a conflict for YT if 1r(q, YT) < O. YT is said conflict-free if it has no

conflicts, i.e.

Regular d-simplex is ad-simplex b.T such that YT is conflict-free.

Regular Triangulation n of S is the set of all regular d-simplices flT, T ~ S, and their faces.

Weighted a-Complex /C et is the subcomplex of the regular triangulation n of the point set S

ICet = {flTI(aT < a and YT is conflict-free) or (T C U and flu E /Ca )}.

Weighted a-Shape W a is the underlying space of /CO" W a = IKal. For a sufficiently large value

of the parameter a, the weighted a-complex /C et and the a-shape Wet coincide with the regular

triangulation n and the convex hull of S, respectively. Notice that the O-complex Ko has a

particularly important meaning. A simplex flT belongs to Ko only if, regarding x ETas

balls

nx" 0
<ET

We will use the notation K and W to denote Ko and Wo, respectively.

Family of weighted a-shapes is the collection

{Wale> E lR}
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Simplices of a weighted a-complex ICo: can be classified as follows:

principal: a simplex that is not a proper face of any other simplex in Ko:;

singular: a principal simplex that is a face of W",;

regular: a non principal simplex that is a face of Wo:;

interior: a simplex that is not a face of Wo:o

Duality. In addition to the diagrams 1(. , K and W, we will make use of their dual diagrams. We

need a few more definitions: given a weighted point XES, define the power cell of x as

P. = {y = (y', 0), y' E lRdl~(x, y) S rr(z, y), z E S}

The power cell of a simplex b.T is given by PT = nxETPx' Because of general position, PT

is either empty or a (d - k)-dimensional convex polyhedron, where k + 1 = ITI. Define also

qx = px n x (regarding x as a ball) and qT = nxETqx'

Now we are ready to define:

Power Diagram P = {PTI0 f:. T ~ S} is the dual of R. The Power Diagram is the generalization

to weighted points of the Voronoi Diagram. P is a complex of convex cells. There is one

d-dimensional cell for each ball xES. The other, lower dimensional cells are all the faces of

the d-dimensional cells. The cell associated to a ball x is the set of points y = (y', 0) such

that the weighted distance of y from x is less than from any other ball in S.

The Boundary Complex Q = {qT10 i- T ~ S} is the dual of K. Q is a cell complex whose

underlying space is the boundary of the union of the set of balls S. It is composed of vertices,

arcs and spherical patches of dimension up to d - 1.

The Union of Balls U = UxEsx is the dual of W. U also known as the space filling diagram.

Algorithms for an efficient computation of the diagrams defined above are given in [6], [7J. Some

examples of a-shapes are shown in Figure 2.1 and 2.2. Details on our implementation re given in

section 5.
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FIGURE 2.1: 3D weighted a-shapes of a protein for different values of Q.

FIGURE 2.2: 3D weighted a-shapes of a possible ligand for different values of Q.
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3 Geometric Structure Matching

An undirected graph (V, E) having vertex set V and edge set E is called an embedded graph if it

is mapped to an orientable 2-manifold in JR3 in such a way that vertices are mapped to distinct

points and edges are mapped to arcs connecting the two terminal vertices, and that edges do not

have a point of intersection except at the vertices. An orientable 2-manifold divides the three­

dimensional space into two connected components, hounded and unbounded; the former is called

the inside and the latter the outside. Throughout the paper I we assume that the embedded graph

is always seen from the outside of the 2·manifold, so that at each vertex we can uniquely specify

the counterclockwise order of the edges incident to that vertex.

For an embedded graph G = (V, E), we define set E of directed edges by

ji; = {(u,v), (v,u) I {u,v} E E),

and call the directed graph (V, E) the pamllelized graph induced from (V, E). We define two

mappings gR and gL from E to itself: for any e = (u,v) in iE, gR(e) is the directed edge going

out of v (other than (v,u» that is first encountered when one moves counterclockwise around v,

and 9L(e) is the directed edge going out of v (other than (tI, u» that is first encountered when one

moves clockwise around v. Since 9R and 9L are one-to-one mappings from E to itself, the inverses

9r/ and gL l are also one-to-one mappings from E to itself. See Figure 3.3.

Let us consider the parallelized graph (V,E) as a network of one-way streets, and imagine a

driver who drives a car in such a way that his car always faces in the direction specified by the edge

and he can drive either forward or backward with the restriction that he should take the rightmost

turn or the leftmost turn at each vertex. Hence if the driver is at edge e (E E), the next edge he

can visit is gR(e), gLee), gii?(e) or gLI(e).

Let R, L, R-I and L-l denote his choice of 9R(e), gLee), 9R I (e) and 9L I(e), respectively, as

the next edge, and let any concatenation of these four symbols denote the sequence of choice of

the next edges with the convention that the choice is done from right to left. Hence, for example,

LLR implies that the driver goes forward, takes the rightmost turn, takes the leftmost turn, and

takes the leftmost turn again. So, if he starts at el in the Figure 3.3 (b), he visits el, e2, e3, e4 in

this order. LR-l implies that he goes backward, takes the rightmost turn, and next switches to go

forward and takes the leftmost turn. So if he starts at el in Figure 3.3(b), he visits eI, es, e~ in
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FIGURE 3.4: A Labeled Pattern and part of a Labeled Parallelized Graph
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this order.

We call a finite sequence XjXi _ l , "X2X l (Xi E {R,L,R-l,L-l},j = 1, .. . ,i) of the symbols

R, L, R-1 , L- I a primanJ path choice. Note that a primary path choice is defined independently

from the underlying graph. When we apply a primary path choice to a particular parallelized

graph with a particular start edge, we get a sequence of edges of the graph. For primary path

choice Xi ... Xl and edge e of a parallelized graph, let Xi' .. X l (e) denote the edge that the driver

reaches at the end of his move. Let € represent the primary path, choice of length 0, and we define

«(e) = e [m any edge e. We derme (R)-' = R-', (L)-' = L-', (R-'t' = R, (L-')-' = L.

Moreover, for b = XjXj_ l ·· ·X2X l , we define b- l by

b-' (V X X X )-' X-'X-' X-' X-'= ....... j i-I'" 2 1 = 1 2'·' i-I j ;

b-1 represents a primary path choice that is the reversal of b, i.e., we can easily see that if e' = b(e),

then e = h-l(e' ). We define RR-l == R- I R == ££-1 == £-1 £ == f. The relation h == b' represents

that the two primary path choices band h' give the same edge at the end of the moves along the

paths. We call a primary path choice redu.cible if it can be replaced by a shorter primary path

choice by the relation ==, and irreducible otherwise.

Suppose that (V, E) is a parallelized graph. Let a be a mapping from E to set A, called a

label set. For each e E E, a(e) is called the label of e, and the triple (V,B,a) is called a labeled

parallelized graph.

Let C be a collection of irreducible primary path choices, Let B(C) denote the set of all right

substrings of strings in C, that is,

E(C) = {XjXj_,·· ·X, IX;X;_,·· ·X, E C, 0'; j'; i).

Hence, in particular, B(C) always contains the null string f. An element of B(C) itself is an

irreducible primary path choice. An element of B(C) can be considered as the representation

of an edge which the driver can reach when he drives according to some primary path choice

in C. In particular, f represents the start edge. Let ep be a mapping from B(C) to A. :1"'or

Xj' .. Xl E B(C), ep(Xj' .. Xl) intuitively represents the label of the terminal edge of the primary

path choice Xi ...Xl' We call the pair (C, ep) a labeled pattern.

An edge e (E E) is said to be consistent with primary path choice Xi" ,XI in B(C), if

ep(Xi" ·Xd = a(Xi" ·Xl(e)). An edge e is said to be consistent with the labeled pattern (C,I,O)
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if e is consistent wlth all primary path choices in B(C).

Problem 3.1 Given a labeled parallelized graph (V, E, Q) and a labeled pattern (C, 1,0), finel all edges

in E that are consistent with (C, 1,0).

This problem is related to the subgraph isomorphism problem but is not the same. The dif­

ference can be understood in the following example. Let C = {RR,LR,R- t }. Then, we get

E(C) = {(,R,RR,LR,R-'). Let <p be a map ,uch that <p(e) ~ a, <p(il) = b, <p(RR) = c,

lp(LR) = a, Ip(R-1) = c. Then, the labeled pattern (C,Ip) can be represented by the labeled tree

structure shown in Figure 3.4(a), where the directed edge e represent the start edge, a small arc

connecting two edges represents the relation that the associated edges are immediate neighbor of

each other in the cyclic list of edges around the vertex, and the symbols in the parentheses rep­

resent the labels defined by <po Next, let Figure 3.4(b) be a part of a labeled parallelized graph

with labels represented by symbols in parentheses, in which one of each pair of parallelized edges

is omitted. We can easily see that edge et in (b) is consistent with the labeled pattern (C,Ip).

Actually, this gives a subgraph isomorphism. However, edge e2 in (b) is also consistent with the

labeled pattern (C,<p), though the corresponding edges in (ll) form a cycle. Moreover, edge e3 in

(b) is also consistent with (c, 1,0); in this case two edges in (a), i.e., the edges associated with RR

and R-t
, correspond to the same edge in (b). Thus, the solution of Problem 1 gives a wider class

of matching than the class of subgraph isomorphisms.

Algorithmic Details

We consider next the algorlthm for solving Problem 1. In the algorithm, we use two arrays

d(e,j) and h(e), where the argument e runs in E and the argument j runs in {1,2, ... ,k}. The

value of d(e,j) is "unknown", "match" or "mismatch", where "match" means that the edge c

1S consistent with the jth primary path choice in B(C), and "mismatch" means that the edge c

1S not consistent with the jth primary path choice in B(C). The value of h(e) is "unknown",

"consistent" or "inconsistent"; "consistent" means that e is consistent with the pattern label (C, Ip)

whereas "inconsistent" means that e is not consistent with (C, <p). The two lines in brackets in the

algorithm are not necessary for the actual algorithm, but are useful for the later discussion of the

behavior of the algorithm.
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Algorithm 1 Input: a labeled parallclized gmph (V,E, 0:) and a labeled pattern (C, cp).

Output: all the edges in if; that are consistent with (C,cp).

Preprocessing:

1. Assign a linear order, say 61, b2, .•• , bkl to the elements of B(C) in such a way that b] = L

2. For each i = 1, 2, ... , k I create two sets:

s; = {(bj' b;,j) Ibj E B(C), I'(bj) = I'(b;)},

T; = ((bj ' b;,j) I bj E B(C), I'(bj) i I'(b;)}.

Main processing:

1. d( e, j) +--- "unknown" for all e E IE and for all j = 1, ... , k.

2. h(e) +--- "unknown" for all e E E.
3. while there exists element e E E having h(e) = "unknown", choose such an element e and do

begin

i ~ 1;

LOOP,

if d( e, i) = "unknown" then

if a(b;(e)) = I'(b;) then

d(6j1bi(e),j) +--- "match" for each (bj 1bi ,j) E Si;

h(bj1b.(e)) +--- "inconsistent" for each (bj1b;,j) E T.

[d(bj 1b;(e),j) +--- "mismatch" for each (bj1bi,j) E T;};

else

h(bj1bj(e)) +--- ('inconsistent" for each (bj1bi,j) E Si

[d(b;-tb;(e),j) +--- "mismatch" for each (bj1b;,j) E Til;

goto NEXT;

endif

endif

i+---i+1;

if i .s k then goto LOOP else h(e) +--- "consistent" endif;

NEXT'

end

12



Lemma 3.1 S,. is nonempty and lSi UTi! = k for i = 1,2, . .. ,k. Moreover, S1, ... ,Sk,T1,·· .,Tk

are mutually disjoint.

Proof: Sj contains ((, i) and hence nonempty. From the definition, S, and T; are disjoint and

ISd + lTd = k for i = 1,2, ... , k. Suppose that Si UTi and S/ U TI have the same element W;lb,j).

Then, b must satisfy b = bi = b/, which means i = l. Thus Sl, .. "Sk,T1, ... ,Tk are mutually

disjoint.

Lemma 3.2 Algorithm 1 puts a value to each entry of the array d( e, i) at most twice, once the

value "unknown" and the other time either "match" or "mismatch".

Proof: Suppose, against the proposition, that the value "match" is put in d(e,j) twice, once at the

time when we get a(b,.(e l
)) = rp(bi) (i.e., when we come to know by a label comparison that edge e is

consistent with the primary path choice hi) and once more at the time when we get o{b/(e ll
)) = rp(b/).

Thi, in particular Implie, that Ci) <pCbj) = <pCb,) = <pCb,), and Cii) e= bj' b,(e') = bj'b,Ce"). From Cil

and the definition of Si, we get (iii) S,. :3 (b/ I bi,l). From (ii) we get (iv) e" = b/1bi(e'). The two facts

(iii) and (iv) together imply that when we get a(hi(e l
)) = rp(b;) by a label comparison, Algorithm

1 should put "match" to d( e", I). Hence the label comparison to see whether a:(b/(e')) = rp(b;) will

never been done, which contradicts our assumption. We get similar contradiction if we assume that

the value "mismatch" is put in dee,)) twice.

Lemma 3.3 In Algorithm 1 the label comparisons (i.e., the check to see whether a(bi(e)) = 'P(b,.)

is satisfied) are done at most 4n times, where n = IEI/2 (i.e., n is the number of edges of the

original graph from which the parnllelized graph is created).

Proof: Suppose that the two procedures in the brackets are also done. The algorithm terminates

when each edge e E E has either h(e) = "consistent" or h(e) = "inconsistent". This implies that

the algorithm terminates at latest when all of d(e,i) have values other than "unknown". Let I

denote the number of label comparisons that result in "true", and m denote the number of label

comparisons that result in "false". From Proposition 1, the values of entries of the array d( e, i)

change at least kI + m times, and from Proposition 2 the same entry of the array is not changed

more than once. The size of the array is 2kn, and hence we get kl + m ::; 2kn. Moreover, we

get m ::; 2n because if the label comparison results in "false", we immediately go to the next
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edge. Thus, the maximum number of label comparisons is not greater than the solution of the

maximization problem: "maximize I +m subject to ki +m::; 2kn and m::; 2n", and consequently

we get max(l +m) < 4n.

4 Applications

The combination of the algorithmic techniques described in the previous sections leads to the

following solutions for the docking and molecule similarity problems. Both algorithms are based

on computation on matches and mismatches between a-shapes.

4.1 Docking Strategies

The geometric "features" of the protein molecule, cavities and protrusions, are captured by a family

of a-shapes of what we call the complementary space of the molecule. This is defined as the a-shape

of a subset C of the set of weighted points S' :=:: {YT}, where YT denotes the orthogonal center of a

FIG UILE 4.5: Complementary Space: Union of Balls. This picture shows a particular
complementary space for a protein. The light balls that surround the molecule (the
darker balls inside) are orthogonal points of tetrahedra in K,'.
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FIGURE 4.6: This picture shows (in wire frame) a particular a-shape of the com­
plementary space of a molecule. The complementary space chosen in this case is
formed by orthogonal points of tetrahedra in K/. The balls inside the a-shape are
atoms of the original protein.

simplex 6.T and

6.T E /C' = /Coo - K, and YT is conflict-free

Le., the points of 5' are chosen among orthogonal centers of simplices belonging to the complement

of /C w.r.t. the convex hull of 5. Only "regular" simplices of K,' are considered. We call a simplex

regular when its orthogonal center is conflict-free. All d-simplices are regular, but k-simplices, for

k < d, are not necessarily so. Different choices of C ~ 5' lead to a family :F of weighted a-shapes.

The pattern that we want to search for a match is given by the a-shape of a particular confor­

mation of the ligand. We sample the orientation space at different values of the bond and torsion

angles. This produces a new family g of three dimensional a-shapes.

The matching algorithm is used to process each pair of protein complementary space vs. ligand

conformation. The number of matches and mismatches for each pair is reported and statistically

correlated.
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A schematic description of the algorithm is:

Algorithm 2 1. Compute a family F of weighted a-shapes of the complementailj space of a

single protein molecule. The family is generated by different seed points on edges, faces etc.

of the complementaT1j shape K.q'.

2. Compute a family g of weighted a-shape of the a known ligand molecule. The family is gen­

erated for different conformations of the ligand molecule (discrete sampling of the orientation

space).

3. For each member of F do a pattern malch with all members of g and compute a statistical

correlation of the total number of malches and mismatches.

An example of the weighted a-shape of the complementary space of a protein is shown in

Figure 4.6 and 4.5.

4.2 Similarity Computations

The approach to this problem is similar to that previously described. Two families F and g of

a-shapes are generated, and these a-shapes are pairwise processed to report the total number of

matches and mismatches.

Algorithm 3 1. Compute a family F of weighted a-shapes of one biopolymer. The family is

generated for different conformations of the compound (discrete sampling oJ the orientation

space).

2. Compute a family 9 of weighted a-shapes of the other biopolymer. The Jamily is genemted

for different conformations of the compound (discrete sampling of the orientation space).

3. For each member of F do a pattern match with all members of g and compute a statistical

correlation of the total number of matches and mismatches.

5 Implementation

The Molecular Modeling and Simulation Toolkit RASAYAN is part oflarger project, named SHAS­

TRA, whose components form a distributed and collaborative environment for scientific problem
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FIGURE 5.7: The graphical front end of the Rasayan molecular modelling toolkit.
The Interface displays the combinatorlal sIgnature of the a-shape. The window in
the mlddle of the interface displays graphically how the number of sIngular com­
ponents of the a-shape vary with a. The user can plck a value for the parameter
a: by clicking and dragging in this wIndow. The grid of values in the bottom part
shows the number of sIngular, regular and interior simplices In the current a-shape.
The interface also allows to generate the complement and the difference between
two a-shapes.
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solving [1]. SHASTRA applications share a common substrate that permits communication and

distribution of data among work sites, as well as the use of multimedia tools to allow users to

communicate among them.

The graphical interface of RASAYAN shows the combinatorial properties of a family of a­

shapes. The uscr can interactively pick a value for the parameter a, and display the molecule and

the a-shape, and/or its complement. The graphic window in the interface shows the number of

singular simplices for all the spectrum of a values. Molecules and a-shapes can be displayed in

different shading modes, so as to allow the user to highlight particular features or patterns. The

computation of the boundary complex Q permits a fast rendering of the space-filling diagram, for

it avoids the scan-conversion of hidden portions of the balls.

Visualization of molecules is obtained through the application SHAPOLY, a general purpose,

collaborative tool of SHASTRA for visualization of polyhedral models. Using SHAPOLY it is

possible for two users to "share" a common view of a model, i.e. two users might see, in a window

on their screen, the same view of an a-shape and collaboratively interact to modify that view.
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