
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1993

On Object Semantic similarity in Heterogeneous Database On Object Semantic similarity in Heterogeneous Database

Integration Integration

Xiangning Lui

Omran A. Bukhres

Report Number:
93-045

Lui, Xiangning and Bukhres, Omran A., "On Object Semantic similarity in Heterogeneous Database
Integration" (1993). Department of Computer Science Technical Reports. Paper 1060.
https://docs.lib.purdue.edu/cstech/1060

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

On Object Semantic Similarity in
Heterogeneous Database Integration

Xiangning Lin and Omran A. Bukhres

CSD-TR-93-045
July 1993

.J

On Object Semantic Similarity in
Heterogeneous Database Integration

Xiangning Lin and Omran A. Bnkhres

Department of Computer Science
Purdue University

West Lafayette, IN 47907
e-mail: {xl, bukhres}@cs.purdue.edu

Abstract

To provide users with a uniform interface to access federated database sys

tems, local database schemas must be integrated to form a. global schema.

Before the integration, objects to be integrated need to be defined. Only se

mantically similar objects are integrated. In our paper, we define semantic

similarity via a method which considers the semantics of objects in a database

application context. The context of database is treated rigorously. We pro·

pose a measurement of semantic similarity and provide a taxonomy of semantic

similarity. The advantage of this approach is that it establishes a foundation

for formulating methods to determine which object schemas are semantically

similar and need to be integratod.

1 Introduction

With the advances in the computer network technology, applications to access

multidatabase systems in a uniform way have emerged. Users want to share data

stored on isolated databases. This need is especially urgent for large organizations

and companies. But the requirement has been hampered by three dimensions of

characteristics of multidatabase systems which are: heterogeneity! autonomy, and

distribution [OV91].

1

While earlier research focused on the distribution aspect of databases, current work

in the database community now emphasizes the heterogeneity aspect of databases

[She91]. The function of database integration is to integrate multiple databases in

order to reduce the heterogeneity among component databases and to provide a global

view of the federated database for users [8L90].

Database integration consists of system integration, schema integration, and se

mantics integration. System integration operates to hide the system heterogeneity

such as hardware, operating system, and transaction management heterogeneities

among component databases. Schema integration functions to provide a global view

of the databases by integrating local schemas if the objects are semantically similar.

Semantics integration acts to resolve semantic connicts among data stored on multiple

databases and to maintain consistency among interdependent data.

To integrate databases, many commercial and prototype federated database sys

tems [BOT86, ANR592, LR82, TLW87, BCD+93] have heen developed. Research

on federated database systems has also made major advances. Regarding system

integration, significant understanding of transaction management in multidatabase

systems has heen achieved [BGM592, DE89J. In many papers, such as [K591, DH81,

BOT86], database heterogeneity has been investigated from the viewpoint of reduc

ing schematic conflicts. Compared with literature on systemic and schematic issues

[BLN86], much less progress has been achieved on semantic issues [She91J. Not enough

research work on semantic heterogeneity has been done, although semantic integration

is one of the oldest and most difficult problems in multidatabase systems [ACM90].

Before schema integration, objects to be integrated need to be defined. With the

achievement in schema integration, as well as high interconnectlvity and acceSS to

many information sources, the primary issue in the future witl not be the efficiency of

data processing but the relevancy of the data [She9I]. We only integrate semantically

similar objects. Three tasks are involved in finding semantically similar objects: 1) re·

solving schematic heterogeneity; 2) identifying semantic similarity; and 3) recognizing

2

semantic discrepancy.

With consideration to both schemal.ic and semantic aspects of multiple databases,

a semantic equivalence theory was established in the papers [LNES9, ENS4, NSES4].

The theory concerns attribute equivalence, object equivalence, and class equivalence.

In regards to our work, semantic equivalence is a special case of semantic similarity.

[5M91] describes a rule-based approach to semantic specification that can be used to

establish semantic agreement between a database and applications. [FKN91J inves

tigated the similarity of classes which utilizes fuzzy and incomplete terminological

knowledge as well as schematic knowledge. [GPN91] introduced a mathematically

based distinction between the structural and semantic aspects of class specification.

Recently, [SK92] introduced t.he concept of semantic proximity to specify degrees

of semantic similarities among objects based on their real world semantics and used

such a concept to propose a taxonomy of semantic similarity and schematic conflicts.

Semantic proximity considered database semantics with respect to database context.

The context was described by enumeration of some examples with no precise definition

given. Additional work is needed to further clarify the nature and structure of the

context to which two objects can belong.

In comparIson to previous works, the major contributions of our paper are: 1)

We present a method to define the nature of context of database applications. An

object-oriented data model is used for the presentation. Database semantics is defined

with respect to context. 2) We define precisely semantic similarity based on database

semantics within the database context. 3) We propose a way to measure semantic

similarity between objects. 4) We give a taxonomy of semantic similarity according

to our defin i tions. The treatment of these topics is formal and generic.

Only with a strict, formal approach, can it be possible to establish an automatic

or even a semi-auLomatic way to recognize semantic similarity between objects. A

formal treatments serves several purposes:

3

• Facilitates in understanding of database and data semantics;

• Assists in federated database standardization;

• Supports federated database design;

• Aids in writing database integration tools;

• Accommodates the application verification and software reliabilitYi

• Provides a model for database integration specification.

Formalization is not a panacea and should be used properly. Its major limitation

is that real world applications are still difficult with the current technology [Mey90].

The paper is organized as follows: In section 2, we describe the notions and related

concepts for defining database semantics with respect to the context. In section 3, we

define semantic similarity according to the semantics defined in context and provide

a taxonomy of semantic similarity. We also present a model to measure semantic

similarity. In section 4, we delineate our conclusions and list some ideas for future

work.

2 Database Semantics in Context

Basic significance of databases is to store and manipulate data by computers in

an economical fashion. Data in databases is worthless if it does not mean anything

or has no lise. \j\fith respect to one database, data is manipulated according to

certain semantic rules, and users usually interpret the data according to some implicit

assumptions [Kengl]. When more than one database is considered, the rules and

assumptions from different databases may conflict. Data stored in these databases

can be interpreted in different ways by applications or by human users under different

contexts. To capture the semantics of these data, context of database must be taken

into account explicitly.

4

2.1 Modeling the Reality

Entities in the real world are modeled by data in computers to reflect the real

world. Figure 1 shows steps to map from entities in the real world to the computer

stored data. Vle regard the real world as one consisting of entities. An entity can

be concrete, such as a book; or it can be abstract, such as 1, 2, 00, big, or happy.

The first step is to map the real world to the abstract world. The abstract world

mathematically consists of sets. Every rcal world entity can be modeled as a set. The

modeling is an isomorphism. Therefore, we can use an entity to refer either to a real

world entity or to a corresponding set in the abstract world.

Ohjed'i u"",,,rphUm

Enlilies
l.mmarplUsm

l'unCliohS

",<~ 1'-".'".....>,., Model World Computer D~la World

.."'._~~~~.-
",,-

Rnl World
"'.

Abslr~cl World "'.

~~""
?~~""

Modol World

Figure 1: Graph of Worlds

Dow

Computer Datu World

In the abstract world, functions are defined on sets. This is the behavior aspect of

entities. A function f is related to an entity e if e is involved in the definition domain

of f as ,

J : ... x D x ... -) Rl X R2 X ...

or e is involved in the definition range of f as :

f : D1 x D2 x ... -) ... x D x ...

where entity e E domain D and Di , Rj are arbitrary sets.

5

In the second step, for convenient computer processing, we model the abstract

world by a model world. There is more than one way to model the abstract world by

a model world. In an object-oriented data model, the model world consists of abstract

objects which can be represented in computers. Objects with the same behaviors can

be grouped into classes.

We define the behavior of an object as follows: the behavior of an object a cor

responds to a function J in the abstract world related to the entity e which is in

correspondence to the object O. Intuitively, behaviors are those activities or associ

ations in which the object participates. A behavior can be a user application, called

external behavior, or it can be a method or an attribute, etc. publically accessible to

users, called internal behavior. The objects of the same class share the same behav

iors. Therefore behaviors are usually defined with the class. The environment of an

object 0 is the set of all behaviors of O. The context of an object 0 is the subset of

the environment consisting of behaviors which users are concerned with.

In the last step, the objects are represented as computer data in computers which

form the comp1Ller data world. The representation mapping is also isomorphic. The

model world and the computer data world become indistinguishable.

Therefore, from that point on, all our discussion is just on the model world and

the abstract world. Database syntax is defined in the model world. The semantics is

to define the mapping between the model world and the abstract world.

2.2 Database Context

Database context is the set of objects' behaviors which users are concerned with.

We can divide behaviors of context into internal and external behaviors. Internal

behaviors are defined by the system and are absolute for the outside world. They

do not depend on any exterior elements. Publically accessible components, such as

object attributes, methods, etc., all belong to the internal context. External behaviors

6

are applications defined by userS and vary from user to user.

Without context but with the same syntax, an object can have several meanings

or it can mean nothing. Context is a restriction of semantic mapping when an object

has ambiguous semantics. When an object has no prior meaning, context can provide

its semantics.

According to the location of the data being accessed, in multidatabases there are

local and global application behaviors. Local behaviors are defined to a local database.

Global behaviors are globally defined to more than one database.

A behavior which can create values of an object is called a producer of the object.

A behavior which retrieves values of an object is called a consumer of the object.

Usually, the producer of an object defines the semantics of the object. Consumers of

the object interpret the object with the semantics defined by the producer. If there

is no communication barrier between the producers and the consumers, semantic

problems will not exist at all. For multi databases, usually the consumers can not

grasp the meaning defined by the producers easily.

Very often, context plays its role in a guise of other terms, such as places, databases,

etc.. But contexts are still collections of behaviors.

Example 2.1 Location can determine semantics. For instance, in some databases,

a value of an attribute money is 150. In the context of London, when we consider

applications for London, it means 150 British pounds. In the context of New York,

it means 150 U.S. dollars. The activities in which 150 is involved imply its meaning

as either British pounds or U.S. dollars. To be more specific, the producers of the

data value 150 determine the semantics. In London, for instance, the producer of 150

assumes that it is 150 pounds and all consumers should interpret it as 150 pounds. In

computers, sometimes it is very convenient to store some rules or additional attribute

items for this purpose. The rules or attributes can imply (or restrict) the meaning of

some syntax structure [SM91].

7

Example 2.2 Database names can determine semantics. In a database DB1 , edu

cation degrees Ph.D, Master, Bachelor and High School diploma are represented as

1,2,3,4, respectively. But in another database DBz, they are represented as 4, 3,

2, 1, respectively. In the context of these different. databases, the values represent

different degrees. Although the context in this case is in the guise of the database

names, again the semantics of the data are defined by the producer of the data. The

context is actually the application behaviors.

In paper [SK92], many other instances of contexts arc discussed. They all fit our

definition of the context if viewed from the perspective of object. behaviors.

2.3 Database Syntax and Semantics

In this section we discuss the concepts of syntax and semantics of databases formally

and generically. Based on this discussion, we define semantic similarity in the next

section.

1. Syntax

Syntax is the symbols and the structures in which the symbols are put together

Lo rorm the model world objects in representations of entities in the rea] world. Com

puters process these symbols according to some rules and human beings interpret the

meaning of the results. In database systems, schemas are used to describe the syntax

of databases.

Object.s with common properties and behaviors are grouped into classes. Therefore

objects of the same class can be defined by their class description.

Definition 2.1 Syntax or class C is defined as

Se = {Class Identifier, Properties, Internal Behavior Description},

where Internal Behavior Descript ion includes all the behaviors, such as attributes

and methods of the class defined by the system, publical1y accessible to the outside

8

world. The external behavior of a class is the applications using the class defined

outside the definition of the class.

An object is an instance of a class. Syntax of an object can be defined by the object

identifier, the class it belongs to, and the instance state which retains the effect of

the behaviors.

Definition 2.2 Syntax of an object 0 is defined as

So = {Object Identifier, Class Identifier, State},

Example 2.3 A class with class identifier Employee has properties {name, photo,

birth_date, salary} and behaviors {IncreaseSalary, ShowPhoto}. An object of

class Employee can have object identifier E and state {Mark Twain, photo_image,

08/04/45, gO}. From this syntax, the semantics of gO of Mark's salary is not so

obvious here. It can be 90 thousand dollars per year, or 90 dollars per week.

2. Semantics

Semantics 1S the scientific study of the relations between syntax and what it

denotes[Wo085]. In our model introduced in the early part of this paper, seman

tics is the mapping between the conceptual world and the abstract world. For onc

database, data is manipulated according to some rules and users interpret the data

according to some implicit assumptions. These rules and implicit assumptions are

consistent within one database. When more than one database is considered, these

rules and assumptions may connict. The semantics of data has to be defined with

respect to context explicitly.

Definition 2.3 Semantics of a class C in external context cc is :

Where Se is the syntax of class C. C i is the internal context consisting of functions

corresponding to the internal behaviors of class C. The context of class C is Ce+ ai,
De is the semantic domain of class C.

9

Definition 2.4 Semantics of an object 0 in external context Cr:. is :

Seme<: So t-t (valuc,Do,CC,C i
)

\iVhere So is the synLax of O. Do is the semantic domain of 0 and value E Do. C i

is the same as that in the ddinition of class semantics.

The definition shows that the semantics of an object is related with the domain,

the corresponding value in the domain, as well as external and internal behaviors.

Example 2.1, Example 2.2, and the following example show how behaviors determine

semantics in dirrerent situations.

Example 2.4 The number 2 may be an integer or a floating number. 2/3.0 implies

2 is the floating number 2. O. But list [2] implies that 2 is an integer. Operations

/ and [] determine the semantics of 2. Without these behaviors, we can not have

the exact semantics of the object 2.

3 Semantic Similarity

In this section, we define semantic similarity between objects using database se

mantics in application context defined in the previous section. When two objects

represent the same real world entity, they will have the same semantics. When they

represent different types of real world entities, they often do not share every property.

Therefore, when two objects share some common property in a context, we say that

they are similar, and we can integrate them according to their common behaviors.

3.1 Semantic Equivalence and Semantic Similarity

When two objects represent the same real world entity, their behaviors will be the

same although the entity was modeled in different ways. In this case, the two objects

are semantically equivalent. The theory of attribute equivalence, object equivalence,

and class equivalence [LNE89, EN84, NSE84] is compatible with our semantic equiv

alence concept.

10

\¥hen two objects represent different types of real world entities, they can still

share common attributes. Under some context, we wanL to integrate similar objects

although they do not represent the same entity in the real world. For example, Car

and Truck are two different kinds of objects. But they share some common attributes.

In this case, we say they are semantically similar. We can generalize the classes of

the objects and integrate them.

Some objects do not have any common attribute to share in a context. But in

some extended conLext, they can have some properties in common. For example, if

we consider Car and Book both as items we spend money on, they can be integrated

as (item name. price). Tn this ease, the object similarity is very obviously context

related.

3.2 Measurement of the Semantic Similarity

To know the strength of semantic similarity, we define a measurement of semantic

similarity. The measurement of degrees of semantic similarity can help the decision

of database integration and the optimization of global queries.

'A'e measured semantic similarity according to the amount of the common semantic

behaviors in all behaviors of the two objects. The weight function in which the

frequencies are taken inLo account make the measurement more precise. Semantics

which are often used Lake more weight in the measurement.

Definition 3.1 For two objects 0 1 and O2 in context C, we define the strength of

semantic similarity between them as the shared behaviors in all behaviors of 0 1 and

O2 with respect to some weight function w(x) which reflects the frequency of the

usage of behaviors:

simc(OJ,O,) = Iw(Semc(O,)nj(Semc(O,))) I
Iw(Semc(O,)) I+ Iw(Semc(O,)) I

where w(x) can be obtained by statistical data or in advance by the user's estimation.

f is the mapping from semantic domain of object O2 to semantic domain of object

11

0,.

When simc(Ot,02) > 0, we say object 0 1 and O 2 are semantically similar in

context C.

Since we consider the frequency of behaviors being used, the measurement is more

accurate than those described in [SK92]. The strength of semantic similarity is useful

for optimization of data storage. For highly similar objects, the global view can be

materialized for fast access.

Example 3.1 If objects Ot and O2 are semantically equivalent, all their behaviors

are the same, i.e. sim(Oll O2) = 1. In this situation, the objects can be totally

integrated. We will give the strict definition of semantic equivalence in the next

section.

Example 3.2 If there is no common behavior among objects or their common be

haviors are never used, then the similarity between them is O. Then there is no need

to integrate the objects.

Example 3.3 A car C and a truck T have common attributes {plate...num, maker,

year}. Car C has a distinct attribute style, and truck T has a distinct attribute

tonnage. The applications accessing the common behaviors and attributes are, say,

60 % in all accesses to the behaviors and attributes of the objects. Then sim(C, T) =

0.60.

Assumption: For simplicity in ollr presentation, we assume that all behaviors of an

object are used by local and global users. Otherwise, if a behavior is not used by any

user, it can be treated as nonexistent. If a behavior is not used by global users, it is

equivalent to not being exported to global users.

12

3.3 A Taxonomy of Semantics Similarity

Figure 2 summarizes the taxonomy of semantic similarity which we will discuss in

this section. Our work is based on [5K92J. Since our definition of semantic similarity

IS based on the behavior aspects of objects within the same context, the taxonomy

IS therefore different from that presented in [5K92] where semantic similarity was

classified according to abstraction mappings and context cases.

Semantic Similarity

sim :> 0
sim = a

Semantic Rcllllivity

Semllnlic Likeness

Scmllnlic Specializalion

Semantic Equivalence

Semanlic Incompalibility

Semantic Gcncrlllizaijon

sim = I

Figure 2: A Taxonomy of Semantic Similarity

When two objects are unrelated, they have semantic incompatibility. Otherwise

they have semantic relativity if common behaviors exist in an extended database con

text. Two objects have semantic likeness if common behaviors exist in an extant

database context. If the behaviors of one object is a subset of those of another, the

semantic similarity is more specific as semantic specialization or semantic general-

13

izalion. When two objects represent the same entity in the real world sharing the

same behaviors, they have semantic equivalence.

1. Semantic Equivalence

Two objects have state semantic equivalcnce in a database context if they represent

the same entity in the real world. Therefore, their behaviors and instance states are

exactly the same. Two objects have class semantic equivalence if they represent

entities of the same class in the real world, i.e. their behaviors are the same but

the instance states may be dirrerent. By (object) semantic equivalence, we mean

either state semantic equivalence or class semantic equivalence. Object semantic

equivalence is also called object semantic isom01-phism. A formal definition of state

semantic equivalence is the following:

Definition 3.2 Object 0 1 and O2 have statc scmantic equivalence if and only if :I a

bijective mapping f between the definitions of 0 1 and O2 such that [(Od = O2 , and

:3 a bijective mapping J : SemI ---Jo Semz where Semj is the semantics of OJ 0=1,2)

such that for context CC

Some_(O,) = Seme'U(O,)) =](Scme,(O,)). (I)

When object 0 1 and Oz have state semantic equivalence, we denote it as 01:!....CeOZ.

\Vhen the external context C e is obvious, it can be omitted. In the definition, f is

the mapping between equivalent objects. j is the mapping between semantics. Equa

tion(l) means that the corresponding objects have the equivalent semantic behaviors.

Therefore all database constraints, security control, etc. are the same for the two ob

jects.

When f is the identity mapping in Definition 3.2, there is no schema heterogeneity

between 0 1 and Oz. 0 1 and O2 are identical for all contexts.

Object state semantic equivalence only exists when the objects in different databases

represent exactly the same entities in the real world. If there is any inconsistency be-

14

tween equivalent objects, either the objects should be updated to the most recent

value with consistency, or some relaxed correctness criteria should be adapted.

In reality, different objects of the same class are usually stored in different databases.

In this case, we want to integrate the database schema since they represent the same

class although different objects are stored in different databases. We define class

semantic equivalence below.

Definition 3.3 Object at and object O2 have class semantic equivalence if at is an

instance of Ct and O2 is an instance of C2 , where it is possible that, :3 0 3 which is

an instance of C2 (or Ct), such that 0 1 (or O2) is state semantic equivalent to 0 3 ,

We denote class semantic equivalence of object a. and O2 as 0 1 =: O2 • For classes

Ct and C2 , where Ot is an instance of Ct and O2 is an instance of C2 and 0 1 =O2 ,

then Ct and C2 have the same structure and behaviors. So we can integrate them by

one schema.

Example 3.4 Two synonym objects are semantically equivalent. For instance, we

have

STUDENT (Sno, Sname, Age)

STUJlEC (Sid, Snm, S_.ge).

Then we can say, an object (36, John, 20) in STUDENT is class semantic equivalent to

(21. Mary, 18) in STU..REC, and (36, John, 20) in STUDENT is state semantic equivalent

to (36, John, 20) in STU..REC since they represent the same person. State semantic

equivalence maps the objects that represent the exact same real world entity to each

other.

We can see from the example that semantically equivalent objects have the same

inner structure and behaviors. They belong to the same class in an object-oriented

data model or have the same relation schema in a relational data model. State

equivalent objects are exactly the same objects which have been stored over several

databases.

15

Theorem 3.1 Object semantic equivalence is a symmetric, transitive relation.

1. Symmetric: Al is equivalent to A2 , if and only if A2 is equivalent to A 1• I.e.

Al ~ (OT =)/h ¢::::::} A2 :::: (OT =)/h

2. Transitive: If Al is equivalent to A 2 and A 2 is equivalent to Aa l then Al is

equivalent to AJ . i.e. Al .!... (or =)A2 and A 2 ~ (or =)A J ====} Al .. (OT =)Aa

The proofs are trivial from the Definition 3.2 and Definition 3.3.

By the theorem, if we have semantically equivalent classes, we can use one schema

to represent all of the classes by integration since they are semantically equivalent to

each other.

2. Semantic Likeness

When two objects represent different entities, they might share some common

properties, therefore object semantic similarity can be defined. If the behaviors of

an object are a subset of those of another object, then we say that the latter is the

specialization of the former.

Definition 3.4 Object 0 1 is a state semantic specialization of object O2 if and only

if:3 a mapping f between the definitions of Or and O2 such that f(Od = O2 , and :3 a

mapping J: Semt -) Sem2 where Semj is the semantics of OJ 0=1,2) such that for

external context C~

Semco(O,) = Semco(J(O,)) <;; !(Semco(O,)) (2)

where J need not to be a bijection. It can be many-to-one and partial. Equation(2)

shows that semantic behaviors of one object is a subset of the other's behaviors.

16

We denote state semantic specialization of object 0 1 and O2 as 0,-<.,02 . We can

also define class semantic specialization.

Definition 3.5 Object 0 1 is a class semantic specialization of object O2 if and only

if for Ot as an instance of class Ct and O2 as an instance of class C2 , 3 0 3 in C2 (or

0 3 in Cd , such that 0 1 (or O2) is a state semantic specialization of 0 3 - We denote

class semantic equivalence as 01 -< O2 -

The anti-relation of semantic specialization is semantic generalization. The defini

tion follows.

Definition 3.6 Object 0\ is a (state) semrmtic generalization of object O2 if and

only if O2 is a (stale) semantic specialization of 0 1 . ~Ne denote (slale) semantic

generalization as (01)-s02) OJ >- O2.

Example 3.5 An object of Vehicle: (Plate#, Owner) is a semantic generaliza

tion of an object of Car: (Plate# > Owner. Maxspeed) . Vehicle is a general

ization of Car and Car is a specialization of Vehicle.

Like semantic equivalence, semantic generalization and specialization are transi

tive by their definitions.

In general, the behaviors of two objects do not have inclusive relations. They only

have some behaviors in common. Then we can define the concept of semantic likeness.

Definition 3.7 Object 0] and object O2 have semantic likeness if and only if 3

object 0 3 , such that 0 3 is a semantic generalization of both 0, and O2 • We denote

it as 0] '" O2•

Example 3.6 An object of Truck : (Plate# J Owner, Tonnage) has semanticlike

ness to an object of Car: (Plate#, Owner, Maxspeed) since we can have an

object in Vehicle (Plate#. Owner) being a semantic generalization of both a

truck and a car.

17

Theorem 3.2 Semantic likeness is symmetric and semi-transitive.

Example 3.7 The semantic likeness relation is not a transitive relation. For exam

ple, let us consider pens. Pen A and Pen B both are blue in color. Pen B and Pen

C both are large in size. Pen A and Pen B are similar in coloT. Pen B and Pen Care

similar in size. But Pen Ais small and blue, while Pen C is large and red, so they are

not similar in the context. See Figure 3.

blue pens largc pens

A(bluc,
small)

B(bluc,
largc) qred,

large)

Figure 3: A - B, B - C, but A f C

3. Semantic Discrepancy

Semantic discrepancy [She91] means there is inconsistency in the database envi

ronment. Then, either the consistency of the database should be enforced, or some

weak consistency condition should be defined and maintained.

Definition 3.8 If object 0 1 and object O2 have semantic likeness, but some consis

tency conditions for 0 1 and O2 are violated, then the objects have semantic discrep-

ancy.

Example 3.8 Two databases sLore employee information. For an employee, the

birthday should be the same in both databases. rr a birthday is not the same in

the two databases, semantic discrepancy exists. This must be resolved for database

integration.

18

4. Semantic Relativity

Sometimes, in the existing context there are no common behaviors between two

objects. But when the context is extended, common behaviors may appear.

Definition 3.9 Objecl Ot and object O2 have semantic relativity for giving context

C if and only if 3 a new context C' where G ~ G', and 0 1 and O2 have semantic

likeness in C' .

Example 3.9 Classes Car and Book are unrelated in an environment. When we

extend the context, there is an application to access prices of a car or a book. Then

Car behaves the same as Book. They are relative in the new context. We can create

a new schema

Goods: (item name, price).

for the new application and context.

5. Semantic Incompatibility

It is impossible to integrate two semantically incompatible objects. Moreover,

there is no need to integrate them. They do not share any similar properties in the

applications users are concerned with.

Definition 3.10 Two objects 0 1,02 have semantic incompatibility if they are not

semantically relative, i.e' l there is no context which userS are concerned with in which

the two objects have a semantic relativity.

Example 3.10 Classes Person and Steel have no common behavior in the context.

No applications would instill them with common properties, i.e. no applications

require extension of the database context. Then these objcets arc semantically in~

compatible.

19

4 Conclusions and Future Work

In this paper, we precisely give a very general definition of database context and

semantics in respect to context of database applications. We present a way to define

and classify object semantic similarity.

OUf work is an extension of work by Sheth et al [SK92]. In comparison, our main

contributions are:

1. Vve investigate the nature of database context which was mentioned in [SK92]

as an open problem. \".'c define it as object's behaviors which we are concerned

with. This definition encloses all the context cases mentioned in [SK92J.

2. Based on the context concept, we define semantic similarity. Semantic equiva

lence is a special case of semantic similarity.

3. VI/c proposed a measurement of semantic similarity. It is more accurate since

the frequency of behavior usage is taken into accounL.

4. V·le prescnt a taxonomy of the semantic similari ty. For each case, we describe

the integration to bc made.

Future problems remaining to be solvcd are: 1) To represent semantics and se·

mantic similarity as rules or additional attributes in databases. 2) To build an expert

system to aid the evaluation of semantic similarity.

Acknowledgments

The authors would like to thank Prof. Ahmed Elmagarmid, the head of the Inter

Base project, for his valuable discussion and comments regarding this paper. We are

very grateful for his encouragement and guidance of this research. The authors are

also very grateful to Ms. Evaggelia Pitoura for many helpful comments.

20

References

[ACM90] Guest Editors' Tntroduction to the Special Issue on Heterogenous

Databases edited by A. Elrnagarmid and C. Pu. volume 22. September

1990.

[ANRS92] M. Ansari, L. Ness, M. Rusinkiewicz, and A. Sheth. Using Flexible Trans

actions to Support Multi-System Telecommunication Applications. In

Proceedings of the 18th VLDB conference, Vancouver, Canada, August

1992.

[BCD+93] Gmean A. Bukhres, Jiansan Chen, Weimin Du, Ahmed K. Elmagarmid,

and Robert Pezzoli. InterBase: An Execution Environment [or Global

Applications over Distributed, Heterogeneous, and Autonomous Software

Systems. IEEE Compuler, August 1993. (to appear).

[BGMS92] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. Overview of mul

tidatabase transaction management. The VLDB Journal, 1(2):181-239,

October 1992.

[BLN86] C. Batini, M. Lenzerini, and S.B. Navathe. A comparative analysis of

methodologies for database schema integration. ACM Computing Surveys,

18(1)0232-364, December 1986.

[BOT86J Y. Brcilbart, P.L. Olson, and G.R. Thompson. Database Integration in

a Distributed Heterogeneous Database Systems. In Proceedings of the

2nd International Conference on Data Engineering, pages 301-310, Los

Angeles, CA, February 1986.

[DE89] W. Du and A. Elmagarmid. Quasi Serializability: a Correctness Crite

rion for Global Concurrency Control in InlerBase. In Proceedings of the

15th International Conference on Very Large Data Bases, pages 347-355,

Amsterdam, The Netherlands, August 1989.

21

[DHS4] U. Dayal and H.Y. Hwang. View Definition and Generalization for

Database Integration in a Multidatabase System. IEEE Tran. on Soft

ware Engineering, 10(6):628-644, 1984.

[ENS4] R. Elmasri and S. B. Navathe. Object integration in database design.

Proc. IEEE COMPDEC Conf., March 1984.

[FKN91] P. Fankhauser, M. Kracker, and E. Neuhold. Semantic vs. Structural Re

semblance of Classes. Semantic Issues in Multidatabase: SIGMOn Record

Special, 20(4), December 1991.

[GPN91] J. Geller, Y. Perl, and E. J. Neuhold. Structure and Semantics in OODB

Class Specifications. SIGMOD Record, 20:40-43, December 1991.

[Jac74] Nathan Jacobsoll. l:Jasic Algebra 1. W. H. Freeman and Company, 1974.

[Ken91] William Kent. The Breakdown of the Information Model in Multi

Database Systems. SIGMOD Record, 20(4):10-15, December 1991.

[KS91] ''''on Kim and Jungyun Seo. Classifying Schematic and Data Heterogene

ity in Multidatabasc Systems. Computer, 24(12):12-1S, December 1991.

[LNES9] J. /\. Larson, S. B. Navathe, and R. Elmasri. A theory of attribute equiv

alence in databases with application to schema integration. IEEE Trans

action on Software Engineering, 15(4):449-463, April 19S9.

[LR82] T. Landers and R. Rosenberg. An Overview of Multibase. In H. Schneider,

editor, Distributed Data Systems. North-Holland, 1982.

[tvley90] 13. ~v1cyer. Introduction to the Theory of P1'Ogramming Language. Prentice

Hall, 1990.

[NSES4] S. Navathe, S. Sashidhar, and T. Elmasri. Relationship merging in schema

integration. In P1'Oceedings oJ 10th VLDB, August 1984.

[OV91] M. Tamer Ozsu and Patrick Valduriez. Principles of Distributed Database

Systems. Prentice Hall, Inc., 199 I.

22

[She911

[S1<921

[SL90]

A. Sheth. Semantic Issues in Multidatabase Systems - Preface by the

Special Issue Editor. SIGMOn Record, December 1991.

A. Sheth and V. Kashyap. So Far (Schematically) yet So Close (Seman

tically). In Proceedings of the Intl. Conf, on Semantics of Interoperable

Database Systems, November 1992.

Amit P. Sheth and James A. Larson. Federated databases systems for

managing distributed, heterogeneous, and autonomous databases. ACM

Computing Surveys, pages 183-236, September 1990.

[SM91) M. Siegel and S. Madnick. A Metadata Approach to Resolving Semantic

Conflicts. In Procedings of lhe 17th Intemational Conference on Very

Large Data Bases, September 1991.

[TLW87] M. Templeton, E. Lund, and P. Ward. Pragmatics of Access Control in

Mermaid. IEEE Data Engineering Bulletin, 10(3):33-38, 1987.

[Wo085] J. \-\lum.!. WhelL's in a Link. Readings in [(now/edge Representation, pages

217-241,1985.

23

	On Object Semantic similarity in Heterogeneous Database Integration
	Report Number:
	

	tmp.1307986960.pdf.zAjcY

