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Abstract

To solve the real nonsingular linear system Ax = b (1) on parallel and vector machines, we
consider multisplitting methods, m-step preconditioners and m-step additive preconditioners,
generalizing some of the results and methods developed in previous related works. In particular
we generalize the method and the corresponding convergence results in [14], and determine suit
able relaxed m-step preconditioners ([1], [6]) treating also the problem of minimizing the related
condition number, with respect to the relaxation (extrapolation) parameter involved, in various
cases. We also generalize the theory for determining suitable m-step additive preconditioners [2]
and finally we solve completely the problem of determining the optimum SOR-additive iterative
method [2] for 2-cyclic positive definite matrices.
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successive overrelaxation (SOR) method.
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1 Introduction

For solving the large nonsingular linear system of equations

Ax = b, (1.1 )

where A E /Rn,n, b E /Rn , parallel iterative methods, called multisplitting methods, were introduced
in [12J. According to [12], given a multisplitting of A

k = l(1)p, (1.2)

the corresponding multisplitting method is defined by

p p

x(m+l) = L DkM;;lNkX(m) +L DkM;;lb, m = 0,1,2, ... ,
k=l k=l

p

where Dk is a diagonal matrix, with Dk ~ 0, k = l(l)p, and L Dk = I. Setting
k=l

p P

H = L DkM;;l Nk and G = L DkM;;l,
k=l k=l

( 1.3) takes the form

(1.3)

(1.4)

x(m+l) = H x(m) + c,

where c = Gb. Moreover we have

m = 0,1,2, ... , (1.5 )

H = I - GA. (1.6)

According to [18J, Thm. 2.6, p. 68, (1.5) is consistent with (1.1). Furthermore (1.5) is completely
consistent with (1.1) iff G is nonsingular. From now on we assume that (1.5) is completely consistent
with (1.1); hence it is obvious that (1.5) can be obtained using the splitting

A = G-1 - G-1 H. (1. 7)

It is well known that (1.5) converges to A-1b for any starting vector x(O) iff p(H) < 1, where
p(.) denotes spectral radius. Convergence results of (1.5), under various assumptions, can be found
in the literature (see, e.g., [4], [5J, [7], [8], [11], [12], [14], [16], [17]).

In [lJ, [6] for the linear system (1.1), where A is positive definite (d. [18], p. 21) a splitting
A = M - N, det(M) f:. 0, is considered, where M is positive definite and p(M- 1N) < 1, and the
associated preconditioning matrix or m-step preconditioner is defined by

m> 1, (1.8)

where G = M- 1 N. If A :::::: M, then M m is an improved approximation to A and is used instead of
M for accelerating the rate of convergence of Chebyshev and Conjugate Gradient methods. Also in
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[2] for the same purpose m-step additive preconditioners are defined, which are connected with the

multisplitting method (1.5) for p = 2 and DI = D2 = ~I. In particular, in [2] the SOR-additive
2

preconditioner is defined and an optimal value Wopt for the parameter W of the 2-cyclic SOR-additive
iterative method is also determined.

In the present paper we give in Section 2 two theorems concerning the convergence of the method
(1.5), when: (i) A in (1.1) satisfies A-I ~ 0 and (1.2) are weak regular splittings (d. [3]) and (ii)
A is positive definite and (1.2) are P-regular splittings (see [13]). Also in Section :2 we generalize
the two-splitting method (method of the arithmetic mean) treated in [14] and prove some theorems
which generalize Thms 1, 2, 3 in [14]. In Section 3 we give a method for finding a suitable m-step
preconditioner M m , m ~ 1, for system (1.1). The given preconditioner contains a parameter wand
we determine in more than half of the cases the optimal value of w so that the condition number
of M;;/ A is minimized. We also generalize the procedure given in [2] for defining m-step additive
preconditioners and prove a theorem giving sufficient conditions for determining suitable additive
preconditioners. Finally, in Section 4 we completely solve the problem of determining the optimal
w of the SOR-additive iterative method studied in [2]. As we show the theoretical analysis in [2]
concerning this problem was not complete.

2 Convergence Results

We consider the linear system (1.1) and the multisplitting method (1.5). Then we obtain the
following results which are useful in the sequel (see also Thm 1 (a), (b) in [12] and Thm 1 and Cor
1 in [17]).

Theorem 2.1

If in (1.1) A-I ~ 0 and (1.2) are weak regular splittings of A, then (1.7) is also a weak regular
splitting of A; hence (1.5) converges (p( H) < 1).

Proof

It follows from Thm 1 and Cor 1 in [17]. 0

Theorem 2.2
p

If A in (1.1) is positive definite, (1.2) are P-regular splittings of A and Dk = akI (ak ~ 0, I: ak =
k=I

1), then (1.7) is also a P-regular splitting of Ai hence (1.5) converges.

Proof

From the hypothesis Mk is nonsingular and Mk + Nk is positive real (see [18], Thm 2.9, p. 24),
_ Le., Mk +Nk +(Mk +Nk)T is positive definite or equivalently Mk +M{ - A, k = l(l)p, is positive
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definite (CT denotes the transpose of C). Since A is positive definite, according to [18], Thm 5.3,
p. 79, it suffices to show that

1
M + MT

- A = 2[M + N + (M + Nf]

is positive definite, where M = G-1 , N =C-1 H (A = M - N), or equivalently that

is positive definite. Thus we have

(2.1)

(2.2)

p p

The matrix 51 == L ak(M;;T + M;;1 - M;;l AMi:T) = L akM;;1(Mk + MI - A)MkT is posi-
k=1 k=l

tive definite, since ak ~ 0 and M;;I(Mk +M'{-A)M;;T, k = 1(1)p,is positive definite. Moreover,
for the symmetric matrix 52 == Q - 51 we have

Hence

252 52 + 5f
I:~,j=1 akaj(M;;1 AM;;T - M;;l AMj-

T) + I:~,j=1 akaj(M;;l AM;;T - MT IAM;;T)

52, as a sum of nonnegative definite matrices, is nonnegative definite. This implies that Q is positive
definite and that A = G-1 - C-I H is a P-regular splitting of Aj hence p(H) < 1. 0

Remarks

i) As one can see the proof in Theorem 2.2 parallels that of Thm 1(b) in [12]. However, it is based
_ on a simpler (equivalent) theorem than that in [12]. This makes the corresponding expressions for
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51 and 52 be simpler and easier to handle. ii) Note that 52 may be nonnegative definite iff all Mj,
j = 1( 1)p, share a common eigenvalue-eigenvector pair.

In the following a generalization, in various directions, of the method of the arithmetic mean of
[14J is suggested. Consider the splittings of A

where

k= 1(1)2q, (2.3)

and

1
Mk=-D+Wk- L,

w
k=I(I)q, (2.4)

1
Mk=-D+Wk- U,

w

1
Nk =(- -1)D+ Wk + L, k = q+ 1(1)2q.

w
(2.5)

(2.6)

In (2.4), (2.5) Wk is a diagonal matrix, Wk > 0, k = 1(1)2q, and w a real positive parameter.
For the corresponding multisplitting method (1.5), where p = 2q and Mk is given by (2.4), (2.5),
k = 1( 1)2q, we prove the theorems below, which generalize Thms 1,2,3 in [14J. We simply mention
that in [14], p = 2, w = 1, W k = pW(p > 0, W > 0), and Dl = D2 = 11.

Theorem 2.3

If A in (1.1) is an irreducibly diagonally dominant L-matrix ([15]' p. 23 and [18], p. 42), then the
multisplitting method (1.5), where p = 2q, Mk is given by (2.4), (2.5), k = 1(1)2q, and 0 < w ~ 1,
converges.

Proof

The matrix Mk is nonsingular, since D > 0, Wk > 0 and w > 0, k = 1(1)2q. According to the
hypothesis (see [15], Cor 1, p. 85) A is a nonsingular M-matrix with A-I> O. Obviously Mk
is a strictly diagonally dominant L-matrix, k = 1( 1)2q; hence Mk is an M -matrix and therefore
M;;1 ~ 0, k = 1(1)2q. We also have Nk ~ 0, k = 1(1)2q. Consequently, (2.3) are regular splittings
of A and hence weak regular splittings of A. Now, by Thm 2.1 we have p(H) < 1. 0

Theorem 2.4

Let A in (1.1) be a positive real matrix. Then the multisplitting method (1.5), where p = 2q, Mk
is given by (2.4), (2.5) with w = 1 and Wk = PkI, k = 1(1)2q, Dk = akI and

{

max{O,-t:} for k=I(I)q

Pk>
max{O,--x:} for k=q+1(1)2q,

_ where Am is the smallest eigenvalue of A + AT and J.Lm, /1m are the smallest eigenvalues of the
matrices (D - L)(D - Lf - UUT and (D - U)(D - uf - LLT , respectively, converges.
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(2.7)

Proof

Since A is positive real, we have that A is nonsingular, B == A +AT is positive definite and D > 0.
Consequently Mk is nonsingular, k = 1(1)2q, since Pk > 0. Moreover we have Am > 0. The matrices
C1 == (D - L)(D - L)T - UUT and C2 == (D - U)(D - uf - LLT are symmetric and for any
z E IRn

, z i 0, we have

ZT(Pk B +Cdz > A + zT(PkB +C2)z > A +
T - Pk m !Lm, T _ Pk m Vm ·

Z Z Z z

Because of (2.6), (2.7) implies that the matrices PkB+Ct, k = 1(I)q, and PkB+C2, k = q+ 1(1)2q,
are positive definite. Setting Gk = Mj;l Nk' k = 1(1)2q, it can be shown that

(2.8)

and

PkB + C2 = Mk(I - GkGf)MJ, k = q + 1(1)2q. (2.9)

From (2.8), (2.9) we have that 1- GkGf, k = 1(1)2q, are positive definite; hence the eigenvalues
of GkCI belong to [0,1), k = 1(1)2q. Thus we obtain IIGkll2 = [p(GkGIW/2 < I, k = 1(1)2q, and

2q 2q 2q

IIHI12 = II L akGkl12 :$ L akllGkl12 < L ak = I,
k=l k=l k=l

implying that the method converges. 0

Theorem 2.5

If A in (1.1) is a positive definite matrix, then the multisplitting method (1.5), where p = 2q, Mk
is given by (2.4), (2.5), Dk = akI and °< w < 2, converges.

Proof

In this case we have U = LT and A = D - L - LT, D > 0. The splittings (2.4), (2.5) are P-regular
splittings, since Mk is nonsingular and Mk+Nk+(Mk+Nkf = 2(Mk+MJ -A) = 2[e~W)D+2Wk],

k = I (1 )2q. Thus by Thm 2.2 we obtain the desired result. 0

3 m-Step Preconditioners

We consider the linear system (1.1), where A is positive definite. If

A = M - N, det(M) -I 0,

then using the iterative method
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Mx(m+l) = Nx(m) + b,

we solve in every iteration a linear system of the form

My=c.

m = 0,1,2, ... ,

(3.2)

It is known that M is chosen so that it approximates A as well as possible (A ~ M) and p(G) < 1,
where G = M-l N. Choosing a positive definite M (A ~ M) with p(G) < 1, we can find improved
approximations to A using the Neumann expansion (see e.g., [1], [2], [6])

(3.3)

Thus we have

(3.4)

It can be shown (see Thm 3.1 of [6]), that under the above assumptions M m is also positive definite
and therefore M;,1 is usually used to accelerate convergence of the Conjugate Gradient method.
The matrix M m is the preconditioning matrix or m-step preconditioner. One comment here: In
Thm 1 of [IJ, it was proved that for m odd the hypothesis "A and M are positive definite" is
sufficient for M m to be positive definite. However, this hypothesis does not guarantee that M m will
be a better than M approximation to A, since then

M~ 1 N m = M~ 1(Mm - A) = I - (I +G +... +G m- 1 )(I - G) = Gm.

Therefore the condition P(G) < 1 should be included in our assumptions for all m (odd or even).
Taking into consideration the theory mentioned previously (see also [10]), in order to find

suitable m-step preconditioners for (1.1), we can work as follows: We choose some positive definite
matrix M and write A = M - N. Then G = M-IN has real eigenvalues Ai, i = l(l)n, such that
Ai < 1, i = 1( 1)n. Suppose that Ai are ordered as Al :::; A2 :::; .,. :::; An < 1. We consider now the
splitting

A = £I - N, (3.5)

where M = t; M. As is known the splitting (3.5) defines the extrapolated method based on

the original splitting. Obviously £I is positive definite for w > 0 and it is p(£1- 1N) < 1 iff
o< w < 1-\1' Hence an m-step preconditioner, which is positive definite and approximates A well,
is given by

" " ""2 "m-l-1Mm = M(I +G +G +... +G ), m ~ 1, (3.6)

where G = £1- 1 Nand w E (0, l:.H)' Certainly £1m depends on wand the problem as how to

choose w for a fixed m, so that the condition number k(M;,1 A) of £1;,1 A is as small as possible,
arises. It is easy to show that
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hence

I - it;;,! A = em = [(1- w)I +wG]m; (3.7)

(m)
k(M-1 A) = maxi JLi (3.8)

m (m)'
mini JLi

where JL~m), i = l(l)n, are the eigenvalues of if;;;,1 A. We note that the eigenvalues of Gare ordered
as

- 1 < 1 - W+WAI ~ 1 - W+wA2 ~ ... ~ 1 - W+WAn < l.

Because of (3.7) we have

k(M-1 A) = maxd1 - [1 - W+ wAi]m}, m ~ l.
m mind1 - [1- W+WAi]m}

It can be shown, as in [1], that

(3.9)

(3.10)

k(M;;;' A) = {

1-(I-W+WAtlm

l-(I-W+WAn )m, if m is odd,

if m is even,

(3.11)

2
where W E (0, --,-).

1 - Al

The problem of finding min k(it;;;, 1A) seems to be not an easy one in the general m odd case.
W

In the sequel we solve first this problem for m = 1 (trivial case), m = 3 and for any even m ~ 2.
The results are given in Thms 3.1 and 3.3. In these theorems it is assumed that Al < An, for if
Al = An, then k(it;;;,l A) = 1 for all m and all permissible values of w.

Theorem 3.1

The condition number km = km(w) of it;;;,1A, given by (3.11), for m = 1 is independent of wand
is given by k 1 = ~, while for m = 3, is minimized with respect to W for

lin

111 + lin - JIIi + II~ - 111 lin
W =Wopt = ,

111 lin

where 111 = 1 - AI, lin = 1 - An.

Proof

(3.12)

For m = 1 the result is trivially obtained. For m = 3 it can be shown after some manipulation that
sign e~t)) = sign (<t>3(W)), where
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<P3(W) = -VIVnW2+ 2(VI + Vn)W - 3.

The two roots of <P3(w) are real and are given by

(3.13)

(3.14)

It can be proved that °< P2 < v:' < Pl' Moreover ~ < °if °< W < P2 while !!J8 > °if

P2 < W < 2. Hence mink3 (w) = k3 (P2) and our assertion follows. 0
V n W

Remarks:

(i) For m = 1 the extrapolation parameter (damping factor) W was used in conjuction with the
Jacobi iteration matrix in [10]. Thm 3.1 effectively shows that if w is kept fixed during the iterations
no improvement over the original preconditioner should be expected! (ii) For odd m ~ 5 the

2
function <Pm(w) is a polynomial of degree m - 1 whose sign determination as w varies in (0, -)

lin

seems not an easy problem to study. This is what makes the whole problem difficult to solve.
To derive the optimal results for even m ~ 2 first we introduce the notation "a rv b" to denote

that the expressions a and b are of the same sign and then state and prove the lemma below, a
basic key to the proof of one of our main results.

Lemma 3.1:

For any even m ~ 2 the function

xm - l _ x m

<Pm == <Pm(x) := ,
1 - x m

is a strictly increasing function of x in (-1,1].

Proof

Differentiating (3.15) with respect to x we obtain

x E (-1,1) (3.15)

a<pm rv (m - 1) - mx + xm = (m - 1)(1 - x) - x(l - xm
-

l ). (3.16)
ax

If x E (-1,0], the rightmost expression in (3.16) is positive since I-x> 0, -x ~ °and l_xm
-

l > 0,
implying that <Pm strictly increases in (-1,0]. For x E [0,1) let

z == z(x):= (m - 1) - mx + xm
,

Then on differentiation we take

10
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az- = -m(l - x m
-

1
) < 0ax

and therefore z(x) strictly decreases in [0,1) with lim z(x) = 0, and z(O) = m-l > O. Hence z(x)
x .....l-

takes on positive values only and by virtue of (3.17) and (3.16) so does at:. Consequently <Pm
strictly increases in [0,1). 0

In the sequel we state and prove two theorems that solve the problem of determining the optimal
extrapolation parameter for all even m 2: 2.

Theorem 3.2:

Let the eigenvalues Ai, i = l(l)n, of Gin (3.7) satisfy

- 1 < -An = Al ::; A2 ::; ... ::; An < 1, (AI::; 0 ::; An). (3.18)

Then the condition number km = km(w) of M;1 A, given by (3.11) for even m 2: 2, is minimized
with respect to w E (0, 1-\ )for

Proof

Wopt = 1. (3.19)

Let Ai and Ai+! , i E {I, 2, ... , n - I} be the absolutely smallest nonpositive and nonnegative
eigenvalues of G, respectively. Two cases are distinguished depending on the sign of Ai + Ai+!.

Case I: Let Ai+l +Ai < O. (The subcase Ai+l +Ai =°can be trivially examined after the analysis is
complete.) We subdivide the interval for w, (0, 1-\1 ), into a number of (at most 2n+ 1) subintervals.
For continuity arguments to apply all of them are taken to be closed, except the first and the last
ones. The subdivision points are

1 2 1 2 1 2 1 2
--, ,--, , ... ,--, ,1" \ \ , ....
1 - Al 2 - Al - A2 1 - A2 2 - A2 - A3 1 - Ai 2 - Ai - Ai+! 1 - Ai+! 2 - "'i+l - "'i+2

The last point is either 1!>.j for some j E {i + 1, i + 2, ... , n} iff 1!>'j < 1':>'1 ::; 1->'j:>'j+1

or 2->'j~1-Xj for some j E {i + 2, i + 3, ... , n} iff 2-Xj ':1-Xj < 1-\1 ::; 1!>'j' Let ft, 12, 13 , • •. ,

12i, 12i+h 12i+2,'" be the successive subintervals of (0, 1':>'1) defined by these points. Let also

k = 1(1)n. (3.20)

As can be readily checked, the ordering of the eigenvalues Ak(w) of G == Gw is the same as that of
the Ak's in (3.18). We then claim that: "km = km(w) is a strictly decreasing function of w in each
subinterval Ie, e= 1(1)2i +1, and a strictly increasing one in each Ie, e2: 2i +2". The proof of our
claim will prove (3.19). For this we shall distinguish four cases: (a) w E Ie, e= 2(2)2i, (b) w E Ie,

11



e= 1(2)2i+ 1, (c) W E Ie, £ = 2i+2, 2i+4, ... , and (d) wE Ie, £ = 2i+3, 2i+5, .... In case (a),
wE [l..!'\k' 2-'\k:"'\k+l], k = £/2. It can be readily checked that Ak(W) and Ak+l(W) are, respectively,
the absolutely smallest nonpositive and nonnegative eigenvalues ofGw with 0::; -Ak(W) ::; Ak+l(W),
On the other hand 0 ::; -AI(W) ::; An(W). So, km(w) will be given by the expression

(3.21)

Since m is even, and both Ak(W) and An(W) strictly decrease with W increasing it is concluded that
the numerator and the denominator of the expression in (3.21) decreases and increases, respectively,

making km(w) be a strictly decreasing function of W E Ie. In case (b), W E [2-'\k~1-'\k' l-\J,
k = £: 1. (It is open on the left with bound °and hi+l is closed on the right wi th bound 1.)

Now -Ak-I(W) 2: Ak(W) 2: 0, so that km(w) will be given again by (3.21). However, this time both
terms of the fraction strictly increase with w. Thus, differentiating with respect to W one obtains

QkoW (1 - A:(w))(1 - Ak)Ak-1(w)
'\k'-l(W)(I-'\k(W)) _ ,\;:H(W)(l-'\n(W))

l-'\~(W) l-'\~(W)

(1 - Ar(w))(1 - An)A:-1(W)

<Pm(Ak(W)) - <Pm(An(W)),
(3.22)

because of w(1 - Aj) = 1 - Aj(W), j = k,n, and in view of (3.15). Since W varies in hk-l C (0,1]
and Ak(W) ::; An(W) Lemma 3.1 applies, implying that °8~ ::; 0, with equality concerning limiting
cases only. Therefore km(w) strictly decreases in 12k-I' In case (c), where Ie, £ = 2i + 2, 2i +4, ...,
is of the general type [2-'\k:I-'\k' l-\k]' k = £/2, except the first and maybe the last interval, we
have a similar situation to that of case (a). This time km(w) is given by the expression

k ( ) - 1 - Ar(W) (3.23)
m W - 1 - Af(w)'

Since Ak(W) 2: °2: AI(W) and both Ak(W) and AI(W) decrease with W increasing, km(w) strictly
increases with w. In case (d) we have a similar situation to that in case (b). The interval Ie,
e= 2i +3, 2i +5, ..., is of the general type [l-\k ' 2-'\k:"'\k+l], k = (£- 1)/2, except maybe the last
one, and km is given by (3.23), where this time °2: Ak(W) 2: Al(W), so both terms of the fraction
in (3.23) decrease with W increasing. On differentiation we have a series of relationships similar to
those in (3.22) but this time

(3.24)

Based now on Lemma 3.1 we have again the desired result, namely km(w) strictly increases on Ie.
Summarizing the conclusions of cases (a)-(d) leads to (3.19).

Case II: In case Ai+l +Ai > 0 we work in a similar way as in Case 1. This time 1 E [l~'\;' 2-'\;:"'\i+1 )

and we have 2i subintervals to the left and at most 2(n - i) +1 ones to the right of 1. The function
- km(w) behaves in exactly the same way as before in the subintervals which are to the left and to
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km(w) behaves in exactly the same way as before in the subintervals which are to the left and to
the right of 1 as is readily checked and consequently we arrive at exactly the same-conclusion. This
completes the proof of our theorem. 0

Suppose now that the eigenvalues of Gin (3.7) satisfy

(3.25)

(3.27)

that is without the further assumption >'n = ->'1 of Thm 3.2. Suppose also that we extrapolate
G using any parameter W E (0, 1':'xI)' The answer now to the question "What is the value of Wopt

in this case?" can be given almost immediately. Having in mind the fact that "The extrapolation
with a parameter W2 of an extrapolation with parameter WI is also an extrapolation with parameter
W = W2WI", which can be easily checked (see also [9]), leads us to writing W as W = W2WI, where
WI = 2-'x;-'xn' The eigenvalues >.i = 1 - WI + Wl>'i, i = l(l)n, of GW1 satisfy

- 1 < ->.~ = >.~ :::; >.; :::; ... :::; >.~ < 1, (>.~ :::; °:::; >.~), (3.26)

that is all the assumptions of Thm 3.2. So, extrapolation of GW1 becomes optimal iff W2 = 1. Thus
we have just proved:

Theorem 3.3:

Let the eigenvalues of Gin (3.7) satisfy (3.25). Then the condition number km = km(w) of M;;"I A,
given by (3.11) for even m ~ 2, is minimized with respect to wE (0, 1':'x1) for

2

As an immediate corollary we have

Corollary 3.1:

If A is real symmetric positive definite and point (or block) 2-cyclic consistently ordered and M,
in the splitting A = M - N, is the diagonal (or the block diagonal part corresponding to the block
partitioning) of A, then the condition number km = km(w) of !VI;;" 1A, given by (3.11) for even
m ~ 2, is minimized for Wopt = 1.

Note: If the only information available on the spectrum of G is its spectral radius p(G) = >'n <
1, then Wopt should be taken to be 1.

We close this section by noting that the idea in [2] for defining m-step additive preconditioners
of (1.1), where A is positive definite, can be generalized. For this we consider the multisplitting

k = l(l)p, (3.28)

and the iteration matrix H of the corresponding multisplitting method (1.5) with Dk = akI,
k = 1( 1)p. Setting

13



P

M-1 = La;P;,
;=1

(3.29)

then

p

H = LaiGi
i=1

and the m-step additive preconditioner is defined by

m ~ 1,

(3.30)

(3.31)

provided that M m is positive definite (and A ~ M m ). We note that the m-step additive precon
ditioner is an m-step preconditioner (see (3.4)) related to the splitting defining a multisplitting
method. Certainly, if M is positive definite and p(H) < 1, then Mm is also positive definite and
A ~ Mm. In the following Theorem we give sufficient conditions for Mm to be positive definite.

Theorem 3.4

Let A in (1.1) be positive definite and

where

k = 1(1)2q,

i = 1(I)q.

(3.32)

(3.33)

If the splittings (3.32) for k = 1(I)q are P-regular splittings of A, then the m-step additive precon
ditioner (3.31), where

is positive definite.

Proof

1
ai =-,

2q

2q

i = 1(1)2q, H = L aiGi,
i=1

(3.34)

Since (3.32) for k = 1(I)q are P-regular splittings and (3.33) holds, it follows that (3.32) for k =
q+l(I)2q are also P-regular splittings of A. Thus we have that Pk+Qk+(Pk+Qkf = 2(Pk+P[-A)
is positive definite, k = 1(1)2q. Consequently Pk + p[ is positive definite, k = 1(1)2q. Moreover,
using (3.33), we find

2q 1 q 1 q
M-1 =~ a.p.-l = _ ~(p.-l + p-1.) = _ ~[(p.-l)T(p! + p;)p.-l).

~ " 2q ~, q+, 2q ~ 1 , "
1=1 ,=1 1=1

14
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Since Pi + pr is positive definite, i = 1(I)q, and M- 1 is a sum of positive definite matrices, M- 1

and hence M is positive definite. Moreover it is p(H) < 1 by Thm 2.2. Now, using Thm 3.1 of [6]
we obtain the desired result. 0

4 Optimum SOR-Additive Iterative Method

We again consider system (1.1), where

A = D - L- LT

and A is positive definite. Given the splittings A = Pk - Qk, k = 1,2, with

(4.1)

PI = !..(D - wL), P2 = p[ = !..(D - wLT
) (4.2)

w w

and w 1- 0 a real parameter, it can be shown that A = PI - Ql is a P-regular splitting of A, if
o< w < 2. Hence Thm 3.4 for q = 1 (see also Thm 2.2) implies that the SOR two-splitting method
or SOR-additive method [2]

where

x(m+l) = H x(m) + c, m=O,I,2, ... , (4.3)

1 1
H = H(w) = "2(G 1 +G2 ), c = "2(P1-

1 +Pi 1 )b, Gi = Pi-
1 Qi, i = 1,2, (4.4)

converges. Under the further assumption that A has the 2-cyclic form

(4.5)

(D1, D2 are diagonal matrices), it was proved in [2] that if A is an eigenvalue of H, then

(4.6)

where JL is an eigenvalue of the Jacobi iteration matrix J = I - D-l A for A. It is noted that
J has real eigenvalues, which occur in ± pairs and p(J) < 1. Moreover it was shown in [2] that
min p(H(w)) = p(H(wopt)), where

O<W<2

JLm - ~ + y!3 - 2JL~
Wopt = 1 + 2' JLm = p(J). (4.7)

'4 JLm - JLm

We observe first that limJlm-+o+ JL = 0 for all the eigenvalues JL of J and from (4.7) we obtain
liml'm-+o+ A = 1 - w, which means that the optimum w satisfied limJlm-+o+ Wopt = 1. On the other
hand, (4.7) for JLm = 0 gives

15



-~ +V3
Wopt = 2 1 (~ 0.9282) :I 1. (4.8)

4"
This observation suggests that the theoretical determination of the optimum value of W must be
reconsidered. In what follows we give the complete solution to this problem and the results are
contained in the following theorem.

Theorem 4.1

If A in (1.1) is positive definite, A = D - L - LT and has the form (4.5), then the optimum value
Wopt for W (0 < W < 2) of the SOR-additive method defined by (4.3) is given by

if JB ~ J-Lm < 1

(4.9)

(4.10)

where J-Lm = pCJ) and J = 1- D-1 A.

Proof

The problem we solve is: Find

min max 1'\1,
W 1.£

where'\ is given by (4.6),0 < W < 2, J-L E [-J-Lm,JLml and J-Lm < 1. For this we have that ~ = 0 iff

J-L = ";ZJ2 == J-L*. Moreover,

2
w* == 1 2 ~ W < 2.+ J-Lm

(4.11)

With ,\ = ,\(J-L) we find

1
A = A(w) == 1'\(JLm)1 = 2Iw2J-L~ +w(2 - w)J-Lm +2(1 - w)l,

1
B = B(w) == 1'\( -JLm)1 = 21w2JL~ - w(2 - w)JLm + 2(1- w)l,

(4.12)

(4.13)

if 2( J2 - 1) ~ w < 2

if 0 < w ~ 2(J2 - 1)
(4.14)

Hence

max 1,\1 =max{A, E, e}.
1.£

16
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It can be proved that

(i) If 0 < Ilm < 4- and 0 < W ~ WI == I-~ or '4- ~ Ilm < 1 and 0 < W < 2, then

(ii) If 0 < Pm < '4- and WI ~ W < 2, then

Thus, we distinguish the following cases:

Case I: '4- ~ Pm < 1. Then it can be shown that w* ~ 2(.;2 - 1)

{

A if 0 < W ~ P2
max{A, B, C} =

C if P2 ~ W < 2,

where

and

(4.16)

(4.17)Ilm - ~ + /3 - 21l~
P2 = I 2'

"4 + Ilm - Pm

Now, we find that g6 < 0 and ~ > 0, implying minw A = A(P2) and minw C = C(P2) = A(P2)'
Hence we obtain Wopt =P2 and minw max~ 1..\1 =A(P2) =C(P2) = Hp~ + 4P2 - 4).

Case II: 0 < Pm < 4-. Then it can be shown that:

(i) If 0 < Pm ~ -js, then 2(.;2 -1) < WI ~ w*.

(ii) If ./G ~ Ilm < -Lf, then 2(;2 - 1) < w* ~ WI,

Therefore we must distinguish the following subcases:

Case IIa: 0 < Pm ~ ~. Then we find

A if 0 < W ~ WI

- and

max{A, B, C} = B if WI ~ W ~ w*

C if w* ~ W ~ 2

17
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min A(w) = A(wd, min B(w) = B(wt}, min C(w) = C(w*) = B(w*) 2:: B(wt}.
w w w

Hence we have Wopt =WI and minw maxJj IAI = A(wt} = B(wd.

Case lIb: -ft < /-Lm < :{}. Then it can be proved that

o< 2(J2 - 1) < w* < P2 < WI < 2

and

(4.19)

{

A if 0 < w ::; P2
max{A, B, C} =

C if P2::; w < 2.

As in Case I we find that Wopt = P2 and minw maxJj IAI = A(P2) C(P2)
Combining the above results of Cases I, Ha, lIb we obtain (4.8).
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