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Abstract

In this work, the authors propose a novel method to obtain correspondences between

range data across image frames using neural like mechanisms. The method is compu-

tationallyefficient and tolerant of noise and missing points. Elastic nets, which evolved

out of research into mechanisms to establish ordered neural projections between struc-

tures of similar geometry, are used to cast correspondence as an optimization problem.
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This formulation is then used to obtain approximations to the motion parameters under

the assumption of rigidity (inelasticity). These parameters can be used to recover cor­

respondence. Experimental results are presented to establish the veracity of the scheme

and the method is compared to earlier attempts in this direction.
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1 Introduction

Correspondence is defined by Ullman [32] as the process by which elements in different

views are identified as representing the same object at different times, thereby maintaining

the perceptual identity of objects in motion. It can be said sans hesitation that the problem

of obtaining correspondence is a fundamental aspect of computational vision and underlies

much work on motion. The various approaches to the measurement of visual motion can

be broadly categorized as relying either on optical flow techniques or on feature based

techniques. It is with the latter that we concern ourselves in this work.

Feature based methods establish correspondence between feature points (or tokens ob­

tained from the raw image data) and use these correspondences to obtain the parameters

that describe the motion in the image sequence. Establishing the correspondence is clearly

a prerequisite to further processing in feature based schemes. Many efforts in the area of

dynamic image analysis, however, assume that this underlying problem of correspondence

has been resolved [28, 23, 31, 25, 1, 2, 35, 33, 13, 17, 16, 5].

While the objects in the real world are three dimensional, research in the area of corre­

spondence has dealt mostly with two dimensional images [29, 18, 34, 4, 19,27, 37, 20, 26].

However, with the increasing availability of equipment to do range sensing, the problem

of establishing correspondence between range data, the three dimensional representation of

the object, is gaining prominence. Huang and Chen [6] have proposed a scheme that uses

preestablished correspondence between three points. Let Pt, P2, P3 be points from the first

frame, and qt, q2, q3 be their corresponding points in the second frame. Given any point

Pi in the first frame and qj in the second, it can be shown that tetrahedron Pt,P2,P3,Pi is
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congruent to tetrahedron ql, q2, q3, qj iff points Pi and qj correspond. In [22] Huang and Lin

propose a technique that works very effectively in the absence of noise. They use centroids

of the two token sets to obtain two new sets of tokens which are related by rotation only.

Let PI and P2 be the two point sets, and let CI and C2 be their centroids, respectively. They

obtain token sets ql and q2 by setting

qIi = Pli - CI

and

where the subscript i denotes the i th member of the token set ql or q2. These new point

sets are used to get four candidates for the rotation matrix, R. Correspondence is obtained

from these by choosing the correct R.

Another technique, which can tolerate noise better is proposed in [21]. It involves

obtaining a good initial estimate to the rotation axis and uses Fourier transforms, making

it computationally expensive. Magee et. ai. [24] have used subgraph matching when the

objects in the scene are polyhedral or cylindrical to obtain correspondence in range data.

They also propose an interesting method to find suitable "feature points" in the object

for which range data is obtained. Some other approaches to this problem can be found

in [30, 12, 15]. Shuster [30] uses a quadratic loss function to obtain an optimal rotation

matrix, and reduces this problem to finding the optimal quaterion. Faugeras and Herbert

[12] use a similar technique applied to the vertices and planes of an object, in order to match

it with a model by obtaining optimal translational and rotational motion parameters that

relate the range data with a stored model. This method however is not computationally
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very efficient. In order to do an image to model match, Grimson and Lozano-Perez[15] use

an involved tree pruning approach. Their approach requires knowing the surface normal at

each measured point and uses distance and angular constraints to obtain a matching.

In the present work, we propose a simple scheme which uses an elastic net like approach.

The proposed method is able to handle missing points and a substantial amount of noise in

the data, and is computationally efficient. In the sections that follow, we briefly outline the

concept of elastic nets and then expound our method for obtaining correspondences. We

also present the results of extensive simulation with synthesized and real data.

2 Elastic Nets

Durbin and Willshaw, in a letter to Nature [10], proposed a novel scheme to solve combi-

natorial problems that involve geometrical structures and topographical mappings between

them. They showed how this method could be used to solve the Traveling Salesman Prob-

lem. Their basic concept involves using a deformable contour, which is changed in shape by

forces to approximate the optimal valid tour. The forces that change its shape are a those

that attract the contour points to cities and those that try to keep neighboring points of

the contour together. This is akin to stretching a rubber band to make it pass through all

the cities to obtain the tour. Durbin and Willshaw show that deforming a contour in this

manner is akin to minimizing the energy of the system, which is formulated as

[= -aJ(Lln L¢(dij,J() + f3L IYj+l - Yjl2
j j
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The Xi'S represent the coordinates of the cities and Yj'S represent the coordinate of the

points on the contour . They show that if there are more points on the contour than there

are cities (in their simulation, the ratio is 2.5), then in the limit that K --+ 0, a valid, close

to optimal tour is produced. Since £ is bounded from below, it requires that as K --+ 0,

This ensures that the contour passes through all cities. Moreover, as the number of points

on the rubber band is increased, the second term in the energy function is minimized

by placing all points at equal distances from each other. If V be the total path length,

such a configuration makes the value of the second term NUIllbe~:f points' which is obviously

minimized by reducing the path length.

To obtain the tour then, we merely need to do gradient descent on the energy surface

defined by £, which is achieved by updating the positions of the points on the rubber band,

Yj, by K 8£/ 8Yj at each iteration step. Computing this quantity, we obtain !::J.Yj, the change

in value of Yj at a given iteration as

!::J.Yj = a LWij(Xi - Yj) + f3K(Yj+l - 2Yj +Yj-l)
t

where

Durbin and Willshaw noted that this approach produced better tours than the Hopfield

net, and this method scaled better with the number of cities as well. Readers interested in

a detailed theoretical analysis of this are referred to [9, 36].

6



3 Method

We now outline how the concept of elastic nets can be used to obtain correspondences. Let

A~ be a point token from the first set and B: be one from the second set. We can represent

the correspondence by a permutation (J such that the point B~(i) from the second frame

corresponds to the token Ai in the first frame. Let Rand T be the rotation and translation,

respectively, that define the motion from the first to the second frame. Assuming that the

motion is rigid, we get

RAi+T (2)

As explained in section 1, Huang et.al. [6] showed that using the centroids, we can transform

the point sets A' and B' into A and B such that

(3)

Let us suppose that some oracle can give us the rotation matrix R. Then, correspondence

can be trivially established by observing that if point i corresponds to point j, then Bj ==

RAi. If correspondences are unique, then this is a necessary and sufficient condition for

establishing them. Suppose that instead of getting R, we get an approximation R' to it.

Correspondence can then be established by observing that dij = min k dkj where dij is the

distance between points Bj and R'Ai

The use of elastic nets comes in obtaining R. We take the energy function of elastic nets

to be the following

2-dii
where <p(dij, K) = e 2K2 •

[ = -cd( I: In I: <p(dij, K)
j

7

(4)



The distance dij is used slightly differently here. In the original work of Durbin and

Willshaw, each point on the contour could move independently of the others, and so dis­

tances between the current position of the contour and points representing the cities are

computed directly. Since we assume the motion to be rigid, we do not move points indi­

vidually from the first frame to the second. We merely look for the parameter of motion

that would do it. Thus, we define dij to be IBj - RAil. Observe that (4) is simply the first

term of the energy function (1) that was proposed in [10], with a different definition of the

distance. The minimization of this term ensures that

lim J( ---+ 0, VAi, 3Bj s.t. dij ---+ 0 (5)

In other words, for every point in the first frame, there is a corresponding point in the

second frame. The second term of the energy function (1) is used to minimize the path

length of the tour, and is of no consequence in this problem. This approach is similar to

that of deformable templates proposed by Yuille[36].

Now that we have formulated the energy of the system, we can essentially do a gradient

descent to obtain its minimum. The parameter that changes here is the 3 x 3 rotation

matrix, R. The rotation of a body in 3 space is defined in terms of its axis of rotation and

the angle by which it is rotated about this axis. It's structure is given by

n~ + (1 - nD cos 0 nl nz(1 - cos 0) - n3 sin 0 nl n3(1- cos 0) +nz sin 0

nl nz(1 - cos 0) + n3 sin 0 n~ + (1 - n~) cos 0 nzn3(1- cos 0) - nl sin 0

nl n3(1 - cos 0) - nz sin 0 nzn3(1 - cos 0) +nl sin 0 n§ + (1 - n§) cos 0

where nl , nz and n3 are the direction cosines ofthe axis of rotation which are determined

by its tilt and slant angles, and 0 is the angle of rotation. The direction cosines are in turn
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constrained by

Thus there are only 3 free parameters, namely two of the direction cosines, and the

angle of rotation. It is also evident that the nine elements of the rotation matrix are related

nonlinearly to each other. Some previous researchers have tried to get around this by

describing the motion in terms of the quaterion [30, 12]. However, we chose to treat all nine

entries as independent since our aim is merely to obtain correspondence, not an extremely

accurate computation of the motion parameters. This reduces the amount of computation

involved in obtaining the gradient, 8e18rij.

Ideally, if we carried out sufficient iterations, the values of the rij's would converge.

However, since our aim is only to establish correspondence, we can save on computation

time. This is done by performing a few iterations, and then using the nearest neighbour

criterion to select the corresponding points.

In principle, we could have defined the distance metric as IEj - (RAi + T)I, and then

computed both the rotation and translation parameters. However, using Huang's approach

leads to fewer computations while doing the gradient descent.

We now briefly comment upon the computational complexity of the algorithm. In Fig 1,

we show the pseudocode corresponding to the algorithm. The main programme essentially

involves various initialisation procedures and then a fixed number of update cycles, where

the entries of Rij are updated using the method described earlier. The update procedure

uses a double loop to compute the updated values. The process of updating can be done

in constant time. The whole update sequence is thus O(n 2
), where n is the number of

points. Applying the transformation to the points takes O(n) time, and selecting the
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nearest neighbours can be accomplished in O(n 2 ) time. The whole algorithm thus takes

O(n2
) time.

Having outlined the basic method, we now look at an interesting variation. When

multiple frames of the object in motion are obtained, the phenomenon of occlusion often

occurs. In occlusion, as the name suggests, the object in motion is partially hidden from

view. As such, some frames now contain fewer points than others. For any two frames

between which correspondence is to be established, we assume without loss of generality

that the first frame contains fewer points. While occlusion is perhaps the norm in real image

sequences, most algorithms for correspondence in 3D do not address it at all, [6] being an

exception. Our algorithm, however, is ideally suited to this task. Recall that in defining

the energy of the system, we did not assume that the number of points in the two frames

were the same. In fact, the energy function was constructed to ensure that each point in

the first frame found a match in the second. If the two frames have the same number of

points, this assures us of a unique match. If the second frame has more points, then we

find correct matches for the points in the first frame, and the "extra" points in the second

frame are of no consequence.

We should point out here that we are considering a somewhat restricted version of the

missing points problem. There may be points missing from both the frames such that the

total number of points in the two frames is the same.
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maine)

{

initializeMatrix();

repeat

update 0 ;

until (hundred iterations);

applyComputedRotation();

selectNeighbours();

}

updateO

{

for j in points of second frame {

for i in points of first frame

compute the updates of Rij;

update the entries of Rij;

}

}

Figure 1: Pseudocode for the Algorithm
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4 Results of the Simulation

In order to verify the proposed technique, and to determine whether our simplifications

hold well under experimental conditions, we performed several simulations. In line with [6],

data were generated as points in a cube of side two hundred units with the origin as one

of the corner points. The x, y and z coordinates of the points were chosen as independent

random numbers. The data for the second frame was obtained by applying a rotation and

translation to the points of the first frame.

The algorithm outlined in the previous section was applied to a large number of data sets,

which covered a wide range of motion parameters from small to large. We may point out

here that in our implementation, we chose to obtain the rotation matrix Q that moved the

second frame to the first. Note that if R be the rotation applied to the first frame to obtain

the second, then Q = R T. Computing Q is thus as good as computing R. As an initial

approximation, the rotation matrix was set to the identity matrix. It was observed that this

gross initial approximation sufficed, in all but a few cases, to obtain correspondence. Also,

fewer than a hundred iterations were needed to obtain an approximation to R sufficient

to establish correspondence. In Table 1, we present the actual rotation matrix as well

as the approximation obtained by our method after a hundred iterations for two different

instances, a and b. The motion parameters used to obtain the second frame from the first

are as follows. For case 'a', the translation vector was [100,100, 100y and the tilt, slant and

rotation angles were 20°, 25° and 50° respectively. For case 'b', the translation vector was

[200, 100, 50y and the angles were 35°,45° and 20°. These examples had ten points in each

frame, and all were correctly matched by our method, with the average distance between
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matched points being 1.369 and 3.071 in the two cases respectively. For case 'a', the angles

of tilt, slant and rotation obtained from the matrix were 15.34°, 24.75° and 50.124°, and

the computed direction cosines were (0.403794, 0.110785, 0.908117). The actual direction

cosines were (0.397130, 0.144543, 0.906309), and the angle between the actual and computed

axis of rotation was 1.39°. For case 'b', the angles obtained were 40.56°, 45.41° and 23.392°,

and the computed direction cosines were (0.541018,0.463144,0.701995). The actual values

for the direction cosines were (0.579227, 0.405576, 0.707110), and the angle between the

actual and computed rotation axis was 3.98°. The algorithm was applied to many such

data sets, and the results are summarised in Table 2. The first table shows the means and

standard deviations of the error in the computed angle of rotation, the number of points

matched, and the average distance between the matched points. The figures are from 50

runs of the algorithm, each run having tilt, slant and rotation values chosen randomly in

[0°,90°] and having 25 points in each frame. The second table shows similar data for 100

runs of the algorithm with 10 points per frame and tilt, slant and rotation chosen randomly

in [0°,50°] . As remarked earlier, in a few cases, the algorithm did not compute the rotation

matrix closely enough within a hundred iterations. This occurs when I does not serve

as a good enough initial approximation for R. In such cases the method converged if the

initial estimate was better chosen. In Table 3 we show the actual R which could not be

approximated starting from I as well as the initial estimate which caused the method to

succeed. Note that good initial estimates can be obtained by Huang's method [22] amongst

others.

In real world situations, the data are often distorted by noise. So the algorithm was

next tested with noisy data to evaluate its ability to operate in a real environment. The
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0.699127 -0.673766 0.239293

R act = 0.714755 0.650254 -0.257423

0.017842 0.351012 0.936201

0.699641 -0.642314 0.232284

R cmp = 0.708223 0.645532 -0.254673

0.018761 0.340672 0.937081

case(a)

0.959926 -0.227677 0.163415

R act = 0.256012 0.949613 -0.180811

-0.114014 0.215401 0.969847

0.941864 -0.169072 0.164636

R cmp = 0.256890 0.935436 -0.177320

-0.079931 0.108917 0.958311

case(b)

Table 1:
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Error in () No. of Points matched Average Distance

Mean 6.5299° 21.7241 7.5850

Std. Deviation 4.9846° 8.2415 11.2617

Error in () No. of Points matched Average Distance

Mean 3.7110° 10 1.3522

Std. Deviation 3.0226° 0 0.0552

Table 2: Summary of Results from Synthesised data

0.543991 -0.715635 0.438110

R act = 0.823867 0.356526 -0.440604

0.159114 0.600629 0.783535

0.5 -0.5 0.5

Rinit-est = 1.0 0.2 -0.5

0.0 0.5 1.0

Table 3:
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errors in data were modelled as zero mean additive noise. Many simulations, with different

motion parameters, as well as added noise of different variances, were performed. The

results demonstrate that the method was able to handle noise with variances of about 50

units with negligible degradation of performance. This variance is about 25% of the edge

length of the cube in which data points were chosen. However, performance was degraded

for larger variances and the method became unreliable for variations beyond 100 units.

Figure 2 is a graph of the average(over 50 runs) of the number of points correctly matched

against the variance of the noise added.

Simulations were also carried out in the case of missing points. In this case, the data

generated for the two frames was modified by dropping points from the first frame. It was

observed that around half the points could be dropped without impairing the algorithm's

ability to match the remaining points with their corresponding points in the second frame.

In Table 4, we show the rotation matrices computed by our method as points are successively

dropped from the first frame. The frames start out with 20 points, and points are dropped,

two at a time, from the first frame. Two and one points are mismatched in the cases where

12 and 14 points have been dropped, respectively. For all other cases, all points present

in the first frame are correctly matched. We may note here that in this case, the noise

tolerance is somewhat adversely affected.

Finally, the algorithm was applied to real objects. In the first case, we used the solids

from the Shastra project[3]. These are illustrated in Figures 3, 4 and 5, which were obtained

using Gati [7], the animation component of Shastra. Fig. 3 shows the initial positions of

the objects, and Fig. 5 their final positions when the second object was subjected to the

rotation estimated by our method. Fig. 4 shows an intermediate stage. The tilt, slant and
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Figure 2: Graph of Average Match versus variance of noise added
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0.935342 -0.306982 0.175778

R act = 0.340506 0.915986 -0.212190

-0.095872 0.258324 0.961289

Actual R

0.919321 -0.298936 0.169291

R cmp = 0.338846 0.906692 -0.210211

-0.094456 0.256466 0.952533

Computed R, all points

0.901676 -0.277623 0.169061

R cmp = 0.340636 0.888301 -0.198270

-0.099958 0.265297 0.947453

2 missing points

0.886497 -0.280634 0.155107

R cmp = 0.324547 0.892247 -0.207362

-0.091173 0.263534 0.954792

4 missing points

0.833107 -0.285937 0.126678

R cmp = 0.285545 0.885076 -0.226767

-0.124114 0.263495 0.948059

6 missing points
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0.877222 -0.274965 0.163671

R cmp = 0.301456 0.895053 -0.199683

-0.095423 0.282237 0.917954

8 missing points

0.914605 -0.184780 0.116181

R cmp = 0.311168 0.877728 -0.201504

-0.111929 0.258657 0.970692

10 missing points

0.741863 -0.133472 -0.009451

R cmp = 0.242434 0.849438 -0.214434

-0.184199 0.249792 0.935028

12 missing points

0.642597 -0.046344 -0.028805

R cmp = 0.240439 0.903996 -0.291303

-0.038989 0.181455 0.979305

14 missing points

Table 4:
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rotation angles were 35°, 45° and 40° respectively, and the actual direction cosines were

(0.579227,0.405576,0.707110). The points used for matching were taken as the vertices of

the cube of side 100, with origin as one of its corners. Our method correctly matched all

points, with an average distance of 1.008 between matched points. The angles of tilt, slant

and rotation obtained from the approximation to the rotation matrix were 35.3°, 45.25° and

39.672°, and the direction cosines were (0.579585,0.410445,0.704000) The angle between

the actual and obtained axis of rotation is 0.23°.

Figs. 6, 7 and 8 represent three frames of a cylinder being rotated about its vertical

axis. Range data was obtained for this image sequence in five frames using the Structured

Lighting System [8]. For the frames shown here, the rotation from the first to second is 10°,

and that from second to third is 20°. The first frame had 5 points, the second frame had

all the points of the first frame and three extra points, the third frame had all the points of

the first and two extra points. The algorithm was successful in establishing correspondence

between the various frames. For instance, all points from frame 1 were correctly matched

with points in frame 3. The angle of rotation was computed as 36.54°, compared to the

actual 30°. All points were also correctly matched between frames 2 and 3. The angle was

computed as 19.314°, compared to the actual 20°. The actual and computed matrices are

given in Tables 5 and 6 respectively.

5 Discussion

In this work, we have presented a technique that utilises concepts behind elastic nets to

obtain correspondence in range data. The method uses approximations to the motion
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Figure 3: Initial Position of Objects
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Figure 4: Intermediate Position of Objects
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Figure 5: Final Position of Objects
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Figure 6: First frame of rotating cylinder
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Figure 7: Second frame of rotating cylinder
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Figure 8: Third frame of rotating cylinder
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R act =

0.939693

o

o 0.342018

1 0

-0.342018 0 0.939693

0.940022 0.073742 0.352072

R cmp = -0.004055 1.012843 0.006679

0.021357 -0.124675 0.934572

Table 5: Actual and Computed R for Cylinder frames 2 and 3

R act =

0.866027

o

o 0.499998

1 0

-0.499998 0 0.866027

0.755679 -0.049039 0.084014

R cmp = 0.117516 1.003520 0.000984

-0.383027 0.058693 0.847536

Table 6: Actual and Computed R for Cylinder frames 1 and 3
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parameters to do this. Results of simulations carried out to establish the correctness of the

technique have also been presented.

Huang et. at. in [22] also use the concept of obtaining motion parameters to obtain

correspondence. Their method obtains four possible rotation matrices, and the correct one

is selected by a method which assumes that the exact point positions are known. Their

scheme is thus very sensitive to noise. In contrast, our method is quite tolerant of noise.

The scheme proposed in [21] is not as sensitive to noise, but works best if the axis of rotation

is known a priori. Otherwise, it requires extensive computation to search for the axis of

rotation before the rotation matrix can be computed. In contrast, our algorithm makes no

assumption about the rotation axis being known in advance. Unlike the method proposed

in [6], our method does not require any preestablished correspondences. Our method is

also different from the various attribute based methods which use subgraph matching and

tree pruning like approaches [24, 11, 15, 14]. We use no attributes, solely the positions

of various points. Moreover, such methods are often more useful in the case of image to

model correspondence, since they often assume the existence of many views of the objects,

or of an internal 3D model of the object. In [12] and [30], motion parameters are obtained

by optimization approaches. However, these methods are used to compute the motion

parameters assuming that a matching is already known.

Unlike most ofthe methods in the literature, our algorithm also works very well in cases

where not all points of one of the frames are found in the other. We have shown results

in the case where one of the frames has fewer points than the other, but all the points in

the smaller frame are found in the other. This condition would hold very well for image to

model kind of matches, but in a dynamic case some frame sequences may not satisfy this
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constraint. In that case, two approaches are possible.

• Since we make no constraints on the extent of motion, a frame can always be compared

with some other preceding frame such that our condition is met. If a frame, say m,

has all the points of frames i and i + 1 neither of which contains all the points of the

other, we can establish correspondence between frames i and i + 1 by establishing

correspondences between frames i and m and i + 1 and m. Thus we see that our

assumption is not very restricting.

• If, in a pathalogical case, there be no such frame m, we can compute the average

distance between the matched pairs. The pairings whose distance is more than k

times this average can be rejected as being invalid matches, k being some suitably

chosen constant greater than 1.

The ability of our algorithm to work despite missing points and in presence of noise

makes it suitable to work on real range sequences.
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