
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1992

Remote Memory Backing Storage for Distributed Virtual Memory Remote Memory Backing Storage for Distributed Virtual Memory

Operating Systems (Thesis) Operating Systems (Thesis)

James Griffoen

Report Number:
92-052

Griffoen, James, "Remote Memory Backing Storage for Distributed Virtual Memory Operating Systems
(Thesis)" (1992). Department of Computer Science Technical Reports. Paper 973.
https://docs.lib.purdue.edu/cstech/973

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

REMOTE MEMORY BACKING STORAGE FOR
DISTRIBUTED VIRTUAL MEMORY OPERATING

SYSTEMS

James Griffioen

CSD-TR-92-052
August 1991

Remote Memory Backing Storage for
Distributed Virtual Memory Operating

Systems *

James Griffioen

Department of Computer Science
Purdue University

West Lafayette, IN 47906
email: jng@cs.purdue.edu

Abstract

The virtual memory abstraction aids in the design and implementation of
portable applications. Virtual memory allows applications to execute in an
arbitrarily large memory space, independent from the physical memory size of
the underlying machine.

Conventional virtual memory operaling systems use magnetic disks for back­
ing storage. lvlagnetlc disks provide high data transfer rates, large storage ca­
pacity, and the abHlty to randomly access data, making them an appealing
backing storage medium. However, the average seek Lime of a magnetic disk is
several orders of magnitude slower than memory access times. Recent advances
in CPU speeds, network bandwidth, and memory sizes have made new types of
backing storage with improved performance and greater functionality feasible.

This thesis investigates a new model for virtual memory in which dedicated,
large-memory machines provide backing storage to virtual memory systems ex­
ecuting on a set of client machines in a distributed environment. Dedicated
memory se1'vers provide clients with a large, shared memory resource. Each
memory server machine is capable of supporting heterogeneous client machines
executing a wide variety of operating systems. Clients that exceed the capacity
of their local memory access remote memory servers across a high-speed net­
work to obtain addltional storage space. Clients use a highly efficient, special

·This paper was originally published as: James Griffioen, Remote Memory Backing Storage
for Distributed Virtual Memory Operating Systems, PI1D thesis, Department of Computer Science,
Purdue University, West Lafayette, IN, August 1991. This technical report was created in response
to a sudden (and somewhat delayed) barrage of requests for the original thesis. Please use the original
thesis citation when citing this work.

purpose, reliable 1 data streaming, network architecture independent communi­
cation protocol to transfer data to and from the memory server. To reduce the
delay associated with accessing remote memory, memory servers use efficient
algorithms and data structures to retrieve data, on average, in constant time.
In addition to providing a highly-efficient backing store, the model allows data
sharing between clients and improves file system performance by offioading the
me server.

Tills thesis also describes the design and implementation of a prototype
system. Measurements obtained from the prototype implementation clearly
demonstrate the viability of systems based on the model. The prototype shows
that remote memory systems offer performance competitive with, and in some
cases better than, existing virtual memory systems. Moreover, rapid advances
in network bandwidth, CPU speeds, and memory sizes make the model an
attractive ba.<>is for the design of future distributed systems.

~-

1

LIST OF TABLES .

LIST OF FIGURES

TABLE OF CONTENTS

................................

................................

v

Page

IX

x

TRADEMARKS - . xiii

ABSTRACT XIV

1. INTRODUCTION ······

1.1 Virtual Memory Operating Systems .
1.1.1 Segments and Pages
1.1.2 Memory Management Policies .
1.1.3 Virtual Memory Techniques ..
1.1.4 Virtual Mp.ffiory Hardware Support

1.2 Conventional Backing Storage ..
1.3 Remote MeG"~ory Bacbng Storage
1.4 Organization of the Thesis

2. TERMINOLOGY .

2.1 Virtual Memory Operating Systems .
2.2 Network Communication
2.3 Distributed Systems .

3. THE REMOTE MEMORY MODEL.

3.1 The Model .
3.1.1 Design Decisions .
3.1.2 Characteristics of the Model

3.2 Summary

1

2
3
4
7
9

10

I:?

14

14
15
18

20

21
25
26
31

VI

Page

4. A CLIENT VIRTUAL MEMORY SYSTEM. 32

4.1 Design Goals 32
4.2 Hierarchical Design 34

4.2.1 Incorporating Virtual Memory into a Hierarchical Design 36
4.2.2 Process Management Layers . 36
4.2.3 Memory Management Layers 40

4.3 Architecture Independence 42
4.3.1 The Hardware Layer42
4.3.2 The Architecture Interface Layer 44

4.4 Process Management . 46-
4..4.1 Address Spaces 47
4.4.2 Threads48

4.5 Virtual Memory Management 50
4.5.1 Page Replacement .. 50
.4.5.2 Paging......... 53
4.5.3 Memory Reclamation. 54

.4.6 Related Work 55
4.7 Summary 56

5. A HIGH-SPEED REMOTE MEMORY COMMUNICATION PROTOCOL 58

5.1 Design Goals 59
5.1.1 Reliability.......... 60
5.1.2 Architecture Independence. 60
5.1.3 Efficiency 62

5.2 Conceptual View 01 The RMCP Protocol 63
5.3 The XPP Protocol 65

.5.3.1 XPP Message Types 66
5.3.2 Reliability...... 69
5.3.3 Message Sequencing 71
5.3.4 Data Streaming. 74
5.3.5 Message Format. . . 76

5.4 The NAFP Protocol 80
5.4.1 Fragmentation and Reassembly 80
5.4.2 Negative Acknowledgements . . 83
5.4.3 Message Format. 84
5.4..4 NAFP as a General Technique. 87

5.5 Related Work 87
5.6 Suinmary 90

6. A REMOTE MEMORY BACKING STORE

6.1 Design Goals .
6.2 A Logical Memory Server .
6.3 The Design of a Logical Memory Server.

6.3.1 Managing the Virtual Segments.
6.3.2 Physical Memory Management
6.3.3 A Transparent Two-level Storage Space.
6.3.4 Memory Reclamation.

6.4 Enhancing Performance
6.5 Related Work
6.6 Summary .

7. A PROTOTYPE REMOTE MEMORY MODEL SYSTEM

7.1 System Configuration .
7.2 VM Xinu: The Client Operating System

7.2.1 Overview .
7.2.2 The Virtual Memory System.
7.2.3 Porting .
7.2.4 Unix Emulation .

7.3 Implementing The Communication Protocol
7.4 The Prototype Memory Server.

7.4.1 Internal Data Structures
7.4.2 Double Hashing

7.5 Experimental Results
7.5.1 Conventional Backing Store Performance
7.5.2 Remote Memory Backing Store Performance
7.5.3 ildemory Server Performance
7.5.4 Protocol Performance.

7.6 Summary .

8. CONCLUSIONS

8.1 Hierarchical Design
8.2 An Efficient Paging Protocol
8.3 Remote Memory Service for Heterogeneous Machines
8.4 Competitive Performance.
8.5 Future Work .

8.5.1 Data Sharing .
8.5.2 Memory Server/File Server Interaction
8.5.3 Communication Protocol.

8.6 Summary .

vu

Page

91

91
94
98
99

102
103
104
109
109·
113

115

115
117
117
118
118
120
120
121
122
124
125
127
129
134
138
141

143

143
144
14.5
145
146
146
147
148
148

BIBLIOGRAPHY

Vlll

Page

150

VlTA 158

IX

LIST OF TABLES

Table Page

5.1 XPP message types. .. 68

7.1 Average round trip delay to store or fetch an SK byte page to or from a
Sun 3/50 NFS file server from a diskless Sun 3/50 client running SunGS. 127

7.2 Average delay that results from storing or fetching an 8K byte page to or
from a local disk drive on a Sun 3/50 executing SunGS. 128

7.3 Average round trip delay for VM Xinu paging to a memory server VS.

SunGS paging to NFS. Both systems used a Sun 3/50 client and a Sun
3/50 server. .. 129

7.4 Average round trip delay for VM Xinu paging to a memory server VB.

SunDS paging to a local disk.... _ _ 130

7.5 The time to store/fetch an 8K byte page when the memory server executes
on various UNIX systems. In each case, the clients consist of Sun 3/50
machines executing VM Xinu. .. 131

7.6 Paging times from a DECstation 3100 executing VM Xinu. The time
shown is the round trip delay to store/fetch a 4K byte page to or from a
memory server executing on the specified architecture. 133

7.7 A breakdown of the time required to process an 8K byte request from a
Sun 3/50 client paging to a Sun 3/50 memory server. The percentage is
calculated from a total paging time of 31 ms. 139

7.8 Sequence of requests observed at the memory server for various pending
list lengths. The letter f denotes a fetch request and the letter s denotes
a store request , 141

x

LIST OF FIGURES

Figure Page

1.1 Virtual to physical address transla.tion. The operating system maintains
an address translation table for each virtual address space. The address
translation table contains exactly one entry for every virtual page and
specifies the true location of the data (i.e., physical memory or backing
storage).. 5

2.1 The OSI Relerence Model. . 17

3.1 An example remote-memory model architecture. 22

4.1 The hierarchy of layers in the Xinu operating system. . 37

4.2 A layering model for a hierarchically-designed virtual memory operating
system. The *'5 identify the virtual memory system components of the
hierarchy. 38

4.3 The structure of an address space in VM Xinu. 48

4.4 The location of thread specific data within an address space. . 49

4.5 The organization of the virtual memory system in VM Xinu. . 51

5.1 The two layers of the remote memory communication protocol. A client
initiates an XPP request which travels down through the layers, across the
communication channel, and back up through the layers to the memory
server. The memory server processes the request and sends an XPP reply
back through the layers and across the communication channel to the
waiting client process. .. 64

5.2 Protocols that guarantee reliable delivery use 4 messages to
request. XPP only uses 2 messages for most paging requests.

process a
70

5.3 The stages of an XPP message. The client machine processes stages 1
and 7, the communication channel stages 2 and 6, and the server stages
3, 4, and 5. All three execute concurrently. 75

Figure

Xl

Page

5.4 Data streaming VS. synchronous sends. Data streaming with a pending
list of length 3 keeps the system busYl while synchronous sends result in a
substantial amount of idle time. In each case, time moves down the page
and shows the messages transferred. ... 77

5.5 The two components of an XPP message. 78

5.6 The fields in an XPP message. The first 8 fields make up the XPP header I

and the remainder of the message comprises the XPP data area. . 79

5.7 The format of an NAFP packet. 85

6.1 The remote memory server provides each client with its own Logical Mem­
07'Y Server (LMS) and regulates/protects the LMS from access by other
clients. 95-

6.2 The organization of a Logical Memory Server. A Logical Memory Server
organizes the memory space into Virtual Segments (VS), each subdivided
into pages. 96

6.3 The three hash tables: LMS hash table, VS hash table, and the virtual­
page hash table. Each virtual-page table entry contains the owner's times­
tamp and a pointer to the owner's VS table entry. Each VS table entry
contains the current timestamp for the VS, an LMS timestamp, and a
pointer to the owner's LMS table entry. 107

7.1 The Prototype System Configuration. 116

7.2 The mapping from VM Xinu to an LMS. Xinu's virtual memory system
d€'flnes the mapping from Xinu's process structure and address space lay-
out to the memory layout of an LMS. 119

7.3 The memory server folding function. . 124

7.4 The double hashing algorithm for a fetch.xequest. The algorithm assumes
a hash table of size N. .. 126

7.5 Average round trip delay to store or fetch an 8K byte page as a function
of the server load. The times indicate the average round trip delay expe­
rienced by Sun 3/50 client machines paging to a memory server executing
on a SPARCstation 1+. Note that at 100 requests per second the server
handles SOaK bytes of data per second and consumes 6.25 Mbps of the
Ethernet bandwidth. 135

Figure

xu

Page

7.6 Measured performance of the double hashing algorithm as a fundion of
the hash table utilization. .. 137

7.7 The total run time of the sequential access test program as a. function of
the pending list length. 140

Xlll

TRADEMARKS

IBM is a registered trademark of International Business Machines Corporation.

RT PC, RISC System/6000, and AIX are trademarks of International Business Ma­
chines Corporation.

VAX, MicroVAX, VAXstation, DECstation, VMS, and Ultrix are trademarks of Dig­
ital Equipment Corporation.

Sun 3, SPARC, SPARCstation, SunOS, NFS, and NeWS are trademarks of Sun Mi­
crosysterns, Inc.

Sequent Symmetry and Dynix are trademarks of Sequent Computer Systems.

UNIX is a registered trademark of AT&T.

Ethernet is a trademark of XEROX.

proNET and proNET-lO are trademarks of the Proteon Corporation.

The X 'Window System is a trademark of Massachusetts Institute of Technology.

I

1. INTRODUCTION

Virtual memory operating systems have had a significant impact on the design

and implementation of computer software. Computer hardware originally provided no

support for virtual memory. Both the operating system and user programs executed

in a single, unprotected, fixed size address space [Dij68, CMDD62, Org72, RT74].

As a result, programming was an art in which programmers spent large amounts of

time and effort reducing the size of their programs to stay within the memory space

constraints imposed by the h.ardware (e.g., see [Knu69, Den70]). Even the operating

system conserved memory to maximize the amount of memory available for user

programs [RT74, Com84].

Advances in computer technology over the past two decades have revolutionized

computer programming and operating system design. Today, most conventional com­

puter architectures, including personal computers, provide hardware support for vir­

tual memory. The hardware assists the operating system in creating independent,

protected, virtual address spaces, and provides support for detecting illegal memory

accesses. The hardware allows the operating system to map portions of an address

space to physical memory and other portions of the address space to backing storage.

In the past, magnetic disks have served as the backing store of choice. However,

recent technology advances in CPU speeds, network bandwidth, and memory sizes

have made new types of backing store feasible.

This thesis proposes and investigates a new model for designing distributed sys­

tems in which dedicated, large memory machines provide high-speed backing storage

to virtual memory systems executing on a set of distributed client machines.

2

This chapter reviews the design of conventional virtual memory operating systems,

discusses conventional backing storage, and introduces the concept of remote memory

backing storage.

1.1 Virtual Memory Operating Systems

Operating systems that provide suppod for virtual memory use the virtual mem~

Dry support provided by the hardware to create large virtual address spaces in which

user applications execute. A virtual address space is a logical address space, inde-.

pendent from the machine's physical memory space. The virtual memory abstraction

allows programmers to design and implement applications that do not depend on

the size of the physical memory of the underlying machine. Programmers are not

constrained by a machine-dependent physical memory size because each application

executes in an arbitrarily large virtual address space. l Virtual memory simplifies

program design by allowing programmers to focus on problem solving instead of

machine-dependent constraints. Virtual memory allows the size of a program to ex­

ceed the size of the physical memory. In addition, the virtual memory system can

place each application in a separate address space, protected from all other applica­

tions_ Protected address spaces eliminate elusive bugs that arise as a result of errors

in programs that reference memory locations outside their region [Den70, DenSO].

In a virtual mer-lOry, applications use virtual addresses to identify logical memory

locations. Virtual addresses are not necessarily bound to physical memory addresses.

Instead, virtual addresses are bound to physical addresses dynamically at run-time.

A virtual memory operating system2 creates the illusion of an arbitrarily large virtual

address space by mapping a small portion of the vidual space to physical storage. The

physical storage space consists of main memory and backing storage. Main memory

1Although they are much less common, there exist a few systems that support small, fixed-size,
virtual address spaces (e.g., smaller than the size of the physical memory); however, these systems
exhibit the same protection/sharing properties as systems that support large virtual address spaces.

2Tllroughout this thesis we will refer to operating systems that provide virtual memory support
as virtual memory operating systems.

3

refers to the high-speed memory physically located on the machine.3 Backing storage

refers to some type of secondary storage media, typically having access times slower

than those of main memory. The operating system maps certain regions of the virtual

space to main memory and maps the remaining virtual regions to the backing store.

When the user applications exhaust all available main memory, the operating system

moves data from main memory to the backing store. Later I when the data is needed,

the virtual memory system retrieves the data from the backing store.

1.1.1 Segments and Pages

Virtual memory operating systems typically organize memory into segments or

pages [Den70]. A segment is a variable size memory region consisting of a contiguous

set of memory locations. The programmer or the operating system defines the seg­

ments that comprise an application. Each segment is defined by a (segment number,

segment length) pair and has a set of protection values that permit or prohibit access

to the data contained in the segment.

Segments mirror the typical organization of an application. An application usually

contains several distinct regions, each having a particular purpose. For example)

an application often contains one or more text regions (e.g., user code or shared

libraries), one or more regions for data structures, and a stack region. In a segmented

architecture! each of these regions corresponds to a segment. Multiple virtual address

spaces may share a segment, and each segment has a set of protection values to

prohibit unauthorized access. Because applications are often organized in a modular

fashion, segments provide an attractive method for organizing the memory space.

Virtual addresses in a segmented system consist of a segment number and an

offset within segment. The operating system typically uses an address translation

table to map virtual addresses to physical memory locations. In a segmented system)

the address translation table stores the base address of each segment (i.e., where the

segment resides in physical memory) and the length of the segment. When translating

3Main memory is also referred to as primary memory.

4

a virtual memory address to a physical memory address, the system extracts the

segment number from the virtual address, locates the corresponding segment entry

in the address translation table, verifies that the offset does not exceed the segment

length, and adds the base address to the offset to obtain the desired physical memory

address.

The difficulty with segments is that a contiguous set of physical memory locations

large enough to hold the segment must be located before a segment can .be loaded

into memory. A special case of segmentation, call paging, eliminates the problem of

locating a contiguous memory region large enough to store the segment.

A page is a fixed~size segment. The system divides the virtual memory space

into fixed-size segments called pages, and divides the physical memory space into

fixed-size segments called frames. In a paged system all segments have the same

size. Because the segment size is fixed, the system can store a segment (page) in any

frame. Consequently, loading a page from the backing store simply requires locating

an unused frame in which to store the page.

Virtual addresses in a'paged system consist of a page m'mber and an offset within

page. In a paged system, the operating system uses an address translation table

called a page table to map virtual addresses to physical addresses (either in primary

memory or on the backing storage) as shown in Figure 1.1.

Segmentation and paging can be combined to reduce the overhead associated with

virtual memory (e.g., large address translation tables or long memory allocation de­

lays). Segmented paging and paged segmentation, as described in [Den70] and [PS85],

combine segmentation and paging to capitalize on the advantages of both systems.

1.1.2 Memory Management Policies

A virtual memory system uses three basic policies to govern the storage of data:

a placement policy, fetch policy, and replacement policy [Den70]. A placement policy

specifies the location in memory where data should be placed. A fetch policy de­

termines when data should be loaded from the backing store. A replacement policy

Virtual Memory

Virtual Page 2

Virtual Page 3

Virtual Page 4

Virtual Page 6

o

o

o

irtual Page n-1

Virtual Page n

Invalid

o

o

o

Invalid

Invalid

Physical Memory

o

o

o

Physical Page k

Backing Store

5

Figure 1.1 Virtual to physical address translation. The operating system maintains
an address translation table for each virtual address space. The address translation
table contains exactly one entry for every virtual page and specifies the true location
of the data (i.e., physical memory or backing storage).

6

determines which segments/pages should be removed from memory and placed on

the backing store. Determining the optimal set of policies for a particular system is

a difficult task, and much work has been devoted to the evaluation of various virtual

memory policies [Be166, Den70, ADU71, DenSO].

In a paged system, the division of physical memory into uniform frames results

in a trivial placement policy. The virtual memory system simply chooses any frame

that is available. Moreover, because the operating system typically does not know

which pages an application will require in the future, most paged virtual memory

systems use a fetch policy called demand paging. Under demand paging, the virtual"

memory system does not retrieve data from the backing store until the data is needed.

Although many paged virtual memory systems use the simplistic placement and fetch

policies mentioned above, page systems use.a wide variety of replacement policies.

The replacement policy defines the rules used to replace data stored in the physi­

cal memory. Replacement policies ~pecify the characteristics of segments/pages that

should be removed from the physical memory and stored on the backing store. For

example, a replacement policy might target the least·recently-used page, the oldest

page (first page allocated), or the least-frequently·used page as the page to replace

next. A replacement algorithm implements the replacement policy. Because most

hardware does not supply the information needed to implement the replacement pol­

icy directly (e.g., most hardware does not provide the support required to identify

the least-recently-used page), replacement algorithms typically approximate the re­

placement policy.

Replacement algorithms can be classified as global or local replacement algorithms.

Global replacement algorithms choose the next frame to replace from a global set of

frames (i.e., all the frames in the system). Local replacement algorithms allocate

a fixed number of frames to each application. When an application needs another

frame, a local replacement algorithm chooses a frame from the local set of frames

allocated to the application.

7

Example global replacement algorithms include Least Recently Used (LRU), Least

Frequently Used (LFU), and Most Frequently Used (MFU). Unfortunately, these algo­

rithms require special hardware support to keep a reference count or timestamp for

every physical page.4 Two common global replacement algorithms, the Clock algo­

rithm and the First-In-First-Out algorithm, do not require special hardware support,

which makes them more attractive than LRU, LFU, and MFU [Be166, Den70, PS85,

TanS?, LKKQ89]. Local replacement algorHhms include Working Set Replacement,

Page Fault Frequency, and Working Size [Den80, Fin88l. In addition, most global

replacement algorithms can double as local replacement algorithms.

1.1.3 Virtual Memory Techniques

The physical memory management component of a virtual memory system pro­

vides the mechanisms required to transfer data from primary memory to the backing

store and from the backing store to primary memory. Three common virtual memory

techniques for transferring data between primary memory and the backing store are:

Overlays: are segments of an application IS memory space that are never accessed

simultaneously. The application writer knows the structure of the program and

defines the overlays. The application assumes the responsibility of transferring

the overlays to and from the physical memory at runtime. Overlays require no

operating system support or modifications to the operating system.

Swapping: temporarily removes the entire contents of an application's virtual memory

space and places it on the backing store. When the application resumes, the

operating system must swap the entire virtual memory space into memory. If

the kernel has long-term scheduling information available, it can quickly free

up large amounts of physical memory by swapping out applications that will

remain blocked for a substantial amount of time.

8

Paging: temporarily removes individual segments/pages of an application's virtual

memory space rather than the entire memory space. The virtual memory system

transfers certain segments/pages from the application 's memory space to the

backing store and then retrieves them before, or when, the application attempts

to access them.

Overlays are often considered a virtual memory technique although they do not

require that an application execute in a virtual address space. Consequently, overlays

are especially useful for hardware that does not support virtual memory. However,.

the burden of physical memory management falls on the application writer who must

carefully analyze the program's behavior I determine the segments of the application

that can be overlaid, and write the code to transfer overl~ys to and from the backing

store. Swapping, like overlays, can be used on hardware that does not provide vidual

memory support. Swapping allows the operating system to quickly reclaim large

amounts of memory by grouping multiple segments or pages together (e.g., all the

pages of a process' address space) and transferring them all to backing storage at

once. Unfortunately, in many cases the removal of entire processes effectively reduces

the level of multi-programming. Paging reclaims memory without reducing the level

of multi-programming [PS85]. However, paging typically requires hardware support

for virtual memory. Because the operating system does not know in advance which

pages an applicat.ion will require, the operating syst-,em relies on the hardware to

inform the virtual memory system of accesses to non-resident pages.

The simplicity and uniform treatment of memory5 in a paged system have made

paged systems very popular. Many conventional hardware arc~itectures and virtual

memory operating systems provide support for paged virtual memory syst.ems. Con­

sequently, the remainder of this thesis will focus on paged systems although many of

the ideas and results presented in this thesis can be applied to segmented systems as

well.

5Uniform treatment of memory refers to the uniform nature of equal size segments. See [Den70].

9

1.1.4 Virtual Memory Hardware Support

Most conventional computer architectures provide hardware support for virtual

memorYi however I memory management hardware differs substantially from one rna·

chine to another. For example, the Digital Equipment Corporation VAX architecture

uses three distinct page tables to map a virtual address space [Dig85]. Each page ta­

ble maps a single contiguous virtual region of an address space, limiting each address

space to a maximum of three virtual segments.

The Sun Microsystems, Inc. Sun 3 architecture uses a special purpose memory,

management unit (MMU) chip to support virtual memory [Sun86]. The MMU chip

contains a fixed-size, high-speed memory that caches a fixed number of page table

entries. The operating system must store all other page table entries in the host's

memory. Unlike the VAX, the Sun 3 MMU chip can map an arbitrary number of

virtual regions in an address space, resulting in large, sparse, virtual address spaces.

The IBM RT IPC and the IBM RS/6000 also support large, sparse, address spaces,

but use inverted page tables to reduce the amount of memory allocated for page table

storage [CM88, IBM90b, IBM90a]. The hardware uses a hashing function to locate

virtual to physical mappings in the inverted page table when performing address

translations.

The MIPS chip, used in the Digital Equipment Corporation DECstation series,

does not support page tables [Kan89]. Instead, it uses a small, fixed-size translation._

lookaside buffer (TLB) containing (process id, virtual page, physical page) triples,

which it uses to translate virtual addresses to physical addresses.

Clearly, existing virtual memory hardware varies significantly across vendors. De­

spite the differences, the basic functionality provided by each architecture is the same.

In particular, all the architectures provide hardware address translation and allow

programs to use virtual addresses rather than physical addresses when accessing in­

structions and data.

10

1.2 Conventional Backing Storage

Once a page has been selected for replacement, the virtual memory system moves

the page to the backing store. Early virtual memory systems implemented overlays

and used a swapping drum for backing storage [Dij68]. Drums provided stable storage

and supported random access.

Today, most virtual memory operating systems use magnetic disks for backing

storage [PS85]. Magnetic disks provide high data transfer rates, large storage capacity,

and the ability to randomly access data, which makes them an appealing backing.

storage medium. The operating system usually reserves a fixed-size, contiguous region

of the disk for backing storage and writes blocks of data directly to the reserved region

(i.e., no additional file structure or other organizational structure is imposed on the

raw storage provided by the disk) [LL82, Bac86, LKKQ89].

Although magnetic disks support random access, the average retrieval time for

a magnetic disk is several orders of magnitude slower than that 'of physical memory

[HabS9, Hag89]. The majority of the disk access time is consumed by the seek op~

eration which positions the disk arm over the desired data. Consequently, operating

systems often attempt to minimize the number of seek operations. Moreover, de­

pending on the disk device, the vhtual memory system may use a complex placement

policy to optimize for large data transfers to or from the disk.

More recent virtual memory systems have added a level of abstraction to the

paging paradigm [GMSS8, OCD+87]. These systems use the file abstraction to hide

the underlying storage device from the virtual memory system and allow the operating

system to store data on the disk using high-level file operations. The virtual memory

system does not need to know the characteristics or organization of the underlying

disk device because the file system handles the storage of data on the disk. Some

operating systems provide support for a distributed file system and allow diskless

machines to use remote files for backing storage [GMS88, Nel86, WeI86].

11

Unfortunately, using files for backing storage increases the overhead associated

with paging. Writing data. to a file usually requires a minimum of 2 disk accesses (1

or more to write the data and 1 to update the directory structure), whereas writing

directly to the disk requires only 1 access [PS85, Bac86, LKKQ89]. Moreover, file

systems often attempt to improve performance with techniques such as read-ahead.

Read-ahead assumes that most programs access files sequentially and attempts to

prefetch additional data whenever the system reads from a file. However I when ap­

plied to random access paging activity, prefetching wastes valuable buffer space, de­

grading both paging and file system performance.

1.3 Remote Memory Backing Storage

Current technology trends provide the impetus to re-evaluate conventional back­

ing storage. In particular, CPU speeds, network bandwidth, and memory sizes are

increasing at a rapid pace, and the future promises more advances in these areas

[Ous90, Par90]. These changes have made new forms of backing storage with added

functionality and competitive performance (i.e., competitive with conventional disks

whose speeds have remained relatively constant [Hab89, Ous90]) feasible. Current

trends in memory technology create the possibility of machines with very large mem­

ories. We envision a distributed system with enough physical memory to back much,

if not all, of the virtual memory being used by applications throughout the system. In

this new model for virtual memory, dedicated, large-memory machines provide high­

speed remote memory backing storage to virtual memory systems executing on a set

of client machines. In a remote memory system, the client virtual memory systems

share the large memory resource. In addition, the high-speed, random access remote

memory combined with high-speed networks and processors create the possibility of

remote memory backing storage with performance competitive with, or better than,

conventional disk backing storage, which is plagued by slow seek times.

12

Remote memory backing storage differs from conventional magnetic disk backing

storage in several ways, and many of the differences affect the design of the client op­

erating system. The most obvious difference between remote memory backing storage

and disk backing storage involves reliability. When an operating system issues a read

or write operation to a disk, the disk hardware executes the desired operation and

then reports the status of the operation (e.g., success or failure). Because network

hardware does not report the success or failure of a network transmission, the hard­

ware may lose remote paging requests without signaling an error. In addition, because

clients access remote memory across a network, the server may asynchronously ac­

cept requests from multiple clients. Disks, however, can only process one read/write

request at a time. The operating system cannot issue another disk operation until the

previous operation completes. Clients, on the other hand, may interrupt the server

with a second or third request before the server finishes processing the first request.

H the system does not monitor the number of outstanding requests, a client could

swamp the server. Moreover, the network may deliver requests to the server out of

order.

Operating systems that use magnetic disks for backing storage maintain data

structures that manage the allocation and deallocation of the disk space. However,

in the remote memory model, the memory server manages the backing store, which

frees the client operating systems from maintaining data structures that manage the

backing store.

Because disks have relatively slow seek times (i.e., random access performance),

conventional virtual memory systems attempt to improve performance using tech­

niques such as read-ahead or delayed writes to reduce the number of seek operations.

Remote memory backing storage does not suffer from this problem because memory,

unlike a disk, provides constant-time random access to data.

13

1.4 Organization of the Thesis

Chapter 2 defines terminology used throughout the remainder of the thesis. Chap­

ter 3 presents the Remote Memory Model and briefly describes the three basic compo­

nents of the model: the client virtual memory operating system, the communication

protocol, and the memory server. Chapter 3 concludes by discussing advantages and

disadvantages of systems based on the model.

Chapter 4 describes a hierarchical virtual memory operating system designed to

support remote memory bac~ing storage. Chapter 5 presents a high-speed commu-.

nication protocol used by the client virtual memory system to transfer data to and

from the memory server. Chapter 6 describes the design of a highly efficient mem­

ory server capable of supporting multiple client machines simultaneously. Chapter

6 also describes the high-level abstraction used by the memory server to support

heterogeneous client machines.

Chapter 7 describes a prototype implementation and presents experimental results

obtained from the prototype. The results demonstrate the viability of the remote

memory model and show that performance is competitive with existing distributed

systems.

Finally, chapter 8 presents conclusions drawn from the research and outlines di­

rections for future research.

14

2. TERMINOLOGY

This chapter defines terminology used throughout the remainder of the thesis.

We assume the. reader has a basic understanding of operating system and network

terminology. A basic description of operating system terminology can be found in

Peterson et. al. [PS85]. Denning presents an overview of virtual memory in [Den70].

Tannenbaum [TanS1] and Comer [ComBS] describe network communication and dis­

tributed systems. In addition to basic terminology, this chapter clarifies ambiguous

terms by defining them in the context of this thesis.

2.1 Virtual Memory Operating Systems

An operating system manages a computer's resources and provides support for

multiprogramming. A virtual memory operating system supports an abstraction called

virtual memory where each application executes in a logical memory space much

larger than the size of the machine's physical memory space. Application programs

use logical virtual addresses, as opposed to physical addresses, to access memory

locations. Virtual memory hardware translates virtual addresses to physical addresses.

to locate tne data specified by a virtual address. The hardware component that

provides support for virtual memory is called the memory management unit (MMU).

An MMU typically uses an address translation table called a segment table or page

table to translate virtual addresses to physical addresses (see Section 1.1.1). When the

MMU encounters an invalid page table entry, the MMU raises a page fault exception

to indicate that the virtual address could not be translated or a protection violation

has occurred (e.g., a write access to a read-only page).

!5

Virtual memory operating systems categorize data storage media as primary stor­

age or backing storage. Primary storage refers to the memory physically located in

the computer I while backing storage refers to data storage media other than primary

storage. Typically the backing store is characterized by slower access times than pri­

mary storage. For most conventional systems, backing storage refers to a magnetic

disk drive. The virtual memory system uses the primary storage to cache data that

will be accessed in the near future and stores all other data. on the backing store.

The virtual memory system divides each virtual address space into segments or

pages.1 In the case of a paged system, the virtual memory system divides the physical

memory (primary storage) into fixed size frames. The size of a frame is determined by

the hardware, while the size of a page is set by the operating system. Consequently,

the size of a page may differ from the size of a frame. However 1 most virtual memory

operating systems define the size of a page to be the same as the size of a frame.

Conventional virtual memory operating systems use the abstraction of a process

to provide multiprogramming [PS85]. A process consists of a virtual address space

and a point of execution within the address space. The virtual memory system allows

multiple processes to execute simultaneously. More recent systems support multi·

threaded processes [Ras86, OCD+87, CGg!]. A thread is defined to be a point of

execution within a process' address space. All threads execute in parallel but execute

at separate points in the code. The advantage of multi-threaded processes is the

ability to concurrently manipulate shared data within a process.

2.2 Network Communication

Computers uses a communication channel to communicate with other computers.

A communication channel can be a physical network (e.g., an Ethernet) or a logical

(virtual) network consisting of multiple physical networks connected by gateways

[Com88, Tan8!).

lSection 1.1.1 desctibes segments and pages.

16

A datagram is the basic unit of transfer across a communication channel. Many

conventional communication channels provide unreliable datagram seruice. Unreliable

datagram service refers to a connectionless message-based data transmission model

in which the communication channel allows computers to send and receive datagrams

but does not guarantee that the datagrams will arrive at the destination. Instead, the

communication channel only guarantees to make a best effort to deliver each datagram

[Nar88].

Each datagram has a fixed, architecture-dependent, maximum size. The max­

imum size of a datagram is called the maximum transmission unit (MTU). Many·

virtual network architectures provide data transfer across multiple physical network

architectures connected by gateways. Although the virtual network defines a virtual

MTU for the size of a datagram, each underlying physical network architecture de­

fines its own MTU, which may be less than the MTU specified by the virtual network

architecture. In this case, the virtual network fragments virtual datagrams into phys­

ical datagrams, or packets, such that the size of each packet is less than the smallest

MTU of the underlying physical network architectures.

A protocol defines the language that hosts use to communicate. In order for two

or more hosts to communicate, they must agree upon a protocol before communica·

tion can begin. A protocol specifies the format and meaning of the information as

the information travels from one host to another. Protocols also define the set of

operations to perform when errors occur.

A network architecture is defined by a set of layered protocols called a proto­

col stack [McF76, Com8S, Sta91]. Figure 2.1 illustrates the protocol stack used in

the International Standards Organization Open Systems Interconnection (ISO OSI)

Reference Model. When a message travels from one host to another, the message

traverses the layers of the protocol stack. Each layer of the protocol stack provides a

set of services and may only use the services provided by the layers below. Organizing

the network communication task into multiple layers simplifies the design process by

breaking the communication task into smaller, managable pieces.

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Link Layer

17

Figure 2.1 The OSI Reference Model.

Communication channels transmit data at a rate specified in bits per second (bps).

For the purposes of this thesis, we use the relati ve terms high-speed and high-bandwidth

to describe communication channels capable of transmitting data at rates in excess

of 10 megabits per second (Mbps).2

Host machines (and gateways) often enqueue incoming messages until the host has

a chance to process the messages. When a packet travels from one host to another it

may experience one or more queueing delays. The time a message spends in the queue

waiting to be processed is called the queueing delay. In the case of a virtual network

where a message traverses several gateways, a message experiences a queueing delay

at each gateway between the sender and the receiver.

One measure of the performance of a communication channel is the average trans­

mission delay. The transmission delay is the amount of time required to transmit

a message from one host to another. Another measure of performance is the round

trip time (RTT). In the client-server model, the round trip time refers to the elapsed

time between the time at which a client first sends a request message to a server and

the time at which the client receives the acknowledgement or reply message from the

server. vVe will often refer to the round trip time as the round trip delay.

2As we will see in chapter 7, a 10 Mbps communication channel provides acceptable performance
(i.e., competitive with conventional systems).

18

2.3 Distributed Systems

A distributed system consists of multiple computers called hosts, or nodes, con­

nected by a communication channel. A host or node is a general purpose computer

that typically executes an operating system and supports user-level applications. The

communication channel allows hosts to communicate information by sending and re­

ceiving messages. A heterogeneous distributed system consists of host machines with

a variety of hardware architectures.

In a distributed system, each node provides a subset of the services available to.

the users of the system. Together the nodes comprise a system with full functionality

and a complete set of servkes. In contrast, a stand-alone system consists of a single

computer which provides a complete set of services without the aid of any other

computers.

Many conventional distributed systems use the client-server model of computing

[Corn87, TanS!]. Systems based on the client-server model identify common oper­

ations or functions and define them as a seTVice. A seT1Jer process performs one or

more services and allows other hosts in the distributed system to use the services it

provides. A server presents a well-defined interface to the service(s) it performs. Ap­

plications throughout the distributed system know and use the well-defined interface

to access the service. Application programs access the service by sending a request

message across the communication channel to the server proce~s. When an applica­

tion issues a request message, the application becomes a client of the server. The

server receives the request message from the client, performs the service requested in

the message, and returns the results to the client in a reply message. For example,

one node might provide a file service while a second node provides a computational

service and a third node interacts with the user via a user-interface. Although none of

the nodes constitute a complete system, when combined together, the nodes provide

all the services available to the user.

19

The advantage of the client·server model is that it functions correctly when the

server and the client are on the same machine (e.g., a stand-alone system) or when

the server and the client are on separate machines (e.g., a distributed system). In

addition, the model partitions the system functions into independent, self-contained

services that form an elegant, modular system.

20

3. THE REMOTE MEMORY MODEL

Virtual memory operating systems afford programmers the luxury of developing

applications that assume an arbitrarily large memory space. Virtual memory frees

programmers from architecture-dependent memory constraints and allows them to

produce highly portable, architecture-independent applications. The operating sys­

tem creates the illusion of an arbitrarily large memory by mapping a small portion of

the virtual memory space to physical storage. The physical storage space consists of

primary memory and a backing store (typically, a magnetic disk). The operating sys­

tem maps certain regions of the virtual address space to physical memory and maps

the remaining regions to the backing store. The virtual memory system manages (i.e.,

allocates and reclaims) the primary memory and the backing store. Typically the vir­

tual memory system maps regions that have a high probablility of being accessed in

the near future to physical memory in au attempt to minimize access to the backing

store.

Conventional distributed systems execute a virtual memory operating system on

each node in the system. Each virtual memory system independently manages its

local, private memory. No mechanism exists for the virtual memory system on one

machine to use unused memory on another machine. The virtual memory systems

do not interact and have no means of sharing the physical memory located on the

various nodes. That is, conventional distributed systems preallocate and assign pri­

vate physical memory to each machine instead of allowing all the machines to share

the physical memory resources. Consequently, the virtual memory system only al­

lows applications to use local memory. When the applications exceed the capacity

of the local memory, the virtual memory system moves application text and data to

21

the machine's private backing store instead of using unused memory elsewhere in the

system.

Current trends in memory technology create the possibility of machines with large

memories. We envision a distributed system with enough physical memory to back

much, if not all, of the virtual memory being used by applications throughout a

distributed system. This chapter describes a new virtual memory model called the

remote memory model. The remote memory model defines a distributed system in

which all the machines share a large, physical memory resource. The system provides

simple and efficient mechanisms for accessing the large memory resource and allows

every machine's virtual memory system to access the memory resource. Instead of

preallocating and installing all the physical memory resources as private memory on

the individual machines, the model combines some of the physical memory resources

together into a single, large, globally accessible, memory resource and provides effi­

cient access to the memory. Consequently, the virtual memory systems all share the

memory resource.

The remainder of this chapter describes the remote memory model and the as­

sumptions we make about the model. It identifies the properties of the model and

describes advantages and disadvantages of building systems based on the model.

3.1 The Model

The remote memory model describes a new architecture for designing distributed

systems. The model proposes a new virtual memory architecture that enhances both

the functionality and the performance of distributed systems. It defines the various

components of the system, the role each component plays, and the interaction between

the various components.

Figure 3.1 illustrates an example remote memory model architecture. The system

consists of multiple client machines, one or more memory server machines, various

other servers (e.g., time servers, name servers, or file servers), and a communication

channel interconnecting .all the machines. In the remote memory model, memory

22

Memory
~

Memory
Server Server.................

I- -
I-Large Large

Physical "----' Client I- Physical '--
.. ..!Y~~rP:C?~y.~~~p;r. ...

I Communication Channel I I
I I I

Client Client Client k:J. . .

Figure 3.1 An example remote memory model architecture.

server machines provide additional memory storage space for the virtual memory sys­

tems executing on the client machines. Instead of parceling out the memory resources

to individual machines where the memory is installed as priva.te memory, the remote

memory model provides a large memory resource which all the clients share. In the

remote memory model, client machines access the memory server to obtain additional

storage space.

Each client machine has a local memory capable of satisfying the client's normal

processing demands. However, for jobs requiring large amounts of memory, clients

use the large memory of the memory server for additional storage space. When the

memory requirements of an application exceed the capacity of the local memory, the

client's virtual memory system stores some of the application's data on the memory

server. When the application attempts to access data not cached in the local memory,

the virtual memory system intercepts the access, transfers the desired data from the

memory server to the client's local memory, and resumes execution. To free local

memory, the virtual memory system periodically transfers data from the local memory

to the memory server. Each client's local memory functions as a high-speed cache of

the large, shared, memory resource on the memory server.

23

All the client machines connect to the communication channel and contain the

necessary hardware support required to send and receive messages across the com­

munication channel. A client machine may be anything from a small microprocessor

(e.g., a sensor device) to a multi-user time-sharing system (e.g., a workstation or main­

frame). Each client machine executes a virtual memory system, typically assisted by

address translation hardware. The virtual memory system has the functionality re­

quired to access the large storage space located on the memory server. That is, the

virtual memory system understands the protocol used to communicate with the server

as well a.s the operations provided by the server. The virtual memory system hides

the location of the data (i.e., whether the data exists in local memory or remote

memory) from the application. The client's virtual memory system, with the help of

the memory server, creates the large virtual address spaces visible to the applications.

Large memory machines called memory seruers provide shared, high-speed re­

mote memory storage to the virtual memory systems executing on the client ma­

chines. Memory servers do not execute user applications. Instead, memory servers

are dedicated machines whose sole purpose is to provide remote data storage. Each

memory server machine has a large amount of storage space. The storage space con­

sists of physical memory and a mass storage device (e.g., disk drive). The total size

of the storage space on a memory server must exceed the expected maximum com­

bined memory usage of all the client machines. Clearly, the maximum memory usage

depends on the specific system configuration.

Although memory servers may use secondary storage to increase the total amount

of storage space, memory servers do not require virtual memory support from the

hardware. For performance or economic reasons the designer of a memory server

machine may chose to omit the MMU. In this case, the memory server must provide

all virtual memory management (e.g., swapping to secondary storage) in software.

However, each memory server machine must have the network communication hard­

ware required to communicate with the client machines it serves. Because memory

server machines only require the aforementioned hardware, they are relatively simple

24

machines (i.e., they do not require serial ports, video boards, monitors, or an MMU)

and can be viewed as a "black box" providing high-speed data storage.

The communication channel provides every client with the ability to send and

receive messages to and from the memory server. The communication channel acts

like a high-speed bus or backplane connecting multiple processors to a shared memory.

However, the communication channel differs from a bus in several ways. The model

assumes the communication channel provides unreliable datagram delivery. That is,

the model only assumes the communication channel makes a best effort to deliver

each datagram [Nar88J.

Assuming unreliable datagram service allows the model to encompass a wide va­

riety of network architectures. For example, the unreliability assumption allows the

model to use both reliable and unreliable network hardware. Similarly, the data­

gram delivery assumption allows the model to use network architectures that provide

datagram delivery (packets with a fixed maximum size), message delivery (logical

messages of arbitrary size), or byte-stream delivery (using record marking to emulate

datagrams). Moreover, the model does not restrict the communication channel to a

low-level protocol in the protocol stack. Consequently, the model may use a link-level

physical network architecture (e.g., Ethernet) or a transport-level virtual network

architecture (e.g., TCP lIP) as the communication channel.

Altbough the example communication channel shown in Figure 3.1 appears to

provide broadcast capabilities, the remote memory model does not assume a broadcast

facility. The model only assumes that a communication path exists from every client

to the memory server. ConsequentlYl other communication technologies, such as

point-to-point network architectures, may serve as the communication channel.

The remote memory model provides an alternative to conventional distributed

systems. The model approaches virtual memory differently than conventional dis­

tributed systems by allowing clients to share a large, globally accessible, memory

resource. Memory servers act as monitors for the memory resource, allocating mem­

ory to clients based on their needs. The remote memory model also provides the client

25

virtual memory systems with the opportunity to interact via. shared data. The above

functionality differences together with high performance make the remote memory

model an attractive alternative to conventional distributed systems.

3.1.1 Design Decisions

The general form of the model, described in the previous section, encompasses a

wide variety of system architectures. This section further defines various unspecified

aspects of the model. In particular, we make some design decisions that result in a

more precise or focused definition of the model. However, the design decisions are

not part of the model. They simply refine the definition of the model to provide the

functionality and performance we desire.

The continued proliferation of computer architectures make heterogeneous systems

a reality that cannot be ignored. Consequently, the model should support heteroge­

neous distributed systems. The size of a virtual address space, physical memory size,

page size, byte order, and word size may differ from machine to machine. Moreover,

client machines may execute heterogeneous operating systems, each with its own vir­

tual address space configuration, process structure, and replacement policy. Despite

these differences, memory servers must provide remote memory to all client machines,

regardless of the client's architecture or operating system.

We assume the majority of clients execute a multi-user or multi-tasking virtual

memory operating system with support for multiple virtual address spaces. Although

clients use remote memory instead of a local disk for backing storage, the model does

not assume diskless clients. Client machines may use a local disk for permanent

storage (e.g., a local file system). To simplify the model and the design of the client

virtual memory system, we assume each client only accesses one memory server even

if multiple servers exist.1

IThe single server res~riction also facilitates rapid prototyping and experimental evaluation of
systems based on the model.

26

Each memory server machine has a large physical memory capable of backing

most, if not all, of the virtual memory being used by the applications throughout the

system. Recent advances in memory technology allow each memory server to have

hundreds of megabytes, gigabytes, or possibly even terabytes of physical memory. As

we mentioned earlier, each memory server must have a storage space whose total size

exceeds the maximum memory usage of the clients. Consequently, a memory server

may use secondary storage to increase the total storage space on the server. However,

for performance reasons, the memory server should have a large physical memory to

reduce the number of accesses to secondary storage.

One of the goals of the remote memory model is to provide high-speed access to

additional memory storage. Consequently, the communication channel should have a

high bandwidth and low delay. Although the communication channel may be unreli­

able, the channel should exhibit a relatively low error rate. These requirements typi­

cally restrict the communication channel to high·speed local area networks (LANs) or

metropolitan area networks (MANs). Example communication channels include Eth­

ernet (10 Mbps), proNET (10 or 80 Mbps), and FDDI (100 Mbps) [Dig80, RHF90).

Virtual network architectures (e.g., TCP lIP networks, OSI networks) may be used as

the communication channel as long as they adhere to the high-speed communication

requirement.

3.1.2 Characteristics of the Model

Having described the remote memory model, this section focuses on characteristics

of the model and briefly examines advantages and disadvantages of designing systems

based on the model.

Perhaps the most apparent difference between the remote memory model and con­

ventional distributed systems is the high-speed data storage offered by the memory

server. Client applications that require large amounts of memory obtain additional

27

high-speed memory from the memory server. In addition to providing a large, high­

speed storage space, the remote memory model has the following desirable character­

istics:

Shared Access

Each memory server provides data storage to multiple client machines simulta­

neously. All the client virtual memory systems concurrently access the memory

server to store and retrieve data. Instead of preallocating a fixed amount of

memory to each client, the memory server allows the client virtual memory 5y5- .

terns to share the memory resource by dynamically Msigning and reassigning

the memory resource to clients based on their changing needs. In addition, the

server does not limit the number of clients it will serve. Each memory server

allows an arbitrary number of clients to access its memory.

Shared Data

The remote memory server provides a centralized memory, accessible to all

client machines. The globally accessible memory resource provides the oppor­

tunity for clients to efficiently share data. Although the model permits data

sharing among clients, the model does not specify the mechanisms used to share

data. Depending on the type of data sharing desired, the memory server may

implement data sharing mechanisms that allow read-only sharing, read-write

sharing, or no sharing [Li86, LH89]. Because multiple client machines often ex­

ecute a given application, use a given library, or memory map a given file (e.g.,

a font file or a static database), even a simple read-only sharing mechanism

significantly reduces the amount of server memory consumed by client data. A

more complex sharing mechanism might use the server as a centralized monitor

to implement read-write distributed shared memory. The centralized monitor

would grant or deny access to shared regions and provide the coherency control

required to maintain consistent copies of the data on all the client machines.

28

In short, the model allows the memory server to support several shared data

models.

Arbitrarily Large Storage Capacity

Memory servers employ virtual memory techniques to create an arbitrarily large

memory resource in which clients may store data. Although memory servers

have very large memories, the amount of memory on any given server remains

fixed and depends on the server's underlying architecture and hardware con­

figuration. To provide an arbitrarily large storage space, independent from.

the physical memory size of the memory server I a memory server uses one or

more secondary storage devices (e.g.] disk drives) and a replacement policy to

substantially enlarge the server's storage capacity. When the client machines

collectively exhaust the physical memory on the server, the server transfers

client data to secondary storage, thereby freeing physical memory for addi­

tional client data. As a result, client machines are completely unaware of the

two· level storage space.

Memory servers hide the size of their physical memory from the clients they

serve much like a virtual memory operating system hides the size of the un­

derlying machine's physical memory from the applications executing on the

machine. In a virtual memory operating system the machine's physical mem­

ory size does not constrain the amount of vil·tual memory an application can

obtain. Similarly, the memory server's physical memory size does not restrict

the amount of backing storage a client can obtain. Consequently, a client may

use any memory server, regardless of the server's physical memory size.

Offioading File Server

The remote memory model improves file system performance by removing pag­

ing activity from the file system. Similarly, memory servers improve virtual

memory system performance by providing high-speed backing storage. Remov­

ing paging activity from the file system significantly reduces contention for the

29

disk and eliminates many extra head movement operations. Virtual memory

systems that use a file system for backing storage compete with all the user-level

processes for the file system's resource. In the case of a remote file server, the

virtual memory system competes with the user-level processes of all the ma­

chines in the system. The file system gives no special privileges or priority to

requests from the virtual memory system because it cannot distinguish between

user-level file access and virtual memory system paging operations.

File systems often optimize performance for the most common file access pat­

terns. Many file systems attempt to improve performance with techniques such

as read·ahead. Read-ahead assumes sequential file access and prefetches ex­

tra data each time an appli,cation reads from a file. However, in many cases,

the paging activity generated by the virtual memory system results in random

data access as opposed to sequential data access. When applied to paging ac­

tivity, prefetching wastes valuable buffer space and degrades both paging and

file system performance. Separating paging activity from file activity allows

us to implement each operation efficiently. Unlike file servers, memory servers

understand paging activity and can be designed to make intelligent decisions

regarding storage and retrieval of data.

Multiple Forms of Remote Memory

The remote memory model does not define the operations allowed on remote

memory, nor does it specify the behavior or reliability of remote memory in all

situations. Consequently, the remote memory model allows system designers

to define the operations and reliability provided by remote memory to meet

the needs of their particular system. We already mentioned several possible

semantics for providing shared data between clients. The model also allows the

memory server to store and retrieve data with various reliability guarantees.

For example, the client virtual memory systems may view remote memory as

a less efficient form of local memory, but similar in all other respects. Given

30

this definition, the memory server provides high-speed volatile storage similar

to the client's high-speed volatile local memory. A different definition of remote

memory may require reliable storage. In this case, the memory server must u:;;e

a non-volatile storage device to store a copy of all the data written to remote

memory. Another definition may require reliable storage and reliable retrieval.

In this case, multiple memory servers may cooperate to provide fault tolerance

and insure that clients can access remote memory at all times.

Exploits Technological Advances

Network bandwidth, CPU speeds, and computer memory sizes are increasing

at a rapid rate. The remote memory model exploits these particular hardware

technologies and will continue to exhibit better performance as the technology

advances. The average seek time on a magnetic disk, however, has remained

relatively constant. In the future, we expect the remote memory model to offer

performance several times faster than systems that page to a local disk.

These advantages make the remote memory model an attractive model for design­

ing distributed systems. However, the model is not without its drawbacks. Because

memory servers provide a centralized memory service, they present a potential bottle­

neck. If the number of requests becomes too large for the server to handle, the server's

ability to respond quickly and efficiently to requests will deteriorate and degrade the

performance of the client virtual memory systems. Because all clients access remote

memory across the communication channel, the communication channel poses a po­

tential bottleneck. As the number of clients increase, the amount of data traveling

to and from the server increases and consumes a significant portion of the commu­

nication channel's bandwidth. Moreover, remote memory traffic may compete with

all other network traffic for the communication channel's bandwidth. Despite these

potential problems, the remote memory model's attractive properties combined with

31

the possibility of performance competitive with, or better than, conventional mag­

netic disk backing storage make the remote memory model an attractive model for

designing distributed systems.

3.2 Summary

This chapter describes a new model for designing distributed systems. The model

·proposes a new virtual memory architecture in which dedicated, large-memory ma­

chines serve as backing store for virtual memory systems operating on a set of het­

erogeneous client machines. The dedicated memory server allows sharing of the large

physical memory resource and provides fast access to data.

The remote memory model has several desirable properties. Memory servers pro·

vide high-speed data storage to virtual memory systems executing on heterogeneous

client machines. The centralized nature of the memory server provides clients with the

opportunity to share data. The remote memory model improves file system perfor­

mance by offloading the file server. Separating file activity from paging activity allows

us to implement each operation efficiently. Finally, the model appears promising for

the future because it exploits the rapid technology advances in network bandwidth,

CPU speeds, and memory size. In short, the remote memory model provides an

attractive alternative for designing distributed systems.

32

4. A CLIENT VIRTUAL MEMORY SYSTEM

In the remote memory model, the client virtual memory system communicates

with the memory server to access remote memory backing storage. As you will recall

from the description of the remote memory model presented in chapter 3, each mem­

ory server provides remote memory backing storage to heterogeneous client machines

executing a variety of virtual memory operating systems. Consequently, the only

requirement of the client operating system is that it must provide support for remote

memory backing storage. The virtual memory system must understand (and use) the

set of operations provided by the memory server. In addition, the operating system

must implement the conununication protocol used to communicate with the memory

server.

This chapter presents the design of a virtual memory operating system with sup­

port for remote memory backing storage. The system presented here serves as an

example of how to incorporate remote memory backing storage into a virtual mem­

ory operating system. The same mechanisms and approach could be applied to a wide

variety of existing operating systems) thereby allowing them to make use of remote

memory backing storage.

4.1 Design Goals

In the remote memory model, the virtual memory component of the client operat­

ing system provides the support required to access remote memory backing storage.

While designing the client virtual memory system, we identified several additional de~

sign goals indirectly related to the basic goal of incorporating remote memory backing

33

storage into the virtual memory system. In particular, we envisioned a client virtual

memory operating system with the following characteristics:

Architecture Independence

In order to execute the operating system on a wide variety of client architectures,

the operating system must exhibit a high degree of portability. In particular,

the virtual memory system must not depend on the underlying hardware ar­

chitecture. Clearly, architecture dependencies will exist, but the design should

limit and isolate them as much as possible.

Hierarchical Design

Operating systems are large, complicated pieces of software. Experience with

the simplicity, flexibility, and clarity of existing hierarchically-designed oper­

ating systems demonstrates the benefits of designing operating systems in a

hierarchical fashion [Com84, Dij68, Lis72, SAG+72].

Multiple Threads of Control

The system should support multi-threaded user applications and allow multiple

threads of control within the kernel. Multiple threads of control within a user

application allow concurrent manipulation of shared data within the application,

and multiple threads of control within the kernel allow the kernel to execute

several tasks concurrently. Multiple threads of control allow cooperating tasks

to communicate efficiently via shared memory. In addition, many operations

can be implemented simply and elegantly when viewed as concurrent threads

of control [Com87, Tan87].

An Efficient Remote Paging Mechanism

The performance of the virtual memory system depends on the communication

between the client and the remote memory server. To maximize performance,

the paging mechanism must be efficient. In addition, the virtual memory system

should exhibit flexibility and permit system designers to substitute alternate

forms of backing storage.

34

Sections 4.2 - 4.4 examine each of these design goals and their relationship to the

remote memory model. Section 4.2 shows how the operating system uses a hierar­

chical design to separate the various functions performed by the system into distinct

components. In particular, the hierarchical design allows the system to separate vir­

tual memory management from the backing store I/O mechanism. Separating virtual

memory management from backing store I/O allows the system to use new forms of

backing storage, including remote memory. Moreover 1 the modularity that results

from a hierarchical design permits replacement of various system components such

as the page replacement mechanism. The ability to change the page replacement

mechanism allows us to experiment with new replacement policies and examine the

interaction between the replacement policy and the backing storej in this case, remote

memory backing store. Section 4.3 outlines the design of an architecture interface

layer that provides-architecture independence and reduces the effort required to port

the operating system to the heterogeneous client architectures. Section 4.4 shows

how the kernel uses multiple threads of control executing in a shared address space to

efficiently send and receive data to and from the memory server across the communi­

cation channel. The threads share data structures and use the kernel's interprocess

communication and synchronization primitives to communicate with each other. To­

gether the threads implement the protocol used to communicate with the memory

server. Finally, section 4.5 describes the design of the virtual memory component of

the Vi}! Xinu opemting system and shows how it achieves the design goals.

Although this chapter describes the design of a client operating system with sup­

port for remote memory backing storage, many of the design goals presented above

could be applied to the d~sign of a conventional virtual memory operating system in

which magnetic disks, as opposed to remote memory, serve as the backing store.

4.2 Hierarchical Design

A hierarchically-designed operating system partitions operating system functions

into -distinct components and organizes the components into a layered hierarchy. Each

35

layer of the hierarchy builds on the functionality provided by the lower layers. A hier­

archical design, like a modular design, identifies functions that perform closely related

operations and combines them into layers with well-defined interfaces and semantics.

However I unlike modular designs, hierarchical designs specify the dependencies be­

tween layers by defining a hierarchical relationship between the layers. The core layer

of a hierarchically-designed operating system consists of the small set of primitive op­

erations supported by the hardware. Each layer builds on previous layers to provide

additional functionality.

Because operating systems are large, complex pieces of software, the components

of the system often interact in complicated and unexpected ways. Hierarchically­

designed operating systems clearly define the interaction between components, mak­

ing the system easier to understand. Hierarchically-designed operating systems col­

lect the functions that define each policy (scheduling policy, memory allocation policy,

page replacement policy, etc.) together into a layer, allowing the designer to easily

identify the functions that implement a given set of operations or define a given pol­

icy. In particular, the hierarchical layering allows the virtual memory system to be

modified to support new types of backing store without fear of breaking other system

components. The dependency information provided by the hierarchy clearly identifies

the components that may be affected by the change.

As the name implies, a hierarchical design only refers to the design of the system,

not the flow of control. Unlike network layering, a hierarchical design does not specify

the procedures a particular layer may call at run time. Layered network models

usually impose strict layering on the run-time execution, requiring the thread of

execution to sequentially traverse each layer in the network model. A hierarchical

design does not impose such stringent restrictions on the run-time execution.

j

I

36

4.2.1 Incorporating Virtual Memory into a Hierarchical Design

Building on the experience obtained from hierarchically-designed operating sys­

tems, we designed a virtual memory operating system that incorporates virtual mem­

ory into a hierarchical design. We call the system VM Xinu because it has its origins

in the Xinu operating system [Com84, Com87]. The hierarchical design found in the

Xinu operating system is shown in Figure 4.1. All Xinu processes share a single ad­

dress space and execute code directly out of the kernel text region. Consequently, the

memory management layer only manages a single physical address space.

Figure 4.2 illustrates VM Xinu's hierarchical design and shows the dependencies

between the virtual memory system components and the other components of the

system. The core of the hierarchy consists of machine·specific hardware and an archi­

tecture interface layer. The architecture interface layer hides the underlying virtual

memory hardware from the upper layers. It presents a well-defined virtual memory

interface to all the upper-level memory management routines, thereby allowing them

to remain independent from the underlying hardware.

The follow.ing sections describe the various layers of the hierarchy. The description

begins with the process management layer and delays the description of the hardware

layer and architecture interface layer until section 4.3 where the topic of architecture

independence is discussed.

4.2.2 Process Management Layers

The major differences between the non-virtual memory hierarchy and the virtual

memory hierarchy occur in the memory management and process management layers.

Although it seems obvious that introducing virtual memory into a hierarchal design

requires modifications to the memory management layers, it may not be obvious how

the introduction of virtual memory affects the process management layers.

In the system without virtual memory (Figure 4.1); memory management resides

at the core of the hierarchy and does not depend on process management. The process

management layer resides above the memory management layer because it depends

User Programs
Remote File System
Internetwork Communication
Device Drivers
Interprocess Communication
Process Coordination
Process Manager
Memory Management
Hardware

Figure 4.1 The hierarchy of layers in the Xinu operating system.

37

38

User Processes
Kernel Processes
High-level Process Management

'" Page Replacement} High-level P ysical Memory
"* Paging I/O Memory Management Management

File System (Remote)
Internetwork Communication
Device Drivers
Interprocess Communication
Process Coordination
Low-level Process Management L I I

'" Low-level Virtual Memory Management } lvfe~;rve
'" Low-level Phvsi~al Memory Management Manag~ment

Process Scheauhng
*Architecture Interface

Hardware

Figure 4.2 A layering model for a hierarchically-designed virtual memory operating
system. The *'5 identify the virtual memory system components of the hierarchy.

39

on the memory management layer to allocate stack space for newly created processes.

However, in a virtual memory system, the memory management system requires

functionality found in the process management layer to suspend processes that request

memory when no memory is available. That is, memory management depends on

functionality provided by process management, creating a circular dependency. The

hierarchical design shown in Figure 4.2 resolves the circular dependency by breaking

the process management layer into three components: process scheduling, low-level

process management, and high-level process management.

The process scheduling component of the system moves processes between process'

states and schedules the ready processes for execution based on a scheduling policy.

The design places the process scheduling layer at the core of the hierarchy because

the memory management layer depends on the functionality that it provides. To un­

derstand the dependency, imagine an application consumes all the available physical

memory. The virtual memory system must then free memory by writing data to the

backing store. The memory management routines choose a page for replacement and

issue a write operation to store the page on the backing store. After the memory

management routines issue the write, they must wait for the secondary storage de­

vice to return the status of the write operation. To avoid busy-waiting while waiting

for the return status, the memory management routines invoke the process schedul­

ing layer to suspend execution of the waiting process and resume execution of the

next ready process. In a non-virtual memory system, the memory management layer

signals an error when it exhausts' the physical memory. However, in a virtual mem­

ory system the memory management layer must suspend the process until memory

becomes available.

The low-level process management routines combined with the high-level process

management routines implement process creation and process termination. The low­

level routines supply basic process creation operations that initialize a virtual address

space, allocate stack space, and fill in the process table. The low-level routines also

provide termination operations that nnmap virtual address spaces, release stack space,

40

and free process table entries. The high-level routines provide the ability to dynami­

cally load user code from the file system and execute it. Consequently, the high-level

process management layer resides above the file system layer in the hierarchy. The

high-level process management layer also serves as the interface between user level

applications and the low-level process creation/termination primitives.

-4.2.3 Memory Management Layers

In a virtual memory system, the memory management component must handle

the allocation of both physical and virtual memory. The design divides the memory

management component into two layers: low·level memory management and high-level

memory management (see Figure 4.2). Each of these two layers is subdivided into a

physical memory management sublayer and a virtual memory management sublayer.

The design separates low-level details, such as mapping physical frames to virtual

pages, from high-level abstractions, such as the layout of a virtual address space. In

particular, the separation allows the paging component of the virtual memory system

to reside above the I/O system and the file system. As a result, the paging component

may use a wide range of backing storage media including disk drives, files, or remote

memory.

The low-level physical memory management routines handle the allocation and

reclamation of physical frames. When the system needs a physical frame to back a

virtual page, it calls a low-level physical memory management routine to obtain an

available frame. If a process needs a physical page and no pages are available, then

the low-level physical memory management layer suspends execution of the faulting

process by invoking functions at the scheduling level. The low-level physical memory

management routines never perform any paging operations (i.e., move data. to or from

backing storage). The low-level physical memory management routines also allocate

and free kernel memory.

The low-level virtual memory management routines provide the support required

by the process creation layer to initialize a new virtual address space. In particular,

41

the low-level virtual memory management routines create and initialize the stack

region of a new virtual address space. The routines use the functionality provided

by the low-level physical memory management layer to allocate the physical frames

assigned to the stack region.

The high-level physical memory management layer performs all the operations

related to paging. Figure 4.2 depicts high-level physical memory management as two

distinct sublayets: the paging layer and the page replacement layer. The paging layer

transfers pages to and from the backing store. Because the virtual memory system

performs paging at a high.level in the hierarchy, it can use the file system layer,·

network communication layer, or device driver layer to access backing storage. This

ability allows the system to page to a wide variety of secondary storage mediums.

The page replacement layer decides which virtual pages should remain in the local

physical memory and writes all other virtual pages to the backing store. The page

replacement layer uses the replacement policy to choose virtual pages to replace and

invokes the paging layer to transfer the data from physical memory to the backing

store. When the system attempts to access a virtual page residing on the backing

store, the page replacement layer calls the low-level physical memory management

layer to obtain an available physical page and then invokes the paging layer to retrieve

the data and fill in the newly-allocated physical page.

The high.level virtual memory management layer defines the layout of a virtual

address space by dividing the address space into special purpose segments and reg­

ulating the allocation and reclamation of memory within each segment. Example

regions include a heap region, shared memory regions, and memory-mapped file re­

gions. The high-level virtual memory management routines regulate access to these

virtual regions and allow user-level applications to acquire memory from the regions.

42

4.3 Architecture Independence

Although a hierarchical design clarifies the relationship between the various sys­

tem components, designing and implementing an operating system is still a diffi­

cult and time-consuming task. To reduce the effort required to port the system

to new architectures, the design should minimize the amount of machine-dependent

code. That is, the design should isolate and limit the components of the system

that depend on the underlying architecture as much as possible. Many conven­

tional operating systems use high-level abstractions to hide hardware-specific devices.

such as disk drives, .printers, and terminals from the rest of the operating system

[Bac86, LKKQ89, Ras86, OCD+87, LL82, AR89). Our goal Wa.'l to hide the under­

lying virtual memory support provided by the hardware from the virtual memory

system.

To keep the virtual memory system independent from the hardware, the operat­

ing system defines an abstract virtual memory machine. The abstraction hides the

underlying virtual memory hardware from the virtual memory system. Consequently,

the virtual memory system requires no modifications when porting to a new hardware

architecture. In addition, the small number of operations provided by the abstraction

minimizes the effort required to port the abstract virtual memory machine to new

architectures. Although the hardware only provides a subset of the operations defined

by the abstract machine, the architecture interface layer compensates for the missing

functionality by implementing the remainder of the abstract machine in software.

4.3.1 The Hardware Layer

The intersection of the functionality found in conventional hardware architectures

defines the support provided by the hardware layer of the hierarchy. Using the inter­

section as the basis for the hardware layer increases the number of hardware platforms

43

to which the system can be ported. Conventional architedures translate virtual ad~

dresses to physical addresses using page table entries that minimally contain the

following information:

Valid Bit: indicating whether or not the entry contains a valid mapping for the hard­

ware to use when translating a virtual address to a physical address.

Protection Bits: specifying the type of access allowed. Many architectures maintain

two protection values for each virtual page; one value for kernel mode and

one value for user mode. Protection values are chosen from three values that·

correspond to: no access, read access, and read/write access.

Frame Number: specifying the physical frame associated with the virtual page.

The hardware layer (i.e., the underlying architecture) must support these bits. The

hardware uses the valid bit, the protection bits, and the frame number to translate

virtual addresses to physical addresses. H the valid bit is not set or if the protection

bits prohibit access to a page, the hardware signals an address translation error and

invokes an interrupt handler to correct the problem.

Most architectures cannot map an entire virtual address space because they do

not have sufficient memory to store the mapping tables. However I most architectures

can map at least two disjoint regions of a virtual address space. For example, the

VAX is capable of mapping three disjoint regions , while the Sun 3/50 is capable of

mapping 255 disjoint regions. To allow maximum portability, the design assumes the

hardware supports no more than two disjoint regions.

To improve performance, conventional architectures cache page table entries auto­

matically in high-speed registers or memory commonly called a translation lookaside

buffer (TLB). The abstract virtual memory machine assumes the hardware supports.
a TLB as well as methods for flushing the TLB. The upper layers use the flushing

operation to insure that the hardware always uses current mappings rather than old

cached mappings. H the hardware does not support a TLB, the flush operation maps

to the null operation.

44

Similarly, the operating system assumes the hardware supports a. data cache and

instruction cache. Again, if the hardware does not support these caches, the flushing

operations map to the null operation.

4.3.2 The Architecture Interface Layer

The architecture interface layer supplies the remainder of the abstract virtual

memory machine's functionality and provides the higher layers of the hierarchy with

a well~defined interface to the underlying architecture.

The architecture interface layer expands the information associated with each page

table entry to aid the virtual memory system with tasks such as page replacement.

The abstract machine's page table entries contain the following values in addition to

the hardware values discussed earlier:

i\!Iodi/ied Bit: indicating whether or not the virtual page has been modified.

Referenced Bit: indicating whether or not the virtual page has been referenced. l

In.A!Iemory Bit: indicating whether or not there is a physical frame associated with

the virtual page.

Initialization Bit: indicating how to initialize uninitialized pages the first time they

are referencedj initialization may be zero-on·demand or garbage-on-demand.

Most of the architectures mentioned earlier provide MMU support for the modified

and referenced bits, making the architecture interface layer's implementation of these

bits trivial. However, architectures like the MIPs chip do not provide a referenced

or modified bit. Instead, the hardware provides special instructions, registers, and

interrupts designed to help the software simulate the referenced and modified bits.

Because the abstra.ct machine defines an abstract page table entry, each entry

could be defined to contain several more values. However, the values given above

lBecause some hardware architectures do not support reference bits, the current implementation
(described in chapter 7) does not require a referenced bit.

45

provide a sufficient set of building blocks on which one can construct a wide variety

of page replacement schemes, virtual memory mapping strategies, and backing store

mechanisms.

Before defining the other mechanisms supported by the architecture interface

layer 1 a brief description of the abstract virtual memory machine's notion of a process

is required. The abstract virtual memory machine supports multi-threaded processes

(i.e., multiple threads of control executing in a virtual address space).2 Portions of

the address space are shared by all threads executing in the address space, while other

portions of the address space are private to each thread. In particular I the abstract .

machine assumes a thread maintains state information on a private stack region. As

stated earlier, the underlying hardware layer can map at least two disjoint regions of

a virtual address space to physical memory. The abstract machine associates each

region in a virtual address space with a thread (e.g., the private regions) or with the

virtual address space (e.g., the regions shared by all threads). All the threads in a

virtual address space share the page table entries associated with the virtual address

space but have separate page table entries for their private virtual memory regions.

The architecture interface layer includes mechanisms to access the abstract ma­

chine's page table entries. Because the abstract machine understands virtual address

spaces and threads, a virtual address space identifier or a thread identifier along with

a virtual address' uniquely identifies a page table entry. The architecture interface

layer provides a routine that maps a virtual address space/thread identifier and a

virtual address onto a page table entry handle. The high-level memory management

routines use the handle to access or modify the values in an abstract machine page

table entry.

The architecture interface layer also provides ways to change from one virtual

address space to another with a single operation. The operating system uses the

operation at context switch time to insure that the hardware has all the page table

entries it needs to translate virtual addresses to physical addresses for the current

2Tbreads are discussed in more detail in section 4.4.

46

thread. It allows the architecture interface layer to move page table entries between

the MMU and memory. For example, on the Sun 3/50 architecture these routines

move the necessary page table entries into the MMU chip, possibly moving other

entries from the MMU to memory. Because the page tables reside in memory on the

VAX architecture, changing the page table base registers causes the hardware to use

a new set of page tables.

The functionality found in the hardware layer and the architecture interface layer 1

together with a well-defined interface; comprise the abstract virtual memory ma­

chine. All higher level memory management routines manipulate the virtual memory

hardware using the interface provided by the abstract virtual memory machine.

4.4 Process Management

Process management in the VM Xinu system differs from other conventional oper­

ating systems. The djfferences provide added functionality fOl" user-level applications

and allow the kernel to support remote paging cleanly and efficiently. Section 4.2.2

showed how process management fit in the virtual memory hierarchy, and section 4.3

defined the multi-threaded process support provided by the abstract virtual mem­

ory machine. This section describes how the process management layers build on the

abstract machine to attain the design goals presented at t~e beginning of the chapter.

The process model used in many conventional operating systems ties thp. lifetime of

a process to the threads of control within the process [RT74-, LL82, G1.fS88}. When

the threads of control within a process terminate, the system removes the process

and its address space. VM Xinu uses a different process model. The process model

in VM Xinu separates the computation on the data from the lifetime of the data

and allows high-level procedures to tie them together when desired. In addition to

providing support for the conventio.nal process model, the system provides support

for object-based models that permit inactive data objects void of any computational

threads..

47

VM Xinu calls the data. component an address space and the computations on

the data threads. Given address spaces and threads, higher-level entities such as

conventional processes, multi-threaded processes, active/inactive objects [DJA88],

and passive objects [ABLN85, Dew88] can be constructed. For example, conventional

processes, like those found in UNIX, can be formed by creating a single address space

and _a. single thread of control within the address space. Address spaces and threads

also provide the mechanisms needed to implement kernel threads. Placing kernel

code and data in a distinct kernel address space allows multiple threads of control to

execute concurrently within the kernel.

Address spaces do not depend on threads in any way. An address space may have

many active threads of computation, or none at all. The data in an address space

may continue to exist even after all threads of computation on the data complete. An

address space may also exist long before an application starts a thread of computation

on the data in the address space.

Threads, on the other hand, depend on address spaces. Each thread inhabits

exactly one address space. The lifetime of a thread is limited by the lifetime of the

address space. Before removing an address space, the operating system terminates

all threads executing in the address space.

The next two sections describe the internal structure of address spaces and threads.

4.4.1 Address Spaces

An address space consists of two disjoint virtual memory regions. Each address

space defines a mapping from virtual pages to physical frames. The architecture

interface layer provides the functionality required to manipulate the address space

mappings using architecture-independent routines. In addition, the virtual memory

system defines a template for data placement within an address space. Figure 4.3

illustrates the arrangement of data in an address space.

The first region in an address space contains the text and data portion of a user

application and begins at a fixed minimum virtual memory address. The user heap

48

!Text IData I Heap

"!
Shared

Memory

Min Vir~ual Max Heap Fixed
Address Address Address

Kernel

Max Virtual
Address

Figure 4.3 The structure of an address space in VM Xinu.

area follows the data area and extends to a maximum user heap address. The second

region of the address space contains a fixed-size shared memory region used for sharing.

data between address spaces. The virtual memory system also maps the kernel's text,

data, and heap into the second region of every virtual address space. Although the

kernel appears in every address space, the protection bits on the kernel region only

allow access to the kernel region while executing in kernel mode. User applications

change to kernel mode by issuing a trap instruction to trap to a kernel routine. The

virtual memory system maintains almost no state information for an address space

other than the virtual to physical address mappings, allowing the virtual memory

system to support many address spaces.

4.4.2 Threads

VM Xinu defines a thread as a point of execution within an address space. A

thread consists of sLate information that describes the thread IS status and the thread's

private stack region. All threads executing in the same address space share the text,

datal and heap region of the addI'ess space, but each has its own private stack region

as shown in Figure 4.4. A threadls private stack space together with the address space

in which the thread executes comprise the entire virtual address space visible to the

thread. VM Xinu places each thread IS private data immediately before the shared

memory region in the address space. The resulting virtual address space can be easily

mapped to the two disjoint virtual memory regions supported by the abstrad virtual

memory machine described in section 4.3.

49

Thread Specific
Data

"'--- User Kernel RSAStack Stack
Shared

u 'dC~ I "dC~ I I Memory Kernel

t

Thread 1
Thread 2

Text Data Heap

Min Virtual
Address

Max Heap
Address

Min Stack
Address

Fixed
Address

Max: Virtual
Address

Figure 4.4 The location of thread specific data within an address space.

VM Xinu divides a thread's stack space into three sections: a user stack, a kernel

stack, and a reserved shared area (RSA). A thread operates in user mode when

executing user programs and in kernel mode when executing kernel calls, using the

appropriate stack for each mode of operation. Both the kernel and user threads have

access to the RSA area and use the area to efficiently pass data between the kernel

and the user thread. The RSA area allows the user to efficiently implement I/O

operations by eliminating the need for the kernel to copy data to and from kernel

buffers.

Threads provide several advantages over conventional UNIX style processes. The

kernel can create threads, terminate threads, and context switch between threads

much faster than systems with conventional processes. Because address spaces spec­

ify the mapping from virtual addresses to physical addresses, the kernel only needs

to initialize the thread's state information and map in its stack region at thread cre­

ation time. All threads in an address space efficiently share the data in the address

space and immediately reflect any changes made to the data. Threads also provide

the ability to concurrently execute multiple tasks within the operating system ker­

nel. Many kernel operations such as page reclamation, network management, and

background paging are coded simply and elegantly when viewed as concurrent kernel

threads. Section 4.5 describes how the virtual memory system uses kernel threads to

efficiently support remote paging.

50

4.5 Virtual Memory Management

In VM Xinu, the virtual memory system uses all the design decisions discussed

up to this point to efficiently support remote memory backing storage. First, the

virtual memory system resides above the file system, networking, and device driver

layers in the hierarchical design, permitting the virtual memory system to use a

wide range of backing storage mediums. Second, the virtual memory system uses

the abstract virtual memory machine to access the underlying hardware. Third, the

virtual memory system uses lightweight kernel threads to communicate across the.

communication channel with the remote memory server. Because the threads execute

in the same address space, they efficiently communicate with each other using shared

memory.

Figure 4.5 shows the basic components of the virtual memory system and illus­

trates the relationships between the components. To briefly outline how the virtual

memory system operates, imagine that a user-level application references a page that

has been stored on the backing store. The hardware detects the access, raises a page

fault exception, and begins executing a page fault handler routine. The page fault

handler routine enqueues a page fetch request with a special purpose kernel thread

whose sole purpose"is to transmit paging requests to the memory server. The memory

server responds with a page fetch reply which is received by another special purpose

kernel thread that constantly listens for reply messages. The receiving thread then

informs the user application (that caused the page fault handler be invoked) that ihe

missing page has arrived.

4.5.1 Page Replacement

To amortize the cost of page replacement over time, a lightweight kernel thread,

called the frame manager, periodically executes the replacement algorithm in the

background, maintaining a constant supply of free frames for future physical memory

requests. The operating system associates a low and high water mark with the free

VM Xinu Client Machine

User Applications

Applicalion

Page B
Fault

Exceplion
...-----.- ---- Kernel Boundary - -----

Kernel

51

Page Fault
Handler Routine

Page Receiver
Thread

Network

Frame Manager
Thread

Thread
CreationITerminalion

Routines

Page Sender
Thread

To the memory server -..

Figure 4.5 The organiza.tion of the virtual memory system in VM Xinu.

52

list to regulate the amount of time the frame manager executes. When the supply of

available frames falls below the low water mark, the frame manager begins running

in the background until the supply of free frames rises above the high water mark.

The low water mark indicates a dangerously small number of available frames, while

the high water mark represents an adequate number of available frames. Normally,

the frame manager runs periodically for a fixed amount of time, keeping the supply of

available frames near the high water mark. When the number of free frames becomes

dangerously low 1 the frame manager runs continuously until the supply becomes ad­

equate again. 3

YM Xinu uses a modified version of the two-handed clock algorithm to approxi­

mate the LRU global replacement policy. The operating system maintains three lists

to enhance the replacement algorithm: an active list, a modified list, and a free list.

The active list contains all physical pages currently in use. The modified list contains

modified pages waiting to be written to the backing store, and the free list contains

unused pages and reclaimed pages. The two-handed global clock algorithm traverses

the active list searching for pages to replace. When the algorithm locates a page

for replacement, it moves the page to the modified list or to the free list. When an

application requests physical memory, the operating system removes pages from the

free list and assigns them to the application. The modified list and the free list give

pages a second chance, increasing the not referenced time period and the probability

of choosing the least recently used page. If an application accesses a page on the

modified list or the free list, the page fault handler returns the page to the active list.

The low-level physical memory layer knows nothing about the page replacement

algorithm. Low-level physical memory allocation routines obtain physical frames from

the free list and block when no frames are available. Only the frame manager thread

executes the page replacement algorithm to search for frames.

3Choosing the optimal values for the high-water mark and the low-water mark are out.side the
scope of this research. Consequently, VM Xinu simply sets the high-water mark and the low-water
mark to a predefined static value.

53

The kernel maintains information about each physical frame in a data structure

called the frame table. The frame ta.ble contains one entry for each page of physical

memory. The operating system links each frame table entry into one of the three

lists: active, modified, or referenced. Locked frames, such as frames allocated to

kernel text and data, always reside in memory and do not appear on any of the lists

or participate in the replacement algorithm.

4.5.2 Paging

Two lightweight kernel threads handle all the paging related I/O. The page sender

thread handles all outgoing messages (i.e., paging requests), and the page receiver

thread handles all incoming messages (i.e , paging replies). The frame manager never

transmits paging requests to the memory server) and the page fault handler never

receives paging replies from the memory server. Instead, the frame manager and

page fault handler request these services from the page sender and page receiver

threads. When the frame manager wants to store a page on the memory server,

the frame manager enqueues the page with the page sender thread. The page sender

thread formulates the request message and then transmits the message to the memory

server. Similarly, the page fault handler enqueues a fetch request with the page sender

thread and then waits for the page receiver thread to notify it that the desired page has

arrived. The page sender and page receiver threads use interprocess communication

and shared data to communicate quickly and efficiently.

The page sender thread maintains three distinct queues for paging requests: a

creation/termination queue) a page~in queue, and a page-out queue (see Figure 4.5).4

The frame manager) page fault handler, and creation/termination routines invoke the

page sender by sending a request to one of the three queues. The page sender wakes

up) services the enqueued requests, and then waits for more requests.

When a reply from the remote memory server arrives, the operating system awak­

ens the page receiver thread to process the reply. Page-in replies cause the page

ol.Chapter 5 discusses the various paging request types in greater detail.

54

receiver thread to awaken the faulting process after placing the page in the process'

address space. When the page receiver thread receives a page-out reply, it moves the

corresponding physical frame from the modified list to the free list. H a page-out er­

ror occurs, the page receiver resends the page-out message by enqueuing the message

with the page sender.

Because the page sender and page receiver threads handle all backing store I/O,

the virtual memory system architecture can be easily modified to use a conventional

magnetic disk for backing storage instead of remote memory. Only the page sender

and page receiver threads must be modified to read and write data to and from a local

disk. The remainder of the virtual memory system architecture requires no changes

to convert to conventional magnetic disk storage or other forms of backing storage.

4.5.3 Memory Reclamation

When a thread or address space terminates, the operating system may consume

a substantial amount of processing time reclaiming the memory allocated to the

teminated thread or address space. To amortize the cost of memory reclamation over

time, VM Xinu uses a mechanism called timestamps. The operating system associates

a timestamp with every thread. When the operating system allocates a physical

frame to a thread, the allocation routines stamp the frame with the owner's ID and

timestamp. As long as the frame's timestamp matches the owner's timestamp, the

operating system knows the frame is valid. When a thread terminates, the operating

system must reclaim all the physical pages owned by the thread. To reduce the time

required to terminate a thread, the kernel assigns a new timestamp to the thread,S

thereby invalidating all physical frames owned by the thread. Consequently, the kernel

terminates threads in constant time because it does not spend any time searching lists

or freeing physical frames. Instead, the frame manager thread reclaims these pages

in the background over time. As the frame manager scans the adive list using the

5YM Xinu uses the lifetime of an address space/thread as the basic time unit. Consequently, a
new timestamp is obtained by incrementing the old timestamp.

55

two~handed clock algorithm, the clock hands check each frame's timestamp against

the owner's timestamp before processing the frame. IT the timestamps do not match,

the frame manager frees the frame and moves it to the head of the free list. The

operating system uses the same algorithm to terminate address spaces. As a result,

the kernel can terminate address spaces and threads in constant time.

4.6 Related Work

Relatively few hierarchically-designed operating systems exist. Dijkstra's THE

operating system [Dij68] used a hierarchical design; however, it did not incorporate

virtual memory into the design.6 Several object-oriented systems, such as the the

Choices operating system and the DASH kernel, encapsulate operations and data

structures into objects with well-defined interfaces but do not specify the relationship

or dependencies between objects [Rus91, AF88}.

The Mach operating system [Ras86, YTR87, Tev87, BBB+87] employs a scheme

similar to VM Xinu to provide architecture independence. Mach divides the imple­

mentation into a machine-dependent component and a machine-independent com­

ponent. Mach draws the line between machine-dependent and machine·independent

code at a much higher level, resulting in a much larger machine-dependent compo­

nent than VM Xinu's abstract machine component. Each time the system is ported

to a new architecture, the large machine-dependent component must be rewritten.

High-level operations that are architecture-independent in VM Xinu, such as zercr

filling a physical page, copying a physical page to another physical page, removing all

references to a physical page, or marking all references to a physical page as copy-on­

write, are machine-dependent in Mach and require elaborate data structure support

[Tev87]. In addition, Mach's machine-independent component keeps a redundant

machine-independent copy of all virtual address space mappings, duplicating infor­

mation and introducing coherency problems.

6The THE system did use a drum for backing storage; however, the hardware did not provide
any virtual memory support, so ''paging'' was painfully obvious to the programmer.

56

The UNIX operating system [Bac86, LKKQ89, GMS88] provides portable memory

management by assuming all page tables reside in memory directly addressable to

the kernel. In-memory page tables map nicely onto the VAX architecture where the

UNIX operating system has its roots. In fact, many versions of UNIX use the VAX

architecture as an abstraet machine and mimic the VAX architecture rather than

exploit the functionality provided by the memory management unit.

The SunGS, Sprite, and Plan 9 operating systems support diskless nodes that

page across a network to a remote file server as well as nodes that page to a local

disk [GMS88, Sun90, OCD+87, Ne186, PPTT90]. Because the remote file system

provides the same services that the local file system provides, the virtual memory

system requires no changes because it is completely unaware of the location of the

data.

Apollo's distributed DOMAIN operating system [LLD+83] provides an object­

based model of computing where portions of an object may be migrated to another

node. The system is similar to VM Xinu in the sense that the migrated portions of the

object are accessed across a network. To access an object, the virtual memory system

invokes a locating service that executes a distributed look-up algorithm to locate the

object. The virtual memory system then uses a hardware-specific communication

protocol to access the object across a ring network.

The Mach operating system uses a local disk as the default backing store. However,

Mach allows users to create their own external pagers to provide backing storage

for portions of the user's virtual address space. Using this mechanism, users could

implement external pagers capable of accessing remote memory backing storage.

4.7 Summary

This chapter describes the design of an architecture-independent virtual memory

operating system with support for remote memory backing store. The system uses a

hierarchical design to clarify the relationships and dependencies between the various

system components. At the lowest level of the hierarchy, the architecture interface

57

layer implements an abstract virtual memory machine. The virtual memory system

builds on the abstract virtual memory machine and requires no modifications when

ported to new architectures. The paging system occurs at a high level in the hierarchy.

Consequently, the paging system can use the file system, network, or local devices to

access a wide range of backing storage mediums.

The kernel supports multiple threads of control within the kernel in addition

to multi-threaded user applications. The virtual memory system uses two kernel

threads, the page sender thread and the page receiver thread, to transfer data across

the network to the remote memory backing store. A third kernel thread, the frame

manager thread, executes the page replacement algorithm and communicates with the

page sender thread using shared memory and efficient interprocess communication.

Finally, the virtual memory system uses a delayed page reclamation mechanism

to terminate processes in constant time. When the virtual memory system allocates

a physical page, it stamps the page with the current owner's timestamp. When the

owner terminates, the virtual memory system increments the owner's timestamp and

effectively invalidates the page. Because the frame manager thread reclaims these

obsolete pages in the background, the cost of page reclamation is amortized over

time.

58

5. A HIGH-SPEED REMOTE MEMORY COMMUNICATION PROTOCOL

Chapter 3 described the remote memory model which consisted of one or more

memory servers and multiple client machines interconnected by a communication

channel. Chapter 4 examined the client side of the model and described a hierarchical,

portable, virtual memory operating system with support for remote paging. This

chapter focuses on the communication channel and the protocol clients use to access

remote memory.

In the remote memory model, clients use the communication cl:tannel to access

the additional memory storage space provided by the memory server. Because the

efficiency of the communication protocol significantly impacts the performance of the

entire system, we designed a special purpose communication protocol called the Re­

mote !v[emory Communication Protocol (RMCP). Clients use the protocol to transfer

data to the memory server when they need additional memory space, and the memory

server uses the protocol to transfer data back to the client when the client requests

the data. The remote memory communication protocol hides the characteristics of

the underlying communication channel from the client's virtual memory system and

the remote memory server. The protocol allows clients to communicate with memory

servers over almost any network hardware.

The remote memory model defines a conceptual model for designing distributed

systems, not a specific implementation, and intentionally leaves the details unspec­

ified. In particular, the remote memory model does not specify the characteristics

of the communication channel. Before we can design a communication protocol we

must establish a minimal set of characteristics or assumptions regarding the commu­

nication channel and the machines it connects. To narrow the possible characteristics

of the communication channel we make the following assumptions:

59

Connectivity: The communication channel provides message delivery between a mem­

ory server and each client machine. If necessary, the communication channel

handles routing (e.g., across gateways) to provide a transmission path between

the server and a client.

Datagram Service: The communication channel provides datagram (packet) oriented

serVIce.

Unreliable Delivery: The communication channel unreliably delivers packets. The

communication channel may drop, corrupt, or delay packets. However l the rate"

at which these errors occur is relatively low.

High-Speed: The communication channel offers a relatively high bandwidth and low

delay (e.g., a lOMbps Ethernet or FDDl).

Heterogeneous Clients: The distributed system consists of heterogeneous client archi­

tectures and operating systems.

ConCU7"1'ent Server Access: The memory server serves multiple client machines simul-

taneously, providing concurrent access to the remote memory resource.

This small set of assumptions serves as the basis for the design of the Remote Memory

Communication Protocol. The following section outlines our goals for the Remote

Memory Communication Protocol and the effect our assumptions have on the design

of the protocol.

5.1 Design Goals

Clearly, the communication protocol's performance significantly influences the vir­

tual memory system's performance. To improve the performance of the vidual mem­

ory system, the communication protocol should provide highly efficient data transfer

(i.e., minimize the time required to transfer data between a client and the mem­

ory server). In addition to efficiency, the communication protocol should provide

reliability and architecture independence.

60

5.1.1 Reliability

When a client exceeds the capacity of its local memory. the virtual memory sys­

tem selects one or more pages of memory and transfers the data stored in those

pages to the backing store. Only after the virtual memory system's I/O mechanism

has successfully transferred and stored the data on the backing store can the virtual

memory system reclaim the memory occupied by the data. That is, to insure the vir­

tual memory system operates correctly, the virtual memory system's I/O mechanism

must be able to obtain the status of every I/O operation issued to the backing store..

If an operation fails, the virtual memory system must repeatedly issue the operation

until it succeeds. If a store operation fails and the virtual memory system does not

detect the failure, the virtual memory system may try to retrieve the data and fmd

it missing. Similarly, the virtual memory system cannot allow a process to access a

page of memory until the fetch operation succeeds.

In addition, the backing store must execute store requests and fetch requests in

the order the virtual memory system issues them. For local disk backing storage, this

requirement does not present a problem because the disk only processes one operation

at a time. However I for remote memory backing storage accessed across a network, the

virtual memory system may issue multiple, concurrent, paging operations. Because

the network drops messages and delivers messages out of order I the I/O mechanism

must guarantee that the paging operations will be processed in order. If the remote

memory server executes the paging requests out of order, the client's vidual memory

system may fail.

In the remote memory model, the communication protocol handles all I/O between

clients and the memory server. Consequently, the communication protocol must

guarantee reliable, in-order processing of all paging operations.

5.1.2 Architecture Independence

The recent proliferation of network architectures and computer architectures, com­

bined with a desire to execute the communication protocol across a wide variety of

61

hardware platforms, mandates a communication protocol design that limits the num­

ber of modifications required to port the protocol to a new architecture. In particular I

the communication protocol must exhibit independence from the underlying network

architecture, the client architectures, and the server machine's architecture.

Instead of binding the design of the communication protocol to a particular net­

work architecture, the communication protocol should provide the flexibility required

to fun on an assortment of network technologies. Limiting the number of assumptions

about the communication channel facilitates the design of an abstract communication

protocol that maps easily onto a wide variety of network architectures. Consequently,

the only assumption the communication protocol makes about the underlying com­

munication channel is that the communication channel provides unreliable datagram

service between every client and the memory server. Many conventional physical net­

work architectures (e.g., Ethernet, proNET, FDDI, or point-to-point networks) meet

this minimal constraint as well as several virtual network architectures (e.g., TCP lIP

networks such as the Internet).

Because the distributed system consists of heterogeneous client machines, the page

size of each client will differ from machine to machine. Consequently, the protocol

must support variable size messages, allowing heterogeneous client architectures to

send and receive architecture.dependent size pages to and from the memory server.

To complicate matters, a client's page size, and therefore the message size, may

exceed the MTU of the underlying communication channel. To be truly portable, the

communication protocol must transfer messages of arbitrary size, regardless of the

underlying network architecture's MTU.

Finally, the communication protocol should adhere to the network protocol layer­

ing principle [ComSS). The layering principle says that for any layer n in a hierarchy

of network layers, the destination's layer n receives exactly the same message sent by

layer n at the source. This means that the receiver must receive a message identical

to the message sent by the sender.

62

5.1.3 Efficiency

The virtual memory operating system described in the previous chapter provides

support for demand paging. When a process accesses a page that has been written to

backing storage, the virtual memory system suspends execution of the process until it

can retrieve the page from the backing store. Retrieving a page from backing storage

involves locating a page of physical memory and (possibly) writing the contents of the

page to the backing store before retrieving the faulting page's data. Because the time

to access local memory and the time to access backing storage differ by several orders.

of magnitude, the suspended process experiences a sizeable delay when compared

to a local memory access. In addition, the system must block processes waiting for

resources held by the suspended process. The system must also block all processes

waiting for output from the suspended process. Consequently, to improve the virtual

memory system's performance, the communication protocol should minimize the time

required to process a store or fetch request from a client. To improve efficiency the

communication protocol should:

• minimize the number of messages sent between a client and a server when

executing a store or fetch request,

*' minimize the number of packets used to transmit a message across the commu­

nication channel,

• minimize the per message processing overhead on the client and the server (e.g.,

processing the protocol headers),

• take advantage of the asynchronous nature of the underlying communication

channel whenever possible by issuing multiple, concurrent, requests.

Unfortunately, the reliability requirements mentioned in section 5.1.1 often resuit in

additional messages and added overhead, reducing the efficiency of the protocol. The

tradeoff between reliability and efficiency makes it difficult to find the correct balance

that will optimize overall system performance. Because we assume the underlying

63

communication channel has a relatively low error rate, the protocol optimizes perfor­

mance for the most common casej the case when no errors occur.

5.2 Conceptual View Of The RMCP Protocol

The Remote Memory Communication Protocol (RM CP) is a special purpose pro­

~ocol d.esigned to meet the reliability and architecture independence requirements

described in section 5.1. The protocol provides reliable delivery, data streaming, ar­

bitrarily large messages that permit arbitrary page size transfers, independence from.

the underlying network architecture, and low overhead that results in high efficiency.

All client machines use RMCP to transfer data to and from the memory server.

The Remote Memory Communication Protocol consists of two layers: the Xinu

Paging Protocol (XPP) Layer and the Negative Acknowledgement Fragmentation Pro­

tocol (NAFP) layer. Figure 5.1 illustrates the layering and the flow of data through

the layers.

Dividing the protocol into two distinct layers clearly separates the tasks performed

by the protocol into high-level paging operations and low-level transport operations.

The XPP layer implements the high-level abstract paging operations used to reliably

store and retrieve data to and from the memory server. The NAFP layer implements

the low-level transport operations required to transfer XPP messages across the com­

munication channeL NAFP hides the characteristics of the communication channel

and the details of message delivery from the XPP layer, allowing the XPP layer to

remain independent from the underlying network architecture.

Both the XPP layer and the NAFP layer adhere to the network protocol layering

principle. That is, the XPP layer on the server side receives messages identical to the

messages sent by the client's XPP layer, and vice versa. Similarly, the server's NAFP

layer receives an exact copy of the datagrams sent by the client's NAFP layer.

Because the Remote Memory Communication Protocol imposes minimal require­

ments on the communication channel, the protocol executes over any transport mech~

anism that provides unreliable datagram service. Almost any hardware or software

Client
Machine

Client
Process

Memory Server
Machine

Memory
Server

64

... " Paging Request ". ..

XPP

NAFP

Remote Memory
Communication

Protocol

XPP Messages

----------,

XPP

NAFP
,-' NAFP Datagrams "'.

L-~~-----I. .L---r-.,.--------I
--------- - ---.~------------------~--

Communication Channel

Figure 5.1 The two layers of the remote memory communication protocol. A client
initiates an XPP request which travels down through the layers, across the communi­
cation channel, and back up through the layers to the memory server. The memory
server processes the request and sends an XPP reply back through the layers and
across the communication channel to the waiting client process.

65

transport service can function as the underlying communication channel, including

transport mechanisms that provide reliable datagram service, stream service, or vir­

tual cireui ts.

RMCP, as a whole, functions much like a remote procedure call [BN84, Lyo84 ,

We186j.1 Assuming no errors arise, the protocol operates as follows: A process on

a client machine desires to store or fetch a page of memory to or from the memory

server. The client process invokes the XPP layer passing it the desired request and all

pertinent data. The XPP layer creates an appropriate message, passes the message to

the NAFP layer for transrrtissioll , and waits for arespOllse from the server. The NAFP

layer transfers the message across the communication channel, possibly fragmenting

the message and reassembling it on the server side. Then, the NAFP layer gives

the message to the XPP layer which decodes the message and passes the message

type and associated data to the memory server. The memory server processes the

request and sends a reply message containing the results down through the layers to

the communication channel, across the channel, and then back up through the client

layers. vVhen the client XPP layer receives the reply, it informs the caller that the

requested operation has successfully completed and passes any results the operation

may have produced to the caller.

5.3 The XPP Protocol

The Xinu Paging Protocol provides the virtual memory system with the ability

to issue high-level abstract paging operations. XPP hides the details of backing store

I/O from the virtual memory system by reliably transmitting paging messages, in­

voking the desired paging operation on the memory server) and returning the results.

The XPP protocol packages up the requested operation into an XPP message and in·

vokes NAFP to deliver the message across the communication channel to the memory

server. The XPP layer on the server unpacks the XPP message to obtain the original

operation and delivers the requested paging operation to the memory server. 'When

lWe discuss the similarities/differences to remote procedure calls in section 5.5.

66

the server completes the operation, it sends an XPP reply message to the client to

inform the virtual memory system that the operation has finished. If the NAFP layer

fails to deliver an XPP request message, the XPP layer will retransmit the message

until it succeeds. Because the XPP protocol provides reliability, the virtual memory

system only needs to issue a store page or fetch page operation once and wait for the

results.

5.3.1 XPP Message Types

5.3.1.1 Conceptual Message Types

The XPP protocol supports four conceptual message types which the virtual mem­

ory system uses to access the memory server. Each message type corresponds to one

of the memory server's abstract paging operations. 2 Four abstract paging operations

provide the functionality needed to support the virtual memory system. These four

basic message types are:

• page store requests

• page fetch requests

• process create requests

• process terminate requests.

The XPP protocol assumes that each client's virtual memory system divides mem­

ory into pages. Consequently, XPP uses a page as the basic unit of data transfer

between the client and the server. Although XPP makes this assumption, it does not

specify the size of a page. Each client independently choses a page size that suits the

client. Usually the client chases a page size that matches the underlyjng architecture's

page size.

The client's virtual memory system uses page store request messages and page

fetch request messages to send and receive data to and from the server. When a

2Chapter 6 describes the operations provided by the memory server.

67

client creates or terminates a. process, the virtual memory system informs the memory

server using a process create request or a process terminate request. We discuss create

and terminate requests in greater detail in section 6.3.4. For the moment, suffice it

to say that the server uses this information to provide efficient storage and to detect

erroneous paging requests.

5.3.1.2 Concrete Message Types

The fouf,conceptual XPP message types correspond to high-level paging opera­

tions and provide the virtual memory system with a high-level interface to the remote

memory backing store. However I XPP uses several message types to implement the

conceptual message types and provide reliability, data streaming, and error detection.

A list of the message types supported by XPP, along with a brief description

of each type, appears in Table 5.1. The first eight message types implement the

four conceptual message types used by the virtual memory system. Each conceptual

message type corresponds to a pair of XPP messages: an XPP request message and

an XPP reply message. The reply message serves two purposes: it acknowledges

receipt of the request message, and it returns the results of the requested operation.

In the case of a fetch_request, the reply message contains the requested data. In all

other cases, the reply contains the status of the requested operation.

XPP establishes contact with a memory server using an XPP startup_request mes­

sage. Before sending any other messages, XPP issues a startupJequest message to

request permission from the memory server to use it for backing storage. The mem­

ory server then issues an XPP startup_reply message to grant or deny permission.

If an error occurs, the memory server reports the error with an XPP iLLegaLrequest

message. For example, when a client attempts to fetch a page that does not exist,

the server signals the error with a illegalJequest message.

The XPP protocol includes two additional messages to improve efficiency: a shut­

down-request , and a create-and-store_request. The shutdown-request message functions

Message Type

Table 5.1 XPP message types.

Meaning

68

STORE-REQUEST

STORE-REPLY

FETCH-REQUEST

FETCH-REPLY

CREATE-REQUEST

CREATE-REPLY

TERMINATE-REQUEST

TERMINATE-REPLY

STARTUP-REQUEST

STARTUP-REPLY

SHUTDOWN-REQUEST

SHUTDOWN-REPLY

CREATE-STORE-REQUEST

CREATE-STORE-REPLY

ILLEGAL-REQUEST

Store data on the memory server

Memory server successfully stored the data

Retrieve data from the memory server

Requested data enclosed in message

Inform the server of a new process

Create....request acknowledgement

Inform the server of a terminated process

Terminate...request acknowledgement

Client system boot request

Startup....request acknowledgement

Client system shutdown request

Shutdown....request acknowledgement

Create process and store page

Create_Store..request acknowledgement

Error: Illegal request

69

as the counterpart to the startup-request message. If a client system terminates grace­

fully, it sends a shutdown...request message to the memory server to inform the server

that it no longer requires backing storage service. The server uses this information

to release memory server resources held by the client. Because clients may go down

unexpectedly, the server does not require notification via a shutdown message.3

XPP also supports a create-and-store_request that combines a create-request and a

store_request into a single message. Create-and-store...requests allow a client to delay

sending the create....request for a process until the virtual memory system issues a

store-request for the process. The client then sends a single message instead of two

separate messages. Thus, if a process never stores any data on the memory server,

the client machine does not send any requests to the server.

5.3.2 Reliability

The XPP protocol satisfies the end-to-end reliability requirement imposed on the

RMCP protocol in section 5.1.1. Many conventional protocols and network architec­

tures provide reliable delivery [PosSI, OrgS6, CheSS, DigS4]. Protocols that provide

reliable delivery accept messages from a source host and guarantee delivery of the mes­

sages to the specified destination host. However, a virtual memory system requires

more than reliable delivery from the communication protocol.

Protocols that provide reliable delivery make no promises about the handling or

treatment of a message once the message has been received (and acknowledged) by

the receiver. In particular, a protocol that only provides reliable delivery cannot

guarantee that the memory server will process a paging request once the request

has been delivered. However, guaranteeing that the server will process the request

is precisely the guarantee the client virtual memory system requires. That is, the

client's virtual memory system requires an end-to-end [SRCS4) reliability guarantee

from the communication protocol. The virtual memory system only wants to know

whether the server successfully or unsuccessfully processed the request. The virtual

3Chapter 6 discusses the server's adions for startup and shutdown messages in greater detail.

xpp Request Reliable Delivery Request

70

Client

send request

receive reply

Server

receive request

send reply

Client

send request

receive ACK

receive reply

send ACK

Server

receive request

send ACK

send reply

receive ACK

Figure 5.2 Protocols that guarantee reliable delivery use 4 messages to process a
request. XPP only uses 2 messages for most paging requests.

memory system expects the I/O mechanism (i.e., the communication protocol) to

reliably perform the paging operation specified in the request message. To provide

this type of guarantee, the protocol may have to transmit a paging request multiple

times. Even if the protocol knows that the server received the request, the protocol

must resend the request message until it receives a reply message.

Protocols that guarantee reliable delivery typically use four messages per request.

XPP does not waste any effort trying to reliably deliver individual messages that may

have to be resent even though they were received by the server. To improve efficiency_

XPP only uses two messages for most paging requests: a request message follo\ATed by

a reply message (see Figure 5.2). XPP does not try to reliably deliver either message.

If the client does not receive the reply message in a timely fashion, the client assumes

an error occurred and resends the request. As long as no errors occur, each paging

operation results in only two XPP messages.

XPP uses timeouts, retransmissions, and positive acknowledgements to provide

end-to-end reliability. Positive acknowledgements, in XPP, function differently than

positive acknowledgements in protocols that guarantee reliable delivery. Positive

71

acknowledgements in protocols that guarantee reliable delivery indicate that the des­

tination received the message [ComSS]. In XPP, the reply to a request message acts

as a positive acknowledgement. In addition to acknowledging receipt of the request

message, a reply message indicates that the request message was processed by return­

ing the status of the requested operation. XPP starts a timer when it sends a request

message and retransmits the request message if the timer expires before the reply

message arrives. XPP saves a copy of the message and does not delete the request

until it receives a successful reply. Every time XPP resends the request message, it

resets the timer and waits for a reply.

The XPP layer on the server functions differently than the XPP layer on the

client, due to the request-reply nature of XPP. Because multiple client machines

simultaneously access the memory server, the server can quickly become a bottleneck,

degrading the performance of all the client virtual memory systems. To simplify

the server, the XPP layer on the server does not reliably deliver reply messages.

The server knows the client will reissue the request if the reply message does not

successfully reach the client. Consequently, the XPP layer on the server does not

waste any effort trying to reliably deliver the reply message. The client driven nature

of the XPP protocol simplifies the memory server and optimizes performance for the

expected case; the case in which the client receives the reply. The server does not

need to implement timers, save messages, wait for acknowledgements, or retransmit

messages. As a result, the server spends more time processing client request messages

and less time communicating.

5.3.3 Message Sequencing

Virtual memory systems, including VM Xinu's virtual memory system, expect

paging requests to be processed in the same order that the requests were issued.

Consequently, XPP must guarantee to deliver paging messages to the memory server

in-order. If the server does not process the messages in the order they were issued,

the server may return incorrect data. in response to a fetch request.

72

xpp uses sequence numbers to guarantee that request messages are delivered in

the correct order. The client assigns a sequence number to each XPP message it

sends to the server. The client and the server agree on an initial sequence number

and increment the sequence number for each new request message sent. Each XPP

client/server pair has its own sequence number.

A sequence number serves two purposes: it uniquely identifies a message, and it

imposes an ordering on the list of messages. When the server returns an operation's

results in an XPP reply message} the server includes the sequence number from the

corresponding request message. The client identifies the reply message by its sequence

number and quickly locates the corresponding request message with a matching se­

quence number. Because XPP retransmits messages, the server and the client may

receive duplicate messages. The sequence numbers allow XPP to detect duplicate

messages and take the appropriate action.4

Because XPP assigns sequence numbers in increasing order, the sequence numbers

impose an ordering on the list of messages. XPP uses sequence numbers to deliver

messages to the server in an order that insures correct results. However, the virtual

memory system does not need to impose such a strict ordering to achieve correct

results. In practice, the virtual memory system only needs to impose a partial ordering

on the 'list of messages to achieve correctness. That is, the case seldom occurs where

the server must process message i before processing message i +1. More often the case

<Irises where the server can process message i + 1 before message i and still Clchl€Ve

the same results. For example, assume a client issues a store request for physical page

i belonging to process A followed by a fetch request for physical page j belonging to

process B. Because the two messages do not depend on each other in any way, XPP

may deliver the messages out of order without affecting the result. Consequently,

XPP will, under certain circumstances, pass out of order messages on to the server

in an attempt to improve efficiency.

4Tbe appropriate action depends on the type of message. For elCample, when a memory server
receives a duplicate retch-request, it sends a reply containing the requested page. However, when a
client receives a duplicate fetch...reply, it discards the message.

73

Each XPP message includes a. preceding message number which XPP uses to im~

pose a partial ordering on the list of messages. We say that message j depends on

message i if the server must process message i before processing message j. We define

the relation :::5 on the set of messages as

mi ~ mj if mj depends on mi, or if i = j .

The relation :S defines a partial ordering on the list of messages mb m2, ... , m n. XPP

remembers the last sequence number the server processed. When the XPP layer on

the server receives a new request, it checks the sequence number against the last·

sequence number to see if the server missed any request messages. IT XPP receives

a request message out of order I it uses the partial ordering to determine whether

the server should process the out of order message anyway or wait until the missing

request arrives.

Because clients issue messages with increasing sequence numbers, mj does not

depend on mj fm i < j. Consequently, for a given message mj, XPP only needs to

verify that

mj ::5 mj is false for all i, I < i < j .

where I is the last sequence number processed. XPP uses the preceding message

number to perform the verification in a single operation. We define the preceding

message number as

p = max i, such that i < curm8g and mj :S m<:urm~g .

That is, the preceding message number specifies the sequence number of the most

recent preceding message that must be processed before the current message can be

processed. Because the client virtual memory system knows the type and content

of each XPP request message, it computes and sends a preceding message number

with each XPP message. XPP compares the preceding message number (P) with the

sequence number of the last message the server processed (l). If p :5 I, XPP gives the

message to the server for processing rather than allowing the server to sit idle waiting

for the missing rnessage(s).

74

The concept of a preceding message number is also applicable to other protocols

where there exists a partial ordering on the list of messages. For example, imagine

a network windowing system protocol (e.g., a protocol sir:cilar to the X or NeWS

protocols[Nye90, Sun)) in which a partial ordering exists on the list of screen manipu­

lation messages. Preceding message numbers would allow the system to process inde­

pendent screen manipulation messages out of order (e.g., two independent drawline

messages).

5.3.4 Data Streaming

xpp uses data streaming to increase concurrency and total throughput. Instead

of sending one message at a time, XPP allows the virtual memory system to issue

several XPP messages concurrently. To use as much of the network bandwidth as

possible, XPP sends a stream of messages to the server.

Allowing the virtual memory system to issue more than one XPP message at a

time increases the paging throughput by increasing the level of concurrent processing.

We can view the steps an XPP message takes on its way to the server and back as

a multistage pipeline with distinct processing entities executing the various stages in

parallel. Figure 5.3 illustrates the steps an XPP message goes through and the three

processing entities that execute each stage of the pipeline. Because XPP allows the

virtual memory system to asynchronously send multiple page requests to the server,

XPP keeps the pipeline full and increases the throughput. The client creates a new

message while the communication channel transfers the previous message. At the

same time, the server processes the first message sent through the pipeline. Because

all three entities execute simultaneously, the overall throughput increases.

XPP maintains a pending list of request messages that the server has not yet

processed or acknowledged with an XPP reply message. To avoid' overrunning the

server with request messages, XPP limits the length of the pending list, only allowing

a finite number of outstanding requests at any given time. XPP sends multiple

request messages back~to-back until it fills the pending list. The client then waits for

Client

: Page Request:

VM SY8tem

: Page Reply:

7

Receive
MesSDoge

Network

TraTUlmil
Me:s88ge

Server

75

Figure 5.3 The stages of an XPP message. The client machine processes stages 1
and 7, the communication channel stages 2 and 6, and the server stages 3, 4, and 5.
All three execute concurrently.

76

the server to process the messages and reply. When the client receives an XPP reply

message corresponding to a request message on the pending list, the client removes

the request message from the pending list and sends the next waiting request message.

Figure 5.4 compares data streaming to synchronous transmission and shows the

effect of data streaming when using a pending list of length three. In the synchronou,s

case, the paging system spends much of its time idle, waiting for messages. Data

streaming, however I keeps the client and the server busy and increases throughput.

5.3.5 Message Format

An XPP message consists of the two components shown in Figure 5.5: an XPP

header and an XPP data area. The XPP header contains information describing the

contents of the message, while the XPP data area holds the data being transferred

between the client and the server.

Figure 5.6 shows the fields that comprise an XPP message. XPP uses a fixed

length header, but allows a variable length data area. The TYPE field specifies the

XPP message type (e.g., store_request or fetch_request). Certain messages, such as

the illegaLrequest message, use the CODE field to provide further information about

the message type (e.g., illegal page fetch request).

Each XPP message contains a MESSAGE NUMBER used to identify the current

message and a PRECEDING MESSAGE NUMBER that specifies the most recent

message on which the current message depends. The !vlACH/NE [D, ADDRESS

SPACE !D, and PAGE NUMBER fields uniquely identify a page of data,S while

the PAGE SIZE field specifies the length (in octets) of the data area. The ability to

transfer variable size pages allows heterogeneous architectures to use a single protocol.

In the VM Xinu operating system two kernel threads implement the XPP protocol.

The page sender and page receiver threads described in section 4.5 handle all pa.ging

requests issued by the virtual memory system. The page sender and page receiver

SChapter 6 describes how the memory server uses these fields to uniquely identify memory regions
on the memory server. In terms of the memory server these fields correspond to the LMS ID, VS
10, and Page Number (see section 6.2).

77

Data Streaming
Client Server

Synchronous
Client Server

idle

idle

receive/process
request 3

idle

crel'lte/send
reply 2

c:rel'lte/send
reply 1

eccive/process
request 1

receive/process
request 2

,

I-

idle

idle

creMe/send
requC'lt '2

creale/send
requClIL 3

create/send
request 1

receive/proeC!lS
reply 2

receive/proc~

reply 1

create/send request 1 idle

create/send request '2 - recdve nquest 1
process requ... t 1

crente/send request 3
receive request '2

idle
cCelI.tejsend reply 1
receive request 3

receive/process reply 1
process request '2

create/send request 4.
create/send reply '2

T process requ."t 3- receive requesl4
I receive/process reply '2

continue request 3
m

create/send request 5
crcate/send reply 3

e process request 4.

receive/process reply 3 - receive request 5
continue request 4.

create/send request 6
create/send reply 4

process request 5

receive/pro<:css reply 4.
receive request 6
conlinue request 5

crc:l.te{send request 7
t;Ce... tefsend reply 5

receive/process reply 5 process request 6

Figure 5.4 Data streaming vs. synchronous sends. Data streaming with a pending
list of length 3 keeps the system busy, while synchronous sends result in a substantial
amount of idle time. In each case, time moves down the page and shows the messages
transferred.

xpp header xpp data area

78

Figure 5.5 The two components of an XPP message.

threads work together to provide the reliability described earlier. The page sender

thread sends all XPP request messages, and the page receiver thread receives all

XPP reply messages. The page sender saves all unanswered request messages on the

pending list for possible retransmission. It periodically traverses the list searching for

requests that have timed out and resends them. The page receiver shares the pending

list with the page sender and removes request messages from the pending list when

the corresponding XPP reply message arrives.

VM Xinu's virtual memory system does not perform any I/O. When a page fault

occurs, the virtual memory system asks the page sender thread (via interprocess

communication) to issue a fetch request. Instead of creating a message, routing it,

and transmitting it all at interrupt time, the virtual memory system lets the page

sender handle the I/O. Likewise, the virtual memory system never listens on the

communication channel. Instead, the 'page receiver listens on the communication

channel and notifies the virtual memory system when an XPP reply message arrives.

To improve performance, the virtual memory system assigns priorities to each

request type. The page sender transmits requests with the highest priority first. The

virtual memory system enqueues requests on one of three queues at the page sender:

a page-in queue, a page-out queue, and a c7·eate-terminate queue. To minimize the

time between a page fault and resumption of the faulting thread, the virtual memory

system assigns the highest priority to messages on the page-in queue. Because the

virtual memory system sends pages to backing storage in the background, the page­

out queue has the lowest priority. Internal to the page sender thread, retransmissions

take highest priority. The virtual memory system knows the dependencies between

requests and insures that any reordering resulting from the priority assignments will

not violate the partial ordering on the list of messages.

o 8 16 31

79

TYPE CODE

MESSAGE NUMBER

PRECEDING MESSAGE NUMBER

MACHINEID

ADDRESS SPACE ID

PAGE NUMBER

PAGE SIZE

... DATA ...

Figure 5.6 The fields in an XPP message. The first 8 fields make up the XPP header,
and the remainder of the message comprises the XPP data area.

80

Finally, the page receiver acts as a dispatcher 1 demultiplexing incoming messages

to the threads awaiting replies (i.e., threads blocked on a page fault). Similarly,

because all messages go through the page sender 1 the page sender acts as a multiplexer.

The ability to multiplex/demultiplex allows us to execute the XPP protocol over any

physical or virtual communication channel that provides machine-to-machine message

delivery (as opposed to requiring port-to-port or thread-to-thread delivery).

5.4 The NAFP Protocol

The Negative Acknowledgement Fragmentation Protocol (NAFP) provides the low

level transport mechanism required to transfer XPP messages over the underlying

communication channel. The NAFP layer accepts messages from the XPP layer 1

transfers the message across the underlying communication channel to the NAFP layer

on the receiving side, and delivers the message to the receiving XPP layer. The NAFP

layer hides the characteristics of the communication channel from the XPP layer,

allowing the XPP layer to implement the high-level store and fetch messages in an

architecture-independent fashion. NAFP provides fragmentation, message queueing,

early error detection/correction, and an architecture-independent interface to the

underlying communication channeL The result is a highly efficient data transport

protocol.

5.4.1 Fragmentation and Reassembly

Because XPP supports a wide variety of client page sizes, the length of an XPP

message may exceed the MTU of the underlying communication channel. The NAFP

protocol hides the MTU of the communication channel from the XPP layer, allowing

XPP to send and receive arbitrarily large messages carrying arbitrary size pages.

NAFP accepts arbitrarily large XPP messages and breaks the messages into fragments

that can be transmitted across the communication channel.

Each NAFP message consists of a header area and a data area. The header

contains information about the NAFP packet type and identifies the contents of the

81

data area. NAFP divides an XPP message into multiple fragments of equal size

(except the last). The fragment size depends on the maximum size of an NAFP

message. NAFP does not interpret the contents of the XPP message. Instead it

treats the entire XPP message, header and data, as a. contiguous set of uninterpreted

bytes. NAFP encapsulates XPP fragments in the da.ta portion of an NAFP message

and transmits the fragments in order. Because NAFP does not treat the XPP header

differently than the XPP data. area, the XPP header only occurs in the first fragment;

subsequent fragments only contain XPP data.

The NAFP header contains the information needed to reassemble the fragments

on the receiver side. NAFP chooses a unique number called the NAFP message

number to identify all the fragments of an XPP message.6 Even though the XPP

header only occurs in the first fragment, the NAFP message number indicates which

fragments go together so that NAFP never needs to look at the data area. To insure

that the receiver reassembles all the fragments in the correct order, the sender assigns

a sequence number running from 1 to n to each fragment, where n is the total number

of fragments making up the XPP message. The header also specifies the total number

of fragments making up the XPP message so that the receiver will know when the

last fragment has arrived and reassembly can begin.

The NAFP layer on the receiver maintains a list of buffers to reassemble incoming

XPP messages. Each buffer contains a partially completed XPP message consist·

ing of the fragments NAFP has received 50 far. When a fragment arrives, NAFP

checks the message number and locates the buffer associated with the message num­

ber or allocates a new buffer if no buffer currently exists. Because XPP supports

data streaming, NAPP may receive the fragments from multiple XPP messages si­

multaneously. Moreover, the NAFP layer on the memory server may receive multiple

XPP messages from multiple clients simultaneously. Consequently, NAFP uses the

message number and the client's network address to locate the proper buffer.

6NAFP usually uses the XPP message number as the unique identifier.

82

Because NAFP divides an XPP message into equal size fragments, the receiver,

knowing the fragment size and the sequence number 1 can determine the exact location

of the fragment within the buffer. Even if the fragments arrive out of order, the

receiver will accept the fragment and place it at the correct position in the buffer.

When all the fragments of an XPP message have arrived, the NAFP buffer contains

a complete XPP message identical to the original message. Because XPP messages

may arrive faster than the XPP layer can process them, the NAFP protocol enqueues

incoming messages until the XPP layer has a chance to process them. When the

xpp layer is ready to accept another message, it takes a message off the queue

of incoming messages for processing. Because NAFP does not guarantee reliable

delivery, NAFP drops incoming messages when the number of incoming messages

exceeds the maximum length of the queue.

The maximum size of an NAFP message is based on the MTU of the underlying

communication channeL That is, NAFP messages must fit in the datagrams provided

by the communication channel. To reduce the number of datagrams NAFP uses to

transfer an XPP message, NAFP uses a maximum packet size equal to the MTU of

the communication channel. IT NAFP runs over a virtual communication channel,

however, the communication channel may perform its own fragmentation (e.g., at

gateways) to provide a logical MTU much larger than the smallest MTU supported

by the underlying physical networks. In this ease, NAFP uses a maximum packet size

equal to the smallest physical network MTU so that the communication channel will

not fragment the NAFP packets. Because one of the goals of NAFP is to detect and

correct fragmentation errors before they reach the XPP layer, NAFP does not want

the communication channel to fragment messages. IT NAFP, rather than the com­

munication channel, performs fragmentation, then NAFP can detect fragmentation

errors (e.g., lost fragments) and correct them. The following section describes how

NAFP corrects fragmentation errors.

83

5.4.2 Negative Acknowledgements

Although conventional communication channels provide reasonably reliable packet

delivery, they still drop packets, corrupt packet contents, deliver packets out of order,

deliver packets after a substantial delay, or deliver duplicate packets. XPP combats

these transmission errors by repeatedly sending each XPP request until the request

succeeds. Although XPP will eventually recover from communication channel errors,

it does not detect communication errors until some time long after the error occurs.

When XPP finally does detect the error I recovering from the error can be expensive.

For example, to send or receive an 8K byte page from a Sun 3 over an Ethernet

with an MTU of approximately 1500 bytes requires a minimum of 6 packets. If the

communication channel loses or corrupts any 1 of the 6 packets that make up the

message, the message will not get through and XPP will not detect the error until

the message times out. Then, XPP will resend all 6 fragments, even if only one

fragment was lost.

The N AFP protocol uses negative acknowledgements (NACKs) to reduce the num­

ber of errors seen at the XPP level and improve the overall efficiency of the com­

munication protocol. Conventional protocols that provide reliable delivery typically

use positive acknowledgements, timeouts, and retransmissions to guarantee delivery.

Because the XPP layer already guarantees reliability, NAFP should not provide reli·

able delivery of individual fragments, especially if the added reliability increases the

overhead associated with NAFP. Instead, NAFP detects and corrects most, but not

necessarily all, errors arising due to fragmentation but does not increase the delay

substantially. That is, NAFP reduces the error rate seen by the XPP layer without

degrading the performance of the transport protocol.

NAFP uses sequence numbers and negative acknowledgements (NACKs) to de­

tect and correct fragmentation errors as soon as they occur. When NAFP receives

an incoming fragment, it processes the fragment but does not acknowledge it. NAFP

remembers the sequence number of the last fragment it received for each partially

transmitted XPP message and uses the number to detect fragmentation errors. As

84

soon as NAFP receives a fragment out of order (i.e., detects a ffilssmg sequence

number), NAFP sends a negative acknowledgement to the sender's NAFP layer con~

taining the missing fragment's sequence number. The sender's NAFP layer receives

the NACK and immediately resends the missing fragment.

Because we assume the communication channel is unreliable, the NACK meSSttge

may not reach the sender. NAFP does not guarantee reliable delivery of NACKs.

Instead, NAFP only attempts to correct errors. NAFP sends a single NACK for each

missing fragment, expecting the sender to receive the NACK and retransmit the miss­

ing fragment. If the simple, low cost, NAFP error correction mechanism fails, the

xpp layer will eventually detect the lost message and take the corrective measures

needed to reliably deliver the message. Because we assume the conununication chan­

nel delivers most packets without error, the NAFP protocol optimizes for the expected

case where no errors occur by not acknowledging individual fragments. As long as

no errors occur, NAFP transfers and reassembles XPP messages using the minimum

number of packets with minimal computational overhead. When a fragmentation

error does arise, NAFP attemp.ts to correct the error using an inexpensive NACK

message. In practice, a single NACK message corrects most errors. If the original

fragment was delayed and not lost, the receiver will receive a duplicate fragment. In

this case, NAFP simply discards the duplicate fragment.

5.4.3 Message Format

Figure 5.7 shows the format of an NAFP message. Each NAFP packet consists of

a header area and a data area. The header area contains a HEADER LEN field that

specifies the length of the NAFP header. The header length depends on the options

used in the OPTIONS field of the header. NAFP uses the OPTIONS field to provide

options such as checksums.

NAFP supports two types of messages: messages containing XPP fragments and

messages carrying NACKs. The TYPE field in the header specifies the NAFP message

type. NAFP identifies aU the fragments that belong to an XPP message with a

85

31168

TYPE HEADER LEN

MESSAGE NUMBER

FRAG NUM TOTAL FRAGS

FRAG SIZE

MAX FRAG SIZE

[OPTIONS]

... DATA ...

o

Figure 5.7 The format of an NAFP packet.

86

MESSAGE NUMBER unique to each client. The TOTAL FRAGS field specifies the

number of fragments that make up the XPP message} while the FRAG NUM field

specifies which fragment of the sequence the current packet contains. The FRAG

SIZE specifies the size of the data area. For all but the last fragment, FRAG SIZE

equals the MAX FRAG SIZE. NAFP uses the MAX FRAG SIZE to determine

the position of the current fragment in the XPP message and deposits the fragment

directly into the buffer for reassembly.

In our implementation, the NAFP protocol only sends NACKs from the server to

the client. Clients never send NACKs to the server. There are two reasons why we

chose to implement the protocol in this way. First, the XPP protocol simplifies the

implementation of NACKs in the case of messages flowing from the client to the server

but does not simplify the implementation of NACKs for messages flowing from the

server to the client. When a client sends an XPP message to the server, the XPP layer

saves the message until it receives an XPP reply message from the server. Because

the XPP layer saves the message, the NAFP layer has the message available in case it

receives a NACK and needs to resend one of the fragments of the message. However,

when the memory server sends an XPP reply message, the XPP layer deletes the reply

message as soon as the NAFP layer sends it. To implement NACKs for messages

traveling from the server to the client, the NAFP layer would have to save a copy of

the message, possibly wasting valuable buffer space on the server. In addition, clients

do not acknowledge receipt of XPP reply messages, making it difficult for the NAFP

layer on the server to know how long to save the message.

The second reason for not implementing NACKs for messages flowing from the

server to the client arises from a desire to make the server as efficient as possible.

In the remote memory communication protocol, reliability is the responsibility of

the client. As a result, the server is substantially simpler and more efficient than a

server that must provide reliability. Because NAFP does not use NACKs to correct

messages traveling from the server to the clients, the server does not need to save mesw

sages, time-out messages, handle incoming NACK packets, or retransmit fragments.

87

Simplifying the protocol at the server allows the server to spend more time process­

ing requests and less time transmitting them. Moreover, because the server handles

multiple requests from multiple clients simultaneously, the server is more likely than

the client to drop a packet due to a queue overflow. In practice the error rate for

messages f10wjng from the clients to the server tends to be higher than the error rate

for messages flowing from the server to the clients.

5.4.4 NAFP as a General Technique

The NAFP protocol serves as an efficient transport protocol for the XPP protocol.

However, we can use the techniques used by NAFP to improve the performance of

almost any high~level protocol that provides reliable delivery over a datagram-based

communication channel.

For example} the TCP [ComSS] protocol provides reliable delivery over physical

network architectures that provide datagram service. The IP layer provides fragmen­

tation' for TCP} but the TCP layer provides the reliable delivery. If the IP layer loses

a fragment from a TCP message, the TCP layer will not detect the error until the

message times-out. TCP then resends the entire message. Placing the NAFP layer

between the TCP layer and the IP layer would give NAFP a chance to correct frag­

mentation errors before they reach the TCP layer. NAFP techniques could enhance

the performance of other reliable protocols such as TP4, VMTP} TFTP, NETBLT}

and RPC as well [Org86, Che88, So181, CLZ87, Ly084].

5.5 Related Work

Before designing the Remote Memory Communication Protocol} we examined

several protocols as possible remote memory paging protocols. Unfortunately} existing

protocols do not provide the functionality or performance we desired.

Hardware protocols severely limit the portability of the system. In addition,

protocols like the Ethernet protocol or the proNET protocol do not provide reliable

88

delivery [Dig80J. Other protocols like Digital's DDCMP protocol [Dig84] provide

reliable datagram delivery but do not provide fragmentation.

Existing software protocols do not offer the desired functionality or do so at the

expense of performance. The UDP protocol [Pos80b], for example, allows arbitrarily

large datagram messages up to 64K bytes, but does not provide reliability. The VMTP

protocol [Che86, CheSS] does provide reliable delivery of arbitrarily large datagramsj

however, it uses positive, selective acknowledgements that increase the number of

packets transmitted and reduce the efficiency. The TCP protocol [PosSI, ComSS],

like VMTP, uses positive ACKs to provide reliable delivery, increasing the number of

messages transmitted. In addition, the high cost of setting up and tearing down a TCP

connection reduces the efficiency of the protocol, especially when the application is

not connection oriented. Moreover, because paging lends itself more to the datagram

abstraction than to the byte stream abstraction provided by TCP, paging across TCP

would require simulation of datagrams using streams and record marking.

Sun's NFSjRPC [SGK+S5, SanS5, Lyo84] protocols provide functionality similar

to RMCP. Both protocols only use two messages to access a server in the common

case. However, Sun NFSjRPC does not support data streaming and depends on

the UDP protocol for data transfer. Sun NFSjRPC does not handle fragmentation,

queueing, multiplexing, or demultiplexing, but instead relies on UDP to provide this

fU!1ctionality. The dependency on UDP prohibits use of NFSjRPC over virtual or

physical transport protocols that do not provide fragmentation and reassembly.

RMCP does its own fragmentation and queueing, and runs over any protocol that

provides datagram delivery. Consequently, paging performance can be improved by

building the RM CP protocol directly on top of the physical network architecture as

opposed to a high-level virtual network architecture like IP (e.g., When all clients

and hosts reside on a single Ethernet, RM CP can use the Ethernet link-level protocol

directly).

In addition, the UDP(IP) protocol used by NFS/RPC makes no attempt to re­

transmit lost fragments [PosSOa]. If IP loses a fragment, it discards the message,

89

causing NFSjRPC to timeout and resend the entire message. Fragment loss in­

creases when messages travel across gateways or when a fast host sends to a slow

host. Consequently, the NFS/RPC protocol sets an upper limit on the size of NFS

messages to reduce the number of fragments per message. The RMCP protocol does

not limit the size of a message, transferring arbitrarily large pages without degrading

performance.

The Sprite RPC protocol [WeI86], like Xiun's RMCP protocol, allows arbitrarily

large messages and performs fragmentation and reassembly of messages. However,

Sprite RPe does not. provide data streaming. Sprite RPC will not send a new RPC

message until the sender receives a reply for the previous RPC message. The proto­

col only allows synchronous messages because it uses request messages -as acknowl­

edgements for reply messages. The lack of asynchronous message delivery prohibits

concurrent message processing and reduces throughput.

Sprite's method for handling fragmentation differs substantially from RMCP.

Sprite RPC uses partial acknowledgements to correct fragmentation errors. Although

partial acknowledgements correct fragmentation errors, they add considerable com­

plexity and overhead to the protocol and create implementation problems [WeI86].

Because the receiver does not know whether a missing fragment was lost or delayed,

deciding when to send a partial acknowledgement is difficult. Sprite RPC sends a

partial acknowledgement when it receives the last fragment. If the last fragment is

lost, the protocol uses a complex set of rules to determine when to send the partial

acknowledgement. RMCP does not suffer from the lost last fragment problem be­

cause it sends a NACK as soon as it detects a missing fragment. Moreover, because

RlvfCP uses data streaming, it detects missing last fragments when it receives the

first fragment of the next message. Another disadvantage of Sprite RPC is the added

overhead incurred by repeatedly transmitting missing fragments. Sprite attempts to

reliably deliver the fragments of a message and may pedorm several iterations of

partial-acks, time-outs, and retransmissions.

90

5.6 Summary

In this chapter we describe the design of a highly-efficient, reliable, architecture­

independent remote memory communication protocol. Each client's virtual memory

system uses the protocol to reliably access remote memory backing storage.

The Remote Memory Communication Protocol consists of two layers: the Xinu

Paging Protocol (XPP) layer and the Negative Acknowledgement Fragmentation Pro­

tocol (NAFP) layer. Dividing the protocol into two distinct layers clearly separates

the hign level paging operations from the low level details of data transfer across the.

communication channel.

The XPP protocol uses timeouts , retransmissions, and positive acknowledgements

to guarantee reliable acce~s to the remote memory backing store. XPP assigns se­

quence numbers to every XPP message to guarantee in-order processing of page re­

quests. To improve efficiency without affecting paging semantics, XPP uses a pre­

ceding message number to permit delivery of messages that arrive out-of-order but

do not violate the partial ordering on the list of messages. To increase throughput,

XPP provides data streaming, allowing the virtual memory system to issue multiple,

concurrent, paging requests.

The NAFP protocol implements the low level transport operations required to

transfer XPP messages across the communication channel. NAFP hides the char­

acteristics of the communication channel and the details of message delivery from

the XPP layer, allowing the XPP layer .to remain independent from the underlying

network architecture. In particular, NAFP fragments and reassembles XPP mes­

sages, allowing the size of an XPP message to exceed the MTU of the communication

channel. To improve efficiency, NAFP uses negative acknowledgements (NACKs) to

correct fragmentation errors as soon as they occur. The result is a highly-efficient,

portable, paging protocol.

91

6. A REMOTE MEMORY BACKING STORE

The Remote Memory Model centers around the use of remote memory servers for

backing storage. The functionality and performance provided by a memory server

separates the Remote Memory Model from conventional distributed systems. As you

will recall from chapter 3, the remote memory model consists of one or more remote

memory servers that provide shared, high-speed remote memory storage to hetero­

geneous client machines. Each memory server has a large physical memory which is

shared by all the client machines. In addition, each memory server has additional

secondary storage space available in the event that clients collectively exhaust the

server's large physical memory.

This chapter focuses on the design of the remote memory server. In particular,

we outline our goals for the memory server and show how the design obtains these

goals. Although the server can be viewed as a general purpose, high-speed remote

memory storage device, the server's design is ideally suited for client virtual memory

systems requiring remote memory backing store support.

6.1 Design Goals

Our objective was to design a memory server capable of providing remote memory

backing storage to multiple client machines simultaneously. More specifically, the

design should achieve the following goals:

Heterogeneous Client Support: The server should provide remote memory backing

storage t-o multiple heterogeneous client machines simultaneously.

Resource Sharing: Instead of preallocating fixed amounts of memory to each client,

client machines should share the memory resource based on their needs.

92

High Level Abstraction: The server should provide a high level abstraction that hides

the details of data storage from the clients.

Arbitrarily Large Storage: The server should provide clients with an arbitrarily large

storage space.

Scalability: Server performance should not decrease as the number of clients increases.

Fast Data Access: To improve overall efficiency, the server must efficiently locate and

retrieve stored data.

The remote memory model assumes the client machines consist of a variety of

hardware archHectures (e.g., pages size, word size, byte order) and operating sys­

tems. Consequently, a remote memory server must expect and support heterogeneous

clients. The memory server should provide the functionality required to support a

wide variety of client virtual memory systems. However, to achieve high-speed access

times, the memory server should choose simple, efficient mechanisms over complex,

time-consuming mechanisms whenever possible. The design must choose an appro­

priate balance between functionality and efficiency/simplicity.

To maximize sharing of the remote memory resource, the memory server should

avoid preallocating fixed amounts of its physical memory to each client machine.

Instead, the memory server should dynamically allocate its memory space to clients

based on their current needs.

Conventional systems that use remote backing storage (e.g.] diskless systems pag­

ing to a remote file system) provide a low level interface to unstructured files or disks

[SGK+S5, OCD+87, TvRvS+90]. In these systems, the server places the responsibility

of managing the backing store resource (i.e., allocation, deallocation) on the client's

virtual memory system. The client's virtual memory system keeps information about

the regions of the backing store currently in use and maintains a free list identifying

the unused regions of the disk.

Instead of requiring the clients to manage the backing store (or worse yet I re­

quiring the clients to cooperatively manage the backing store), the memory server

93

should present client machines with a high-level abstract service. In particular, the

abstraction should hide the underlying storage mechanism and storage structure from

the client machines, thereby freeing clients from the responsibility of managing the

storage space. Hiding the internal structure and storage mechanism from the clients

allows the server to efficiently manage the physical memory storage space and equi­

tably allocate memory resources to the clients based on their needs. Hilling allocation

of the server's physical memory resources frees clients from the responsibility of co­

operatively managing the backing store.

In addition, the abstraction should hide the server's physical memory size from

the clients. The server's physical memory size should not constrain the amount of

remote storage space obtainable by a client. Just as virtual memory operating systems

provide programmers with large virtual memory spaces that do not depend on the

target machine's physical memory size, a memory server should present its clients

with an arbitrarily large storage, space. A client machine should be able to select and

use any memory server for backing storage, regardless of the server's physical memory

sIze.

The performance of a client's virtual memory system depends heavily on the

remote memory server's performance. When a process executing on a client machine

attempts to access a page that has been stored on a remote memory server, it blocks

until the virtual memory system has retrieved the missing page from the memory

server. Reducing the delay associated with· retrieving data from the remote memory

backing store reduces the time the process remains blocked and results in improved

client performance.

The remote memory access time can be divided into two components: protocol

overhead and server overhead. Chapter 5 describes an efficient conununication pro­

tocol with low overhead. The second component, server overhead, consists of the

time to decipher the request, verify the validity of the request, determine the loca­

tion of the requested data in the server's memory, and store or fetch the data to or

from the server's memory. Moreover, because the server hides the internal storage

94

structure from the clients, the server overhead includes the time spent managing the

storage space. The design should minimize the time spent performing these opera·

tions, thereby reducing the server overhead. Reducing the server overhead increases

the number of requests per second processed by the server. An increase in the num­

ber of requests per second handled by the server means an increase in the number of

client machines a server can efficiently support.1

6.2 A Logical Memory Server

To hide the internal structure and organization from the clients, each memory

server provides a high-level abstraction called a Logical !Ylemory Server (LMS) which

clients use as the interface to the memory server. Each memory server machine pro­

vides multiple Logical Memory Servers and assigns exactly one LMS to each client

machine requiring backing storage. Figure 6.1 illustrates a memory server machine

providing multiple LMSs to multiple client machines. When a client's virtual mem­

ory system requests access to the memory server, the server creates a new LMS for

the client. The memory server only allows client machines to access their own LMS,

thereby protecting each client's LMS from all other clients. The server uses highly­

efficient, but flexible, data structures and algorithms to implement the abstraction.

The flexibility of the abstraction allows heterogeneous client machines to simultane­

ously access the same server.

A Logical Memory Serve?' consists of a structured memory space and a set of

operations on the memory space. Instead of providing an unstructured array of

memory cells and requiring the clients to manage the space, the LMS imposes a

structure on the memory space. Figure 6.2 illustrates the organization of the memory

space provided by an LMS. As the name implies, each Logical Memory Server provides

the client it serves with a large virtual (logical) memory space. An LMS organizes

the space into Virtual Segments (VS), each subdivided into pages. rhe smallest unit

of storage on an LMS is a single page. However, the abstraction does not specify

lAlternatively, the server can support a larger workload from ~he same number of clients.

95

Remote Memory
Server

, , , , , , ,

, , ,

, , ,

,, , ,
, "

[:]

, ,,,, , ,

lL~S l
,

JL~S] JL~Sl JL~SI
, , , , , ,, , , , , ,, ,, , , , , ,,, , , , , ,, , , , , ,, ,

Figure 6.1 The remote memory server provides each client with its own Logical
Memory Server (LMS) and regulates/protects the LMS from access by other clients.

Logical Memory Server

VS 1 VS 2 VS 3 VSm

0 0 0 0
1 1 1 1

2 2 2 2

3 3 3 3

96

n n n n

Figure 6.2 The organization of a Logical Memory Server. A Logical Memory Server
organizes the memory space into Virtual Segments (VS), each subdivided into pages.

the size of a page. LMS pages are virtual pages, and any two LMSs may have

different page sizes. Because the memory server creates a new LMS for each client

machine, the memory server allows the client to define the size of the pages in its

LMS. When a client connects to a memory server I the client sets the page size for its

LMS. Consequently, the abstraction allows the memory server to adapt to meet the

needs of the heterogeneous client architectures that access the server.

An LMS provides clients with four abstract operations that manipulate the mem­

ory space. Clients can activate or deactivate a Virtual Segment in their UvlS and read

or write individual pages of a Virtual Segment. Before a client can store data on the

memory server, it must first activate the VS into which it wants to store the data

(assuming the VS is not already active). After the VS has been activated, the client

can write data into the pages of the VS. Similarly, a client may read individual pages

from a VS or deactivate a VS when it is no longer needed.

Virtual Segments in an LMS are numbered from 0 to m, where m is the maxi­

mum number of Virtual Segments per LMS. Similarly, the memory server numbers

the pages within a VS from 0 to n, where n is a limit on the number of pages per

97

VS. The abstraction does not specify a limit on the number of Virtual Segments or

the number of pages per Virtual Segment. However, every memory server imposes

an implementation-dependent limit on m and n much like computer architectures

define an architecture-dependent limit on the size of a virtual address. Clients use

the VS id and page number to uniquely identify a page in an LMS. When activat­

ing/deactivating a VS, the client specifies the VS id as part of the activate/deactivate

request. To read or write a page in a VS, the client specifies a (VS id, page number)

palC.

The memory server presents the same abstraction to all the client machines it

serves. The client's virtual memory system must map the client's address space lay­

out and virtual memory structures onto the abstraction provided by the server. In

practice, the functionality provided by the abstraction mirrors the operations required

by the client's virtual memory system, resulting in a trivial mapping function. For

example, many conventional virtual memory operating systems support separate ad­

dress spaces for each process. Consequently, the client's virtual memory system uses

a straight-forward, one-to-one mapping between processes on the client and Virtual

Segments on the server. Even operating systems with more elaborate or complex

virtual memory organizations map nicely onto the abstraction. For example, VM

Xinu supports multi-threaded user-level processes. Threads within a process share

portions of the address space that contain global data, but maintain per-thread map­

pings for the regions of the address space that contain private data. Xinu's virtual

memory system activates one VS on the LMS for each thread's private data and an

additional VS for the data shared by all the threads. Despite the added complexity,

the abstraction facilitates a trivial mapping.

The abstraction provides a simple, yet powerful, remote storage service. Despite

its simplicity, the functionality provided by the abstraction often eliminates the need

for clients to manage the storage space on the server. Clients do not have to deal

with allocating or freeing pages on the server, maintaining a list of free pages, or

98

remembering the location of data stored on the server l because the structure of an

LMS mirrors the virtual memory organization on the client.

The abstraction hides the internalstrueture and implementation from the clients.

This allows the implementer to choose highly-efficient data structures and algorithms

tailored for the architecture on which the server executes. In addition, the abstraction

hides the architecture-dependent characteristics of the memory server, such as the

server's physical memory size. Consequently, a client may use any memory server,

regardless of the amount of memory physically present on the server.

The abstraction also allows the memory server to dynamically allocate physical

memory to clients based on their needs. The memory server only maps as much

physical memory into a client's LMS as the client needs. As a result, all the clients

share the memory server's physical memory resource. Moreover, the flexibility of the

abstraction to adjust an LMS's page size based on the client's page size allows the

'memory server to support clients with a wide variety of page sizes simultaneously.

Although the abstraction described here does not provide operations for sharjng

data between clients, the abstraction does not prohibit such operations from being

added in the future. Because an LMS provides virtual pages, the abstraction could

be extended to allow clients to map two or more virtual pages from different Logical

Memory Servers to the same data, thereby allowing clients to share data.

6.3 The Design of a Logical Memory Server

Because the abstraction completely defines the client interface to remote memory

backing storage, client machines only interact with the abstraction and never see

the internal structure and organization of the remote memory server. Consequently,

the remote memory server may use any data structures or algorithms it desires to

efficiently implement the abstraction.

99

6.3.1 Managing the Virtual Segments

Several factors influence the speed at which a memory server can process requests.

As the number of clients increases, the number of Logical Memory Servers supported

by the memory server increases. In addition, an increase in the number of clients

per memory server typically results in an increase in the amount of data stored Oll,

and managed by, the server. Increasing the number of clients or the amount of data

stored on the server can cause a significant increase in the server's overhead, resulting

in degraded server performance. For many conventional' servers there exists a direct

correlation between the load on the server (e.g., number of clieDts) and the server's

response time [L889, LZCZ86]. As the server load rises, response times increase and

client/server performance decreases. Our goal was to design a remote memory server

that would not decrease in performance as the number of clients or the amount of

data stored on the server increases.

The memory server must maintain mappings for the pages in all the Virtual Seg­

ments in each LMS. As the number of clients increases, the number of LMSs, VSs,

and pages managed by the server increases. That is) supporting the abstraction poses

a potential bottleneck and limitation on the scalability of the model. The overhead

required to support the abstraction could significantly increase the time required to

deposit or retrieve data to or from the server.

To reduce the delay associated with retrieving memory from the memory serveI','­

the server must use highly-efficient algorithms and data structures. The memory

server cannot waste time searching data structures for the desired data. Moreover I to

provide as much physical memory as possible for client data, the server should reduce

the amount of memory used by the data structures that manage the storage space.

Clearly, the server cannot afford to maintain a mapping for every page.

In our prototype, the server stores page mappings in a hash table, called the

virtual-page hash table. The virtual~page hash table only stores pages that contain

data. Unused pages do not appear in the table. Because the only operations allowed

100

on a page are store and fetch operations, the server efficiently processes paging re­

quests using the insert and look-up operations of the hash table. Each hash table

entry contains the following information:

Logical Memory Server ID: The LMS identifier differentiates between the various

Logical Memory Servers active on the memory server.

Virtual Segment ID: The VS identifier specifies the Virtual Segment to which the

data belongs.

Page Number: The page number identifies a specific page within a VS.

Data Pointer(s): The data pointer indicates the physical memory location at which

the server can find the page's data.

Timestamp: The timestamp field records the timestamp of the VS to which the data

belongs.

Client machines uniquely label each page with an ordered triple containing the

LMS ID, VS ID, and page number. Given a paging request, the server can quickly

verify whether a particular hash table entry contains the requested page.

Because each hash table entry contains all the information required to uniquely

identify a page, the server stores all pages, regardless of the VS or LMS to which

a page belongs, in the virtual~page hash table. Using a single hash table to store

all pages significantly simplifies the server's design. The server does not waste time

(or code) managing multiple (similar) data structures (e.g., allocation/reclamation

of entries) and does not need to limit the number of clients it serves based on a

predefined, maximum number of hash tables.

Hash table entries do not contain any data. Instead, each hash table entry contains

a pointer to the data. The indirection allows flexible placement of data) arbitrary size

pages, and does not consume valuable memory space for unused hash table entries.

Consequently, the hash table can be arbitrarily large without consuming an exorbitant

101

amount of physical memory. The indirection also allows the server to store the data

on secondary storage when desired.

The memory server efficiently locates a hash table entry by applying a double

hashing algorithm to the ordered triple that uniquely identifies the desired page. For

example) assume the memory server receives a fetch request. The server extracts

the LMS ID, VS ID, and page number from the request to form an ordered triple

that uniquely identifies the requested page. While probing the hash ta.ble, the double

hashing algorithm compares the triple constructed from the request to the triple

stored in the hash table. When a match is found, the server fills in the reply message

with the data. pointed to by the hash table entry. In the case of a store request, the

server locates an unused hash table entry and initializes the entry to point to the

data in the message.

Double hashing has the desirable property of locating the desired data, or an

entry in which to store the data, in constant time on average [Knu73]. If the hash

table is less than 95% full, the average number of probes used by the double hashing

algorithm to locate the specified data does not exceed three. As long as the remote

memory server limits the utilization of the hash table to 95% of its total capacity, the

average look-up time remains constant, regardless of the number of entries used (i.e.,

the number of pages stored on the server). The single hash table, together with the

double hashing algorithm, allow the memory server to serve multiple clients without

a degradation in performance. Consequently, the server scales well as the number of

clients increases.

Although we assume the memory server has a large physical memory, there still

exists an architecture-imposed limit on the server's physical memory size. Memory

consumed by the hash table reduces the amount of memory available for client data.

Because the server uses a single hash table to map all data stored on the server,

the hash table must have enough entries to map all the storage space available on

the server. However, to increase the amount of physical memory available for data,

the server starts with a hash table only large enough to map the physical memory

102

storage space, not secondary storage. When the server exceeds 95% of the hash table's

capacity, it dynamically increases the size of the hash table to insure the average access

time remains constant. The ability to dynamically grow the hash table allows the

server to maximize the amount of physical memory available for storage and still

provide efficient remote memory access.

6.3.2 Physical Memory Management

The memory server must make efficient use of the physical memory in order to

increase the amount of physical memory available for client data. As stated earlier,

to increase the amount of physical memory available for client data, virtual-page

hash table entries do not reserve memory space for client data. Instead, each hash

table entry stores pointers to the memory where the da.ta can be found. This design

decision allows the server to choose a physical memory allocation strategy that makes

the most efficient use of the available memory.

The memory server divides the available physical memory into small fixed-size

segments called data blocks. The memory server dynamically allocates and assigns

data blocks to each new store request. If the size of the page in the store request

exceeds the size of a data block, the server allocates multiple data blocks for the page.

The tradeoff between data block overhead and memory space utilization makes it

difficult to choose an optimal data block size. Using large data blocks causes internal

memory fragmentation, while small data blocks increase management overhead. 10

theory, the server defines the data block size as the smallest common denominator of

all the client page sizes such that the overhead is still tolerable. In practice, only a

few popular page sizes exist based on powers of two, making the choice easy.

The hash table does not require the server to store the data in contiguous data

blocks. If the server cannot find a set of contiguous data. blocks large enough to

store the page, the server spreads the page across several non-contiguous data blocks.

The ability to scatter the data from a store request across multiple non~contiguous

data blocks results in efficient use of memory and support for a wide variety of page

103

sizes. In addition, the server can often allocate contiguous data. blocks to a page

and save only the starting address in the hash table. IT the server must spread the

page across multiple non-contiguous data blocks, it dynamically allocates an array of

pointers to the data and fills in the hash table entry to point to the a.rray of pointers.

The indirection reduces the size of the hash table and provides all the necessary

information for the common casei the case when contiguous data blocks are available.

6.3.3 A Transparent Two~level Storage Space

Because each memory server machine has a fixed amount of physical memory

(either due to hardware constraints or economic constraints), the LMS allows the

implementation to use secondary storage to store additional client data. The ability

to use secondary storage allows the server to provide an arbitrarily large amount of

storage space. The LMS hides the location of the data from the clients, allowing

the implementation to store the data on secondary storage as well as in physical

memory. Possible secondary storage media include local disks, remote disks, second­

level memory (e.g., a global [vs. local] memory on a multiprocessor), remote memory,

or some combination of the above.

The server manages the secondary storage by dividing the secondary storage space

into fixed-size data blocks equal in size to the physical memory data blocks. Each

hash table entry maintains a list of pointers to the physical memory and secondary

storage data blocks that make up a page.

The server manages its physical memory and secondary storage much like a virtual

memory operating system. A replacement policy determines which pages may remain

in memory and which should be moved to secondary storage. To reduce the delay

a.'3sociated with accessing remote memory, the server chooses a replacement policy

that best fits the access patterns of the clients it serves. The replacement policy

also affects the level of resource sharing allowed by the server. IT the server wants

to limit the amount of physical memory obtainable by a client machine, the server

may employ a local replacement algorithm, allocating a fixed amount of memory to

104

each client. As stated in section 6.1, our goal was to share the memory resource

fairly among all clients based on their needs. Consequently, the server uses a global

replacement policy which does not limit the amount of memory attainable by a client

or process.

The server may use two or more different types of secondary storage to increase

its storage capacity. In this case, the replacement policy must manage a multi­

leveled memory. For example, assume the memory server executes on a multiprocessor

NUMA architeeture2 in which each processor has access to high·speed local memory,

global memory (slower than the local memory), and static disk storage. In this case,·

the replacement policy would determine data placement based on the relative speeds

of the various levels of the memory. The ability to select a replacement policy based on

the architecture of the memory server or the access patterns of clients allows the server

to execute on a wide variety of architectures and secondary storage configurations.

The abstraction provided by the server hides the two-level storage space and the

location of the data from the clients. From the client's viewpoint, the server simply

provides a single, large memory resource.

6.3.4 Memory Reclamation

Logical Memory Servers do not explicitly provide an operation to release individual

pages of client data. Instead, the only means for a client to release-memory held

on the server is through a terminate request or a shv.tdown request. A terminate

request indicates that the client's virtual memory system no longer needs the data

stored in the specified VS. The client's virtual memory system typically issues a

terrriinate request when a process on the client terminates. Similarly, a shutdown

request indicates that a client is shutting down and no longer needs the data it stored

on the server.

There are several reasons that influenced the design decision to use terminate and

shutdown requests instead of release page requests. First, many conventional virtual

2NUMA is an acronym for Non-Uniform Memory Access [Tev87, BFS89].

105

memory systems, and also the VM Xinu system, only release backing storage space

when a process terminates {Bac86, eG9l, L182, Ras86]. When the virtual memory

system retrieves data from the backing store, it does not remove the data from the

hacking store. For example, imagine an application attempts to access data on page

N I which has been written out to disk. The virtual memory system reads in the

contents of page N from the disk but does not erase the copy of page N stored on the

disk. H the application does not modify the contents of page N, the virtual memory

system can discard the data and reclaim the memory because a copy of the data still

exists on the disk. Second, when a process terminates, the client does not need to·

traverse its page tables looking for pages on the backing store to release. Instead, the

server remembers all the pages associated with a process and frees them for the client.

Third, allowing clients to release multiple pages in a single operation, as opposed to

releasing individual pages, reduces the amount of network traffic generated when a

process terminates. It also reduces the number of requests the server must process.

When a process terminates on a client machine, the client issues a terminate re­

quest to release the memory on the server owned by the process. The terminated

process may have amassed a significant amount of storage space which the server

must locate and return to the free list. Consequently, the time required to reclaim

the memory may be substantial and is directly proportional to the size o(the pro­

cess. However, the memory server must continue to process incomin?; requests and

cannot· afford to devote a large amount of processing time to any single request. In

particular I terminate requests should not force the server to spend a long period of

time reclaiming memory. In addition, the memory server should not delay the client

by delaying the terminate reply. Ideally, a memory server should process terminate

requests in constant time, regardless of the size of the terminated process.

The memory server processes terminate requests in constant time, regardless of

the size of the terminated process. Each time the memory server receives a terminate

request, it records the request and immediately sends a terminate reply message to

the client. The server remembers the request and delays the memory reclamation

106

until later. Similarly, upon receiving a shutdown request, the server immediately

sends a shutdown reply, and delays reclamation of the memory until some time in the

future.

The memory server uses a novel technique to amortize the cost of memory recla~

mation over time. Section 6.3.1 described how the virtual-page hash table allows the

server to locate data in constant time. However I the hash table data structure does

not lend itself to efficient page reclamation. To locate all the pages in a particular VS,

the memory server must sequentially traverse the entire hash table.3 To reduce the

cost of reclaiming memory, the memory server uses timestamps and two additional"

hash table" the LMS hash table and the VS hash table (see Figure 6.3).

The LMS hash table maintains information about the active Logical Memory

Servers. The VS hash table maintains information about all the active Virtual Seg­

ments. Each VS hash table entry contains a pointer to the parent entry in the LMS

table to which the VS belongs. Similarly, every virtual~page hash table entry contains

a pointer to the VS table entry to which the page belongs. Storing pointers to parent

tables allows the server to find all the information about a particular page in constant

time. In addition, pointers reduce the space consumed by the virtual-page hash table

by only storing a single copy of information that is shared by many pages.

The memory server uses timestamps to identify expired data belonging to termi­

nated processes or clients. The memory server assigns a timestamp to every LMS

and to every VS within an LMS. The server saves the current timestamp of every

LMS in the LMS hash table and saves the timestamp of every VS in the VS hash

table. Each virtual-page hash table entry records the timestamp of the VS to which

the data belongs. When the memory server receives a page store request, the server

saves the timestamp of the requesting process in the virtual-page hash table entry.

Consequently, all pages belonging to a VS have the VS's timestamp. When the mem­

ory server receives a terminate request, it updates the current timestamp in the VS

table, thereby invalidating all the pages in the VS. Similarly, when the memory server

3Alternatively, the server could sequentially traverse the entire VS.

LMS

lit!
o

o

o

Hash Tables

VS

o

Virtua.l-Page

107

Physical Memory

Data Blocks

,t

o

o

hash(lmsid, vsid, pgnum)

lmsid ::: LMS id
vsid ::: VS id
pgnum ::: Page number
It ::: LMS timestamp

::: VS timestamp

o

o

o

o

o

Figure 6.3 The three hash tables: LMS hash table, VS hash table, and the vir­
tual-page hash table. Each virtual-page table entry contains the owner's timestamp
and a pointer to the owner's VS table entry. Each VS table entry contains the current
timestamp for the VB, an LMS timestamp, and a pointer to the owner's LMS table
entry.

108

receives a shutdown request, the server updates the current timestamp in the LMS

table which invalidates all the data associated with the LMS. In addition, timestamps

provide a convenient mechanism for handling client failure. When a client crashes and

reboots, the memory server assigns a new timestamp to the client and automatically

reclaims the memory space used dudng the client's previous lifetime.

Timestamps allow the server to process terminate and shutdown requests in con­

stant time. Updating a timestamp invalidates all the data in a VS or LMS in a single

operation. Timestamps allow the server to immediately send a terminate or shutdown

reply message and postpone memory reclamation until later.

The memory server uses two methods to reclaim invalid pages. The first method

reclaims memory while processing store and fetch requests. When a client issues a

store or fetch request I the server applies the double hashing algorithm to locate an

entry in the virtual-page hash table. The double hashing algorithm requires the server

to check for a collision on each probe to the table. That is, the server must compare

the requested pagels information against the information found in the hash table

entry to see if the entry contains the desired page. If a collision occurs, the server

checks the timestamp found in the hash table entry against the owner's timestamp in

the VS and LMS hasb tables. If the timestamps differ, the server reclaims the page.

If the timestamps match l the hash table entry is still valid, and the double hashing

algorithm proceeds as normal. This modification to the double bashing a.lgorithm

allows the server to reclaim invalid pages during its normal processing.

Tbe second and more conventional method makes use of a garbage collection

thread within the memory server. A garbage collection thread executes in the back­

ground at a lower priority than the memory server so that it only executes when

the server is not servicing client requests. It traverses the virtual-page hash table in

search of pages with invalid timestamps and returns them to the free list.

Because the memory server handles all memory reclamation, clients do not have

to remember and free individual pages stored on the server. Insteadl the server al­

lows clients to free all the pages associated with a terrrUnated process in a single

109

operation. Timestamps allow the memory server to process terminate requests and

shutdown requests in constant time by delaying memory reclamation. The garbage

collection thread together with the lazy reclamation modification to the double hash~

iug algorithm amortize the cost of reclaiming memory over time.

6.4 Enhancing Performance

The flexibility of the memory server's design allows the implementation to take

advantage of emerging multiprocessor architectures and high-bandwidth networks to

enhance performance.

First, the design lends itself nicely to a multiprocessor implementation. The server

receives independent paging requests from multiple clients simultaneously_ Because

these requests are independent of one another, a multi-threaded server executing on

multiple processors could significantly improve the client's performance. In addition,

the design allows the server to process requests from an individual client machine

out-of-order. Consequently, a multiprocessor could improve an individual client's

performance by processing its requests in parallel. Moreover, the background pro­

cessing performed by the garbage collection thread maps nicely onto a multiprocessor

system.

Second, the transparent two-level backing store allows memory servers to use other

memory servers for backing storage. High-bandwidth) low-delay, local and metropoli­

tan area networks make remote memory a desirable form of secondary storage for

memory servers as well as for client machines. Moreover, the two-level backing store

allows memory servers to be chained together linearly or hierarchically to provide an

arbitrarily large amount of remote memory backing storage.

6.5 Related Work

Several distributed systems use a remote backing store to support diskless nodes

[GMS88, LLD+83, PPTT90J. Instead of using a local disk or file system for backing

no

storage, these systems provide remote file system support in the kernel and allow the

virtual memory system to access the remote file system as if it were accessing a local

file system. The advantage of providing a transparent remote file system is that the

virtual memory system requires no modifications and is completely unaware of the

location of the files used for backing storage.

Early versions of the Sun OS operating system [GMS88] maintained Unix's notion

of a fixed-size, preallocated, swap partition on the local disk, but modified the lower

level ill·ivers to allow access to a remote disk as opposed to a local disk. The server

assigned a network disk partition to each client and allowed the client to read and'

write disk blocks from the partition as if it were a local disk. More recent versions of

the SunOS operating system allow clients to use remote files for backing storage. The

abstraction of files hides the underlying storage device and its location from the virtual

memory system and allows the operating system to use high-level file operations to

access the backing store. Despite this added level of abstraction, the client's virtual

memory system must still perform the. bookkeeping required to manage the backing

store (swap file), much like earlier versions managed disk partitions. In addition,

the server preallocates a fixed-size, private, swap file for each client. Preallocation

consumes valuable disk space that could otherwise be shared among the clients. Each

client is limited by the disk space in its own swap file and cannot access unused

disk space in other client's swap files. Because clients independently manage their

swap files, no data sharing between clients is allowed. Consequently, swap files often

contain identical data which cannot be shared.

The model in which file servers double as the backing store has several disad­

vantages. First, the model simply extends the convention~l disk backing store to

a distributed system with remote disks or files. Virtual memory systems that use

file servers for additional memory space must pay the additional overhead incurred

by the file system and the cost of committing the data to disk. The enormous per­

formance difference between remote memory and remote disk significantly impacts

111

the performance of the virtual memory system. Second, the file server cannot dis­

tinguish between file data and paging data. Consequently, the server cannot make

intelligent decisions regarding caching. File servers optimize for the most common file

access method: sequential file access. -Paging activity tends to randomly access pages

on the backing store, rendering the file server's optimizations useless. Optimizing

caching for the sequential case wastes valuable buffer space and degrades both paging

performance and file system performance. Third, the client virtual memory system

competes with ordinary user-level processes for the file server's resources. They com­

pete for the server's CPU time, the server's buffer cache, and disk space. The virtual'

memory system has no special privileges. As a result, the paging system cannot

guarantee high-speed access to the backing store.

Other example operating systems that use the file server model (in addition to

SunOS) include the Sprite operating system [OCD+S7] and the Amoeba distributed

operating system [TvRvS+90, RSTS9]. These systems also suffer from many of the

remote file system problems described.earlier. In fact, the optimizations used in the

Amoeba file server are even more detrimental to paging performance. Whenever a

client accesses a remote file, the Amoeba file server, called the Bullet File SellJer,

prefetches the entire file assuming the client will access the entire file in the near

future; an extreme form of Read-Ahead. In addition, this form of prefetching limits

the size of a file to rel<l.tively small files that fit in the memory of. the file server. The

Sprite system overcomes some of the problems found jn SunOS by using multiple

files, as opposed to a single file, for backing storage. In addition, Sprite does not

preallocate fixed-size swap files, thereby allowing clients to share the resource.

Another related form of backing storage are caching disks.4 Although the idea is

not necessarily new [GroSg]. caching disks are becoming more common in response

to the increa.'ling disparity between processor speeds and disk I/O speeds. Caching

disks are disk devices which contain a high-speed memory cache to improve the I/O

performance of the disk. To insure that no data is lost, caching disks typically,

"Caching disks are sometimes referred to as intelligent disks.

112

but not always, use a non-volatile RAM as the high-speed cache. Due to economic

constraints, the caches are usually relatively small (e.g., 32K . 4M bytes [AG91]). In

addition to a high~5peed cache, the disk control unit contains a microprocessor to

manage the cache and control the disk. The microprocessor implements the cache

management policy and often uses many of the same caching policies and techniques

found in conventional operating systems that perform RAM caching [Gla89]. Despite

the intelligent microprocessor in the controller I most caching disks provide a low­

level set of disk operations, which may be machine or operating system dependent

[Gro85, Pre91, AG91].

Caching disks can be viewed as a special case of the remote memory model. The

microprocessor and the cache on the disk provide the hardware functionality required

by a memory server, while the bus between the host and the disk serves as the com­

munication channel. However, because each disk physically connects to a single host,

caching disks represent a restricted form of the remote memory model. Consequently,

only the host directly connected to the disk uses and benefits from the memory re­

source (cache) on the disk as opposed to the general form of the remote memory

model where multiple clients share the large memory resource provided by the mem­

ory server. In this restricted form of the model, the disk's cache memory only caches

disk I/O data as opposed to providing general purpose data storage. Consequently,

the disk memory may be under-utilized and could be better used by the host (as

noted in [AG91]). In addition, the system does not support data sharing between

hosts as allowed by the remote memory model, nor does it offload backing store ac­

tivity to allow separate caching optimizations for file system activity and backing

store activity.

Because caching disks represent a special case of the remote memory model, many

of the memory server techniques could be applied to the cache controller, which acts as

a memory server. Using the Logical Memory Server abstraction, caching disks could

present a high-level, machine and operating system independent interface to the host

machine, thereby allowing use of the disk with a wide variety of operating system

113

and host architectures. The high-level operations of the abstraction, in particular

the deactivate operation, would allow the cache controller to quickly reclaim large

amounts of cache memory to improve the performance of the cache.

Disk arrays offer another solution to the disk I/O bottleneck [PGK88]. Disk arrays

distribute data across multiple disk drives to improve disk I/O throughput. Although

disk arrays promise high data transfer rates, the average delay resulting from a seek

operation is approximately the same as the average seek time of a conventional disk.

6.6 Summary

This chapter describes the design of a remote memory backing store. We define an

abstraction called a Logical Memory Server1 which hides the memory server 's internal

structure from the clients and provides a high-level interface with a well-defined set

of operations. The flexibility of the abstraction allows the server to support hetero­

geneous client machines with a wide variety of operating systems, virtual memory

space organizations, page sizes, and byte orders.

To improve client performance, the server uses a hash table and a double hashing

algorithm to retrieve data, on average, in constant time regardless of the number of

clients, the number of processes, or the amount of data stored on the server. To

provide fair memory allocation, the server divides memory into fixed-size data blocks

and assigns one ur more blocks to each page. Instead of preallocating memory to

each client, the server dynamically assigns data blocks to clients based on their needs,

thereby sharing the memory resource among all the client machines.

The server uses a transparent, two-level memory scheme to provide an arbitrarily

large amount of remote backing store. It uses secondary storage and a memory

replacement policy to enlarge the storage capacity of the server.

Reclaiming memory owned by a terminated process or client can consume a sub­

stantial portion of the server's processing time and delay processing of new requests.

The memory server uses timestamps to process terminate requests in constant time.

Each time the server receives a terminate request, it updates the timestamp and

114

immediately sends a terminate reply message. Updating the timestamp invalidates

all pages owned by the terminated process. The double hashing algorithm and a

garbage collection thread later reclaim the memory occupied by invalid pages. This

delayed memory reclamation scheme allows the server to amortize the cost of memory

reclamation over time.

115

7. A PROTOTYPE REMOTE MEMORY MODEL SYSTEM

This chapter describes a prototype system based on the remote memory model.

The prototype implementation verifies the design decisions presented in the previous

chapters and demonstrates the viability of systems based on the remote memory

model. In particular I the prototype provides a basis for investigating the performance

of systems based on the model.

Because the previous chapters already described the design, this chapter concen­

trates on the details of the prototype implementation. The chapter also presents

measurements obtained from the prototype.

7.1 System Configuration

We investigated the viability of systems based on the remote memory model by

implementing a prototype system based on the model. Figure 7.1 illustrates the

prototype VM Xinu system configuration. The prototype system consists of hetero­

geneous client machines, a memory server, a remote file server, a time server, and a

name server. The client machines consist of diskless Sun 3/50, MicroVAX II,I VAXs­

tation 3100, and DECstation 3100 workstations. The remote file server executes as a

user-level application on a UNIX host and provides the diskless clients with access to

the disk storage on the UNIX host. The time server and the name server execute on a

UNIX host and provide the standard TCP/IP time service and domain name service.

Client machines use the time server and name server to obtain the current time and

their domain name at boot time. The memory server executes as a user-level appli­

cation on a UNIX host. The memory server avoids the use of vendor-specific UNIX

lVM Xinu originally ran on a MicroVAX I, the predecessor to the MicroVAX II.

116

Client Machines

----------"---------r- . --......
Sun 3/50 Microvax 11 Vaxstalion 3100 Decstallon 3100

File MamOlY
Server Server

'-------- ~-------'-y
Server Machines

Unix Host Unix Host

Internet

Figure 7.1 The Prototype System Configuration.

system calls and can run on a wide variety of UNIX variants (e.g., SunDS, 4.3BSD,

Dynix, System V, or Ultrix). Consequently, we have run the memory server on a Sun

3/50, VAX 11/780, 8 processor Sequent Symmetry, VAXstation 3100, DECstation

3100, and SPARCstation 1+. A 10 Mbps Ethernet connects all the machines and

provides access to a gateway that routes packets to the TCP lIP Internet. An the

client machines execute the Xinu Virtual Memory Operating System (VM Xinu) and

page remotely to the memory server.

Although the clients all execute the VM Xinu operating system, the client archi­

tectures differ substantially. The DECstation has a RISC instruction set while the

MicroVAX, VAXstation, and Sun have elSe instruction sets. The MicroVAX, VAXs­

tation, and DECstation use reverse byte order (little-endian) while the Sun 3/50 uses

forward byte order (big-endian). However, the most notable difference pertains to

the virtual memory support provided by the hardware. Each architecture supports a

machine-dependent page size, page table entry format, page table organization, and

MMU access methods. In particular, the MicroVAX and VAXstation have a 512 byte

page size, the DECstation a 4 Kbyte page size, and the Sun 3/50 an 8 Kbyte page

size. The clients also differ in their physical memory sizes. The MicroVAX clients

117

used in the prototype system each contain 2MB of physical memory, the Sun 3/50

and VAXstation machines 4MB of memory, and the DECstations 8MB of memory.

7.2 VM Xinu: The Client Operating System

7.2.1 Overview

The VM Xinu operating system [eGg1] executes on the diskless 'client machines

and uses remote memory for backing storage. For file storage, the system accesses a

remote file server. VM Xinu contains primitives that provide memory management,·

thread management, thread coordination/synchronization, interprocess communica­

tion, real-time clock management, device drivers, and network communication.

VM Xinu supports user-level applications that execute in non-privileged mode and

trap to the kernel to invoke system calls. The operating system dynamically loads

user-level applications from the file system similar to other operating systems. As we

mentioned in chapter 4, the kernel supports multi-threaded user-level applications.

All the threads of an application share the text, data, and heap but have separate

stacks. In addition, VM Xinu supports multiple threads of control within the kernel.

All kernel threads share the kernel text, data, and heap and execute in privileged

mode. The lightweight kernel threads carry out various kernel functions in parallel

such as page reclamation, network management, timer management, and background

pagmg.

VM Xinu associates a scheduling priority with each thread, not each address

space. The system uses a single-level scheduling policy that chooses the next thread

to execute from all the threads in the system as opposed to a two-level scheduling

policy that schedules address spaces and within an address space schedules threads for

execution. The scheduler chooses the highest priority thread from all the threads in

the system as the next thread to execute and uses round-robin scheduling for threads

with the same priority.

118

7.2.2 The Virtual Memory System

VM Xinu implements the virtual memory system described in chapter 4. In ad­

dition, the virtual memory system defines the mappjng from Xinu's virtual memory

and process structure to the structured memory space provided by a Logical Memory

Server (LMS).

VM Xinu uses the thread and address space abstractions described in chapter 4 to

separate the lifetime of the data from the computation on the data. In VM Xinu the

data in an address space may persist after the last thread has completed. To map.

Xinu's virtual memory structure to the LMS, the virtual memory system separa'tes

address space data from thread data by maintaining separate page tables for address

spaces and threads. In addition, VM Xinu allocates thread identifiers (TID) and

address space identifiers (ASID) from two distjnct namespaces. More specifically,

thread identifiers range from 0 to N - 1 for some fixed value of N, while address

space identifiers range from N to 2N -1. Consequently, each vjrtual page belongs to

an address space or a thread and is uniquely identified by an (ASID, page number)

or (TID, page number) pair depending on the owner. When storing or fetching a

page to or from the memory server, the virtual memory system uses the (ASID, page

number) or the (TID, page number) ""' the (VS, page number) on the LMS. The

TIDs and ASIDs distinguish thread specific data from shared data and insure that

Ll,,:::}' OCC1iPY different VSs on the LMS. Figure 7.2 illustrates the mapping function.

7.2.3 Porting

Recall that VM Xinu contains an architecture interface layer designed to ease

porting of the system to new architectures. The architecture interface layer in VM

Xinu consists of 26 routines that provide a consistent interface to the underlying vir­

tual memory hardware. To port the virtual memory system from one architecture to

the next only involves rewriting the 26 architecture interface routines plus modifying

a few system initialization routines. Of the 26 routines, 22 routines are used to set

or get various fields of an abstract page table entry and translate to trivial in-line

119

VM Xinu Client Logical Memory Server

• •
'--"---;'-;'---'--

:::-WcIfffi

VS 104

• • •

VS 6VS5

• •

••

..
'ASID=104

Shai'~:p, ~
Dala-,)"

J~~~i
.· •.··Iii

-::{::::;::?~:I;:~~

Thread
Privale
Dala

.................. [I1D=6)

Multi-threaded
process

Figure 7.2 The mapping from VM Xinu to an LMS. Xinu's virtual memory system
defines the mapping from Xinu's process structure and address space layout to the
memory layout of an LMS.

120

macros on all four client architectures. Only the remaining 4 routines had to be

rewritten for each target architecture. Consequently, the architecture interface layer

substantially reduced the effort required to port the virtual memory system to the

four architectures.

The prototype also demonstrates the ability to support heterogeneous clients.

Despite the architectural differences among the client machines, all four client archi­

tectures simultaneously access the memory server for backing storage. The memory

server presents each client with a Logical Memory Server (LMS) that adapts to the

client's architecture. Thus, the memory server supports all three page sizes and byte'

orders simultaneously.

7.2.4 Unix Emulation

XillLL stands for "Xinu is not UNIX" [Com84]. The differences between Xinu and

UNIX prevent Xinu from providing a UNIX-compatible interface. To take advan­

tage of the large amount of Unix software currently available, VM Xinu includes a

mechanism that emulates UNIX system calls. Rather than modify the kernel, VM

Xinu provides a user-level library that simulates a subset of the UNIX system calls.

The library translates UNIX system calls into equivalent VM Xinu calls. The emula­

tion library eases the task of porting existing UNIX software to VM Xinu. To date,

the system executes several- UNIX applications.2 More importantly, the emulation

library allows us to execute the memory server as a VM Xinu user-level applicatio!1

(see section 7.5.2).

7.3 Implementing The Communication Protocol

To speed the development of a prototype system, VM Xinu uses the User Data­

gram Protocol (UDP) as the underlying virtual communication channel for the RMCP

protocol. Many conventional operating systems provide the support required to access

2Current UNIX applications include cat, ep, Is, my, we, grep, diff, size, ar, ee, lex, yaee, awk,
nroff, mg (an emacs-style editor), the MIT X server [SG86, CCG+91], and various X applications.

121

UDP from a user-level application. Consequently, using UDP allows us to execute

the memory server as a user-level process on a conventional operating system.

Using a virtual network as the underlying communication channel adds a dimen~

sian of flexibility not possible with physical network architectures. Physical network

architectures only provide communication between hosts directly connected to the

network. However I the IP protocol provides communication between all the hosts on

a virtual network constructed from multiple physical networks. Because RMCP uses

the UDP protocol, clients and servers need not reside on the same physical network.

UDP allows clients to page across one or more gateways to memory servers on distant

physical networks. In addition, UDP runs on a wide variety of network architectures,

allowing us to easily port the system to new network architectures.

Unfortunately, the system pays a price for this added flexibility. Traversing the

layers of the TCP/IP protocol suite adds a substantial delay to the time spent trans­

ferring a message (see section 7.5.4). In practice, the clients and server often reside

on the same physical network and can obtain a significant performance improvement

by running RM CP over the raw physical network.

7.4 The Prototype Memory Server

The prototype memory server executes as a user-level application on a UNIX host.

The" sE:Xver uses a minimum number of vendor-specific UNIX system calls to simplify

the task of porting the server to new UNIX variants executing on new architectures.

The ability to execute the server on multiple architectures allows us to measure the

effect the memory server's architecture has on performance. In addition, executing

the server as a user-level UNIX application allows us to quickly prototype and test

new versions of the memory server using the standard UNIX profiling and debugging

tools. The server executes in a UNIX environment, as opposed to the native hardware,

eliminating the need to implement network device drivers or disk device drivers. The

server has a file system available to obtain server configuration parameters at run·time

from an initialization file or to log debugging/error messages.

122

Unfortunately, executing the memory server as a user-level UNIX application has

some drawbacks. In particular I the overhead of UNIX impacts the performance of

the memory server in several ways. Each system caU issued by the server results in a

trap to the kernel, which is a relatively expensive operation. Crossing the user/kernel

boundary involves changing the address space mappings, switching stacks, and copy­

ing the parameters, or data pointed to by the parameters, into the kernel. For exam­

ple, when sending or receiving UDP messages, the server issues a read or write system

call which traps into the kernel and copies the message into a kernel buffer before

proceeding. Executing the server as a stand-alone program on the native hardware

would avoid such overhead. In addition, the memory server must compete with all

other UNIX processes for system resources. Instead of a dedicated machine execut­

ing a stand-alone memory server, the server executes concurrently with other UNIX

processes and experiences delays due to context switching. Moreover, the memory

server may be swapped out like any other UNIX process. Our experience with the

prototype shows that clients occasionally experience a long delay while waiting for

the operating system to swap in the memory server after a long time of inactivity.

Despite these disadvantages, UNIX provides a nice platform for implementing a

prototype server and provides the same functionality as a dedicated machine executing

a stand-alone memory server program, albeit slower. Moreover, some of the UNIX

overhead can be avoided by carefully designing the tests and experiments used to

measure performance.

7.4.1 Internal Data Structures

Each memory server supports multiple Logical Memory Servers (LMS), one per

client machine as described in chapter 6. The communication protocol and the mem­

ory servers both use a 32-bit LMS ID to identify a particular LMS. Similarly, the

protocol and the server both use 32-bit VS IDs and Page Numbers. Consequently,

each LMS consists of 232 Virtual Segments each containing 232 pages. That is, the size

of the logical storage space presented to each client is 232 *(232*LMS_PAGE_ SIZE).

123

To simplify the implementation, the memory server capHalizes on the large virtual

address space provided by UNIX. Instead of implementing its own replacement algo­

rithms to move data between memory and secondary storage, the server lets UNIX

move data from memory to disk. The server pretends the virtual memory space is

really a huge physical memory. The server lets the virtual memory system in UNIX

handle all data transfers between physical memory and the swap area.

Allowing UNIX to implement the two-level storage space simplifies the imple­

mentation, but places some li~tations on the prototype server. In particular, the

memory server subjects itself to UNIX's replacement algorithm instead of choosing a"

replacement policy of its own. Moreover, the server has no means of locking pages in

memory. Consequently, all the server's data structures, including the hash table, are

subject to replacement. Also, because the server does not manage the swap area, it

cannot optimize data placement on the disk.

The server divides the memory into fixed-size data blocks and asSIgns them to

clients on demand. Based on our experience with the prototype, we chose to use lK

byte data blocks. Larger block sizes result in a low utilization and considerable inter­

nal fragmentation when storing 512 byte MicroVAX pages, while smaller block sizes

significantly increase the data block overhead. When the server receives a page...store

request for a page larger than lK bytes, the server allocates multiple physical data

blocks to create a logical block large enough to store the page. The internal frag­

mentation resulting from smaller pages such as the MicroVAX's 512 byte pages can

be reduced by storing two consecutive pages of a VS per data block (i.e., consolidate

two consecutive VS pages into a logical page). As a result of the locality of reference

principle, client processes fend to access consecutive pages of their virtual address

spaces, which the virtual memory system eventually stores in consecutive pages of a

VS. Consequently, consolidating two consecutive VS pages into a logical page often

results in efficient use of data blocks for page sizes less than the data block size.

The memory server described in chapter 6 uses a garbage collection thread within

the server to reclaim invalid pages. Unfortunately, standard UNIX does not support

124

multi-threaded processes. Consequently the memory server simulates a background

garbage collection thread using signals and alarms, and checks for new requests using

the seleetO call. If there are no requests when the alarm expires, the process executes

the garbage collection routine for a short period before checking for paging requests

agam.

Although the remote memory model provides the opportunity for clients to share

data, the current prototype does not support any data sharing between client ma­

chines.

7.4.2 Double H""hing

The memory server uniquely identifies each page using a (LMS ID, VS ID, page

number) triple. When the server receives a page store or page fetch request, it applies

a double hashing algorithm to the triple to locate the hash table entry containing the

page.

Double hashing takes a key and produces an index into the hash table. Conse­

quently, the server must first reduce the triple to a single number that can be used

as the key. To obtain a single number, the server applies the folding function [HS82]

shown in Figure 7.3.

Fold(lms, vs, pn)
Bit32 Ims, VS, pilj

{
Bit32 tI, t2, t3, valuej /* 32 bit integers */

}

tl = lIDS « 26;
t2 = vs « 16j
t3 = Pili
value = ((tl • 12) • 13);
return(value);

/* LMS ID upper 6 bits */
/* VS ID middle 10 bits */
/* Page Number low 16 bits */
/* XOR all three */

Figure 7.3 The memory server folding function.

125

Because the folding function compresses 96 bits of information into a. 32 bit key,

some information will be lost. Consequently the folding function should uniformly

distribute the triples across all possible keys to reduce the number of collisions. The

folding algorithm above assumes that LMS IDs and VS IDs are relatively small num­

bers and therefore only uses the low order bits of the LMS ID and the VS ID. Because

the server allocates small LMS IDs first, it is reasonable to assume small LMS IDs.

Because VM Xinu uses the thread ID or address space ID as the VS ID, the resulting

VS IDs range from 0 to 2N I where N is the maximum number of address spaces al­

lowed on the client. Consequently, is it reasonable to assume small VS IDs. Clearly,'

the folding function optimizes for the VM Xinu system but should be modified if used

with other systems.

Once the server has compressed the triple into a single key, the server applies

a double hashing algorithm to the key. Figure 7.4 illustrates the double hashing

algorithm used to locate the desired hash table entry in response to a fetch request.

To reduce the average number of probes required to locate an entry, the server uses a

hash table size of N, where Nand N - 2 are twin primes [Knu73]. During each probe

to the hashing table, the algorithm checks the timestamp of the entry and reclaims

the entry if the timestamp has expired.

The server also uses a double hashing algorithm to add entries to the LMS and

VS h<l.';h tables. However I the VS hash table only needs to fold the LMS ID and the

VS ID into a single key. The LMS hash table does not require any folding.

7.5 Experimental Results

The first and most basic test of the implementation involved setting up the sys~

tern pictured in Figure 7.1 and allowing the heterogeneous clients to page to a single

memory server. We executed the VM Xinu operating system on all four architec­

tures simultaneously to demonstrate memory server support for heterogeneous client

machines.

126

/* Double Hashing Algorithm */
/* Chose N such that N and N-2 are twin primes */

define hash1(key)
define hash2(key)

(key mod N)
((key mod (N-2)) + 1)

DoubleJiash(key, triple)
{

currenLentry =::. hashl(key)
index = hash2(key)
entry....not.found = TRUE
unchecked.£utriesJeft = N
while (entry....not...found and unchecked...entriesJeft) {

if (currenLentry is occupied) {
check the entry's timestamp against

the LMS and VS timestamps
if (timestamps differ) {

reclaim invalid entry
}
else if (current....entry matches triple) {

entryJlot...found = FALSE
location = current..entry

}
}
current...entry = (current..entry + index) mod N
unchecked...entriesJeft = unchecked...entriesJeft - 1

}
if (entry-lloUound)

return error
else

return location
}

Figure 7.4 The double hashing algorithm for a fetch...request. The algorithm assumes
a hash table of size N.

127

The remainder of this section describes experiments designed to measure the per­

formance of the prototype. This section also describes the measured performance of

an existing distributed system for the purpose of comparison.

7.5.1 Conventional Backing Store Performance

To establish a point of reference, we measured the performance of a conventional

virtual memory system used in a production environment Oil a daily basis. In partic~

ulaf, we measured the performance of a diskless Sun 3/50 machine executing SunOS

4.0 and paging across a 10 Mbps Ethernet to a Sun 3/50 NFS file server. The

SunOSjNFS model is similar to the remote memory model in that they both support

diskless nodes paging to a remote backing store. To reduce the influence of external

factors, we ran the tests in the evening while the file server and the network were

both lightly loaded.

Several studies have reported on the performance of Sun's NFS distributed file

system [LS89, SGK+85, Kei90]. However, our interest focused on the performance of

NFS as a backing store for diskless nodes. The majority of NFS requests consist of

directory lookup operations and get/set attribute operations [LS89]. Our measure­

ments factor out all but the virtual memory system paging activity. In particular, we

measured the average round trip delay to store or fetch an 8K byte page to or from

an NFS r,erver. The measurements were obtained by modifying the SunOS kernel ~,n

record the round trip delay for each paging request.

Table 7.1 Average round trip delay to store or fetch an 8K byte page to or from a
Sun 3/50 NFS file server from a diskless Sun 3/50 client running SunOS.

Operation Time

Fetch 84 IDS

Store 176 IDS

128

Table 7.1 shows the average round trip delay experienced by SunOS when transfer­

ring data to or from the file server. The table shows that NFS adds a substantial delay

to ensure that each store operation commits the data to disk before acknowledging

the operation.

To compare against systems with a local disk, we measured the performance of a

Sun 3/50 executing SunOS 4.0 paging to a swap partition on a standard Sun 3/50

disk drive.3 Again we ran the tests on a lightly loaded system. Unlike the diskless

client paging to NFS, the average time to store data on the disk was approximately

equal to the time required to fetch data from the disk.

We executed two tests. Each test measured the average disk transfer rate of the

virtual memory system during the execution of the test program. Both test programs

allocated a heap region much larger than the size of the physical memory. The

programs then proceeded to touch all the pages in the newly allocated space, thereby

causing the virtual memory system to page to the local disk. The first program

sequentially traversed the space, touching one byte of each 8K byte page. The second

program randomly touched one byte of each 8K byte page. The first test represents

an extreme case of the locality of reference principle, referencing all the pages in

order. The random test illustrates the other extreme. A typical system's behavior

lies somewhere in between. Table 7.2 shows the average 8K byte disk transfer times

Table 7.2 Average delay that results from storing or fetching an 8K byte page to or
from a local disk drive on a Sun 3/50 executing SunGS.

Test Program Time

Sequential VM access 22 ms

Random VM access 30 ms

3A Micropolis 1325 disk drive.

129

for the two programs. The measured performance shown in Table 7.2 agrees with the

local disk performance reported in the literature [Hab89 , Wi189].

7.5.2 Remote Memory Backing Store Performance

We performed several tests using the prototype system that measured various as­

pects of the system's performance. In order to compare the performance of the pro­

totype system against performance of the previous systems, we used a. configuration

similar to the diskless SunOSjNFS system for which the performance measurements

were reported in section 7.5.1. We measured the performance of a diskless Sun 3/50

executing the VM Xiuu operating system and paging across a 10 Mbps Ethernet to a

Sun 3/50 memory server. Again we ran the tests during the evening when the server

and the network were lightly loaded. Furthermore, to keep the results as comparable

as possible, we executed the memory server as a user-level process on the same file

server machine used in the SunGS test. To insure the entire memory server remained

resident in memory, we artificially limited the amount of data clients stored on the

server to the memory server's resident set size.

Table 7.3 compares the performance of a diskless VM Xinu client to the per­

formance of the diskless SunGS system. Although the memory server executes as

Table 7.3 Average round trip delay for VM Xinu paging to a memory server vs.
SunOS paging to NFS. Both systems used a Sun 3/50 client and a Sun 3/50 server.

Operation VM Xinu SunOS/NFS

Fetch 31 ms 84 ms

Store 31 IDS 176 ms

a user-level process, the VM Xinu results show a significant improvement over the

SunOS system paging to NFS. In particular, the results show that the time to service

130

a page fault in SunDS takes almost three times as long as the time to service a page

fault in VM Xinu. NFS commits each store operation to disk before acknowledging

the operation. Consequently, VM Xinu store times are 5 times faster than SunDS

store times. Unlike SunDS, the store and fetch times in VM Xinu are symmetric.

Using the UNIX emulation library in VM Xinu, we executed the sequential and

random access tests described in the previous section. Table 7.4 compares the perfor­

mance of VM Xinu paging to a memory server to the performance of SunDS paging

to a local disk. In the case of the random test, VM Xinu demonstrates performance

Table 7.4 Average round trip delay for VM Xinu paging to a memory server VS.

SunDS paging to a local disk.

Test Program VM Xinu SunOS/Disk

Sequential VM access 31 ms 22 ms

Random VM access 31 ms 30 ms

competitive with SuuOS paging to a local disk. The sequential test represents the

other extreme and shows that remote memory performance is not more than 1.5 times

slower than a local disk.

7.5.2.1 Remote Memory Access Times on Various Hardware Configurations

Because the memory server executes as a user-level UNIX process, we were able

to execute the memory server on a wide variety of architectures and UNIX variants.

This flexibility allowed us to measure the effect the architecture and operating system

have on performance. Table 7.5 shows the average round trip delay for paging re­

quests when the memory server executes on various operating systems and hardware

architectures.

131

Table 7.5 The time to store/fetch an 8K byte page when the memory server executes
on various UNIX systems. In each case, the clients consist of Sun 3/50 machines
execu ting VM Xinu.

Sun 3/50 Sun 3/50 Sparc 1+ Vaxstation 3100 Decstation 3100

(SunGS) (VM Xinu) (SunGS) (Ultrix) (Ultrix)

Store 31 illS 31 IDS 20 IDS 29 IDS 21 illS

Fetch 31 IDS 31 rns 23 IDS 33 illS 28 illS

The table shows the results of five independent tests. All five tests measured the

performance of a single Sun 3/50 VM Xinu client paging across a 10 Mbps Ethernet

to a memory server executing on a UNIX host.4 Each test used a new architecture

and operating system as the UNIX host. The top row of the table indicates the

architecture and operating system used as the memory server. Each column of the

table shows the time required to store or fetch an 8K byte page to or from the memory

server. The results show that the architecture and operating system significantly

affect the performance of the memory server. Clearly, a memory server running on

one of the faster machines (a DECstation 3100 or Sparcstation 1+) outperforms a

memory server running on one of the slower architectures (a Sun 3/50 or VAXstation

3100). Notice that the RISC machines (the DECstation 3100 and the SPARCstation

1+) provide backing storage at speeds competitive with the local disk speeds reported

in Table 7.2.

Note that the time required to store a page differs from the time required to fetch

a page when paging to a Sparcstation 1+. However, when paging to a Sun 3/50,

the times are symmetric. This difference results from the design of the network layer

in VM Xinu which uses a kernel thread to demultiplex incoming network packets.

The kernel thread waits for an incoming packet, demultiplexes the packet based on

its packet type, awakens any processes that may be waiting for the packet, and then

-lExcept for the test which ran the server on a VM Xinu host using the UNIX emulation library.

132

waits for the next network packet to arrive. Using a kernel thread to process incoming

packets simplifies the designj however, the additional context switching that results

from using a kernel thread increases the time required to read a multi-packet message.

Measurements indicate that the additional context switching, combined with a non­

optimized Ethernet interrupt handler l adds approximately .45 rns to the processing

time for each incoming packet on a Sun 3/50. Consequently, VM Xinu processes an

incoming 8K byte message approximately 2.7 rns slower than an 8K byte outgoing

message. However I this difference does not appear when paging to SunOS on a Sun

3/50 because VM Xinu still reads packets faster than SunOS on a Sun 3/50 can send

packets.

In the case of the two Ultrix systems) the networking delay introduced by VM

Xinu does not account for the entire difference between the store times and the fetch

times. The high fetch times shown for the two Ultrix systems result from Ultrix's

implementation of the UDP/IP protocols. Ultrix sends packets substantially slower

than it receives packets. Consequently, the store times are much lower than the fetch

times. SunGS, on the other hand, sends and receives packets at roughly the same

speed. Clearly, the operating system's implementation of the UDP /IP protocols has

a significant effect on paging times.

The second column of the table shows the average round trip times for a memory

server executing as a VM Xinu user-level process. Since Xinu is Bot UNIX, the server

spends a significant amount of time in the UNIX emulation library. In addition) VM

Xinu has not had the man~years of fine tuning and optimizations that SunGS has

had. Consequently one might expect SunGS to outperform VM Xinu. However, the

table shows that performance is the same for both systems. The additional time

spent emulating UNIX is offset by the fact that VM Xinu sends and receives network

packets faster than SunDS.

Having evaluated the effect various server architectures have on paging times, we

measured the performance of VM Xinu executing on a DECstation 3100 to determine

the impact a different client architecture has on paging times. Table 7.6 shows the

133

paging times for a DECsta.tion 3100 paging across a 10 Mbps Ethernet to two memory

server architectures. T~e DECstation 3100 has a 4K byte page size. Consequently, the

Table 7.6 Paging times from a DECstation 3100 executing VM Xinu. The time
shown is the round trip delay to store/fetch a 4K byte page to or from a memory
server executing on the specified architecture.

Spafestation 1+ Decstation 3100

(Sun OS) (Ultrix)

Store 8 rns 8 rns

Fetch 10 rns 12 rns

times jn Table 7.6 reflect the round trip delay to fetch or store a 4K byte page. Again,

the difference between the store and fetch times reflect the VM Xiuu context switching

overhead and the Ultrix overhead. Clearly, the faster processor on the DECstation

3100 and the smaller page size result in average access times substantially better than

the slower Sun 3/50 client architecture and significantly better than most disk drives.

In the remote memory model a smaller page size significantly reduces the average

access time. However, the average seek time on a local disk does not depend on the

size of the data transferred. Consequently, a smaller page size does not significantly

reduce the average access time to a local disk. Both Table 7.5 and Table 7.6 indicate

that the remote memory model capitalizes on current trends in computer technology.

As network bandwidth, CPU speeds, and memory sizes increase, the performance of

remote memory backing storage will continue to improve.

134

7.5.3 Memory Server Performance

7.5.3.1 Client Load

To determine the performance of the memory server under various loads} we mea­

sured the average response time of a Sparcstation 1+ memory server supporting

multiple SUD 3/50 VM Xinu client machines. We generated the various server loads

by varying the number of clients and the number of requests per second issued by

each client. Figure 7.5 illustrates the memory server response time for various server

loads. The figure plots the average response time when executing one, three, and'

six clients. At 100 requests per second the prototype server becomes saturated. Any

additional load on the server results in queueing delays that significantly increase the

round trip time. However, for three or less clients, the figure shows that the average

round trip delay remains relatively constant, regardless of the load on the server. For

six clients, the average round trip delay remains constant for low loads, and then

begins to rise as the load increases. However, the increased load on the server does

not account for the increase in the average round trip delay (as evidenced by the

three client line). Instead, the increase results from contention for the network and

the queueing delays experienced by requests that arrive simultaneously from multiple

machines. Note that the collective throughput remains the same despite the higher

round trip delays. That is, each client still receives ~th of the total throughput, where

n is the number of clients. In the case of six clients, each client obtains a throughput

of approximately 1 Mbps. Consequently, as long as the combjned request rate of the

client machines remains less than the saturation rate, new clients can be added with­

out degrading the server's performance (i.e., the server will continue to perform at its

maximum processing rate [e.g., 100 requests per second], regardless of the number of

clients using the server).

Note that at 100 requests per second the memory server processes SOOK bytes

of data per second and consumes more than 6.25 Mbps of the Ethernet bandwidth.

Thus, neither the network bandwidth nor the server's processing rate present a major

135

50

,,,

.....
-~- ",'" """ ..

".'"•..• ,:-.;.-! .
-".-:.-.- .-

Round Trip
Delay 30
(ms)

10

Fetch
Store

o

--

_ -::-::-.:-.-:- .

25 50 75
Requests per second

handled by the server

.

6 Clients
3 Clients
1 Client

100

Figure 7.5 Average round trip delay to store or fetch an 8K byte page as a fundion
of the server load. The times indicate the average round trip delay experienced by
Sun 3/50 client machines paging to a memory server executing on a SPARCstation
1+. Note that at 100 requests per second the server handles BOOK bytes of data per
second and consumes 6.25 Mbps of the Ethernet bandwidth.

136

bottleneck. At peak performance, each executes near, or at, its saturation point.

Assuming that network speeds, CPU speeds, and network I/O devices increase in

performance at the same rate, the results obtained from current technology indicate

that the system will perform well in the future.

In a conventional vidual memory system (i.e., one which uses magnetic disks

for backing storage), the average seek time of the disk is the bottleneck. However,

in the remote memory model, contention for the network and contention for the

server present the major bottlenecks. Contention refers to the number of clients

that simultaneously attempt to access the server. Contention reduces the throughput

attainable by each client and may increase the average round trip delay experienced

by a client. Each remote memory model system can only tolerate a certain amount

of contention before the performance exceeds some minimum performance threshold.

Although the maximum allowable contention is dependent on the requirements of

the system, the results shown in Figure 7.5 indicate that systems in which there

are at most six machines contending for the server at any given time will exhibit

performance competitive with systems that page to a local disk. In addition, our

experience indicates that virtual memory systems often transfer data in bursts (e.g.,

swapping out an idle process) followed by long periods of inactivity. The bursty

behavior helps reduce contention by reducing the number of clients simultaneously

accessing the memory server. Consequently, the number of clients using a memory

server may be several orders of magnitude larger than the contention level for the

server.

7.5.3.2 Data Retrieval

To measure how well the server scales as the amount of data stored on the server

increases, we measured the performance of the server's lookup algorithm as a func­

tion of the amount of data stored on the server. Theoretically, the double hashing

algorithm provides constant time access to the data as long as the hash table remains

less than 95% full. However, in practice, the implementation uses a folding function

137

in addition to a double hashing algorithm. The server folds the triple identifying a

page into a single key before applying the double hashing algorithm.

Figure 7.6 shows the average number of probes required to locate a page in the

server's hash table as a function of the hash table utilization. We modified the memory

9 : : ; : : ; : ; : .············
5 : : : : : : : : : .

· .. .· .. .· .. .· .. .· .. .
3 ; ; ; ~ ; ; ;..... : ~ .

· .. .·

Y='=i='==i==~.=;'~~'~'~1."-- , , , , , .
o ro w w ~ ~ w m W 00 ~

Average 7
Number

of
Probes

Hash Table Utilization
(in percent)

Figure 7.6 Measured performance of the double hashing algorithm as a function of
the hash table utilization.

server to record the average number of probes per request as a function of the number

of hash table entries in use and then executed several client machines all paging to

the memory server. Because UNIX only allows the memory server to obtain a fixed

amount of heap space for data storage, we artificially limited the size of the hash

table to 1021 entries to allow 100% utilization of the hash tableS (i.e., we did not

want the hash table to map more storage space than the server could obtain). The

figure shows the combined performance of the folding function and the double hashing

algorithm. Even when the hash table is 90% full, the server only requires an average

of 6 probes to locate the desired data. As long as the server limits table utilization

51021 is a. twin prime and corresponds to approximately 8M bytes ofstorage space for SUD 3/50
clients.

138

to 90%, the average access time remains constant (i.e., 0(6)). However, at 80%, the

server requires only 3 probes to locate the desired entry. Thus, a small increase in

the amount of memory consumed by the hash table (i.e' l enlarging the hash table to

lower hash table utilization) results in a substantial increase in performance (i.e., a

factor of 2 improvement in performance).

7.5.4 Protocol Performance

The paging times reported in Table 7.5 measure the combined performance of the

remote memory server and the communication protocol. OUf experience with the

system indicated that the communication protocol, rather than the memory server I

constituted the majority of the delay associated with accessing data on the server.

Because NAFP hides the underlying communication channel from the XPP pro­

tocol, the communication protocol runs over most network architectures. In our

prototype implementation, we built the communication protocol on top of the UDP

protocol, using the virtual network provided by the IP 'protocol to allow access to

memory servers on remote networks. Because our design does not bind the communi­

cation protocol to any particular communication channel, we wanted to mea.c;ure the

additional overhead incurred a.c; a result of our implementation decision to use UDP

as the communication channel rather than a link-level communication channel (e.g.,

an Ethernet).

Table 7.7 shows the breakdown of an 8K byte paging request fro~ a SUll 3/50

client paging to a Sun 3/50 memory server in terms of the time spent processing

each stage of the request. The UDP lIP component includes the time spent trans­

mitting the data across the wire. However, because the client's CPU and transceiver

execute concurrently, the transmission time for fragment i overlaps the XPP INAFP

and UDP lIP processing of fragment i +1. Consequently, the table only counts the

overlap processing once. The table shows that the majority of the paging time can

be attributed to the UDP lIP protocol. Consequently, building the communication

139

Table 7.7 A breakdown of the time required to process an 8K byte request from a
SUD 3/50 client paging to a SUD 3/50 memory server. The percentage is calculated
from a total paging time of 31 ms.

Component Time Percentage

XPP/NAFP 8.6 IDS 28%

UDP/IP 15.6 IDS 50%

Memory Server 6.8 ros 22%

protocol directly on the underlying physical network (in this case the Ethernet) would

substantially improve paging performance.

7.5.4.1 Data Streaming

OUf experience indicates that most virtual memory systems exhibit bursty back­

ing store I/O behavior. Under normal processing demands the virtual memory system

rarely pages to the backing store. However l when a user executes a program requir­

ing a large amount of memory the virtual memory system suddenly transfers large

amounts of data to the backing store. Also, whenever the user resumes a process that

has been swapped out, the virtual memory system suddenly transfers a large amount

of data between memory and the backing store. The long periods of infrequent pag­

ing interspersed with sudden flurries of paging activity emphasize the need for data

streaming.

Although data streaming allows the virtual memory system to use more of the

network bandwidth, choosing an optimal pending list length is difficult and depends

on several factors.6 One might think that increasing the pending list length would

always improve the client's performance because the virtual memory system can use

more of the network bandwidth. However, Figure 7.7 indicates that our intuition

6Chapter 4. and chapter 5 describe the role of the pending list. Briefly stated, the pending list
length specifies the maximum number of requests a client may issue before receiving a reply.

140

is not necessarily correct. Figure 7.7 shows the total runtime (in seconds) of the

61

60

Total 59
Runtime

(in seconds) 58

57

56

1 2 3
Pending List Length

4

Figure 7.7 The total run time of the sequential access test program as a function of
the pending list length.

sequential access test described in section 7.5.1 for various pending list lengths. The

total runtime decreases when we change the pending list length from 1 to 2j however,

the total runtime increases when we go to a pending list length of 3. To understand the

anomaly in the graph, one must examine the application (in this case the sequential

access test) and the behavior of the page replacement "algorithm.

The sequential test program incurs page faults at a steady and rapid rate, perLOnn-"

iug almost no computation between faults. Consequently, the number of free pages

drops to the low water mark and the replacement algorithm executes continuously,

trying to reclaim memory. When the pending list length is I, the virtual memory

system synchronously issues a fetch request in response to a page fault. As soon. as

the fetch request completes, the virtual memory system issues a store request to re­

plenish the free list. While waiting for the store request to complete, the test program

faults again, and the cycle continues (see Table 7.8). With a pending list of length

2, the virtual memory system issues a fetch request and a store request back-to-back.

141

Table 7.8 Sequence of requests observed at the memory server for various pending list
lengths. The letter f denotes a fetch request and the letter 5 denotes a store request.

Pending List Length Request Pattern

1 fsfsfsfsfsfs

2 fssfssfssfss

3 fsssfsssfsss

4 fsssfsssfsss

When the client receives the fetch reply it immediately sends a second store request.

Because the virtual memory system issues the fint store request before receiving the

reply to the fetch request, the total runtime decreases. When the pending list length

is 3, the virtual memory system asynchronously issues a fetch request followed by

two store requests. While processing the second store request, the client receives the

fetch reply and issues a third store request. Because the page replacement policy

aggressively frees pages, the virtual memory system issues 3 store requests between

each fetch request as opposed to the 2 store requests when the pending list length is 2.

As a result, the virtual memory system issues many more store requests for a pending

list length of 3 than for a pending list length of 2. The type of application, the page

replacement policy, the scheduling policy, and the server response time all affect the

choice of an optimal pending list length. However, the figure clearly shows that even

a small pending list of length 2 substantially improves the client's performance. In

this case, data streaming results in an 8.3% improvement in total execution time over

synchronous delivery.

7.6 Summary

In this chapter we describe a prototype implementation based on the remote

memory model and present experimental results obtained from the prototype.

142

We implemented and ported the VM Xinu operating system to the Sun 3/50,

MicroVAX II, VAXstation 3100, and the DECstation 3100. We implemented the

memory server as a user-level application executing on a UNIX host and used a 10

Mbps Ethernet to connect all the machines. Executing the memory server as a UNIX

application allowed us to quickly prototype and test the memory server using standard

UNIX profiling and debugging tools. We demonstrated heterogeneous client support

by executing VM Xinu on all four architectures. Although each architecture supports

a machine-dependent page size, all four architectures paged to a single memory server

simultaneously.

Experimental results obtained from the prototype indicate that the remote mem­

ory model offers performance competitive with conventional diskless systems and

systems with a local disk. Our results show that the average time required to store

or fetch an SK byte page to .or from a local disk ranges between 22 ms and 30 ms. In

comparison, our prototype system averages 20 ms to 31 ms to store (fetch) an 81\ byte

page to (from) the memory server. In addition, the results indicate that the server

scales well as the number of requests per second processed by the server increases.

Our implementation decision to use UDP as the underlying communication channel

significantly impacts the system's performance. However, even with the extra over­

head resulting from UDP lIP, the system performs at speeds competitive with a local

disk. In addition, UDP allows clients to page"across one or more gateways to memory

servers on distant physical networks. In short, the prototype clearly demonstrates

the viability of designing systems based on the remote memory model and indicates

that the model will perform well in the future as CPU speeds, network bandwidth,

and memory sizes increase.

143

8. CONCLUSIONS

This thesis investigated a new model for designing distributed systems based on

remote memory backing storage. We described a remote memory model system and

a prototype implementation built to demonstrate the viability of the model.

The remote memory model uses dedicated, large memory machines to provide

a shared remote memory backing storage resource to a set of heterogeneous client

machines. The system achieves high performance through the use of a special purpose

communication protocol and a memory server with highly-efficient data structures

and algorithms. In addition to providing a highly-efficient backing store, the model

allows data sharing among clients, improves file system performance by offioading the

file server, and capitalizes on hardware advances that improve network bandwidth,

increase CPU speeds, and expand memory sizes.

The remainder of the chapter briefly highlights some of the contributions of the

research and suggests directions for future research.

8.1 Hierarchical Design

We presented a virtual memory operating system that incorporates virtual mem­

ory and support for remote memory backing storage into a hierarchical operating

system design. The hierarchical design partitions operating system functions into

distinct components and arranges the components into a layered hierarchy. Not

only does a hierarchical design combine closely related operations into layers with

well-defined semantics and interfaces, but it also specifies the dependencies between

layers. The hierarchical design clearly defines the interaction between the various

components, making the system easier to understand and modify. In particular, the

144

layering allows one to ea.sily modify the virtual memory system to support several

types of backing storage without affecting other components of the system. VM Xinu

supports remote memory backing storage using lightweight kernel threads, shared

memory, and efficient interprocess communication. The VM Xinu system demon­

strates that remote memory backing storage can be incorporated into a hierarchical

design without sacrificing efficiency (i.e., the system exhibits performance competitive

with existing systems).

8.2 An Efficient Paging Protocol

To minimize the delay incurred when accessing remote memory backing storage,

we designed a special purpose communication protocol with low overhe~d and low

delay.

The communication protocol supports data streaming. Data streaming allows

the virtual memory system on the client to use more of the network bandwidth by

transmitting new requests before receiving acknowledgements for previous requests.

The protocol includes a preceding message number to define a partial ordering on the

list of messages. The preceding message number allows the memory server to process

paging requests out of order and achieve the same results that in-order processing

would have produced.

Th", low-level negative acknowledgement fragmentation protocol" (NAFP) allows

execLltion of the communication protocol over any communication channel that pro­

vides unreliable delivery. Negative acknowledgements improve efficiency by detecting

fragmentation errors as soon as they occur, but add no computational overhead in the

absence of errors. In addition, negative acknowledgements can be used as a general

purpose technique to improve the performance of almost any high-level protocol, or

combination of protocols, that provide fragmentation and reliable delivery.

145

8.3 Remote Memory Service for Heterogeneous Machines

The memory server provides remote memory backing storage to multiple client

machines simultaneously. It uses the Logical Memory Server (LMS) abstraction to

hide the internal organization and data storage and support heterogeneous clients.

The memory server uses a single hMh table to store the data from all the clients.

The hash table acts like a page table and allows the server to present clients with a

single-level storage space (i.e., an LMS) but can use a two-level storage space con­

sisting of primary memory and secondary storage to store the data. The single hash,

table, together with the double hashing algorithm, allow the server to process fetch

and store requests) on average, in constant time, regardless of the number of clients

using the server. Timestamps allow the server to process terminate requests in con­

stant time and amortize the cost of memory reclamation over time.

8.4 Competitive Performance

We designed and implemented a prototype'system based on the model and mea­

sured the system's performance. The prototype system demonstrates the viability of

systems based on the remote memory model and exhibits performance competitive

with existing distributed and stand-alone systems. In particular I the results show

that a memory server exec.uting on a conventional RISC architecture such as a DEC­

station 3100 or a SPARCstation 1+ exhibits performance competitive with, and in

some cases better than, a local disk drive. The results also show that the memory

server scales well as the number of clients increases. Furthermore, the prototype in­

dicates that the remote memory model will perform well in the future as network

bandwidth, CPU speeds, and memory sizes continue to increase.

146

8.5 Future Work

Although the prototype implementation demonstrates the viability of distributed

systems based on the remote memory model, several interesting extensions exist and

warrant further investigation.

8.5.1 Data Sharing

The current prototype does not allow data sharing among client machines. To

support data sharing among machines, we must develop memory server primitives·

that allow clients to create and obtain shared data regions on the server.

Several data sharing possibilities exist. Read~only data sharing is simple to im­

plement and avoids coherency problems by only allowing clients to share immutable

data. Despite its simplicity, read-only data sharing allows clients to share text images,

libraries, and static databases, thereby reducing the amount of memory consumed on

the memory server. Another alternative is read-write data sharing. Several forms of

read-write data sharing exist, each having slightly different semantics and coherency

guarantees[Li86, LHS9j. Unlike read-only sharing, read-write sharing may require

callbacks to ensure coherency[FPS9, RK88]. Data sharing mechanisms also specify

the granularity of sharable data. For example, the memory server may define the

smallest unit of sharable data to be the size of an LMS page, the size of a data

block1
1 or the size of an entire Virtual Segment (VS). Typically there is a tradeoff

between the efficiency and the functionality supported by the data sharing model.

We need to choose a data sharing model that results in the desired combination of

efficiency and functionality and then extend the primitives provided by the memory

server to support the chosen data sharing model.

lThe fixed size blocks of physical memory used by the memory server to back the pages of a VS.

147

8.5.2 Memory Server /File Server Interaction

The current definWon of the remote memory model includes a memory server

machine and a file server machine. In the future, we plan to investigate the relation­

ship between the memory server and the file server and explore new methods for the

memory server and the file server to communicate and interact.

Again, several options exist. For example, the memory server could access the

file server directly. The memory server would then allow clients to request that a

specific file on the file server be used as the initial contents of a newly created VS.

Alternatively, the file server could understand the operations supported by a memory

server and allow clients to request that a certain file be installed on the memory

server.

Another possibility is to merge the file server with the memory server. Using

a memory server as the basis for a remote file system produces several intriguing

possibilities. A memory-server-based file system would allow us to separate naming

and protection from data storage. In this approach, a directory seT'IJer would provide

the naming and protection aspect of the file system and use the memory server for

data storage. Adding a store-and~save operation to the memory server would allow

the file server to use either volatile or non-volatile storage for file system data and

provide conventional stable storage or high-speed volatile storage (e.g.} temporary

files) .

Another alternative would be to design an object-oriented file system. Each file

would be an object consisting of a virtual address space and a set of operations (e.g.,

open, close} read} and write). Because each file object is really just an address space

and thread(s) of control, the resulting system has a single data storage paradigm:

virtual memory backing storage.

We also plan to remove the restriction that pairs each client with exactly one

memory server. We want to allow clients to spread data. across multiple servers to

improve reliability. Clients could also partition the data and then store it on multiple

servers to improve performance.

148

We would also like to investigate new memory server configurations. IT a memory

server provides better performance than a local disk, then it becomes advantageous to

use memory servers to back other memory servers. Chaining memory servers together

or arranging them into a hierarchy anows the system to provide an arbitrarily large

amount of remote memory storage space.

8.5.3 Communication Protocol

Several aspects of the communication protocol deserve further attention. Section

7.5.4 showed that the application, the page replacement algorithm, the scheduling

policy, and the server response time all affect the choice of an optimal pending list

length. More investigation is needed to determine the optimal pending list length.

Another alternative would be to use a dynamic pending list length similar to the

window size in TCP[Com88] but ba:>ed on the average amount of time a fetch request

spends waiting for store requests to complete.

Future communication networks will provide data transfer rates several orders of

magnitude faster than conventional networks. Not only will the higher bandwidth

affect the performance of the communication protocol, but large bandwidths may

mandate modifications to the page replacement algorithm. We would like to in­

vestigate the relationship between the communication protocol and the replacement

algorithm in light of higher-speed networks.

8.6 Summary

This thesis explored a new model for designing distributed systems called the

remote memory model. The remote memory model provides an attractive alterna­

tive to conventional memory models. In the remote memory model, memory servers

provide high-speed access to a large, shared memory resource that provides backing

storage to virtual memory systems executing on a set of heterogeneous client ma­

chines. The system uses optimized data structures, algorithms, and a connectionless,

data streaming protocol to achieve high performance.

149

'We designed and implemented a. prototype system to demonstrate the viabHity of

systems that use remote memory backing storage. The prototype shows that remote

memory systems offer performance competitive with, and in some cases better than,

conventional virtual memory systems.

Finally, this thesis has advanced OUI understanding of virtual memory in a dis~

tributed system.

BIBLIOGRAPHY

[ABLN85]

[ADU71]

[AF88]

[AG9IJ

[AHJ90]

[Ame90]

[AR89]

[B.c86]

[Be166J

150

BIBJ:,lOGRAPHY

Guy T. Almes, Andrew P. Black, Edward D. Lazawska, and Jerre D.
Nee. The Eden System: A Techincal Review. IEEE Transactions on
Software Engineering, 5E-11:43-58, January 1985.

A. V. Aho, P. J. Denning, and J. D. Ullman. Principles of Optirnai Page
Replacement. Journal of the ACM, 18(1):80-93, January 1971.

David P. Anderson and Domenico Ferrari. The DASH Project: An
Overview. Technical Report UCBjCSD 88/405, University of California!
Berkeley, February 1988.

Steve Apiki and Rick Grehan. Caching Cards Speed Data Access. Byte,
16(1):168-185, January 1991.

Mustaque Ahamad, Phillip W. Hutto, and Ranjit John. Implementing
and Programming Causal Distributed Shared Memory. Technical Re­
port GIT·CC~gO-49, College of Computing, Georgia Institute of Tech­
nology, 1990.

American Telephone and Telegraph (AT&T). UNIX System V Release
4: Software Technology Overview, June 1990.

Vadim Abrossimov and Marc Rozier. Generic Virtual Memory Man­
agement for Operating System Kernels. Proceedings of the 12th AClv!
Symposium on Operating System Principles, 23(5):123-136, December
1989. Chorus Systems.

Maurice J. Bach. The Design Of The Unix Operating System. Prentice
Hall, 1986.

Robert V. Baron, David Black, William Bolosky, Jonathan Chew,
David B'. Golub, Richard F. Rashid, Avadis Tevanian, and
Michael Wayne Young. MACH Kernel Interface Manual. Department
of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, Jan­
uary 1987.

L. A. Belady. A Study of Replacement Algorithms for Virtual Storage
Systems. IBM Systems Journal, 5(2):78-101, 1966.

151

[BFS89] William J. Bolosky, Robert P. Fitzgerald, and Michael L. Scott. Simple
But Effective Techniques for NUMA Memory Management. In Proceed­
ings of the Twelfth ACM Symposium on Operating Systems Principles,
pages 19-31, December 1989.

[BMK88] David R. Boggs, Jeffrey C. Mogul, and Christopher A. Kent. Measured
Capacity of an Ethernet: Myths and Reality. In SIGCOMM '88: Sympo­
sium on Communications, Architectures) and Protocols, pages 222-23.4.
ACM SIGCOMM, August 1988.

{BN84] A.D. Birrel and B.J. Nelson. Implementing Remote Procedure Calls.
ACM Transactions on Computer Systems, 2(1):39-59, February 1984.

[CCG+9l] Steve J. Chapin, Douglas Comer, James Griffioen, Scott Mark, Patrick
Muckelbauer I and Shawn Ostermann. Porting an XllR4 Server to the
Xinu Operating System. In Proceedings of the Xhibition 91 Conference,
pages 131-139, June 1991.

[CG90aj Douglas Comer and James Griffioen. A New Design for Distributed
Systems: The Remote Memory Model. In Proceedings of the Summer
1990 USENIX Confe7'ence, pages 127-135. USENIX Association, June
1990.

(CG90bj Douglas Corner and James Griffioen. Cooperative Management of Em­
bedded Resources in a Distributed Environment. Technical Report
CSD-TR-1034, Department of Computer Science, Purdue University,
October 1990.

[CG91] Douglas Comer and James Griffioen. Virtual Memory Xinu. In Pro­
ceedings of the Symposium on Experiences with Distributed and Multi­
processor Systems. USENIX Association, March 1991. Also released as
Technical Report No. CSD-TR-I028, Department of Computer Science,
Purdue University.

[Che86] David R. Cheriton. VMTP: A Transport Protocol for the Next Genera­
tion of Communication Systems. In SIGCOA1kI 186: Symposium, pages
406-415. ACM, August 1986.

{CheSS] David Cheriton. VMTP: Versatile Message Transaction Protocol.
ARPANET Working Group Requests For Comments, Febuary 1988.
RFC 1045.

[CLZ87] D.D. Clark, M.L. Lambert, and 1. Zhang. NETBLT:A High Throughput
Transport Protocol. In SIGCOMM '87 Workshop, pages 353-359. ACM,
August 1987.

152

[CM88] Albert Chang and Mark F. Mergen. 801 Storage: Architecture and
Programming. ACM Transactions on Computer Systems, 6(1):28-50,
Febrnary 1988.

(CMDD62] F. J. Corbato, M. Merwin-Daggett, and R. C. Daley. An Experimen­
tal Time-Sharing System. In Proceedings of the AFIPS Spring Joint
Computer Conference, pages 335-344, 1962.

[Com84] Douglas Comer. Operating System Design: The XINU Approach.
Prentice-Hall, 1984.

[ComB?] Douglas Comer. Operating System Design) Volume II: Internetworking
with XINU. Prentice-Hall, 1987.

[ComSS] Douglas Comer. Internetworking With Tep/IP: Principles, Protocols,
and Architecture. Prentice Hall, Inc., 1988.

[CS91] Douglas E. Comer and David L. Stevens.
TCPlIP, Volume II: Design} Implementation}
Hall, me., 1991.

Internetworking With
and Internals. Prentice

[Den70]

[Den80]

[Dew88]

[Dig80]

[Dig84]

[Dig85]

[Dij68]

[DJA88]

Peter J. Denning. Virtual Memory. Computing Surveys, 2:153-189,
September 1970.

Peter J. Denning. Working Sets Past and Present. IEEE Transactions
on Software Engineering, SE-6:64-84, January 1980.

Prasun Dewan. Supporting Objects in a Conventional Operating Sys­
tem. Technical Report CSD-TR-762, Computer Sciences Department,
Purdue University, April 1988.

Digital Equipment Corporation, Intel, Xerox. The Ethernet} A Local
Area Network: Data Link Layer and Physical Layer Specifications (Ver­
sion 1.0), 1980.

Digital Equipment Corporation. QA'IA DMV11 Synchronous Controller
User's Guide, 1st edition, January 1984.

Digital Equipment Corporation, Maynard, MA. VAX Architecture Ref­
erence Manual, 1985.

E.W. Dijkstra. The Structure of the THE Multiprogramming System.
Communications of the ACM, 11(5):341-346, May 1968.

Partha Dasgupta, Richard J. LeBlanc Jr., and William F. Appelbe.
The Clouds Distributed Operating System. In Proceedings of the 8th
International Conference on Distributed Computing Systems, pages 2-9.
IEEE, June 1988.

[Fin88]

[FP89]

[Gla89]

[GMS88]

[Gri89]

[Gro85]

[Gro89]

[Hab89]

[Hag89]

[HS82]

153

Raphael A. Finkel. An Operating Systems VADE MECUM~. Prentice
Hall, 1988.

Brett D. Fleisch and Gerald J. Popek. Mirage: A coherent distributed
shared memory design. In Proceedings of the 12th ACM Symposium on
Operating Systems Principles, pages 211-222 1 December 1989.

L. Bre~t Glass. Disk Caching. Byte, 14(10):297-301, October 1989.

Robert A. Gingell, Joseph P. Moran, and William A. Shannon. Virtual
Memory Architecture in SunGS, 1988.

James Griffioen. A Virtual Memory Operating System for a Distributed
Workstation Environment. Technical Report CSD-TR-884, Department·
of Computer Science, Purdue University, Apri119S9.

C. P. Grossman. Cache-DASD Storage Design for Improving System
Performance. IBM Systems Journal, 24(3(4):316-334, 1985.

C. P. Grossman. Evolution of the DASD Storage Control. IBJIII Systems
Journal, 28(2):196-226, 1989.

Lynn Haber. An Inside Track on High-capacity Disk Drives_ Sun Expert,
1(2):37-48, December 1989.

Robert Hagmann. Comments on Workstation Operating Systems and
Virtual Memory. In Proceedings of the Workshop on Workstation Oper­
ating Systems, September 1989.

Ellis Horowitz and Sartaj Sahni. Fundamentals of Data Structures.
Compu~er Science Press, 1982.

[IBM!JQa]" IE~.1 Corporation. IBA'! RISe System 6000 Technology, -first ediEon,
1990.

[lBM90b]

[Kan89]

[Kei90]

[Knu69]

IBM Corporation Advanced Workstation Division, 11400 Burnet Rd,
Austin, TX 78758. POWER Processor Architecture: Version 1.52,
February 1990.

Gerry Kane. lvfIPS RISC Architecture. Prentice Hall, 1989.

Bruce E. Keith. Perspectives on NFS File Server Performance Char­
acterization. In Proceedings of the Summer 1990 USENIX Conference,
pages 267-277, June 1990.

Donald E. Knuth. The Art of Computer Programming, Volume 1: Fun­
damental Algorithms. Addison Wesley Publishing Company, 1969.

[Knu73]

[LH89]

[Li86]

154

Donald E. Knuth. The Art of Computer Programming, Volume 3: Sort­
ing and Searching. Addison Wesley Publishing Company, 1973.

Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Mem­
ory Systems. ACM Transactions on Computer Systems, 7(4):321-359,
November 1989.

Kai Li. Shared Virtual Memory on Loosely Coupled Multiprocessors.
PhD thesis, Yale University, Department of Computer Science, Septem­
ber 1986.

[Lis72] B. H. Liskov. The Design of the Venus Operating System. Communi­
cations of the ACM, 15(3):144-149, March 1972.

[LKKQ89] Samuel J. Lellier, Marshal K. Me Kusick, Michael J. Karels, and John S.
Quarterman. The Design and Implementation of the 4.3 BSD Unix
Operating System. Addison Wesley, 1989.

[1182] Henry Levy and Peter Lipman. Virtual Memory Management in the
VAX/VMS Operating System. Computer, pages 35-41, March 1982.
Publication of the IEEE.

[LLD+S3] Paul J. Leach, Paul H. Levine, Bryan P. Douros, James A. Hamilton,
David L. Nelson, and Bernard L. Stumpf. The Architecture of an Inte­
grated Local Network. IEEE Journal on Selected Areas in Communica­
tions, 1(5):842-856, November 1983.

[LN78] H. C. Lauer and R. M. Needham. On The Duality of Operating System
Structures. In In Proceedings of the Second International Symposium
on Operating Systems. ACM, October 1978. Reprinted in Operating
Systems Review, 13, 2 April 1979, pp.3-19.

[LS89] Bob Lyon and Russel Sandberg. Breaking Through the NFS Perfor­
mance Barrier. SunTech Journal, 2(4):21, August 1989.

[Lyo84] Bob Lyon. Sun Remote Procedure Call Specification. Technical report,
Sun Microsystems, Inc., 1984.

[LZCZ86] Edward D. Lazowska, John Zahorjan, David R. Cheriton, and Willy
Zwaenepoel. File Access Performance of Diskless Workstations. ACM
Transactions on Computer Systems, 4(3):238-268, August 1986.

[McF76]

[Moc87]

J.H. McFadyen. Systems Network Architecture: An Overview. IBM
Systems Journal, 15:2-23, 1976.

P. Mockapetris. Domain Names - Concepts and Facilities, November
1987. RFC 1034.

[Mot89]

[Nar88]

[NeI86]

[Nye90]

[OCD+87]

[Org72]

[Org86]

[Ous90]

[Par90]

[PGK~S]

[Pos80a]

[Pos80b]

[PosS1]

[PPTT90]

[Pre91]

155

Motorola. MC68020 32-Bit lvlicToprocessor User's Manual: Third Edi­
tion. Prentice Hall, 1989.

T. Narten. Best Effort De/ive71/ in Connection/esB Networks. PhD
thesis, Department of Computer Science, Purdue University, West
LafayeUe, IN, August 1988.

Michael N. Nelson. Virtual Memory for the Sprite Operating System.
Technical Report UCBjCSD 83/301u, University of California Berkeley,
June 1986.

Adrian Nye. X Protocol Reference klanual. O'Reilly and Associates,
Inc., 1990.

John Ousterhout, Andrew Cherenson, Fred Douglis, Michael Nelson,
and Brent Welch. The .Sprite Network Operating System. Technical Re­
pod UCB/CSD 87/359n, University of California Berkeley, June.1987.

E. 1. Organick. The Mullics System: An Examination of its Structure.
MIT Press, Cambridge, MA, 1972.

International Standards Organization. Information Processing Systems
- Open Systems Interconnection - Connection Oriented Transport Pro­
tocol Specification. ISO, Switzerland, July 1986.

John K. Ousterhout. Why Aren't Operating Systems Getting Faster
As Fast as Hardware? In Proceedings of the Summer 1990 USENIX
Conference, pages 247-256, June 1990.

C. Partridge. A Faster Data Delivery. Unix Review, 8(3):43--48, March
1990.

David Patterson, Gart~ Gibson, and Randy Katz. A Case for Rcd't:.r.­
dant Arrays of Jnexpensive Disks (RAID). In ACi\{ SICAI0D 88. pu.g.::s
109-116, June 1988.

J. Postel. DOD Standard Internet Protocol, January 1980. RFC 760.

J. Postel. User Datagram Protocol, August 1980. RFC 768.

J. Postel. Transmission Control Protocol-DARPA Internet program
protocol specification, September 1981. RFC 793.

Rob Pike, Dave Presotto, Ken Thompson, and Howard Trickey. Plan 9
from Bell Labs. Technical report, AT&T Bell Labs, 1990.

Larry Press. Personal Computing - Notes from COMDEX: The Plus
Hardcard. Communications Of The ACM, 34(7):28, July 1991.

156

[PS85] James L. Peterson and Abraham Silberschatz. Operating System Con­
cepts. Addison-Wesley Publishing Company, 1985.

[QSP85] J. S. Quarterman, A. Silberschatz, and J. L. Peterson. 4.2BSD and
4.3BSD as Examples of the UNIX System. Computing Surveys, 17(4),
December 1985.

[Ra.s861 Rick Rashid. Threads Of A New System. Unix Review, 4:37-49, August
1986.

[RHF90] Floyd E. Ross, James R. Hamstra, and Robert L. Fink. FDDI - A LAN
Among MANs. Computer Communication Review, pages 16-31, 1990.

[RK88] Umakishore Ramachandran and M. Yausef A. Khalidi. An Implementa.-·
tion of Distributed Shared Memory. Technical Report GlT-ICS-88f50,
School of Information and Computer Science, Georgia Institute of Tech­
nology, December 1988.

[RST891 Robbed Van Renesse, Hans Van Staveren, and Andrew S. Tanenbaum.
The Performance of the Amoeba Distributed Operating System. Soft­
ware: Practice and Experience, 19(3):223-234, March 1989.

[RT74] D. M. Ritchie and K. Thompson. The UNIX Time-Sharing System.
Communications of the ACM, 17(7):365-375, July 1974.

[Rus91] Vincent F. Russo. An Object-Oriented Operating System. PhD the­
sis, Department of Computer Science, University of Illinois at Urbana­
Champaign, 1991.

[SAG+72] K.C. Sevick, J. W. Atwood, M. S. Grushcow, R. C. Holt, J. J. Homing,
and D. Tsichritzis. Project SUE as a Learning Experience. In Pro­
ceedings of the AFIPS Fall Joint Computer Confere'P.::.e, pages 331-337,
1972.

[San85) Russel Sandberg. Sun Network Filesystem Protocol Specification. Tech­
nical report, Sun Microsystems, Inc., 1985.

[SG86] Robert W. ScheiRer and Jim Gettys. The X Window System. ACM
Transac,tions on Graphics, 5(2):79-109, April 1986.

[SGK+85] R. Sandberg, D. Goldberg, S. Kleiman, Dan Walsh, and Bob Lyon.
Design and Implementation of the Sun Network File System. In Pro­
ceedings of the Summer USENIX Conference, pages 119-130. USENIX
Association, June 1985.

[So1811 K. R. Sollins. The TFTP Protocol: Revision 2, June 1981. RFC 783.

[SRC84]

[Sta91]

[Sun]

[Sun86]

[Sun87]

[Sun90]

[Tan81]

[Tan87]

[Tev87]

[TvRvS+90]

[Wi189)

[YTR87]

157

J. H. Saltzer, D. P. Reed, and D. D. Clark. End-To-End Arguments In
System Design. AC1v[Transactions on Computer Systems, 2:277-288,
November 1984.

William Stallings. Data and Computer Communications. Macmillan
Publishing Company, 1991. Third Edition.

Sun Microsystems, Inc. The Ne WS Programmer's Guide.

Sun Microsystems, Inc. Writing Device Drivers for the Sun Worksta­
tion, 1986.

Sun Microsystems, Inc. The SPARe Architecture Manual: Version 7,
October 1987.

Sun Mkrosystems, Inc. Release Report: BunGS 4.1, January 1990.

A. Tannenbaum. Computer Networks. Prentice Hall, Inc., 198!.

Andrew S. Tanenbaum. Operating Systems: Design and Implementa.
lion. Prentice-Hall,1987.

Avadis Tevanian. Architecture Independent Virtual Memory Manage­
ment for Parallel and Distributed Environments: The Mach Approach.
Tecbnical Report CMU-CS-88-106n, CMU, December 1987. PhD The­
SIS.

Andrew S. Tanenbaum, Robbed van Renesse, Hans van Staveren, G~·e­

gory J. Sharp, Sape J. Mullender, Jack Jansen, and Guido van Rossum.
Experiences with the Amoeba Distribute Operating System. Commu­
nications of the ACM, 33(12):46-63, December 1990.

!Ji';'i:.~ E. W.::kh. The Sj1,;te Remote Proceol,:e Call Sy~t'':-ffi. 'rcchiJ.~­

cal Report UCB/CSD 86/302n, University of California Berkeley: .!ltne
1986.

David Wilson. Tested Mettle. Unix Review, 7(8), August 1989.

Michael Young, Avadis Tevanian, and Richard Rashid. The Duality of
Memory and Communication in the Implementation of a Multiprocessor
Operating System. In Proceedings of the ACM Symposium on Operating
System Principles. ACM, November 1987.

	Remote Memory Backing Storage for Distributed Virtual Memory Operating Systems (Thesis)
	Report Number:
	

	tmp.1307986960.pdf.OkGIV

