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Abstract

The purpose of the Xthreads library is to provide a cheap concurrent programming
environment. The design of Xthreads library is patterned after Xinu, a small and elegant
operating system developed at Purdue University. The processes in the Xinu operating
system share a single address space and hence enjoy reduced overheads in process creation,
interprocess communication, etc. Qur approach is to map the Xinu process strudure into
the Xthreads thread structure in a Unix-like process. This report describes the design
and implementation issues of the Xthreacls library on the nCUBE2, iPSC860 and RS6000
machines and some early performance measurements of the system on these machines.

• Research supported in part by NSF award CCR-9102331, NATO award 900108 and the MalllematicaI
Sciences Section of Oak Ridge National Laboratory under contract contract DE-AC05-810R2HOO with Martin
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1 Introduction

Lightweight processes are threads of control existing within a single host process, and con­

sequently sharing a single address space. In fundamental structure, a lightweight process is

no different from a process; each has its own stack, local variables, and program CQunter.

However, as compared to a process, a lightweight process is lighter in terms of the overhead

associated with creation, context-switching, interprocess communication, and other routine

functions. This is because these primltives can be executed within a single domain. In general,

the purpose of a threads system is to provide a cheap concurrent programming environment

within a process.

In this report, we describe issues of design and implementation concerning the library

Xthreads on the nCUBE2 machine and the modifications to port Xthreads on the iPSC860

and RS6000 computers. The design of the Xthreads library is patterned after Xinu [2], a small

and elegant operating system developed at Purdue University over several years. The processes

in the Xlnu operating system share a single address space and hence enjoy reduced overheads

in process creation, interprocess communication, etc. Our approach is to map the Xlnu process

structure into the Xthread thread structure in a Unix-like process. We provide a high-level

concurrent programming interface that is simple and straightforward, but sophisticated enough

to meet the needs of a wide range of applications.

2 Design Issues

The design of our thread mechanism was strongly influenced by the need to parallelize a

process-interaction simulation system called Si [8]. The original Si system encapsulates the

SUN LWP library and enhances the capabilities of the C programming language in the form
of library primitives with sets of predefined data structures. However, the disadvantage of

using a vendor-supplied package is its lack of portability. This makes running simulations over

a network of heterogeneous machines impossible. Moreover, the Si system had to build its

scheduling discipline on top of LWP scheduling routines, which increased the overheads in Si.

Since simulations are usually time-consuming, the need for significantly reducing the execution

time of simulation programs is a critical one. Therefore, constructing a threads library with

efficiency and modularity was a major concern.
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Figure 1: Xinu vs. Xthreads

Our approach to building a threads library was to follow the Xinu system structure. The

Xinu operating system supports shared memory between processes. If we view the Xinu system

as a process in UNIX, then a process in Xinu becomes a thread in a Unix process (see Figure 1).

However, it is unnecessary to translate all layers of Xinu into a process since the organization

of an OS is more complicated than what is required. We remove some upper layers such

as the device driver layer, file system layer, etc. and focus only on the process manager,

coordination, and interprocess communication layers in Xinu. There are two advantages of

designing a threads library by patterning it after an existing operating system. First, a well­

defmed OS provides skeletons which ease the design work. Second, the layering structure in

an OS provides modularity that supports easy modifications and extensions.

The Xthreads library is currently supported at the user level. This means that all thre_~d__

operations, such as creation, synchronization, context switching, etc. require no intervention

from the operating system kernel. Therefore, a user level threads library can be more efficient

than a kernel supported threads system in terms ofoperation costs[G]. Furthermore, a user-level

threads library is easily portable to other UNIX systems. Several existing thread packages are

based on the user-level approach[3, 7]. However, user-level threads suffer performance losses, in

that when a thread invokes a system call or encounters a page fault, the whole process has to be

blocked. This effect can be attenuated (but not eliminated) by using non-blocking system calls
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1* creation and destruction *1
XTCALL xthread_create(xptr,attrp ,func.narg,argl,arg2,...);

XTCALL xthread deslroy(xptr);

1* destroy itself *1
XTCALL xthread_exilO;

1* yield control to a thread pointed to by xptr *1
XTCALL xthreadyield(xptr);

1* imd out who I am *1
XTCALL xthread seIf(*xptr);

1* find out if a thread alive or not *1
XTCALL xthread""ping(xptr);

1* event *1
XTCALL xthread_eventO;

XTCALL xthread_wait(e);
XTCALL xthread_set(e);

1* message passing *1
XTCALL xthread_send(xptr,msg)j

XTCALL xthreadJeceiveO;

Table 1: The Primitive Functions in Xtlrreads

and signals. For example, a thread calling asynchronous I/O routines is blocked in a waiting

queue and will be unblocked by the SIGIO signal when the I/O operation is completed.

3 Implementation Issues

The primitive functions ofXthreads are shown in Table 1. The type XTCALL is a predefined in­

teger type. The Xthreads routines will return XTERR which is a predefined constant -1 if un­

successful completion of the operation occurs. For example, trying to use xthread_destroyO

to kill a non-existent tlrread will return XTERR to the caller.

S tacks Allocation

For a normal program which is not using the Xtlrreads library, the program structure on

system memory usually consists of four parts: user code area, global data area, dynamlc heap
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Figure 2: The Memory Layout

area, and runtime stack, as shown in Figure 2(a). Note that these four areas may not be

contiguous in memory. The stack is used, when a function is invoked, for storing the actual

parameters, local variables, return address to the caller, etc. Since a thread has its independent

flow of control, a separate stack is required for each thread. OUf implementation strategy is

to allocate these default stacks in dynamic heap area via malloc 0 system calls during system

initialization stage. A key advantage of stack pre-allocation is the reduction of thread creation

overhead. A similar experience has been reported in [1,9,7]. The re-organized memory layout

can be found in Figure 2 (b).

Though we pre-allocated a default stack for each thread, users can still provide a different

stack area through the attr attribute structure pointer which is the second parameter of the

function xthraad_craataO (to be described later).

An alternative approach to allocating the threads stacks is to break the original stack into

several pieces via allocaO.

The Thread Table

The Xthread table, xtab, is an array with the size of NPROC entries. For each thread,

there is one entry in this thread table (see Figure 3) (also called Thread Control Block).
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The Xthread library stores all information about threads, such as thread identifier, thread

priority, thread state, registers, etc. in the thread table. he array structure yields a simple and

efficient implementation because it can reduce the number of times the function malloc() is

called. Though the table pre-allocation limits the number of threads in a program, we may use

reaUoc() or malloc() to obtain another threads table pool at run time, to increase the array size

when all entries in the array have been used. The structure of the Xthread table is declared

in the file xthreads.h and initialized in the file main.c.

rn the thread entrY,tThe field xid represents the identifier of a thread. The boundaries of

each thread's stack are stored in xlimit and xbase. The array xregs is used as a buffer to

save register values when thread context switch occurs.

The Calling Sequence on nCUBE2

To build the Xthreads library, the machine dependent portion merely exists where a thread

is being created and where a thread context switch occurs. Therefore, it is necessary to know

the calling conventions of the system on which Xthread was built. This is not only hardware

dependent but also compiler dependent. Our implementation on nCUBE2 is based on the

Parallel Software Environment (PSE) version 3.1.

The PSE's calling convention passes the first four parameters in registers (though these

parameters also have some space on stack), while the rest parameters (they are called overflow

parameters) are push onto the stack backward. The term 'backward' means that the direction

is reverse to the direction which the stack grows. In Figure 5, we show a simple function foo()

with six parameters and its corresponding assembly code. The assembly code is obtained by

using the -5 option when compiled.

Inside the assembly code from Line 2 to Line 9, the offsets of the parameters and local

variables are defined. These offsets are related to the adjusted stack pointer, which is updated

in Line 13 when just entering the function foo () and is reset back in Line 24 before returns.

From these two lines, we know that the stack grows from high address memory area to low

address memory area.

The growth of stack is depicted detailly in Figure 6. Assume the mainO function calls

the function foo(). Before transfering the control to fooO (the left part in Figure G), the

return address and parameters have to be saved on the stack according to their corresponding

positions. Note the return address is saved on the stack where the current stack pointer points

6
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3 /_ nCUBE2 Machine dependent ./
4 'define PNREGS 22 /. size of saved register area

5 .define SP 0
6 #define PC 1
7 #define RD 2

8 /* state */
9 'define XFREE 0

10 #define XBORN 1
11 #define XREADY 2
12 'define XCURR 3

13 Idefine NPROC 64

14 #define STKSIZE 4096

15 #define DEFAULT_fRIO 20

16 struct xentry {

2 typedef int WORDi

j* set the nUlllber of threads .j

l
i./

./

j. index in the xregs

j* default stack size */

j .. thread dot is free */
j. baby thread, also on ready queue */
;- thread i8 on ready queue */
/. thread i6 currently running */

/. default priority *j

./xtbreads.h1 /.

17
18
19
20
21
22
23 };

int xid;
WORD xbase;
WORD xlimit;
int xstate:
int xprio;
WORD xregs[PNREGS];

1* thread id
/. base of stack (lover bound)
j* stack upper boundary
j* thread state: XCORR, etc.
/* thread priority
/* save SP, ...•

./

./

./

./

./

./

24 typedef struct xentry * xthread_t,

25 typedef int XTCALL,
26

Figure 3: The header file xthreads.h
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Figure 4: The thread structure

to. Upon leaving the function iooO, this return address will be popped up into program

counter, while stack pointer is adjusted back to the place before calling iooO.

Thread Creation

A thread can be created by calling the function xthread_create(xtptr. aptr. procaddr.

nargs, arg1, axg2. . .. ), as shown in Figure 7. At beginning, this function calls an internal

function nell...xthreadO to find an unused (free) slot in the xtab table and then fills necessary

information to the entry. Note that we don't need to allocate a stack for each thread creation,

since each thread entry is associated with a default stack space. Therefore, due to the saving

of the system call to mallocO, the time to create a thread can be greatly reduced.

Patterned after the Xinu design for process creation, we make a pseudo call by pushing

parameters and return address on the stack to simulate a procedure call which starts a thread

execution. Therefore, when the thread starts, it behaves exactly as if it had been called from

another procedure. The only difference is that, when the thread terminates execution, it will

not be returned to the place where it was created. Instead, it returns to a designated function

userret 0 since the address of function userret 0 was pushed on the stack as the return

address when we made the pseudo call (see Line 54) . In userretO (see Figure 8), it releases

the dying thread table entry by setting the xstate field to be XFREE and calls the scheduling

function reschedO (will be discussed later) to select the next thread to run. We stored the
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1 int fooCa, b,c,d,e,f)
2 int a,b,c,d,e,f;
3 {

• int x, Yj

5 x' a + b + c, yed.e.t
7 return(x+y) j

• )

1 .file "foo.e"

2 ••• .equ 32
3 '.5 .equ 36

• y.7 .equ •
5 x., .egu •, d.3 .equ 12
7 c.2 .equ 16

• b.1 .equ 20
9 •. 0 .equ 2.

10 .code

11 _fDa:

12 .pub _foo
13 adsp #-28
i. movll' rO, a.Oeap)
15 movv r1, b.Hap)
16 mov'll' r2, c.2(sp)
17 movll' r3, d.3(sp)
1. add1l3 b.l(sp). a.Oeap) I rO
19 addv3 c.2(sp), rO, x.6(sp)
20 mulll3 e.4(sp), d.3(sp), rO
21 JD.ul1l'3 i.Seep), rO, y.7(sp)
22 addv3 y.7(sp). x.6(ep), rO

23 $b3.1:
2. adsp .2.
25 rot

2' .elftype _foo, ?function
27 .size _foo, 0-_foo

Figure 5: A function in C and its corresponding Assembly code
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Figure G: The PSE's Calling Convention on nCUBE2

starting address and stack pointer in the thread registers buffer xregs (Line 52 and 53). These

two values will he loaded into the program counter register and the stack pointer register when

the thread starts execution.

We used C library varargs to access variable arguments on stack and pushed these argu­

ments onto newly created thread's stack. In the function xthread_createO, Line 45 to Line

49 are to store the first four arguments in the registers buffer xregs, while Line 55 and 56 are

to store the overflow parameters. We show two examples in Figure 9. The stack in the left is

for the new thread running function fooO with six parameters. The stack in the right is set

up for the new thread executing function barO with only three parameters.

Schedulin.J!; in Xthreads

The current Xthreads library uses a simple scheduling policy based on priority. The schedul­

ing principle is that the highest priority thread with state ether XREADY, or XBORN, or

XCURR has the right to run. If two threads have the same highest priority, First-Come, First­

Serve rule is applied. The current running thread can run utili it is terminated or suspended.

The function reschedO, as shown in Figure 10, does the thread scheduling task. Recall

that the function userretO will mark the current running thread state to be XFREE and

10



1
2 'include <lItdio.h>
3 .include <xthroadll.h>
4 'include <varargll.h>

I; xthread_t nSll_xthrlllldO
6 {
7 xthrelld_t xptr;
a int i. xid;

•
10 for(i=O; i<IPRllC; i++) { /. check all slots ./
11 xid = nextproc;
12 i1'«++nextpJ"Oc) >= BPkOC)
13 nS:ltproc = 0;
14 xptr = I:llhbb:id];
15 i:f(:ocptr-)xstate = IFREli:)
16 return(xptr);
17 }
18 printf("XThrllads Error: run out of process table
19 IIxit(O) j

20 }

\n"),

/.-------------------------------------------------------------------
• xthread_crellte c;rsats a procBss to Btllrt running a procedure

.-------------------------------------------------------------------

./
xthread_create(xtptr,aptr,procaddr,nargll)
J:thread_t: .xtptr; /* pointe. to newly created threlld struet .,
~throlld_attr_t .aptr: ,. pointer to newly created threlld IIttr _,
int _procaddr: ,_ procedure addreBs _,
int nargs; ,_ number of argB thllt follow _,
va_dcl ,_ argtlJllonts (treated liko I\Jl _/

/_ array in the code) _/

*xtptr = ~ptr;

~ptr = new_;II;threadO: ,_ get a nell ~entry in the xtab _,
;ll;ptr->xstate = XBORB: /_ it'.e a baby; it dooon't know how to walk _,
xptr->;II;prio = DEFAULT_PRIO: ,_ de:fII11lt priority.'
insert(xptr-)~id,rdyhelld.;II;ptr->xprio);

to userret *,
,* starting address *,
/_ SP value which points

,_ stack address _,

xptr-)xregs[PC] = procll.ddr:
xptrw)xregs[SP] = Bllddr
.saddr ++ = llserret:

sllddr .. xptr-)xbase - nargs * Bizeof(VORD):

,. move args to the otack */
va_start(argB) :
saddr .. xptr->xbase - ( (nargll ) 4)? (nargll-4+1) : 0 ) _ sizeof(VORD);
for(i=O; i<=3 1:1: nargll ) 0; i++, nargs--)

,_ store paprmeters in registers _,
~ptr-)xregs[i+RO] .. _sll.ddr -- = va_arg(args, VORO):

1I0RD _Baddr;
~threlld_t cptr.~ptr;

int i:
va_list args;

{

,.
51

"53

"

21
22
23
24
26
26
27
2.
2.
'0

"32
23

24
26

";7
23,.
'0

"""..
""<7

",.

55

"57 }

for(i=O; i<nll.rge: i++) ,* Btora overflow pll.rllJlleters on the stack *,
*Baddr ++ = vll._ll.rg(arge,1l0RO);

Figure 7: The function xthread_createO
11



1 #include <proc.h>

... XFREE.;currx:t->xatate
reschedO:

2 /.-------------------------------------------------------------------
3 * userret entered when a thread exita by normal return

4 $-------------------------------------------------------------------
5 of
6 void uaerret 0
7 {

•
9

10 )

Figure 8: The function userretO
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•
ws

"
,
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stack gro
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-"

-co

_n
-"

. •
•
•

d
w,
"

,
b

0

ue.erret aelclr.,.
0

f

..
I

lowaclclr

stack gro
dlrectlo

xllmll

high adel

xbas8

xlhrea!:Lcreate(&xlel,NULL,foo,6,B,b,c,d,8,f)

XtBbIXld].xregS[SPj" Spi
xtab[xld).xregs[PC "foOi

xlhreael_craBl&{&xlel,NULL,bar,3,a,b,cl

,lab!"dJ.xregS[SPj;; sp;
xlab xld .xregs(PC "bar;

Figure 9: The Stack of Pseudo Call on nCUBE2
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invoke reschedO. Therefore, testing the thread state in Line 16 and 18 will prevent a dead

(or even suspended) thread running next. After the thread with the highest priority is selected

in Line 22, we will check whether this thread has started or not. If its state is XBORN

which means the thread is newly created, the function xtstart 0 will be invoked to load

the arguments and the thread starting function address into registers. Otherwise, ctXS\iJO is

invoked to do simple context switch.

Though we only provide a priority-based scheduling policy in Xthreads, it is possible to

build other scheduling policies on top of the default policy. For example, a round-robin time·

sliced scheduler can be implemented by using the signalO and setitimer/alarmO UNIX

functions. When the quantum which is given to the executing thread expired, a SIGALARM

signal handling routine will be invoked. This routine will call the function reschedO to

suspend the current running thread, resume the execution of the other thread, and issue a

SIGALARM request for the next quantum. Since the execution of a thread can be preempted

unwillingly, mutual exclusion is required in some critical regions. For example, the SIGALARM

signal has to be disabled when entering the function xthread_createO and restored when

returning.

Context Switching

In the Xthreads library, the only code written in assembly language is in the context switch­

ing function. This is because context switching involves registers saving and restoring, which

is hard to manipulate in high-level languages. The function xtstartO, shown in Figure 11,

is used to transfer the control to a new thread which has not he executed yet. There aTe two

input parameters of this function: the first one is the address of the current thread registers

buffer and the second one is the address of the new thread registers buffer. Recall that in

the nCUBE2 PSE environment, these two parameters will be passed via the register rO and

rl respectively. Besides, the return address has already been pushed on the current running

thread's stack before executing the function xtstartO. The processor register sp points to

this location. Therefore, we only need to save the stack pointer into the register buffer (Line

3). After saving all the non-volatile registers (from rG to £15), the new thread's stack pointer is

loaded to register sp. The new thread starting function address is loaded (in Line 7) to a tem­

porary register r4 and then is transfered to the program counter by using the jmp instruction

in Line 12. The lower part in Figure 11 shows the stacks and register buffers of two threads;

13



1 j* resched.c reached -.j
2 #include <atdio.h>
3 #include <xthreada. h>
4 #include <q.h>

5 j.--------------------------------------------------------------------
6 • resched -- find the highest priority thread to run
7 •
8 .--------------------------------------------------------------------. ./

10 int reached()
11 {
12 register struct xentry $cptr; j. pointer to old thread entry .j
13 register struct xentry .xptr: j* pointer to new thread entry *j
14 int temp:

15
15
17

18,.
'0
21

"23
24
25
25

"",.
30
31
32
33
3.
35
36 )

cptr" _currxt;
if(cptr->xstate == XCURR) U; (lastkey(rdytail) < cptr->xprio»

return;

if(cptr->xatate ... XCURR) {
cptr->xstate = XREADY;
inaert(cptr->xid,rdyhead,cptr->xprio);

)

if«temp = getlaat(rdytail» != EMPTY) {
_currxt = xptr = Ilxtab[ temp] ;
if(xptr->xstate == XBORN) {

xptr->xstate = XCURR;
xtstart(cptr->xregs,xptr->xrega);

)

else {
xptr->xstate = XCURR;
ctxav(cptr->xregs,xptr->xrega);

)
j* The OLD thread returns here when resumed. *j

)

elae
exit(l);

Figure 10: The function reschedO
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thread A is yielding control to a new thread B.

If the next running thread is not newly created, i.e, its state is not XBORN, the function

ctXS'iJ() will be invoked (see Figure 12). Similar to xtstaxt(), ctxswO first saves the stack

pointer of the current executing thread (i.e., the thread A in Figure 12) and then loads the

stack pointer of the thread to be resumed (i.e., the thread B). The tricky part is the ret

instruction in Line 7. Since the thread B's return address is saved on the stack, executing 'the

command ret causes this address being loaded into the program counter register. Therefore,

each thread will be resumed at either Line 32 in reschedO or Line 29 in xthread_yieldO,

the place immediately after calling xtstaxt 0 or ctXS'iJ().

Thread Control Transfer

Xthreads offers a primitive function xthread_yieldO (see Figure 13) which can trans­

fer the control to a designated thread, while itself is suspended and waiting for resumption.

However, the transfer cannot conflict with the scheduling policy. For example, if the priority

based scheduling is used, a thread is not allowed to yield control to another thread with lower

priority. This makes some of the code in xthread_yieldO (from Line 11 to Line 13 and Line

16 to Line 18) dependent on scheduling disciplines. The rest part xtstart() or ctXSi1() is

the same as the code in resched().

Xthreads Initialization

The Xthreads library has already provided the mainO function (Figure 14) which does the

initialization work. It first initializes system data structures such as the thread table, priority

list, etc. and then creates the first thread which will execute the xmainO function supplied

by users. The xmainO function of the application code can be treated like the mainO routine

in the C language.

Porting the Thread Library on iPSC860 and RS6000

In tllis subsection, we describe the necessary changes to port the Xthread library on

iPSC860 and RS6000 machines. Since the library is designed modularly, the modifications

is only limited in machine dependent portion, i.e., the thread creation and context switching

functions. Table 3 lists the calling conventions of these two machines. Details can be found in

[4, 5].

It is worthy to mention that the stack alignment is an important issue. For example, the

iPSC860 requires the stack to be aligned on 16-byte boundaries to keep data arrays aligned.

15



o ! xtatart(cptr->xrega,xptr->xrega): rO <-- cptr->xregs, rl <-- xptr->xregs
1 _xtstart:
2 .pub _xtstart
3 stpr #16, (rO) ! save current thread SP
4 ... saving non-volatile registers to current thread's buffer ...
5 ldsp (r1) ! load nev SP lIith the addr containing the ret addr
6 movil rl, rO use rO as index
7 movlI 4(rO), r4 r4 contains the procaddr
8 movil 20(rO), r3 put the fourth parameter (if undefined, garbage)
9 movll 16(rO), r2 third

10 movll 12(rO). rl second
11 movil 8(rO), rO first
12 jmp (r4) jump to procaddr
13 .elftype _xtstart, ?function
14 .size _xtstart, .-_xtstart
15 .data

Slack 01 Xthread A
Which 10 runnIng 1000

••
old sp •

return addr.

•·

~
.p

•••

volal1le
IstlllB An

Stack 01 Xlhread B
which starts running bar{)

•
•
•

nawsp

~.
J:regs

.p
po ~".. •
" •
" 0

" •••

Fjgure 11: The function xtstartO
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o ! ctxsv(cptr->xregsl~tr->xregg): rO <-- cptr->xregs. r1 <-- xptr->xregs
1 _ctxsv:
2 .pub _ctxsv
3 stpr #16. (rO) ! save current sp in current thread buffer
4 saving non-vloatile registere to current thread's buffer ...
5 restoring non-vloatile registers to next thread's buffer ••.
6 ldsp (rt) ! load sp from next executing thread buffer
7 ret !
8 .elftype _ctxsv, ?function
9 .size _ctXBv, .-_ctXllV

Slack III Xlhreacl A
whIch Is running 111110

Slack 01 Xthread B
whIch 18 runnIng barO

•••
new so

retum acldr.

•

~.,
•·•

volatile..~ restore
""~

~"

•••
oldap

retumacldr.

•

~.,
•••

·volatlle
IBlere

""
"'"
'"'

Figure 12: The function ctxswO

... ·jPSC860 .... RS6000
stack register register r2 register rl
return stored in register r1 stored in link register
address
input the first 12 arguments the first 8 arguments
parameters are passed in register are passed in register

rIG to r27. r3 to rIO.

Table 2: Calling conventions for iPSC860 and RS6000 machines
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register xthread_t cptr:

0/
void xthread_yield(xptr)
xthread_t xptr;
{

1 #include <xthreads. h>

2 /.---------------------------------------------------
3 • xthread.-yield - yield control to a thread
4 .---------------------------------------------------
5
6
7

8
9

10 cptr = _currxt:
11 /. priority baed scheduling dependent *j
12 if(xptr->~rio < cptr->xprio) /. fails if yield to a lov prio thread ./
13 return;

,.
15
16
17
18
19
20
21
22
23
2.
25
26
27
28
29 }

_currxt = xptr: /. update global variable: current xt pointer.j

j. the folloving is for priority basd scheduling ./
dequeue(xptr->xid):
insert(cptr->xid,rdyhead,cptr->xprio)j
cptr->xstate = XREADY:

if(xptr->xstate == XBORN) {
xptr->xstate '" XCURR;
xtstart(cptr->xregs,xptr->xregs);

}
else {

xptr->xstate = XCURR:
ctxsv(cptr->xregs,xptr->xregs):

}

Figure 13: The function xthread_yieldO

18



1 'include <stdio.h>
2 #include <proc.h>
3 #include <q.h>

4 extern int xmain();

5 struct xentry xtab[NPROC]j

6 xthread_t _currxtj

7 int nextproc .. 0;

8 struct qent q[NPROC+2]j
9 int rdyhead. rdytail j

10 main(argc, argYl
11 int argcj
12 char *argv 0 j
13 {

14 register struct xentry *xptr;
15 atruct xentry mainentry:
16 xthread_t xmainp;
17 int ij

18
19
2.
21
22
23
2.

25

2'

27

2'
2'
3.

31 }

for(i=O j i < NPROCj i++){
xptr = &xtab[i];
xptr->xid = ij
xptr->xlimit = malloc(STKSIZE);
xptr->xbase = xptr->xlimit + STKSIZE - sizaof(WORD);
xptr->xstate = XFREEj

}

rdytail = 1 + (rdyhead = nell'queue 0) j
xthread_create(&xmainp.NULL.~ain.2.argc, argv) j

_currxt = bainentryj /* main is pretended as a thread */
_currxt->xstate = XFREE;
reachedO;
/* never returna ./

Figure 14: The function mainO
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Failure to keep this alignment would raise exceptional conditions which increase the execution

time tremendously.

Because of some unknown reason, we cannot use the assembly command brl to transfer

control to a newly created thread in the RS6000 machine, while assigning the thread's starting

function address to the link register. Our current solution is to jump to a intermediate routine

in which the thread's starting function will be invoked.

Event

The Xthreads library provides two distinct coordination mechanisms to support synchro­

nization between processes. One mechanism is through events, effected by calling xthread_wajt()

and xtllread..set() primitives. A thread is suspended and put in the waiting queue if it invokes

function xthread_wajt(e) while event e has not yet occurred. Event e is said to occur when

some other thread invokes function xthread..set(e). At this point, all processes waiting for

event e are reactivated simultaneously and put back on the ready list. In Xthreads, an event

e is declared to be of type Xevent and initialized by the xthread_eventO function.

Message Passing

The other mechanism for thread synchronization is through message-passing. Messages can

be sent and received by using the functions xthread...send() and xtllread...receive(), respectively.

The function xtllread...send(xptr,msg) deposits the message msg to the thread xptr. If the

thread xptr is awaiting the arrival of this message, xtluead...send() enables it to access the

message and consequently be reactivated. The reverse function xthread...receive() returns the

message that has been sent to the thread. If no message is available, the invoking thread has

to be suspended until a message arrives. For simplicity, the size of a message is limited to one

word (Le., the size of an integer or pointer). However, since threads can access shared memory,

it is also possible to pass pointers to buffers as messages.

Software Interrupts Handling

Since Xthreads is implemented at user level, interrupts are represented by UNIX signals.

Therefore, we have to provide an interrupt handling routine for each type of signal. For exam­

ple, in order to overlap communication with communlcation, we used the iPSC860 supported

function hrecv(1ong typesel, char *buf, long len, void (*proc)()) to provide a receive handler

for receiving message from the remote processors in the iPSC860 parallel machine. Users can

use the Xthreads supported function xrecv() to get a message. Function xrecv(), first checks
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28.5 ~L-_.:.:15:::.'--,

Operations nCUBE2 iPSC860 RS6000 Sparc IPC
Tbread Crealion 8' 13 15 660
Thread Switch 30 5 6 70

Process Fork 97750 NA 1143 4200
Process Switch 90 NA 37 133

I~M=I=PS,-----__~,-----_-,--'1_---""--01

Table 3: Latency of Operations (in mlcroseconds)

whether the message has arrived or not. If there is such message, it will return the message

immediately. Otherwise, it suspends the currently running thread and calls resched() to switch

to a runnable thread. When the message does arrive, the function (*proc)() will be invoked

and will unblock the suspended thread. Note that this interrupt handling portion in Xthreads

is system dependent since different operating systems may support different signals.

4 Performance

In this section we present some early performance measurements for the tasks of thread ere·

ation and thread switching time in Xthreads on the nCUBE2, iPSC860 and RS6000 machines.

For measuring the creation plus deletion time, we created a thread which will terminates im­

mediately after starting to execute (see Figure 15). For measuring the thread switching time,

we created two threads wllich yield to one another for a large number of times and then calcu­

lated the average(see Figure 16). Note that the times presented here also include the overhead

resulting from priority-based scheduling in Xthreads. Table 4 shows the early measurements

of the operation cost in Xthreads. For comparison purpose, we have added the process forking

time and process context switching time. The technique used in measuring the process oper­

ation costs is through the use of signals. For example, A process signals another suspended

process and then suspends itself for a signal back from the recently awaken process. This

technique has been used in the early study 11.

5 Conclusions and Experiences

Our approach to designing and implementing a simple threads library, following an operat­

ing system structure, has been proved successful. Because of its simplicity, the operations of
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1 #include <stdio.h>
2 'include <time.h>

3 #include <xthreads .h>

• #define CPU_PER_US 20

5 clock_t clock(void);
6 clock_t cputime:

7 xthread_t xidfoo;

8 fooO
9 {,. }

11 xmainO
12 {

13 int i,COUNT;

1.
15

16

17
18
19
2.

21
22
23
2. }

scanf ("7.d" ,lI:i) ;
COUNT'" i;

clockO;

fore; i>-O ; i--) {
xthread_create(txidfoo,NULL,foo,O);
xthread_yield(xidfoo) ;

}

cputime = clock();
printf(IICraation Time'" 7.£ us\n".

(float)cputime/(float)COUHT/(float)CPU_PE~US):

Figure 15: Measuring the creation and destruction cost in Xthreads
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1 #include <stdio.h>
2 #include <time.h>

3 #include <xthreada. h>

5 clock_t clock(void);
6 clock_t cputime; 1* the type of clock_t is long long */

7 xthread_t xidfoo, xidmain;

8 int i;

vhile(--i>O)
xthread_yield(xidmain);

}

9 fooO
10 {
11
12
13

14 xmainO
15 {
16 int COUNT;

17 scanf("%d",lI:i)j
18 CoUllT = i;

19 xthread_self(lI:xidmain);
20 xthread_create(lI:xidfoo,NULL.foo,O):

21 clockO;

22 vhile(--i > 0) (
23 xthread_yield(xidfoo);
24 }

25 cputime D clock();

26 printf("CTXSW Time =;,f us\n",
27 (float) cputime/ (float)COUNT/ (float)CPU_PER_US) ;

28 }

Figure 16: Measuring the context switching cost in Xthreads
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thread creation, synchronization, and context switching are efficient in terms of performance.

Because of its layered design philosophy, the Xthreads library has been easily ported to three

different machines within a short period of time. Further, because of its modularity, which

unambiguously defines interfaces to the library's functional components, new scheduling dis­

ciplines are readily implemented and then incorporated into lightweight-process simulation

systems, requiring only a simple need to match interfaces.

To build a thread library on a different machine, we address the following two issues:

• the calling conventions. This involves the parameters passing method between func­

tions, the parameters positions on the stack, and the non-volatile registers which are

required to save.

• the stack alignment. For example, the iPSC860 requires the stack to be aligned on

16-byte boundaries to keep data arrays aligned. Failure to keep this alignment would

not cause system crashed, but would raise exceptional conditions which increase the

execution time tremendously.

The early measurements show that the thread context switching cost can be only about

one-third of the process switching cost and the thread creation latency can be even less than

0.1% of the cost of process fork on nCUBE2 machine.
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