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Abstract

Given a textstring z of length n, the Minimal Augmented Suffiz
Tree T(z) of z is a digital-search index that returns, for any guery
string w and in a number of comparisons bounded by the length of 1w,
the maximum number of nonoverlapping occurrences of w in z. It is
shown that, denoting with n the length of £, T(z) can be built in time
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1 Preliminaries

Let z be a string (word) of lenght |z| = = on an alphabet I. Denoting
by w a substring of z, C(w) is the maximum number of distinct nonover-
lapping occurrences of w in z. For example, w = ebe occurs 11 times
in £ = abaababaabaababaabababababaa, with starting positions in the set
{1,4,6,9,12,14,17,19,21,23, 25} (cf. Fig. 1). However, some such occur-
rences overlap with each other, e.g., those starting at positions 4 and 6, or
12 and 14, etc. We can choose up to 7 occurrences of w in z so that no two
of them overlap, e.g., those with starting positions in {1,4,9,12,17,21, 25}.
Thus, C(aba) = 7.

In this paper, we address the construction of a digital-search index designed
to report, for any substring w of z and in O(|w|) comparisons, the value of
C(w). The basic structure of such an index, introduced in [AP-85], is the
suffix tree of string z augmented with a cardinality value ¢(ex) at each inter-
nal node a. Integer ¢(a) gives the number of occurrences without overlap in
z of the string w associated with a. One such tree is illustrated in Figures
2a and 2b. Recall that the suffiz tree T(z) of a string z is a (|| + 1)-ary
tree (|I| being the alphabet size) where each leaf corresponds to a string
position, edges are labeled with (pairs of pointers to positions of z that
identify) substrings of z. A root-to-leaf path describes in a natural way the
suffix of z beginning at the position associated with the leaf. Moreover, any
substring w of z is associated either with a node or with an edge of the
tree {called the locus of w). When seeking all occurrences (with overlap),
the number of occurrences of a substring w is trivially given by the number
of leaves reachable from the locus of w: thus, to obfain this statistics, it is
sufficient to label each internal node & with the number &(a) of the leaves
in the subtree rooted at @. Our present objective is instead to augment the
suffix tree T(z), so that all relevant loci are labeled with the correct cardi-
nalities (see Figure 2b). Specifically: each internal node « is labeled with
an integer ¢(a) < &(a) and new (unary) auziliery nodes are inserted along
edges whenever a cardinality change occurs. The resulting structure is the
Minimal Augmented Suffix Tree T(z) of z. Without loss of generality, we
assume for simplicity |I| = 2.

The ¢-labeling of the suffix tree T(z) can be viewed as a “pebbling” process.
The standard pebbling policy in a rooted tree is that leaves can be uncon-
ditionally pebbled and that an internal node can be pebbled only when all




of its children have already been pebbled. Pebbling a node o means to pro-
duce a data structure A{a) containing the relevant information about the
substring whose locus is @. From this data structure A(a) we can compute
the parameter c(a) in a straightforward way. We denote L(a) and R(a)
the two children (left and right, resp.) of a. Assuming that A(L{«)) and
A(R(a)) are available, A(a) is constructed as follows:

1. Process the edges leading from L{a) (resp., R{a)) to e, inserting all
possible auxiliary nodes corresponding to changes of cardinality (op-
eration CLIMB).

2. Merge the data structures obtained after subjecting A(Z(a)) and
A(H(c)) to operation CLIM B (operation M ERGE).

Figuratively, CLIM B and M ERGE process edges and nodes, respectively.

2 The Data Structures

As mentioned above, a node @ in T(z) is the locus of some string w, and
each leaf of the subtree 7(a) of T(z) rooted at « identifies an occurrence of
w in z; any such leaf is dencted by an integer ¢ giving the position in z of
the leftmost symbol in the occurrence of w.

Two occurrences 7y and i3 (42 > i) of w (w-occurrences) are said to overlap
if ig — 41 < |w|. A necklace (of w-occurrences) is 2 maximal sequence A =
{#1,12, ..., i1} of w-occurrences such that no other w-occurrence 4, (% < i)
overlaps with ¢y and only consecutive terms in A overlap. The contribution
of a necklace in T(a) to c¢{e) is obviously the ceiling of half of the necklace
size. Thus, knowing the necklaces in 7(a) is all that is needed to compute
e{a). Data structure A{e) is designed to store the necklaces of 7(a).

Structure A(a) is a two-level tree, such that the leaves of the upper-level are
the necklaces, and each necklace is in turn represented by a tree whose leaves
are w-occurrences. It must support operations INSERT, DELETE, SPLIT,
SPLICE, FIND, RANK (here RAN K(3) is the ordinal number of 7 in the
necklace), and is therefore a minor modification of a standard concatenable
queue [AHU-74).




As we shall see in detail below, pebbling a node involves merging two anal-
ogous structures by successively inserting the terms of the smaller one into
the larger one; any such insertion may extend or concatenate necklaces, but
never splits existing ones. However, pebbling an edge is a more subtle opera-
tion, As we (figuratively) proceed rootward along an edge, the string length
decreases and two formerly overlapping w-occurrences i; and 73 may become
disjoint w'-occurrences, where ' is a prefix of w. This happens because z
contains a repeated substring in the form w'w’ starting at position #;. It
is therefore essential to devise a technique designed to process these events,
referred to as jumps. Let string(«) denote the string whose locus is a. Re-
call that an integer p is a period for a string w if w; = wiyp,i=1,2,|w|—p
(note that a string may have more than one period). A jump on edge
(CHILD(a),a) occurs if and only if the string associated with some de-
scendant of CHJILD(a) has the form w'w’ where the period p = |w'] is in
the range [|string(CHILD(a))| — 1,|string(e)|). This condition is easily
tested if we keep an ordered list (as a dictionary) of the periods so far dis-
covered in the pebbling of the subtree (@) of T(z) rooted at o: indeed, a
period is detected each time we encounter two overlapping w-occurrences.
To efficiently process all occurrences associated with a given period p, it
is convenient that the record for p contain a pointer to a secondary data
structure (itself a dictionary) storing, as an ordered list thread(p), all such
occurrences. Clearly, each such occurrence will cause a necklace split in
some structure A.

In conclusion, we keep two types of data structures associated with each
“pebble”.

The first, called P-directory, has, as a primary component, an ordered list
of periods (integers), each of which points to a secondary component (P-
thread) storing the corresponding occurrences (see Figure 3). Primary and
secondary structures are dictionaries.

The second type of data structure is the A structure described earlier.

It is clear that these two structures closely interact during the construction of
the index. Specifically, each time a w-occurrence overlap is detected during
a M ERGE operation, an appropriate modification is introduced in the P-
directory. Conversely, each time during a CLIM B operation a period p is
detected within the length range of an edge, then the P-directory is used to
effect the necessary necklace splits in the A-structure.




We now outline the basic structure of the operations M ERGE and CLIM B
under the simplifying a2ssumption that the w-occurrences involved refer to
a substring w of = such that w is not periodic. A string w is periodic if w
has a period p < [|w|/2]. In our construction, the treatment of periodic
substrings is more involved, and is deferred to Section 4.

3 The Case of Nonperiodic Strings

3.1 The Operation MERGE

The operation M ERGE constructs A(a) from the analogous data structures
{A*(B) : B a child of '}, where A™() is the result of processing A(3) through
the procedure CLIM B applied to edge (8, a).

Assuming [ = {a,b}, A*(L(a)) and A™(R{a)}) respectively contain all neck-
laces of string(a)-occurrences followed by a and b. If, without loss of gener-
ality, we have |A"(L(a))| 2 |A"(R(a))|, then A(a) is obtained by successively
inserting each leaf (a string(a)-occurrence) of A"(R(a)) into A*(L(e)). Let
j be the position of A"(R(a)) being inserted into A*(L(a)), and let it fall
in the interval [i;,45] of A*(L(a)). Denoting w = string(a), we have the
following three cases:

(i) j— 141 2 |w| and 43 — § > |w|: 7 is 2 new necklace.

(ii) j — 41 < |w} or i2 — 7 < |w|, but not both: j is appended (at the
beginning or at the end) to an existing necklace.

(i) 7 — ¢ < |w| and i, — j < |w|: 7 causes two existing necklaces to merge
into a single necklace.

In each one of these three cases, the parity of the resulting necklace is up-
dated in a straightforward fashion as the ceiling of one half the RAN K of
the last element of that necklace. In cases (i7) and (¢ii) we encounter over-
lapping occurrences. Any time j — 7y < |w|, period p = j — 7; is detected;
period p is inserted into the primary component of the P-directory (if not
already present), and 7 is inserted into the list threed(p) pointed to by p.
Analogously for is — 7 < |w|.




3.2 The Operation CLIMB

The operation CLIM B inserts all necessary auxiliary nodes within an edge
of T(z), with their ¢ statistics, and produces the A* data structure ready
for the merging operation.

Let (@, o) be the current edge, where oy is a child of ag, and let w; =
string(a;),i = 1,2. Moreover, let |wa| < p; < p2 < ... < p, < |wy| be the
sequence of periods internal to the interval [|w,|,|w|] in the appropriate
P-directory: up to s nodes might have to be inserted within the edge, each
the locus of a sequence of length p;,7 = 1,2,..., 8.

The sequence (p;, p2, ..., ps) is obtained by a search in the primary compo-
nent of the associated P-directory.

If s > 0, then we successively process py, Ps—1,-..,p1. While processing p;,
we access the secondary component thread(p;) and visit all its members
(a sequence of positions). Fach such position corresponds to a necklace
split in the A- structure being processed (the number of necklaces increases,
although no new occurrence is created). This may or may not result in
an increase in the c statistics with respect to the last node pebbled along
edge {0y, az): in case such a cardinality change occurred, a new node is
inserted and weighted appropriately. After this operation, list thread(p;)
becomes useless. We stress that C LTM B inserts a new node only when this
is warranted by a change in the ¢ statistics, whence the final augmented
suffix tree is minimal,

Finally, it might happen that |w,| is also a period in the P-directory. If this
is the case, the current CLIM B must process also thread(|ws|) in order to
produce one of the A“ structures needed for the M ERGE at as. Processing
of thread(|w,|) is is not different from the other periods, except that the
locus ey of wy now already exists (and cannot be deleted). Clearly, if the
sequence of periods p; is empty (s = 0) and |w,| is not found in the primary
component of the P-directory, then CLIM B is void and A™(a;) = Aay).




4 The General Case: Periodic and Nonperiodic
Strings

The procedure described is adequate if w is a nonperiodic string. As an-
nounced at the end of Section 2, we consider now the general case, which
includes nonperiodic as well as periodic strings.

Recall that a string w is periodic if it has a period p < ||w|/2]. The main
reason for the insuitability of the previous procedure to periodic strings
is that for a periodic w it is no longer necessarily the case that every w-
occurrence belongs to some necklace (see Fig. 4). Thus, if we maintain
unmodified the notion of necklaces of w-occurrences, it is not hard to see
that an update (insertion) may obliterate a w-occurrence. As it furns out,
when dealing with periodic strings, the notion of “necklace occurrence” is
no longer convenient, and is replaced by the more appropriate notion of
“chunk”, defined below, which reflects the high regularity of periodic strings.

A well-known fact of combiratorics on words, referred to as the periodiciiy
lemma [LS62|, states that if a string w has two periods p, ¢ < |[w|/2], then
also g.c.d(p, g) is a period of w. An easy consequence of the periodicity
lemma is that giver a mazimal run of w-occurrences {7;,%,,...4,} such that
i —ti < |w|/2(F=2,3,..,5)then i; —¢;_y = p (j = 2,3, ..., 9), where p
is the minimum period of w.

This allows us to replace, for periodic strings, the notion of w-occurrence
with the notion of “chunk”: a w-chunkisarun (i,i+p,...,i+4 (s = 1)p) of
w-occurrences, p < ||w|/2] (cf. Fig. 4); the span L of this chunk is equal
to |w|+ (s — 1)p (the length of the text segment from the initial position of
the first w-occurrence to the terminal one of the last w-occurrence).

During the periodic regime (i.e., while [w]| > 2p) the following holds [AP85]:
two consecutive chunks may overlap in at most p—~ 1 positions. Thus, rather
than with necklaces of w-occurrences, we shall deal with necklaces of w-
chunks (of course an isolated w-chunk is a degenerate necklace).

The w-occurrences of 2 w-chunk obey the following strong constraint. For
Jw| > 2p and for any three w-occurrences i; < i3 < i3 the lowest common
ascendant leca(dy,42) of iy and ¢; in the suffix tree T(z) is a descendant of
lca(iz, 73). Indeed, let w = u"o', where u is a primitive string, » > 2 and «' is
a prefix of u. Then the suffix of the text z beginning at i; is u{(3=#7)/lullyry’y



for some string ¢ and j = 1,2,3. Clearly, the suffixes pertaining to leaves
iy and iy share a prefix whose length exceeds by i3 — 7, that of the prefix
shared by the suffixes pertaining to i and i3. This implies that the path
from the root to lca(iy, i7) contains lea(is, 3).

This constraint has a few significant consequences:

(1) For a w-chunk of period p starting at i, we successively encounter (as
we climb the rootward path from leaf i of T'(z)) the lca of w-occurrence
1 and w-occurrences 1 + p, ¢ + 2p, ....

(ii) A w-chunk is detected (and established} when its second w-occurrence
at ¢ + p is detected. When the chunk is established, its span is L =
lw| + p.

(iii) As we climb the path of T(z), up from the node where the chunk is
established, we scan prefixes w’ of w. As long as |w'| > 2p, the span
assumes periodically the values L, L — 1,...,L — p + 1. Therefore if
two chunks overlap (which occurs when the leftmost one achieves its
maximum span) as the span length contracts the two chunks become
disjoint (since their overlap is strictly less than p) and this happens
exactly once during each period.

(iv) The cardinality s of w'-occurrences steps up by one unit exactly when
the span attains its maximum value.

A simple analysis shows that an isolated w-chunk (i.e., 2 chunk not overlap-
ping with any other chunk) contributes

c=|[L/pl/[lwl/p] (1)

units to the c-statistics. Indeed, in the set of w-occurrences associated with
the chunk each disjoint w-occurrence uses an integral number of periods,
for a total length of [|w|/p]p. Referring to the eztended span [L/p]p, also
extended to a length corresponding to an integral number of periods, it is
immediate that c is given by the above formula. This value of ¢ is referred
to as the chunk’s nominal contribution.

It is convenient to define, for each w-chunk, an additional structural param-
eter £, called ezcess, given by

£ = [L/plmod(|w|/p] (2)




which specifies the number of periods, within the chunk span, that are not
utilized in the chunk’s (nominal) contribution to the c-statistics. We claim
that the actual contribution of a chunk to the c-statistics is always given by
(1), except in the following extremely special situation:

a) the chunk belongs to a nondegenerate necklace;
b) the chunk has £ = 0;

¢) the chunk is preceded, in its necklace, by a maximal string of chunks
whose excesses form a {0, 1}-string with an odd number of zeroes.

Indeed, in this situation the leftmost period of the chunk is not utilizable
(since it is used by the preceding chunk), and since the chunk excess is
0, its actual contribution to the e-statistics is one less than its nominal
contribution. The three conditions &), b) and ¢) above will be collectively
referred to as Condition A.

Therefore, for a given w, a w-chunk is specified by a triplet (¢, p,s), where
t is the initial position (chunkhead), p the period and s the number of w-
occurrences within the chunk; £ is readily computable from these parame-
ters.

We are now ready to describe our adaptations of M ERGE and CLIMB in
greater detail, adopting the above-defined triplet notation for chunks. As
usual, a necklace of chunks is structured as a height-balanced binary tree,

whaose leaves are the chunks and whose internal nodes contain parameters (to
be introduced below) instrumental in the M ERGE and CLIM B processes.

4.1 Adapting MERGE

We consider M ERGFE first, and concentrate as earlier on the insertion of
an individual leaf from A*(R(a)) into A®(L{a)).

Notice that whenever we merge the two sets of occurrences of a chunk
(#1512, ..., 2,), originating respectively in A"(R(e)) and A"(L(a)), these two
sets have necessarily the forms (#y,4,...,i,—1) 2nd (7,). Indeed, by the hy-
pothesized maximum span condition, as the cardinality of occurrences in-
creases by one, the alphabet symbol following occurrence 4, is necessarily




different from the (common) one following occurrences iy, 43, ..., is—y. There-
fore, occurrences {4y,%,...,4,—1} and {7,} originate from distinct children of
node o (the locus of w = string(a)). Occurrence i, is referred to as the tail
of the chunk.

Suppose now that ¢ is the item of A*(R(a)) being inserted into A™(L(a)),
and let ¢ fall in the interval [I, 7] of (the current version of) A*(L(ca)). In
light of the above discussion, the following three cases are possible.

(a) i is the tail of a chunk of A(a), of which { is the head (see Fig. 5.a).
(b) ¢ is the head of a chunk of A(a), of which r is the tail (Fig. 5.b).

(c) iis the head of a (possibly degenerate) chunk that A{a) inherits en-
tirely from A*(R(e)) (Fig. 5.c).

Straightforward calculations, based on ¢ and on the triplets associated with
! and r enable us to decide which one of cases (a), (b) or (¢) applies to i. We
examine case (a) in some detail; handling of the other cases is analogous. Let
M and A; be the (consecutive) necklaces containing { and r, respectively,
each represented by a search tree t(A;) whose leaves are chunks.

Occurrence ¢ belongs to the rightmost chunk (I, p, s) of A} (the rightmost
leaf of ¢(A1)). Chunk (I,p,s) must be updated to (I,p,s+ 1). Let £ be
the excess of (I,p,s+1). If £ = 0, then we must check whether Part c) of
Condition A holds, and, if so, whether the contribution of A5 is affected.

This can be done with the help of two ternary parameters (n.(v), r(v))
assigned to each node v of a necklace tree. These parameters are defined as:

v is a leaf n.(v) = max(§,2)

7(v) = nr(leftchild(v)) * nr(rightchild(v))

v is internal { nR(v) = qp_(rightchﬂd(u)) * ’?R(].Eftchﬂd(l/))

where operation * has the following table




It can be easily verified that: n,(») = 0 if and only if Part ¢) of Condition
A holds for a maximal suffix of the leaves in the subtree of v; pr(v) = 1 if
and only if, the subtree v behaves as an excess string 11...1; .(v) = 2,
otherwise. Therefore, traversing the rightmost path of #{(A}), we explore
the sequence of 7y, parameters of the roots of this path’s left subtrees: if the
maximal {0, 1}-suffix of this sequenceis ...0L...1, then Part ¢} of Condition
A holds for chunk (I, p, s+1). Therefore, if also £ = 0, the actual contribution
of (I,p,s+ 1) is one unit less than its nominal one, since |w| > 2p, the
rightmost period of (I, p,s+ 1) is not utilized and the contribution of A} is
unaffected, even if A, overlaps with M.

On the other hand, if Condition A, Part {c) holds and £ = 1, then the
rightmost period of ({, p, s+1) is utilized, and this may affect the contribution
of A, (if it overlaps with A)). A little reflection will establish that the gy
parameter of the root of ¢{(A3) has value 0 if and only if there is a maximal
prefix of chunks with {0,1} excesses containing an odd number of 0-excess
chunks: in such a case the effect of the overlap is to reduce by one unit the
nominal contribution of A5.

Finally, if overlap occurs, Ay and M; must be merged by splicing their trees,
using standard techniques and adjusting the 5g, ng parameters as well.

We now describe the necessary modifications of the P-directory. Let
71 < p2 < ... < p; be the periods currently stored in the primary com-
ponent of the P-directory. Assuming that string(a) is periodic, then p, is
the only period < ||w|/2], and thread(p;) contains the ordered list of the
chunkheads; therefore, referring to the case described above, ! is to be in-
serted if and only if z — { = p, that is, when the chunk is first established.
On the other hand, all of the other periods correspond to chunk overlaps,
ie, |w|—p<p<|w|,i=2,..,1; therefore, if i overlaps with r, then i is to
be unconditionally inserted into thread(r — ¢). Note that i is not explicitly
represented in the necklace, but a pointer to ! (the chunk-head of ¢) will do.
List thread(r — i) will be used in the ensuing CLIM B operation.

Handling of cases (b) and (c) is analogous.

4.2 Adapting CLIMB

Recall the rationale for a CLIMB: as we proceed along an edge toward
the root, the string lepgth decreases and two w-occurrences #; and i, that
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formerly overlapped may become disjoint w'-occurrences, where w’ is a prefix
of w. We are interested in such events, earlier called “jumps”, since they
induce changes in the necklace structure, which in turn might affect the ¢
statistics. Before addressing the mechanics of such changes, we must show
that all jumps are detected by our algorithm.

Handling of nonperiodic w (i.e., when w is not of the form w = v*v', for & > 1
and some prefix v’ of ») has been discussed in Section 4. The characteristic
condition of a jump is string w'w’ (a square} starting at ¢;: we must ensure
that the list thread(|w'|) contains item 7;. But it is known [AP83] that there
are nodes « in T'(z) with | string ()| > |w’| where ¢; and i; are consecutive
leaves in 7(a); at one such node ¢, and ¢, join in a MERGE operation, which
adjoins Z; to thread(|iz — 41]).

We now consider the case of periodic w = v*v, and let w’ denote a prefix of

w. As |w'| decreases, the following events may occur, which may affect the
c-statistics.

Event 1. The nominal contribution of a chunk may increase. This is due to
the fact that |[L/p]/[lw1/21] > |[(L+1)/p1/[(|w|+1)/p]] and may occur
only when p divides [#’|, in which case both L/p and |w'|/p are integers. For
this chunk, such event occurs at most once in a period of the span length.

Event 2. Overlapping chunks j; and j; become disjoint (corresponding to
a split of a chunk necklace). This, of course, does not affect the nominal
chunk contributions, which are exclusively determined by Event 1 above.
Agaln, for this pair of chunks, such event occurs at most once in a period.

The occurrence of Event 1 along the edge (o, PARENT(a))in T'(z) can be
easily predicted on the basis of parameters L, p, and |w| (when the chunk’s
s-parameter steps up), and, if so, the value |w'| = kp for which this will
happen can be determined. A possible way to handle this situation is to
insert an appropriate record into thread(|w']), although technically |w'| is
nol a period, as defined earlier. Another type of record will be inserted
into thread(|w’'|) for |w'| = 2p for each chunk of period p, indicating the
transition from periodic to aperiodic regime, and therefore the dissolution
of the chunks.

Therefore, there are three basic actions which may occur when procedure
CLIMB is applied to arc (a, PARENT(a)). Denoting by h; < ... < h, the
items in the primary component of the P-directory (such that thread(k;) is

11



nonempty), with hy > [siring(PARENT{a))| and k. < |string(a)|, these
actions are concisely summarized as follows:

begin for i =r down to 1do
if p is not a divisor of h; then process Event 2
else
if h; # 2p then process Event 1
else dissolve chunks
end.

I j is associated with Event 1 (which means that p divides |w'|), then,
traversing the path from the root of ¢{{A) to leaf j, by a straightforward
modification of the argument developed in Section 4.1 we can determine the
effective span length L’ of the chunk, i.e., whether L or L —p is to be utilized
in computing the chunk’s contribution, and compute the latter.

If j is associated with Event 2, then A splits into necklaces A} and AS.
Binary search for 7 in {(N) defines the splitting path. On the basis of the
(7L, 7r) parameters observed on this path, we can establish the contributions
of the separated chunks.

When the length of the string |w’| becomes 2p, we change {rom the periodic
to the nonperiodic regime illustrated in Section 3.1 and 3.2, where again
we deal with necklaces of occurrences, and all occurrences are explicit. To
achieve this situation, we must generate the sequence of w'-occurrences re-
sulting from the fragmentation of the pre-existing chunks (here w’ is the
prefix of w of length 2p).

If we know the set of chunks {(i;,p,8;) : j = 1,2,...,m}, we can easily
generate explicit w’-occurrences for each chunk (we have w'-occurrences at
int+kp, h=1,2,...,mand £ =0,1,...,5; — 1). Note that local knowledge
of the rank of each chunk head erables us to assign individual ranks and
parities to the explicit w’-occurrences that now replace that chunk.

12




5 Perfomance Analysis

Let T denote the structure to be produced by our construction. As already
said, we can produce T; from string # in two phases: in Phase 1 we build
T(z) and in Phase 2 we transform it into 7. by carrying out the pebbling
process described in this paper. Phase 1 (building T'(z) from z) requires
time O(nlog|I|) and linear space, where = is the length of z and |I| < n
is the size of the alphabet [Mc-76]. We prove below that Phase 2 requires
O(rlog? n) time and O(nlog n) space. Thus, the overall cost of building T
from z is O(nlog® n) time and O(nlogn) space.

Consider first the space. Structure 7%, the minimal augmented suffiz iree,
has the property that the number of auxiliary nodes inserted in T'(z) is
minimum (every auxiliary node in T; has a c-statistics different from that of
its child node). As proved in [AP-85), each auxiliary node can be injectively
charged to a square in #. Since the number of squares in a string of length
n is bounded by O(nlog r), then this bound translates to the total number
of auxiliary nodes, whence to the total space taken by 7.

We claim that, at any given time, the space required by the collection of all
“pebbles” is O(n), and is therefore dominated by the size of 7'(z). Indeed, as
illustrated in Section 2, each abstract “pebble” is concretely represented by
two data structures, the A-structure and the P-directory. Each of these two
structures is implemented as a two-level balanced tree, so that their space
requirement is linear in the cardinalites of their respective sets of leaves.
Note that each leaf appears at most once in either type of data structure,
and, at any time, the set of leaves of all “pebbles” is a subset of the set of
leaves of T(z). Since T'(z) has n leaves, the claim follows.

Next, consider the time complexity. We begin by analyzing M ERGE.
The discussion in Section 3.1 shows that each A-structure insertion uses
2 bounded number of elementary operations from our expanded repertoire
of concatenable-queue primitives, and therefore takes O(logn) time. More-
over, each M ERGE is carried out by inserting a smaller set within a larger
set, so that any given item is never inserted more than logn times. In
conclusion, the total time taken by the M ERGE is O(nlog® n).

We now turn to procedure CLIM B. We recall that CLIM B processes an
edge according to one of three possible events: a necklace split occurring in
the periodic regime (referred to as Event 2 in Section 4.2), a cardinality step-
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up due to string contraction, and the dissolution of a chunk irto conventional
necklaces.

Beginning with Event 2, we observe that the necklace split is doable in time
O(logn). Since each occurrence of Event 2 is injectively associated with a
square w'w’, as a substring of z, and the total number of squares in z is
O(nlog n), handling of Event 2 takes time O(nlog? n).

Each cardinality step-up, either in the periodic or the nonperiodic regime, is
also injectively associated with a unique square w'w'. Apain, since the total
number of squares is O(nlogn), we conclude that handling of cardinality
step-ups runs in time O(nlog® n).

Finally, we consider the time required to dissolve all chunks of period p,
which are listed in thread(2p) (see Section 4.2). For each chunk (%, p, s),
the procedure generates explicit w-occurrences i+ kp, (£ =0,1,...,s—1),
and inserts each one appropriately into the necklace that originally contained
only %, at a cost of O(log n) time. Note, however, that i+kp (£ =0,1,...,5—
1) is the starting position in z of a square of period p. Again, we charge the
generation and insertion of w-occurrence i+ kp to the corresponding square
(k=0,1,...,5 — 1). Since each square is charged only once in connection
with chunk dissolution, the total number of such charges is bounded by
O(nlogn), for a total time of O(nlog? n).

We conclude with the following statement:

Theorem. The construction of the Minimal Augmented Suffix Tree for

a string of length n can be accomplished in time O(nlog?n) with space
O(nlogn).

6 References
AHU-T4 A. V. Ano, J. E. HorCrOFT AND J. D. ULLMAN, The Design
and Analysis of Computer Algorithms, Addison Wesley, Ma. (1974).

Ap-85 A. ArosToLico, The Myriad Virtues of Subword Trees, in Com-
binatorial Algorithms on Words (A. Apostolico and Z. Galil, eds.),
Springer-Verlag ASI F-12, 85-95 (1985).

AP-83 A. ArosToLICO AND F. P. PREPARATA, Optimal Off-line Detec-
tion of Repetitions in a String, Theoretical Computer Science, 22,

14



297-515 (1983).

AP-85 A. AposSTOLICO AND F.P. PREPARATA, Structural Properties of
the String Statistics Problem, Journal of Computer and System Sci-
ences, 31, 3, 394-411 (1985).

LS-62 R. C. LyNDON AND M. P. SCHUTZENBERGER, The Equation ™ =
bNeP in a Free Group, Mich. Math. Journal 9, 289-298 (1962).

Mc-76 E. M. McCREIGHT, A Space Economical Suffix Tree Construction
Algorithm, Jour. of the ACM, 25, 262-272 (1976).

15




a baababaabaababaabababababaa
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Figure 1

The string w = aba has 11 occurrences in x = abaababaabaababaabababababaa,
bot no more than 7 such occurrences are mutually disjoint.
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1 2 3 45 6 7 8 9 10 1112 13 14 1516 17 18 19 20 21
abaababaabaababaabalbasts

Figure 2.2

A partial view (all suffixes starting with “"a") of the weighted sulfix tree for the string
x = abaababaabaababaababa: the weight of each intermal node reports the number of
(possibly overlapping) occurrences in x of the substring having locus at that node.
Symbol ¥ is a special marker not appearing elsewhere in x. To achieve linear space,
the substring labeling each arc is encoded in practice by a pair of pointers to the
beginning and end of one of its occurrences in x .
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Figure 2.b

Partial view of the MAST for the string of Figure 2.a.; the weights of most intemnal nodes
now reflect the statistics without overlaps, and new nodes had to he inseried to account for
changes in such a statistics that occur while *“climbing" along some of the arcs.
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Figure 3

Salient data structures in a pebble for nonperiodic substrings: the A-stricture
collects necklaces of substring occurrences, while the P-dictionary provides
access Lo threads of overlapping occurrences relative to a same period (only
two poinlers from the o -thead are shown).
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Figure 4
Greedy extraction of necklace segments from an isolated run of occurrences.
Necklace occurrences are solid, with bold lines denoting odd occurrences. The
dashed segments represent spurious occurrences.
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Figure 5

The three basic cases of merging with chunks; solid segments represent
occurrences already in place, and the occurrences in each newcomer chunk
are dashed.
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