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Abstract

We present a method for generating low degree Ck-continuous piecewise approximations
of arbitrary algebraic surfaces of revolution. The approximating pieces are implicitly or
parametrically defined algebraic surface patches. We show that degree d surface patches

b d ~ ... h . he'·· h· h ,. l(d+2l'-12Jcan e use lor apprOXImatIOns Wit mterpatc contmulty as Ig as..: = 8

for even d, and k = L(d+ll(~+3) 12 J for odd d. The method is based on a new technique to
construct Ck-continuous implicit algebraic spline approximations of algebraic curves with
the same degree and continuity tradeoff.

·Supported in part by NSF' grants eCR 90-00028. OMS 91-01424 and AFOSR contract 91-0276

1



1 Introduction

Algebraic curves and surfaces can be represented in an implicit form, and sometimes also in a
parametric form. The implicit forill of a real algebraic surface in IR3 is

I(x,y,z) = 0 (1)

where J is a polynomial with coefficients in IR.. The parametric form, when it exists, for a real
algebraic surface in IR.3 is

I,(s,t)
x

f«s, t)
j,(s, t)

y
I,(s, t)
j,(s, t)

(2)z
I,(s, t)

where the I. are again polynomials with coefficients in lR. The algebraic degree of an alge
Inaic curve or surface (in implicit or parametric form) is the maximum degree of any defining
polynomial.

This paper presents two main ideas to be used in fitting low degree, piecewise algebraic
surfaces (in the implicit or parametric form) to data sampled from arbitrary boundary surfaces
of solids of revolution. One is the use of degree restricted bases for the piecewise approxi
mation of the generating curve of revolution surfaces to yield approximating surfaces of the
same algebraic degree as the degree of the piecewise curves. The other new idea arises in the
development and use of C k implicit algebraic splines for degree restricted interpolation and
approximation of generating curves. The paper [8J studies a special family of implicit cubic
curves which yields only tangent continuous cubic splines. While traditional fitting schemes
are predominantly based on piecewise parametric representations[4, 7, 5, 9j, we show here that
implicit representations are also quite appropriate and in fact better equipped for restrictions
on the I>ases and the degrees of the involved polynomials.

From Bezout's theorem[l]' we realize that the intersection of two implicit surfaces of alge
braic degree d can be a curve of geometric degree O(d2). Furthermore the same theorem implies
that the intersection of two parametric surfaces of algebraic degree d can be a curve of degree
0(([4). Hence, while the potential singularities of the space curve defined by the intersection of
two implicit surfaces defined by polynomials of degree d can be as many as O(d4 ), the potential
singularities of the space curve defined by the intersection of two parametric surfaces defined
by polynomials of degree d can be as many as O(d8 )[2j. Hence keeping the degree of fitting
surfaces as low as possil>le l>enefits both the efficiency and the robustness of post processing for
modeling and display.

The rest of this paper is as follows. Section 2 characterizes the appropriate degree restricted
bases for implicit and parametric algebraic curves which would yield revolution surfaces of
the same algebraic degree as tIle degree of the curves. Section 3 characterizes C k continuous
piecewise surfaces of revolution and their construction from sampled data points. Section"
describes the development and details for constructing cubic implicit algebraic C 1 and C 2

splines for approximating generating curves of surfaces of revolution.
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Figure 1: Revolution of an Algebraic Curve along an Ellipse

2 Surfaces of Revolution

2.1 Algebraic Surfaces of Revolution

Consider an algebraic surface which is obtained by revolving an algebraic curve f(x,y) = 0 (on
the xy plane) around the y axis. (See Figure 1.) Rather than restricting ourselves to a circular
rotation, we consider a more general elliptic revolution where the rotation path is described by
an ellipse E: x2 +~ = {r(y)}2 with a > O. Here, r(y) is the x coordinate of the point (x,y)
on the curve C: f(x, y) = o.

Now, the surface that results from revolving C along E is specified as "x2 +~ = {r(y)F
subject to f(r(y),y) = 0." The equation F(x,y,z) = 0 of the surface 5, hence, becomes

F(x, y, z) = f(Jx 2 + ~, y) = 0 where F(x, y, z) is not necessarily algebraic due to introduction

of the square root. By aUowing only even-powered x's (XO, x 2 , x 4 , ••• ) in f(x,y), we can force
F(x, y, z) to be algebraic. Geometrically, this restriction, imposed on the revolved curve, that
maintains algebraicity, llleans that the curve f(x, y) = 0 is sYlllmetric to the y axis.

For quadric cnrves f(x, y) = 0, x2 is the only possible factor of terms in f. Hence, f
includes a 4-dimensional vector space VJ of polynomials over real numbers that is spanned by

the basis {X 2,y2,y, I}. In case of cubic curves f(x,y) = 0, the vector space VJ is spanned

by the basis {x2y,x2,y3,y2,y, I} with dimension 6. Quartic curves f(x,y) = 0 can be chosen
frOIll a more abundant vector space V! of dimension 9, generated by the basis {x4 , X2y2, x2y, x"J.,
y",y3,y"J.,y, I}. The bases of vector spaces Vi for higher degree curves are formulated in the
same fashion.

Each algebraic curve of degree d in Vi, revolved around an ellipse, results in an algebraic
surface of the same degree. Then we naturally come to the following question: "Is a surface,
generated by revolving around an ellipse an algebraic curve that is not in V/, algebraic at aU?"
In fact, the surface is algebraic, though the curvp.'s degree gets doubled. This doubling of the
degree arises from the single squaring required to remove the square root from odd-powered x
factors. For example, consider a cirde f(x,y) =(X-5)2+(y_5)2_1 =x"l_10x+y2_10y+49 =0
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of radius I, centered at (5,.5). This conic curve is not in V] because of the term lOx. However.
by moving lOx to the right hand side, and then squaring both sides, we can obtain a quartic
curve in V/" which generates a torus (of degree 4) by rotation. Intuitively, the squaring operation
has au effect of putting another circle of the same shape to the other side of the y axis in order
to artificially make the curve symmetric to the y axis. Any algebraic curve of degree d which
is not in Vi can be made to be in Vr by moving all terms with odd-powered x factors to one
side, and squaring both sides.

REMARK 2.1. Let C : I(x, y) = 0 be an algebraic curve oJ degree d, and E : x 2+ ~~ = {r(y)}2
be an ellipse of a rotation path. Then, the algebraic surface S : F(x, y, z) = 0, resulting from
revolving C around E, has degree d if C is symmetric around the y axis, or 2d otherwise.

A geometric interpretation to Remark 2.1 is as follows: Consider a line on the xy plane
parallel to the x axis. This line intersects with C at most d times. Now, imagine the intersection
between the line and S. When C is symmetric, the number of intersection remains the same.
However, if C is not symmetric, the number of intersection is doubled up because C, rotated
by 180 degrees, creates the same number of line-curve intersections.

It is important to understand that, the degrees of freedom, in choosing a curve f( x, y) = 0 of
degree dfrom Vi, is dim(Vj) -1 where dim(*) is the dimension of a vector space. Since all the
polynomials on a line in Vf that passes through f and 0 describe the same curve, we have one

less than dim(Vj) degrees offreedom. It is not hard to come up with the expression for dim(V/) :

{

(d+2)~ if d is even
dim(Vf) = (d':I).(d+3)

- -..- - if d is odd

In many situations as will be shown later, the curve f(x, y) = 0 is to be designed such that
it satisfies given geometric requirements. We are interested in designing piecewise curves from
given digitized data, and revolving them in a complicated manner to model some class of objects
with low degree algebraic surfaces. It will be explained below how the degrees of freedom in
piecewise algebraic curves of a given degree limit the geometric continuity between them.

EXAMPLE 2.1. Figure 2 (a) and (b) displays two quartic algebraic curves (X2+y2)2+3x2y_ y3 =
oand x 4 +x2y2 - 2x2y - xy2 +y2 = 0, respectively [12]. In Figure 3(a) and (b), shown are two
surfaces revolved around x 2 + z2 = r(y). Their degrees are 4 and 8, respectively.

2.2 Parametric Surfaces of Revolution

Now, we get to a question: "Is it also possible to find a restricted ba.<>es of rational parametric
curves that result in rational parametric surfaces of the ..;ame geometric degree after revolution
around an axis?" Consider a rational parametric curve of degree d

C( ) = ( X(t)
t Y( t)

4
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Figure 2: Two Quartic Algebraic Curves
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Figure 3: A Degree 4 and a Degree 8 Algebraic Surface
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where the degrees of the polynomials x(t), y(t), and z(t) are at most d. The surface outained

by revolving C(t) around y-axis along an ellipse E : x2 +~ = {r(y)F with a: > 0 can be
represented as F(s,t) = (X(s, t), Y(s,t), Z(s, t)), where

X(s,t)

Y(s,t)

Z(s, t) =

~x(t)

1+"w(t)
yet)

wet)

,,(1 - ,') x(t)

1+,' wet)"

First, this representation answers that the revolved surface is always rational parametric.
Then, the second question on the degree of F(s, t) must be answered. We are interested in
lowering both the algebraic degree in the polynomials in F( s, t) and the geometric degree of
F(s, t) (the maximum possible intersection of F(s, t) with a line). In construction of rational
parametric revolved surfaces, we follow the same path we did in the previous subsection. From
Remark 2.1, we know that an algebraic curve of degree d generates an algebraic surface of the
same degree only wben it is symmetric around an axis. Since every rational parametric curve
of degree d is an algebraic curve of degree d, we are led to the fact that F(s, t) is of degree d if
C(t) is symmetric around the y-axis.

A rational parametric curve is symmetric if there is a parametrization C(t) = (X(t), Y(t» =
(:\:\, ~\;\) such that XC') = -XC-t) and Y(t)= Y( -t). That ;s,

x(t)

wet)

yet)

wet)

_ x( -t)
w(-t)

y(-t)
w(-t)

(3)

(4)

The above conditions are met if either xU) is an odd function (all the terms with nonzero
coefficients are odd-powered), and y(t), w(t) are even functions (all the terms with nonzero
coefficients are even-powered), or x(t) is an even [unction, and y(t), w(t) are odd functions. It
is [lOt difficult to see that the polynomials in the second case can be converted into the first
case polynomials by multiplying t to both numerator and denominator, and vice versa. In fact,
any polynomials that satisfies the conditions (3) and (4) fall in the above two categories.

LEMMA 2.1. Let x(t), y(t), and w(t) be polynomials in t such that x(t) and w(t) are relatively
prime, and y(t) and w(t) are relatively p1ime. Then, x(t) is an odd Junction, and y(t), w(t)

. J t' 'f d I J :z:(l) - ~ d M - y(-I}me even unc lOns t an on y 1 w(tJ - - w(-l) an w(/) - w{-f).

PROOF: (==» Trivial.
C~) Let x(t) = xe(t) + X.,(t) and w(t) = tlle(t) + W.,(t), where xe(t), and tlle(t) are even
flll\cLions, and x,,(t), and w,,(t) are odd functions. From the first condition.

x(t)w( -t) +w(t)z( -t) x(t)(w,( -t) + w,( -t)) + (w,(t) + w,(t))x( -t)

= x(t)(w,(t) - w,(t)) + (w,(t) +w,(t))x(-t)
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~ wo(l)(x(t) + x( -t)) + wo(t)( -x(t) + x( -t))

2(wo(l)xo(l) - wo(t)xo(t))

O.

Hence, we(t)x",(t) - wo(t)xo(t) = O. Now, look closely at we(t) and xe(t). First, both constant
terms of we(t) and X.,(t) can not be nonzero at the same time. Or, the fact that we(t)xe(t)
contains a nonzero term and wo(t)xo(t) does not, leads to the contradiction because their
difference can not be zero, as required by the above equations. Secondly, note that XeD) = O.
This requires that the constant term of we{t) is nonzero, or wet) and xCt) would have a common
factor. Hence, weet) has a nonzero constant term and xe(t) does not.

Suppose that w,,(t) is not a zero polynomial. Then, xo(t) = ::!aXe(t), and xCi) =

xo(l) + xo(t) = xo(t)WO ~;~o <I = w(t)::\:\. So, we aTe led to x(t)wo(t) = xo(t)w(t). Exis.
tence of nonzero xe(t) and woCt) contradicts to the fact that x(t) and wet) <Lre relatively prime
because wet) f:. W.,(t). Hence, W.,(t), and xe(t) are zero, implying that wet) is an even func
tion, and x(t) is an odd function. Now, from the second condition, y(t)w( -t) - w(t)y( -t) =
wo(')(y(t) - y(-t)) =O. Since wort) t 0, y(t) - y(-t) =0, hence y(t) is an even function. 0

From now on, we assume that x(t) is an odd function, and yet) and wet) are even func

tions without loss of generality. Since a degree d curve C(t) = (X(t), Y(t)) = (~l(~~' ~~~I)) is
symmetric around y-axis, the surface made by revolving it around y-axis is a sur ace 0 ge
ometric degree d. The surface equation F(s, t) given above is represented by degree d + 2
polynomials. In the below, we show it is possible to reduce the algebraic degree in the sur
face equation to d by applying a transformation to F(s, t). Consider a new parametrization
F(u,v) = (X(u,v),Y(u,v),Z(u,v)) = (~~u.v\, ~~II,V\, :~II,V\). One transformation we use isWII,V WII," WII,V
t = )u2 + y'l. Geometrically, this transformation implies that only one half of a symmetric
curve C(t) is revolved. This removes the duplication caused by revolving the whole curve by

360 degrees, and possibly results in reduction of the algebraic degree in the surface equation.
Note that x(u,v), y(u,v), i(u,v), and 11l(U, V) are all target polynomial in u, v we do not know
yet. First, we require that w(u, v) = w(t) ::; w(Vu:.! + v'l ) which is algebraic because w(t) is an
even function. Secondly, we force that

Z(v,v)~ a(I-,')x(t) = o(v,v)
1+,' w(t) w(v,v)

Solving it for s:.!, 05
2

::; ::fg+~{::~}. z(u, v) is still undetermined, and we have to choose an ade·

qllatc polynomial for z(u, v). The minimum requirement for z(u, v) is that X( u, v) = 1';':2 ~~~~

is rational. Let x(t) = :L~=OX2i+tt:.!i+l where 21 + 1:<::; d. Now,

2, x(t)
I +8'W(t)

±Jx(vu'2 +v'l )'2 ~ z( iL, v)'2 x( Vu:.! + v'2)

QX(Vu'2 + v'2) w(u,v)

Jx( vu2 + v'2)2 z(u, v)'2
± r:..c-.:....::...-..:.,;-'----,--=..c:::..:..c..

QW(u,v)
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For the above expression to be rational, the expression inside the square root must be a perfect
square. Since x(VU2 + V2)2 - Z(U,V)2 = (u2 + v2)(L:l==oX2i+I(U2 + v2)i)2 - i(u,v?, choos
ing z(u,v) = v(L:~==OX2i+l(u2 + v2)i) (z(u,v) = u(L:~==OX2i+l(u2 + v2 )i) is another possible
symmetric choice.) results in a perfect square u2(L:~==OX2i+I (u2 +v2)i? Under this choice.

Also,

X(u, v)

Y(u,v) ~

Z(u, v)

u(L:~-o :t2i+I(U2 + v 2 )i)
QW(u,v)

y(y'u"~+-v';')
w(u,v)

/ 2 2·0(l:;-o'2HI(U +0 )')
w(u, v)

s' QX( ..,Iu2 + v2) - v(L:~-o XU+I (u2 +v2 )i)

Q:t( ..,Iu2 + v2 ) + v(L:~==o :1:2;+1 (u2 + v2 )i)

0:(Vu2+ v2 - v)(L:~-o x2;+1 (u2 + v2)i)

a(";u2 +0' + v )(l:~=o 'MI (u' +V 2 )i)
..,Iu:.! + v:.! - V

V'll2 + v2 + v

REMARK 2.2. Let C: C(t) = (:\~\, ~\~\) be a rational parametric curve of degree d where x(t)

is an odd function, andy(t), wet) are evettfunctions, and E: :t2+~ = {r(y)p be an ellipse of
a rotation path. Then, the algebraic surface S : F(s, t) = (X(s, t), Y(s, i), Z(s, t)) in the rational
parametric form, l"esulting from revolving C around E, has the geometric degree d, and can be
parameterized in the way that X(s, t), Y(5, t), and Z(,~, t) are degree d rational polynomials.

The class of the above rational parametric curves contains symmetric parametric curves
that intersect with y-axis. The set of all such curves is only a proper subset of all symmetric
parametric curves. Another interesting class of symmetric rational parametric curves is defined
as C(') = (XU), Y(i)) = (:\:\' ~(',\) such that Xii) = -X(-tJ and Y(i) = Y(_tJl It still
remains open how to specify all t~e bases of symmetric rational parametric curves of a given
degree.

3 Construction of Piecewise C k Continuous Revolved Objects

So far we have discussed about revolution of a single algebraic curve, represented in either the
implicit or the parametric forlll_ A revolved ollject with a complicated shape, however, can

l For exa.mple, a hyperbob. is in tllis class.
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f(x, y) = 0.481693x'y + 2.7788x' +0.0882735y' + 1.39039y' + 6.07771y +5.65734 = 0

Figure 4: A Nonparametric Algebraic Cubic Curve in VJ

not be modeled by rotating only one curve with a low degree. Instead, it is more appropriate
to approximate a revolved object using surface slices meeting one by one with some order of
geometric continuity. Hence, the revolved object design problem leads to a basic problem:
design of piecewise C k continuous curve segments.

In the below, we focus on design of piecewise C k continuous implicitly represented algebraic
curve segments.2 Why algebraic? It is often stated that the class of rational parametric curves
of a fixed degree is only a proper subset of the class of algebraic curves of the same degree. This
implies that algebraic curves provide more flexibility in a design process. For example, while
we use cubic curves in VJ for C1 objects, we observe that, in many cases, the curves are not
singular, hence, nonparametric. (See Figure 4.) Also, a point can be easily classified as in, out,
or on the boundary of an object that is made of several implicit algebraic curves and surfaces.

3.1 Algebraic Curves and Geometric Continuity

[n this subsection, we describe how to compute two algebraic curves that meet with Ck con
tinuity at a point. First of all, we assume the geometric information about a point p is ex
pressed in terms of a (truncated) power series C(t) of degree k, where C(t) = (x(t),y(t)) =
P+Cit +C2t2 + ... + cktk, and C(O) = p. This truncated power series approximates the local
geometric property (up to order k) of a curve about the point within a radius of convergence.
(We will discuss later how this power series is computed.) Note that given an algebraic curve
f(x, y) = 0 and a point p = (Px, py) on it, there is always a formal power series C(t) = (x( t), y( t))
about P sllch that f(C(t)) :;:::: O. In [:3], a power series about a nonsingular point of an implic
itly defined curve is obtained by repeatedly differentiating the implicit curve with its x and
y substituted by a symbolic power series, and computing the power series' coefficients whose
existence is guaranteed by the implicit function theorem. Newton's theorem, saying that every
polynomial in y with coefficient polynomials or power series in x can be factored into llnear
power series factors in y, as can be seen as a generalization of the implicit function theorem,
tells liS how to find power series about both singular and nonsingular points on an algebraic
curve [1J.

2From now on, by "algcbraic~, we mean "implicit algebraic".
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In our scheme, we go in the reverse direction: "Given a (truncated) formal power series
C(t) about a point p, find an algebraic curve f(x, y) = 0 that is faithful to C(t) at p." If the
highest degree of terms in C(t) is k, /(x, y) = 0 is considered to meet C(t) with Ck continuity
at p. Let /(x, y) = Li+ "<d aijXiyj = 0 be an algebraic curve of degree d, and'-

be a given parametric polynomial such that C(O) = (Px,Py) == p. The relations on the coeffi
cients of /(x,y) can be extracted by repeatedly differentiating [(C(t)) up to order k, making
all the derivatives vanish at t = O. The first few partial derivatives are:

f(C(t)) 1,=0

df( ~,u)) 1,=0

f(p) = 0

fx(p)x'(O) + f,(p)y'(O)

clxfx(p) +c"f,(p) = 0
, 2 I I

fxx(p)x (0) +2f.,x (O)y (0) +
, '2 " "f,,(p)y (0) + fx(p)x (0) + f,(p)y (0)

c?x/xx(p) +2CtxCIy/xy(P) +
c;,f,,(p) +c2xfx(p) +c"f,(p) = 0

For each derivative of I(C(t)), a linear equation in terms of the unknown coefficients aij of f
is generated, hence, any solution of the homogeneons linear system of k + I eqnations becomes
coefficients of algebraic curves of degree d meeting C( t) wich C k continuity. Since an algebraic
curve segment needs to satisfy the C k conditions at both end points, 2k +2 linear constraints
must be satisfied. Hence, in order for an algebraic curve of degree d to exist, d must be chosen
such that (d~2) - 1 ~ 2k +2, that is, the number of the degrees of freedom in coefficients of the
curve is greater than or equal to the constraints for Ck continuity. Garrity and Warren [6J also
discussed that the curve f(x,y) = 0 and C(t) meet with ek continuity if and only if I(C(t))
and all of its derivatives up to order k vanish at t = O.

3.2 Computation of a Truncated Power Series

A truncated power series plays an essential role in computing piecewise C k continuous algebraic
curves. Hence, the question on how to get a truncated power series, in fact, a parametric curve
of degree k, about a point, must be answered. One possible method is to generate a parametric
curve interactively. For instance, a good user interface can be constructed where, say, a parabola
for C2 continuity is designed interactively and intuitively by using a mouse or typing in explicit
values of the tangent and the curvature.

The finite difference method, as used when we make lip our examples, is well suited when a
curve to be rotated is given with regard to a sequence of digitized points. The digitized points
near a point are a good source from which geometric nature can be extracted. There are various
forms of divided-difference methods that extract geometric natures around a point from a given

10



list of points [4]' In our case, we choose a parabola to locally approximate the points about a
point, and take out tangential information from the parabola. Consider a sequence of points
... ,Pi-2,Pi-bPi,Pi+hPi+2,· _. and an imaginary power series C(t) from which, we assume, the
digitized points near Pi come, and whose parameter value is t = 0 for Pi. Then, the tangent
vector of C( t) at t = 0 can be approximated by the approximation:

I G'i 1 - G';
C (0) '" d' ( ) (Pi+l - Pi) + d'-( )(Pi - Pi-.)

1St Pi,Pi+1 I:>L Pi-I,Pi

where G'i = d' t( _dist<r l~i _ _) and dist(*, *) is the distance between two points.
IS P"P'+1 + 15 PI_lIP,

Repeatedly applying this approximation formula, we introduce a divided-difference:

, {PI ifj=O
.b,.J p1 = l( ur ( ) 1-171 ( )) , '

J dist(PI,Pl+d PI+1 - PI + dist(PI_1>P!l PI - PI-l If J > 0

Using this divide-difference operator, a truncated power series is represented as Ci( t) = t:J.0p; +
.b,.1 Pit +62pit2 +.. -+ ,1.kpitk. Note that the geometric nature, stored in the coefficients of the
lJower series is extracted from a sequence of 2k +1 neighboring points, centered at the junction
point. This locality in the construction of a power series enables an interactive local modeting
operation.

EXAMPLE 3.1. In Figure 5, two sets of digitized points are illustrated. (a) shows three lists of
points that model engine parts3 , and (b) is a sequence of points that models a goblet. Each
point sequence is displayed with truncated power series of order two at junction points.

3.3 Families of Algebraic Curves f(x,y)

In order to compute each curve segment fi(x,y) = 0 that interplates two truncated power
series Ci(t) and Ci+l(t) at two end points Pi and P'+1, respectively, we construct a linear
system MIX = 0 where the unknowns are coefficients of fi(x, y) = O. The linear system is
made of2(k + 1) equations that are generated for both truncated power series. Note that the
rank of MI must be less than the number of unknowns for a nontrivial solution to exist. Any
nontrivial solution represents an algebraic curve that meets Ci(t) and Ci+l(t) at IJj and Pi+1.
respectively, with C k continuity.

In CWie all possible terms of degree dare llsed as a basis of fi(x, y) = 0, then there are (di2)
unknowns, and hence (dt2) - 1 degrees of freedom. For example, a cubic algebraic curve has
ten unknown coefficients, hence, nine degrees of freedom. Since 8( = 2(3 + 1)) linear equations
(some of them might be dependent on each other) needs to be satisfied for C3 continuity, cubic
piecewise algebraic curves can approximate a sequence of digitized points with C3 continuity (at
least, algebraically). However, if we choose a curve from Vi, we have fewer degrees of freedom

(hIe to restriction in the basis. There are only dim(Vf) - 1 degrees offreedom for degree d, and
this number must not be less than 2(1.: + 2), the maximum possible rank for a homogeneous
linear system that needs to be satisfied for order k continuity. For instance, for C 1 continuity,
at least, cubic cl\Tves are necessary, while order 2 continuity requires quartic curves.

JThis data is originated from the 3D scanned engine data from NASA.
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Figure 5: Digitized Engine and Goblet with Truncated Power Series

Figure 6 (a) displays piecewise C' approximation with cubic algebraic curves in the restricted
basis Vi- Note that a symmetric cubic curve in VJ can have a tangent line parallel to x-axis only
at the points on y-axis. Hence, the order of geometric continuity at the two junction points
on the cowls around which the curve segments make vertical turnabouts. With symmetric
quartic algebraic curves in VJ, it is possible to approximate the point data with C2 continuity
everywhere. (See Figure G(b).) For the goblet data, cubic curves in Vi, again, successfully
model the data with Cl continuity in Figure 7 (a). Figure 7 (b) shows a C 2 approximation of
the same data with cubic curves in the general basis, which, hence, might not be symmetric
around y-axis.

Now, when there are more degrees of freedom than the number of linear constraints, aU
the solutions in the null space of M I algebraically interpolate two truncated power series with
C k continuity. However, it must be noted that every algebraic curve in the null space is not
useful in the point of geometric modeling. A curve may not connect two end points, or could
have a self-intersection along the segment. A heuristics to pick a nice curve segment is to
generate a sequence of points between the end points that approximate a curve segment, and
then, apply the least-squares approximation method to the points. In case of cubic algebraic
curves, it is possible to state a condition on coefficients of cubic curves, in either the general
or the restricted basis, that guarantees a smooth single curve segment inside a given control
triangle as will be discussed in Section 4. In the example in Figure 7, control triangles are drawn
together with curve segments where each curve segment was generated such that it subdivides
its corresponding control triangle into a positive and a negative subspaces, and there exists only
one smooth curve segment inside the control triangle. With help of the ability of subdivision
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Figure 7: Ct and C2 Cubic Algebraic Curves
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(a) (b)

Figure 8: C t Cubic and C2 Quartic Algebraic Surface Models

of control triangles, the point classification operation for objects bounded by algebraic curves,
and also, their rotated objects, is facilitated.

3.4 Piecewise Ck Continuous Revolv~d Objects

Once algebraic curve segments are computed, their revolved objects are easily obtained. C·
approx.imation (except the two turnabout curves on the cowls) with cubic algebraic surfaces
is shown in Figure 8 (a). Quartic algebraic surfaces approximate the same object well with
C 2 continuity in Figure 8 (b). C 1 cubic algebraic goblet is illustrated in Figure 9(a). The C2

goblet in Figure 9(b) is obtained by revolving the cubic curves in Figure 7 (b), and is made of
degree 6 algebraic surfaces.

4 Cubic Algebraic Splines

In this section, we focus on implicitly defined cubic algebraic curves, and give conditions on
the coefficients of cubic algebraic curves that guarantee nice properties inside regions l>ounded
by triangles. These conditions are bases upon which robust C' cubic algebraic curves in the
restricted basis and C2 cubic algebraic curves in the general basis are constructed.

It must be noted that an algebraic spline that satisfies the algebraic constraints, as specified
in Subsection 3.1, not necessarily possesses geometrically nice properties. It may be possible for
an algebraic spline to have singular points between the end points or the spline may not connect
the end points. Hence, extra efforts should be made to get an algebraic spine that is effeetit,e
in the geometric modeling sense as well as to enforce continuity conditions. There are only a
few works on cubic algebraic splines. Paluszny and Patterson [8] considered a special family of
implicit cubic curves which yields only tangent continuous cubic splines. Our method differs
in that tangents and curvatures are specified and controlled explicitly and algebraic splines are
not limited to be convex inside bounding triangles.

14
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Figure 9: C 1 Cubic and C2 Sextic Algebraic Surface Models

4.1 Algebraic Splines in Bernstein Basis

Barycentric coordinates in the plane are defined with respect to a nondegenerate triangle T
having three vertices POQ , PnO , POn ' Any point P in the plane is uniquely expressed by the
relation P = uPnO +vPon. + (1 - u - v)Poo• where (U,11) is called the barycentric coordinate of
P. The triangle vertices POQ , PnO ' and Pon. have barycentric coordinates (0,0), (1,0). and (0, 1),
respectively. For more introduction to barycentric coordinates, see [,5]. Given a triangle T, a lJi·
va;riate polynomial can be expressed using the Bernstein basis: Bd(u, 11) = Li+i<d W;jBt·( u, 11),
where BtCu, 11) = (,.~)uivj(1 - u - 11 )d-i-i . -

Sederherg [10] proposed to view an algebraic curve as the intersection of the explicit surface
w = Bd(u,v) with the plane w = 0, hoping to associate geometric meanings to the coeffi
cients of the polynomial. Especially, the coefficients in the polynomial are considered as the
w coordinates of the control net of a triangular Bernstein-Bezier surface patch, where the co
efficient Wij corresponds to the control point bij = (*, *) in the Bernstein basis. There is an
one-to-one affine map between points in the power basis and in the Bernstein basis. Given the

three vertices Poo ::: ( Poo", ), P"o ::: (p"o", ), and Po" ::: ( Po"", ), the map is described
POOy P"Oy POny

by ( X ) = M (U) + (POO'" ), where M = (PliOX - POOx POn", - POD", ). It can be easily
y v POOy P"Oy - POOy POny - Paoy

shown that there is also a linear mapping between the coefficients of the two equivalent bivariate
polynomials, one in the power basis, and the other in the Bernstein basis.

As discussed before, Ck continuity of f(x, y) = 0 at a point P is achieved by making all the
derivatives of f(C(t)) up to order k are zero at t = O. Since the affine mapping between the
Euclidean coordinates and the barycentric coordinates is diffeomorphic, C k continuity can be
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obtained by assuring that all the derivatives of Brl(GB(t)) up to order vanish at t = 0 where
Bd ( 11" v) = 0 and Ga(t) are algebraic and parametric curves in the Bernstein basis corresponding
to f(x,y) = 0 and C(t), respectively. From now on, we assume algebraic curves are described
·111 the Bernstein basis.

4.2 Interpolation with Cubic Algebraic Curves

A general <I cubic algebraic curve in the Bernstein basis is defined as B 3 ( 11" v)
L:i+i9 Wii B?i(11" v) = O. The coefficients wii is with respect to selection of a control trian
gle T = (POO,P30,P03) in the power basis. There are ten coefficients, and since dividing the
equation out by a nonzero number would not change the algebraic curve, we see that there are
nine degrees of freedom. While a restricted cubic algebraic curve in the Bernstein basis has
the same form, there are extra linear dependency between Wij'S where there are five degrees
of freedom left. Hence, three degrees of freedom are left after C 2 interpolation with general
cubic algebraic curves, and one for C' interpolation with restricted cubics.s In this section, we
describe our idea with regard to C 2 continuous general algebraic cubics. Computation of C 1

continuous restricted algebraic cubic curves can be done along the same line.
Let CBo(t) and Cal (t) be two truncated power series of degree two that describe geometric

properties at two points 11"0 and 1I"1l respectively. One of the most important goals we try to
reach is to find a triangle within which a single connected smooth piece of a cubic algebraic
curve is confined such that the curve piece subdivides the triangle into a positive and a negative
space. (See Figure 4.2.) For the sake of preciseness, we give the following definition:

DEFINITION 4.1. Let T be a triangle made of three vertices Poo , PnO , Pan. Consider a smooth
curve segment on Bn(11" v) = 0 whose two end points are on the two sides POOPnO and POOPOn •

The curve segment is called an effective algebraic spline associated with the bounding triangle
T if the curve segment intersects exactly once a line segment connecting Poo and any point on
the side PnOPOn'

The restriction imposed in the definition of an effective spline lets broken curve segments,
loops, unwanted extra pieces and extraneous wiggles removed from our consideration, and also
forces a spline curve segment subdivide a bounding triangle into a positive and a negative space.
The ability of finding an effective spline with a proper bounding triangle is essential in that
it allows easy implementations of many geometric operations possible. A point can be easily
classified as in, out, or on the boundary of an object that is made of several algebraic splines.
This point-classification operation is a primitive operation to high level geometric operations.
Also, an effective spline curve call be graphed more efficiently.

Now, we attempt to confine a spline curve segment that connects 11"0 and "1 within the
triangle T. C 2 interpolation of the power series with a cubic polynomial generates six con
strains, leaving three degrees of freedom. After solving the homogeneous linear system with
ten unknowns, and six linearly independent constraints, the ten coefficients can be expressed in
terms of linear functions in four free parameters AO, )'1, A2, and A;). We have to decide if some

~ We use the adjectives general and rcil/rictcd to distinguish cubic algebraic curves in the general and the
resLricted bases, respectively.

5Counting shows e J interpolation is possible with general cubics. However, we limit ourselves to e2 to be
able to choose e2 algebraic curves from abundant families of cubics.
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Figure 10: An Effective Spline Curve

appropriate values of Ai can be found such that the intersection of the triangular Bernstein
Bezier patch defined by the computed coefficients with the w = a plane results in a single piece
within T. This is true if we are able to find some values for >'0 • ..\10 ..\2. and >'3 such that the
portion of the triangular patch corresponding to T cut through T exactly once. Definition 4.1
is translated into the following lemma:

LEM MA 4.1. Let ten coefficients Wi; of B3
( tt, v) be expressed linearly in tenns oj Ai, i = 0, 1, 2, 3

after C2 interpolation of CHo(t) and CBI(t) at 11"0 and 11'1, respectively, with respect to a control
triangle T. Then, there exists an effective cubic algebraic spline associated with T if and

only if there exists some Ai, i = 0,1,2,3 such that the univariate cubic polynomial G(x) ~f

8 3«1 - a)x, ax) = 93(a )xJ + 9Aa)x2 +91 (o:)x +90(a) has one and only one root in 0 S x :S 1
fo,- all" E [0,11.

Proof: Define L",(x):::: «I-a)x,o:x), 0:S x:s 1 for some 0:S 0::s 1. L", is the line segment
connecting two points (0,0) and (1 - a, a). Now, the intersection of La(x) with a curve segment
on 8 3(u,v) = 0 can be found by solving the cubic equation B3(I_ Ct)x, ax) = 0 in x. Hence,
the curve segment intersects L",(x) exactly once if and only if B3 «I_ Ct)x,Ctx) = 0 has one
and only one root in 0 :S x :S 1. This proves the lemma. 0

4.3 Negativity and Nonpositivity Conditions of a Polynomial

We briefly discuss mathematics on the negativity and nonpositivity conditions on the coefficients
of a univariate polynomial in the closed interval [0,1]. This classical theorem [11] plays an
important role in the proof of the forthcoming lemmas :

TH EOREM 4.1. (DESCARTES' RULE OF SIGNS) The number of positive f'eal roots (multiplicities
counted) of a polynomial with real coefficients, I(x) = anxn+an-l x,,-l +...+a1 x +ao, is never
gl'ealef' than the number of sign changes in the sequence of its coefficients a", a"_h"', al, ao,
and, if less, then always by an even numbel'.

Descartes' rule of signs indicates an upper limit to the number of positive real roots while the
number of sign variations is the exact number of positive real roots in case it is zero or one.
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Note that an upper bound to the number of negative real roots of f(x) can be obtained by
replacing f(x) by f( -x), and zero is a real root just when ao = O.

Now, we enumerate the lemmas on the negativity and non positivity of a univariate poly
nomial in the unit interval. These lemmas are used in computing all the values, if any, of Ai,
i:::: 0,1,2,3, that gives effective splines with respect to T. Their proofs aTe given in the full
paper.

LEMMA 4.2. A linear polynomial f(x) :::: alx + ao is negative for all x in the closed interval
[0,1] if and anly if (ao < 0) and (ao +a, < 0).

LEMMA 4.3. A quadratic polynomial f(x):::: a2x2 + aIX + ao is negative for all x in the closed
interval [0, 1J if and only if either of the followings is true:

• (bo < 0) and (b, ~ 0) and (b2 < 0)

• (bo < 0) and (b, > 0) and (b2 < 0) and (4bob, - bl > 0)

LEMMA 4.4. A cubic polynomial lex) = a3x3 + U2X2 + alx + ao is negative for all x in the
closed internal [0, 1J if and only if either of the followings is true:

• (bo < 0) and (b, ~ 0) and (b, ~ 0) and (b, < 0)

• (bo < 0) and (b, < 0) and (b, > 0) and (b, < 0) and (bi - 3b,b, ~ 0)

• (bo < 0) and (b3 < 0) and (bI > 0 or b2 > 0) and (bI > 0 or b~ - :3b3b, > 0) and
(-27bob~ + 9b]b2b3 - 2b~ > 0) and (27b6b~ - 18bobI b2b3 + 4brb3 + 4bob~ - b~b~ > 0)

Lemma 4.2, 4.3, and 4.4 for the negativity hM the following companion lemmas for the
nonpositivity whose proofs are omitted:

LEMMA 4.5. A linear polynomial f(x) = U1X +ao is nonpositive for all x in the closed interval
[0, IJ if and only if (ao ::; 0) and (ao + al ::; 0).

LEMMA 4.6. A quadratic polynomial f(x) = a2x2 + a,x + ao is nonpositive for all x in the
closed interval [0, I] if and only if either of the followings is true:

• (bo ~ 0) and (b , ~ 0) and (b 2 ~ 0)

• (bo < 0) and (b, > 0) and (b, < 0) and (4bob, - bl ~ 0)

• (bo < 0) and (b, > 0) and (b2 = 0) and (b , + bo ~ 0)

where b2 ::::; ao, bl = 2ao +at, and bo = ao +at + U2.

LEM M A 4.7. A cubic polynomial f(x) = a3x3 +a2x2 + at x + ao is nonpositive for all x in the
closed intenml [0, 1] if and only if either of the followings is true:
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• (boO; 0) ,nd (b, ,; 0) ,nd (b, ,; 0) ,nd (b3 ,; 0)

• (boO; 0) "d (b, < 0) ,nd (b, > 0) ,nd (b3 < 0) ,nd (b1- 3b3b, ,; 0)

• (bo :::; 0) and (b3 < 0) and (hI > 0 or b2 > 0) and (bi > 0 or b~ - 3b3b1 > 0) and
(-27bob5 + 9b1b2b3 - 2b~ > 0) and (2766b5 - 18bob1b2b3 + 4b?b3 + 4bob~ - b~b~ 2: 0)

• (bo < 0) ,nd (b, > 0) ,nd (b2 < 0) 'nd (b, = 0) ,nd (4bob2 - bl ~ 0)

Note that by flipping the signs of coefficients of a polynomial, its positivity and nonnegativity
conditions are easily derived from Lemma 4.2,4.3,4.4,4.5,4.6, and 4.7.

4.4 Computation of Effective Cubic Algebraic Spline Curves

Back to Lemma 4.1, consider the univariate polynomial G(x) = 93(O)X3 +92(0:)X2 +91(0')X +
90(0). Substitution shows that 9j(a) is a polynomial of degree i in a involving the coefficients
Wij_ Especially, 9o(n) is woo which must not be zero or the line Lo(t) in the proof of Lemma 4.1
would have two intersections with the Bernstein-Bezier patch. Hence, we can divide B3 (u,v)
by Woo without loss of generality. GeometricaUy, this means that we assign one to the weight,
corresponding to Poo , of a control net of a Bernstein-Bezier patch, and algebraically, this means
that we remove the redundancy among the ten coefficients of Byu, v) = o.

The ten coefficients of B3(u, v) can be expressed linearly in terms of AO, At, Az. and A3 by
computing the four dimensional nullspace of a homogeneous linear system for CZ interpolation.
By transforming a basis of the nullspace, it is possible to have Woo = AO. Replacing AO by one
results in the coefficients Wij, linearly expressed in AI, A2, and A3 only. Now,

H(x) h3 (,,)x' + h2(,,)x' + h,(,,)x + hoe,,)

dor (x + 1)3c(_I_)
x+l

90(")x' + (390(") + 9'("))x' + (390(") + 29'(") + 9,("))X

+90(") + 9'(") + 92(") + 9'(")

where h:](a) = Woo = 1, h2(a) = (3WOl - 3wlO)a + 3WIO, h1(a) = (3W20 - 6Wll + 3wo2)a2 +
(Gwll - 6W20)a: +3wzo, and !lo( Ct) = ( -W30 + 3w21 - 3W12 +W03)Ct 3 +(3W30 - GW2l + 3W12)a:z +
(3W21 - 3w3o)a + W:IO·

First of all, C(O) = 90(") = h3 (,,) = 1 > O. Secondly, C(l) =90(")+9,(")+92(")+93(") =
!lo(a) must be negative in order fOT G(x) to have exactly one root between zero and one. Third,
the positive real roots of H(x) are the real roots of G(x) between zero and one. Hence, G(x)
has one and only one root in [0,1] if and only if there exists exactly one positive real root of
H(x).

Consider the discriminant of the first derivative H'(x) = 3h3(Ct)X2 + 2h2(a:)x + !tI (a:).
Since h3 (a) > O. H(x) has only one positive real root if it is nonpositive : 4hz(a:)Z
12h3 (a:)h I(a) ::; O. In case 4h2(a)Z - 12h:)(a)h1(a) > 0, H(x) has the maximum value at

-11](0')-/"2(0')2 3!L 3 (O')h, (a) I' h . . .
X maz = 31'J(a) • t is not ard to see that Xmnz IS POSitive when and only
when hAa) < 0 and h1(a) > O. Hence, when hz(a) 2: 0 or hl(a)::; 0, H(x) has one positive
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real root. (This case is when there is one sign change in the sequence of H(x),s coefficients.
By the Descartes' rule of sign, there exist exactly one positive real root.) When hz(o:) < a and
h1(o:) > 0, we require that H(xmllx ) < o. (This case is when there are three sign changes in the
sequence of H(x)'s coefficients. By the Descartes' rule of sign, one or three roots are possible,
and we make sure that there exists only one positive real root by this requirement.) Now,

hence, 2(h~ - 3hlh3h/h~ - 3ht h3 < -27hoh5 +9ht hzh3 - 2h~. First of all, the right-hand side

must be positive: -27hoh5 + 9ht h2h3 - 2h~ > O. Since both sides are positive, they can be
cl '(;'. 2 3 /3 /'/')squared, an we get 27h3 27hoh3 - 18hoh,h2h3 +4ht h3 + 4ho ~;'. - ~t t;'. > O.

So, there are three cases:

• [CASE 1] h3(a) = 1 > 0 and h,(a)' - 3h3(a)h,(a) ,,0 ond ho(a) < 0

• [CASE 2] h3(a) = 1 > 0 and (h,(a) " 0 or h,(a) ,,0) and ho(a) < 0

• [CASE 3] h3 (o:) = 1 > a and h2(o:) < a and h1(o:) > a and ho(o:) < a and
h,(a)' - 3h3 (a)h,(a) > 0 and

(-2711 0 (a)h3(a)' +9h,(a)h,(a)h3(a) - 2h,(a)3) > 0 and
(2711 0(a)'h3(a)' - 18ho(a)h,(a)h,(a)h3(a) + 4h,(a)3h3(a)
+ 4ho(a)h,(a)3 - h,(a)'h,(a)') > 0

Now, we are led to the following theorem:

THEOREM 4.2. Let ten coefficients Wij of B3(U, v) be expressed linearly in terms of Ai, i = 1,2,3
with Woo = 1 after C 2 interpolation ofCBo(t) and CB l (t) at 1To and 1Tl, respectively, with respect
to a control triangle T. Then, there exists an effective cubic algebraic spline associated with
T if and only if there exists some '\i, i = 1,2,3 such that, for all 0: E [0,1], either [CASE 1],
[CASE 2], or [CASE 3] is satisfied.

Note that Theorem 4.2 requires that either [CASE 1], [CASE2], or [CASE 3] is satisfied
f01' each 0: in the interval [0, IJ. For the sake of simple implementation, we use a bit stronger
condition that either [CASE 1] is satisfied for all C\' E [O,IJ or [CASE 2] is satisfied for all
0: E [0, I J. hi ( 0) is a polynomial in 0 of degree 3 - i whose coefficients are linear functions of )'1,

'\Z, '\3, and applying the lemmas in the previous subsection to [CASE 1] and [CASE 2] generates
inequality constraints whose expressions are linear, quadratic, cubic, and quartic in '\1, >'2, >'3.
Hence, all the feasible solutions ()'11 ).2, '\3) of those constraints, if they exist at all, comprise
a union of subspaces (could be null) in the three dimensional AI).2).3-space whose boundaries
aTe linear, quadratic, cubic, or quartic algebraic surfaces. Choosing an effective cubic algebraic
spline associated with a bounding triangle becomes equivalent to finding a feasible solution of
the inequality constraints. Although this new condition find some subset of the whole subspace
implied by the above corollary, our experiment lets us feel that the stronger condition is good
enough to find effective algebraic splines.

EXAMPLE 4.1. In Figure ll(a), three instance cubic algebraic curves that C 2 interpolate
two truncated power series Co(t) = (1 + t,e) and Ct(t) = (t,l - 2t2

) with respect to
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Figure 11: C2 Continuous Cubic Algebraic Spline Curves

T = ((0.0, -1.0), (1.5, 0.5), (0.0, 1.5»). The three curves chosen from the four dimensional space
are fo(x,y) = 0.757333x3 - 1.19933x2y - 0.768667x2 + 0.534667xy2 + 0.2xy - 0.734667x +
0.004y3 - 0.246y' - 0.504y +0.746, ft(x, y) = 4.08x3 - 7.37x'y - 5.99x' +0.06xy' +0.2xy
0.26x - 1.42y3 - 1.67y' +0.92y +2.17, and f,(x, y) = 0.421333x3 - 0.575333x'y - 0.240667x' +
0.582667xy2+ 0.2xy - O. 782667x +0.148y3 - 0.102y2 - 0.648y +0.602. As C 2 continuity implies,
f;(Cj(t) = O(t3 ), i = 0,1,2, j = 0,1. Figure 11(b) illustrates how a cubic Bernstein surface
patch is intersected with a bounding triangles to produce an effective cubic algebraic spline.

5 Conclusion

We have presented a comprehensive characterization of the appropriate degree restricted bases
for implicit and parametric generating curves which would yield revolution surfaces of the
same algebraic degree as the degree of the curves. Parametric spline curves with restricted
bases can be constructed by adopting the weU known techniques [4]' We presented details for
constructing cubic implicit algebraic C1 and C2 spline curves. We are currently pursuing a
natural generalization to higher degree implicit algebraic spline curves to achieve higher orders
of continuity.
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