Optimally Computing the Shortest Weakly Visible Subedge for a Simple Polygon

Danny Z. Chen

Report Number:
92-028

Chen, Danny Z., "Optimally Computing the Shortest Weakly Visible Subedge for a Simple Polygon" (1992). Department of Computer Science Technical Reports. Paper 950.
https://docs.lib.purdue.edu/cstech/950

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.

OPTIMALLY COMPUTING THE SHORTEST WEAKLY VISIBLE SUBEDGE OF A SIMPLE POLYGON

Danny Z. Chen

CSD-TR-92-028
May 1992

Optimally Computing the Shortest Weakly Visible Subedge of a Simple Polygon*

Danny Z. Chen
Department of Computer Science and Engineering
University of Notre Dame
Notre Dame, IN 46556
chen@cse.nd.edu

Abstract

Given an n-vertex simple polygon P, the problem of computing the shortest weakly visible subedge of P is that of finding a shortest line segment s on the boundary of P such that P is weakly visible from s (if s exists). In this paper, we present new geometric observations that are useful for solving this problem. Based on these geometric observations, we obtain optimal sequential and parallel algorithms for solving this problem. Our sequential algorithm runs in $O(n)$ time, and our parallel algorithm runs in $O(\log n)$ time using $O(n / \log n)$ processors in the CREW PRAM computational model. Using the previously best known sequential algorithms to solve this problem would take $O\left(n^{2}\right)$ time. We also give geometric observations that lead to extremely simple and optimal algorithms for solving, both sequentially and in parallel, the case of this problent where the polygons are rectilinear.

[^0]
1 Introduction

Given a set of "opaque" geometric objects, two points p and q are said to be visible from each other iff the interior of the line segment $\overline{p q}$ does not intersect any of these opaque objects. Visibility is one of the most fundamental topics in computational geometry. Visibility problems find applications in many areas, such as computer graphics, computer vision, VLSI design, and robotics. Visibility problems also appear as subproblems in other geometric problems (like finding the shortest obstacle-avoiding paths and computing intersections between geometric figures). Numerous efficient algorithms have been designed for solving various visibility problems, in both sequential and parallel computational models.

In this paper, we consider a weak visibility problem. Weak visibility deals with visibility problems in which the "observers" are of the shape of line segments. An important class of weak visibility problems studies the case where the opaque objects are the boundaries of simple polygons. For a point p in a polygon P and a line segment s, p is said to be wcakly visible from s iff p is visible from some point on s (depending on p). Polygon P is said to be weakly visible from a line segment s iff every point $p \in P$ is weakly visible from s. Many sequential algoritlums $[1,2,3,4,7,8,9,10,12$, $13,15,18,19,20,21,22,23]$ and parallel algorithms [$5,6,11,14]$ for solving various weak visibility problems on simple polygons have been discovered.

We consider the problem of computing the shortest weakly visible subedge of a simple polygon (called it the SWVS problem). That is, given an n-vertex simple polygon P, we would like to find a line segment s on the boundary of P such that (i) P is weakly visible from s (if s exists), and (ii) the length of s is the shortest among all such line segments on the boundary of P (it is possible that s is a single point on the boundary of P). Intuitively, if P represents a house whose interior is that of a simple polygon, then s is the shortest portion of any wall of P by which a guard has to patrol back and forth in order to keep the inside of P completely under surveillance.

There is related work on the SWVS problem. Avis and Toussaint [1] considered the problem of detecting the weak visibility of a simple polygon (that is, deciding whether a polygon P is weakly visible from an edge e of P, and reporting all such edges e for P); they presented a sequential linear time algorithon for the case of checking whether P is weakly visible from a specified edge e of P. Another sequential linear time algorithm for this case was given in [10]. Sack and Suri [20] and Shin [21] independently gave optimal linear time algorithms for solving the problem of detecting the weak visibility of a simple polygon. Chen [5] came up with an optimal parallel algorithm for this problem; Chen's algorithm runs in $O(\log n)$ time using $O(n / \log n)$ CREW PRAM processors.

Several problems on computing weakly visible line segments with respect to a simple polygon have been studied. Ke [15] and Doh and Chwa [8] gave $O(n \log n)$ time algorithms for computing a
line segment in a polygon from which the polygon is weakly visible (such a segment can be in the interior of the polygon); in particular, Ke's algorithm finds such a line segment of shortest length. Lee and Chwa [19] designed a linear time algorithm for computing all the maximal convex chains or all the maximal reflex chains on the boundary of a polygon from which the polygon is weakly visible. Bhattacharya et al. [3] presented a linear time algorithm for computing a shortest line segment (not in the interior of a polygon) from which the boundary of the polygon is weakly visible (or externally visible). Ching et al. [7] showed that, if a polygon is weakly visible from a specified edge e, then the shortest weakly visible subedge on e can be computed in linear time by using the algorithm in [1]. The problem of computing in parallel the shortest weakly visible subedge on a specified polygon edge was solved optimally by Chen [6], in $O(\log n)$ time using $O(n / \log n)$ CREW PRAM processors.

The SWVS problem, obviously, is a natural generalization of the weak visibility problem first studied by Avis and Toussaint [1] and then by Sack and Suri [20] and Shin [21]. A straightforward sequential solution to the SWVS problem based on these known algorithms would consist of the following steps: (1) Compute all the edges of P from each of which P is weakly visible, by using [20, 21]. (2) For every edge so oblained, compute the shortest weakly visible subedge on that edge, by using [1,7]. (3) Among all the weakly visible subedges computed in step (2), find the one with the shortest length. Such an algorithm certainly solves the SWVS problem correctly. However, because a simple polygon can have $O(n)$ edges from each of which the polygon is weakly visible, and because computing the shortest weakly visible subedge on a specified edge in general requires $O(n)$ time [1, 7], the above algorithm takes $O\left(n^{2}\right)$ time.

In this paper, we present new geometric observations that are useful for solving the SWVS problem. Based on these geometric observations, we obtain efficient scquential and parallel algorithms for solving the SWVS problem. Our sequential algorithm runs in $O(n)$ time, and our parallel algorithm runs in $O(\log n)$ time using $O(n / \log n)$ CREW PRAM processors. These algorithms are obviously optimal. We also give geometric observations that lead to extremely simple and optimal algorithms for solving, both sequentially and in parallel, the case of the SWVS problem where the polygons are rectilinear (i.e., the edges of the polygons are either vertical or horizontal).

The parallel computational model we use is the CREW PRAM; this is the synchronous sharedmemory model where multiple processors can simultaneously read from the same memory location but at most one processor is allowed to write to a memory location at each time unit. We also use the EREW PRAM model, in which no simultaneous accesses to the same memory location are allowed.

The rest of this paper consists of 5 sections. Section 2 gives some notation and preliminary results needed in the paper. Section 3 presents the crucial geometric observations used by our algo-

Figure 1: The weakly visible edges of P are e_{1}, e_{2}, and e_{1}.
rithms. Section 4 describes the sequential and parallel algorithms for solving the SWVS problem. Section 5 gives the simple algorithms for the case of the SWVS problem on rectilinear polygons. Section 6 concludes the paper.

2 Preliminaries

The input to the SWVS problem consists of an n-vertex simple polygon P, and the output is s, the shortest weakly visible subedge of P (if s exists). Polygon P is specified by a sequence (v_{1}, v_{2}, \ldots, v_{n}) of its vertices, in the order in which they are visited by a counterclockwise walk along the boundary of P, starting from vertex v_{1}. Without loss of generality (WLOG), we assume that no three vertices of P are collinear.

The edge of P joining v_{i} and v_{i+1} is denoted by $e_{i}=\overline{v_{i} v_{i+1}}\left(=\overline{v_{i+1} v_{i}}\right)$, with the convention that $v_{n+1}=v_{1}$. The boundary of P is denoted by $b d(P)$, and the polygonal chain from v_{i} counterclockwise to v_{j} along $b d(P)$ is denoted by $C(i, j)$. The size of a chain C is the number of line segments on C, denoted by $|C|$.

An edge e of P from which P is weakly visible is called a weakly visible edge of P. We denote the set of all the weakly visible edges of P by WVE. In Figure 1 , for example, $W V E=\left\{e_{1}, e_{2}\right.$, $\left.e_{4}\right\}$. Note that, for an arbitrary simple polygon of n vertices, the set of its weakly visible edges can be computed optimally, in $O(n)$ time sequentially [20, 21], and in $O(\log n)$ time using $O(n / \log n)$ CREW PRAM processors in parallel [5]. WLOG, we assume that $W V E \neq \emptyset$ (because if $W V E=\emptyset$, then P is not weakly visible from any of its edges and hence the shortest weakly visible subedge s on $b d(P)$ does not exist). For each edge $e \in W V E$, we denote the shortest weakly visible subedge of P on e by $s(e)$.

Let $W V E=\left\{w e_{1}, w e_{2}, \ldots, w e_{m}\right\}$, where $m=|W V E|$. Note that m can be $O(n)$. WLOG, we assume that $m>c$ for some constant integer $c \geq 1$ (c will be decided in Section 3). This is because if $m \leq c$, then s is one of the $m=O(1) s(e)$'s, where $e \in W V E$. The $O(1) s(e)$'s can be
computed optimally, both sequentially and in parallel, by respectively applying the algorithms in $[1,6]$ to every edge $e \in W V E$.

We label the $w e_{i}$'s of $W V E$ in such a way that $w e_{1}=e_{1}$ and that, when walking along $b d(P)$ counterclockwise by starting at v_{1}, we visit the $w e_{i}$'s in increasing order of their indices. In the rest of this paper, we use the following convention for the indices of the $w e_{i}$'s: For every integer i $=1,2, \ldots, m, w e_{i+m}=w e_{i}$, and for every integer $j=0,1, \ldots, m-1, w e_{-j}=w e_{m-j}$.

For an edge $w e_{i}=e_{j} \in W V E$, we call v_{j} (resp., v_{j+1}) the first vertex (resp., last vertex) of $w e_{i}$, and denote it by $f v\left(w e_{i}\right)$ (resp., $l v\left(w e_{i}\right)$). For two consecutive edges $w e_{i}$ and $w e_{i+1}$ of $W V E$, where $w e_{i}=e_{j}$ and $w e_{i+1}=e_{k}$, we denote by C_{i} the chain on $b d(P)$ from $l v\left(w e_{i}\right)$ counterclockwise to $f v\left(w e_{i+1}\right)$ excluding $l v\left(w e_{i}\right)$ and $f v\left(w e_{i+1}\right)$. Note that $C_{i}=\left(e_{j+1}, e_{j+2}, \ldots, e_{k-1}\right)-\left\{v_{j+1}, v_{k}\right\}$, and that C_{i} contains no edge in WVE. C_{i} can be for some i (when $l v\left(w e_{i}\right)=f v\left(w e_{i+1}\right)$). Obviously, the $w \epsilon_{i}$'s and C_{i} 's together form a partition of $b d(P)$.

A point p in the plane is represented by its x-coordinate and y-coordinate, denoted by $x(p)$ and $y(p)$, respectively. For three non-collinear points p, q, and r, we say that the directed chain from p to q to r makes a left (resp., right) turn iff $x(r)(y(p)-y(q))+y(r)(x(q)-x(p))+x(p) y(q)-x(q) y(p)$ >0 (resp., < 0). For a directed simple chain $C=\left(p_{1}, p_{2}, \ldots, p_{k}\right), k \geq 3, C$ is said to make only left (resp., right) turns iff every subchain of the form (p_{i-1}, p_{i}, p_{i+1}) makes a left (resp., right) turn, $1<i<k$.

A vertex v_{i} is convex if the interior angle of P at v_{i} is $<\pi$. An edge e_{i} is convex if both v_{i} and v_{i+1} are convex. For any edge $w e_{i} \in W V E$, if $w e_{i}$ is convex, then for any subchain $C(j, k)$ of $C\left(l v\left(w e_{i}\right), f v\left(w e_{i}\right)\right)$, the (directed) shortest path from v_{j} to v_{k} inside P goes through only the vertices on $C(j, k)$, and the shortest path makes only right turns (this fact is shown in [1, 10]). Hence, we call such a shortest path the internal convex path between v_{j} and v_{k} along $C(j, k)$.

3 Useful Geometric Observations

In this section, we present useful geometric observations for solving the SWVS problem. The observations that we give here are new. It is these geometric observations that enable us to achieve the optimal algorithms to be given in the next section.

The idea of our algorithms is to compute the shortest weakly visible subedge $s\left(w e_{i}\right)$ on every edge $w e_{i} \in W V E$. Because $|W V E|$ can be $O(n)$ and because computing each $s\left(w e_{i}\right)$ in general requires $O(n)$ operations, the algorithms based on this idea appear to take $O\left(n^{2}\right)$ operations. The following lemmas are crucial to the optimality of our algorithms.

Lemma 1 Suppose that $|W V E| \geq 7$. Then for every edge $w e_{i} \in W V E$, the following are true:
(1) The vertex $f v\left(w_{i}\right)$ is visible from every point on the chain along bd (P) from vertex u^{\prime} clockwise

Figure 2: The view between $f v\left(w e_{i}\right)$ and p cannot be blocked: Case (i).

Figure 3: The view between $f v\left(w e_{i}\right)$ and p cannot be blocked: Case (ii).
to vertex v^{\prime}, where $u^{\prime}=f v\left(w e_{i-2}\right)$ if $C_{i-2} \neq \emptyset$ and $u^{\prime}=f v\left(w e_{i-3}\right)$ otherwise, and $v^{\prime}=$ $l v\left(w e_{i+1}\right)$ if $C_{i} \neq \emptyset$ and $v^{\prime}=\operatorname{lv}\left(w e_{i+2}\right)$ otherwise.
(2) The vertex $l v\left(w e_{i}\right)$ is visible from every point on the chain along bd(P) from vertex $u^{\prime \prime}$ counterclockwise to vertex $v^{\prime \prime}$, where $u^{\prime \prime}=l v\left(w e_{i+2}\right)$ if $C_{i+1} \neq \emptyset$ and $u^{\prime \prime}=l v\left(w e_{i+3}\right)$ otherwise, and $v^{\prime \prime}=f v\left(w e_{i-1}\right)$ if $C_{i-1} \neq \emptyset$ and $v^{\prime \prime}=f v\left(w e_{i-2}\right)$ otherwise.

Proof. Note that, because $|W V E| \geq 7$, the chains defined in (1) and (2) both do not contain $w e_{i}$. We only prove (1) (the proof for (2) is symmetric).

We first prove the case where C_{i-2} and C_{i} are both nonempty. Let p be an arbitrary point on the chain along $b d(P)$ from $f v\left(w e_{i-2}\right)$ clockwise to $l v\left(w e_{i+1}\right)$. To prove that p is visible from $f v\left(w e_{i}\right)$, we need to show that the following are true: (i) The chain along $b d(P)$ from $f v\left(w e_{i}\right)$ clockwise to p does not block the view between $f v\left(w e_{i}\right)$ and p, and (ii) the chain along $b d(P)$ from $f v\left(w e_{\mathrm{i}}\right)$ counterclockwise to p does not block the view between $f v\left(w e_{\mathrm{i}}\right)$ and p.

Case (i) Let q be a point on C_{i-2}. If the view between $f v\left(w e_{i}\right)$ and p were blocked by the chain along $b d(P)$ from q counterclockwise to $f v\left(w e_{i}\right)$, then $f v\left(w e_{i}\right)$ would have not been weakly

Figure 4: The view between $f v\left(w e_{\mathbf{i}}\right)$ and $l v\left(w e_{i+2}\right)$ cannot be blocked: When $C_{i}=\emptyset$.
visible from $w \varepsilon_{i-2}$ (see Figure 2 (a)), a contradiction. If the view between $f v\left(w e_{i}\right)$ and p were blocked by the chain along $b d(P)$ from p counterclockwise to q, then p would have not been weakly visible from $w e_{i-1}$ (see Figure 2 (b)), again a contradiction.

Case (ii) Let q be a point on C_{i}. If the view between $f v\left(w e_{i}\right)$ and p were blocked by the chain along $b d(P)$ from $f v\left(w e_{i}\right)$ counterclockwise to q, then $f v\left(w e_{i}\right)$ would have not been weakly visible from $w e_{i+1}$ (see Figure 3 (a)), a contradiction. If the view between $f v\left(w e_{i}\right)$ and p were blocked by the chain along $b d(P)$ from q counterclockwise to p, then p would have not been weakly visible from $w e_{i}$ (see Figure 3 (b)), again a contradiction.

Suppose thai $C_{i}=\emptyset$. We need to show that the chain along $b d(P)$ from $f v\left(w e_{i}\right)$ counterclockwise to $l v\left(w c_{i+2}\right)$ does not block the view between $f v\left(w e_{i}\right)$ and $l v\left(w e_{i+2}\right)$. If the view were blocked by the chain along $b d(P)$ from $f v\left(w c_{i}\right)$ counterclock wise to $f v\left(w \epsilon_{i+2}\right)$ excluding $f v\left(w e_{i+2}\right)$, then $f v\left(w e_{i}\right)$ would have not been weakly visible from $w e_{i+2}$ (see Figure 4 (a)), a contradiction. If the view were blocked by $w e_{i+2}$ itself, then $l v\left(w e_{i+2}\right)$ would have not been weakly visible from $w e_{i}$ (see Figure 4 (b)), again a contradiction. The proof for other points on the chain along $b d(P)$ from $f v\left(w e_{i-2}\right)$ clockwise to $l v\left(w e_{i+2}\right)$ is similar to the proof of Cases (i) and (ii) above (with edge $w e_{i+1}$ playing the role of C_{i}).

The case where $C_{\mathrm{i}-2}=$ is also proved similarly to Cases (i) and (ii). This is because the chain along $b d(P)$ from $l v\left(w e_{i-3}\right)$ counterclockwise to $f v\left(w e_{i-1}\right)$ is nonempty, and hence it can play the role of C_{i-2} in the above proof. For an example of $f v\left(w e_{i-2}\right)$ not visible from $f v\left(w e_{i}\right)$ when $C_{i-2}=\emptyset$, see Figure 5.

Lemma 2 Suppose that $|W V E| \geq 7$. Then for each edge $w e_{i} \in W V E, e_{i}$ is completely visible from every point on the chain along bd(P) from verlex u clockwise to verlex v, where $u=f v\left(w e_{i-2}\right)$ if $C_{i-2} \neq \emptyset$ and $u=f v\left(w e_{i-3}\right)$ otherwise, and $v=l v\left(w e_{i+2}\right)$ if $C_{i+1} \neq \emptyset$ and $v=l v\left(w e_{i+3}\right)$ otherwisc.

Figure 5: Пlustrating the situation where $f v\left(w e_{i-2}\right)$ is not visible from $f v\left(w e_{i}\right)$.

Figure 6: Illustrating the proof of Lemma 2.

Proof. Let $C_{v u}^{i}$ be the chain along $b d(P)$ from u clockwise to v. Because $|W V E| \geq 7, C_{v u}^{i}$ does not contain $w e_{i}$. By Lemma 1, every point p on $C_{v u}^{i}$ is visible from both endpoints $f v\left(w e_{i}\right)$ and $l v\left(w e_{i}\right)$ of $w e_{i}$. Hence it is easy to see that p is visible from every point on $w e_{i}$ (see Figure 6).

For every $w e_{i} \in W V E$, let $C_{v u}^{i}$ denote the chain along $b d(P)$ from vertex u clockwise to vertex v as defined in Lemma 2. The computational consequence of Lemma 2 is that, when computing $s\left(w e_{i}\right)$ on every edge $w e_{i} \in W V E$, we can simply ignore the effect of all the points on $C_{v u}^{i}$. This is because, by Lemma 2, edge $w e_{i}$ is completely visible from every point on $C_{v u}^{i}$. The points in P that we need to consider when computing $s\left(w e_{i}\right)$, therefore, are all on the following two disjoint subchains of $b d(P)$:
(a) The chain from u counterclockwise to $f v\left(w e_{i}\right)$, denoted by $L C_{i}$, and
(b) the chain from v clockwise to $l v\left(w e_{i}\right)$, denoted by $R C_{i}$.

In summary, for every $w e_{i} \in W V E$, the computation of $s\left(w e_{i}\right)$ is based only on chains $L C_{i}$ and $R C_{i}$.

Figure 7: Illustrating the proof of Lemma 3.
Note that chain $L C_{i}$ contains at most two nonempty chains C_{j}, where $j \in\{i-1, i-2, i-3\}$, and that $R C_{\mathrm{i}}$ contains at most two nonempty chains C_{k}, where $k \in\{i, i+1, i+2\}$. We only discuss the computation of $s\left(w e_{i}\right)$ with respect to the points on $R C_{i}$ (the computation of $s\left(w e_{i}\right)$ with respect to $L C_{\mathrm{i}}$ is similar).

WLOG, we assume for the rest of this section that $|W V E| \geq 7$. Note that, based on the lemmas in this section, the integer parameter c of our algorithms (c was introduced in Section 2) is chosen to be 7 .

The next lemma greatly reduces our effort in computing $s\left(w e_{i}\right)$ with respect to the points on chain $R C_{i}$: It enables us to "localize" the computation to $R C_{i}$.

Lemma 3 For every point p on $R C_{i}$ and every point q on $w e_{i}$, the chain along bd(P) from p counterclockwise to q does not block the view between p and q.

Proof. Suppose that the chain $C_{p q}$ along $b d(P)$ from p counterclockwise to q did block the view between p and q. Let $I C P\left(C_{p q}\right)$ be the internal convex path between p and q that passes only the vertices of $C_{p q}$, and let $\overline{p q^{\prime}}$ be the line segment on $I C P\left(C_{p q}\right)$ that is adjacent to p (see Figure 7). Since $|W V E| \geq 7$, there must be at least one edge $w e_{j} \in W V E$ such that (1) $w e_{j}$ is not adjacent to q^{\prime}, and (2) $w e_{j}$ is either on the subchain of $C_{p q}$ from p counterclockwise to q^{\prime} or on the subchain of $C_{p q}$ from q^{\prime} counterclockwise to q. If $w e_{j}$ is on the subchain of $C_{p q}$ from p counterclockwise to q^{\prime}, then q would have not been weakly visible from $w e_{j}$, a contradiction. If $w e_{j}$ is on the subchain of $C_{p q}$ from q^{\prime} counterclockwise to q, then p would have not been weakly visible from $w e_{j}$, again a contradiction.

By Lemma 3, for every point p on $R C_{\mathrm{i}}$ and every point q on $w e_{i}$, the view between p and q can be blocked only by the chain along $b d(P)$ from q counterclockwise to p.

We now consider the computation of $s\left(w e_{i}\right)$ with respect to the points on $R C_{i}$. We further partition $R C_{\mathrm{i}}$ into two subchains: (a) The chain from the endpoint v of $R C_{\mathrm{i}}$ (as defined in Lemma 2) clockwise to $l v\left(w e_{i+1}\right)$ excluding $l v\left(w e_{i+1}\right)$, denoted by $R C_{i}$, and (b) the chain from $l v\left(w e_{i+1}\right)$ clockwise to $l v\left(w c_{i}\right)$, denoted by $R C_{i}$. The following lemmas are useful in computing $s\left(w e_{i}\right)$.

Figure 8: Illustrating Lemma 5 (with $w e_{j}=w e_{i+1}$).

Lemma 4 For every point p on $R C_{i}$, if $\int v\left(w e_{i}\right)$ is not visible from p, then $l v\left(w e_{i}\right)$ must be visible from p.

Proof. By Lemma 3, the view between p and $f v\left(w c_{i}\right)$ cannot be blocked by the chain along $b d(P)$ from p counterclockwise to $f v\left(w e_{i}\right)$. So if $f v\left(w e_{i}\right)$ is not visible from p, the view must be blocked by the chain C^{\prime} along $b d(P)$ from p clockwise to $f v\left(w e_{i}\right)$. But if the view between p and $l v\left(w e_{i}\right)$ were also blocked by C^{\prime}, then p would have not been weakly visible from $w e_{\mathrm{i}}$, a contradiction.

Corollary 1 For cuery point p on $R C_{i}$, if $l v\left(w e_{i}\right)$ is nol visible from p, then $f v\left(w e_{i}\right)$ is visible from p.

Proof. An immediate consequence of Lemma 4.
Corollary 2 Let p be a point on $R C_{i}^{l}$. If p is not visible from $l v\left(w e_{i}\right)$, then the subchain of $R C_{i}^{l}$ from p clockwise to $l v\left(w e_{i}\right)$ defines a point p^{\prime} on $w e_{i}$ such that the scgment $\overline{l v\left(w e_{i}\right) p^{\prime}}$ is the maximal segment on we that is not visible from p.

Proof. An immediate consequence of Lemma 3 and Corollary 1.
Lemma 5 Let p be a point on $R C_{i}$, and let we e_{j} be the edge of WVE such that we e_{j} does not contain p and that $w e_{j}$ is the first edge encountered among the edges of WVE when walking along $R C_{i}^{r}$ from p clockwise to $l v\left(w e_{i+1}\right)$. Then if p is not visible from $l v\left(w e_{i}\right)$, then a vertex of we ${ }_{j}$ must define a point p^{\prime} on we e_{i} such that the segment $\overline{l v\left(w e_{i}\right) p^{\prime}}$ is the maximal segment on we that is not visible from p (see Figure 8).

Proof. Let p^{\prime} be the point on $w e_{i}$ such that segment $\overline{l v\left(w e_{i}\right) p^{\prime}}$ is the maximal segment on $w e_{i}$ that is not visible from p. Note that p^{\prime} can be $l v\left(w c_{i}\right)$ because $l v\left(w e_{i}\right)$ is not visible from p. By Lemma 3, the view between p and every point q on $\overline{l v\left(w e_{i}\right) p^{\prime}}$ can be blocked only by the chain along $R C_{i}$ from p clockwise to q. If p^{\prime} were defined by a point on the chain along $R C_{\mathrm{i}}$ from p clockwise to
$l v\left(w e_{j}\right)$ excluding $l v\left(w e_{j}\right)$, then p would have not been weakly visible from $w e_{j}$, a contradiction. If p^{\prime} were defined by a point on the chain along $R C_{i}$ from $f v\left(w e_{j}\right)$ clockwise to p^{\prime} excluding $f v\left(w e_{j}\right)$, then $l v\left(w c_{i}\right)$ would have not been weakly visible from $w e_{j}$, again a contradiction. Hence only the vertices of $w e_{j}$ can define p^{\prime} on $w e_{i}$ for p.

Note that in Corollary 2 and Lemma 5 , point $p \in R C_{i}$ is visible from every point on the segment $\overline{f v\left(w e_{i}\right) p^{\prime}} \subset w e_{i}$ (this follows from Corollary 1). For every point p on $R C_{i}^{r}$, by Lemma 5 , point p^{\prime} on $w e_{i}$ can be easily computed. For every point p on $R C_{i}^{\prime}$, by Corollary 2 , point p^{\prime} on $w e_{i}$ can be found out if the line segment that is on the internal convex path from $l v\left(w e_{i}\right)$ to p along $R C_{i}^{\prime}$ and that is adjacent to p is known.

We define a total order on the points of $w e_{i}$, as follows: For every two points q^{\prime} and $q^{\prime \prime}$ on $w e_{i}$, $q^{\prime} \leq q^{\prime \prime}$ iff scgment $\overline{f v\left(w e_{i}\right) q^{\prime}}$ is contained by segment $\overline{f v\left(w e_{i}\right) q^{\prime \prime}}$. Let edge $w e_{i}$ correspond to the interval $\left[f v\left(w e_{i}\right), l v\left(w e_{i}\right)\right]$. For every vertex v_{k} of $R C_{i}$, let $\left[l p_{k}, \tau p_{k}\right]$ be the interval on $w e_{i}$ such that segment $\overline{l p_{k} r p_{k}}$ is the maximal segment on $w e_{i}$ that is visible from v_{k}. We denote $\left[l p_{k}, \tau p_{k}\right]$ by I_{k}. Note that it is possible that $l p_{k}=r p_{k}$. For example, if the only point on $w e_{i}$ from which v_{k} is visible is $l v\left(w e_{i}\right)$, then $I_{k}=\left[l v\left(w e_{i}\right), l v\left(w e_{i}\right)\right]$. The intervals I_{k} have the following property:

Lemma 6 For every pair of consecutive vertices v_{k} and v_{k+1} of $R C_{i}, I_{k} \cap I_{k+1} \neq \emptyset$.
Proof. There are three cases. If I_{k+1} is equal to $\left[l v\left(w e_{i}\right), l v\left(w e_{i}\right)\right]$, then I_{k} is also equal to $\left[l v\left(w e_{i}\right), l v\left(w e_{i}\right)\right]$, by Lemma 3 (otherwise, v_{k} would have not been weakly visible from $w e_{i}$). If I_{k} is equal to $\left[l v\left(w e_{i}\right), l v\left(w e_{i}\right)\right]$ but I_{k+1} is not, then I_{k+1} must be equal to $\left[f v\left(w e_{i}\right), l v\left(w e_{i}\right)\right]$ (this also follows from Lemma 3). If both I_{k} and I_{k+1} are not equal to $\left[l v\left(w e_{i}\right), l v\left(w e_{i}\right)\right]$, then they must both contain $f v\left(w e_{i}\right)$.

From the intervals I_{k} of the vertices v_{k} on $R C_{i}$, we define a set of intervals on we e_{i}, called the characteristic intervals, as follows: For every edge e_{j} on $R C_{i}$, let

$$
C I_{j}=I_{j} \cap I_{j+1}
$$

and call $C I_{j}$ the characteristic interval of e_{j}. The next lemma illustrates the relation between $s\left(w e_{i}\right)$ and the characteristic intervals for the edges of $R C_{i}$.

Lemma 7 The shorlest weakly visible subedge $s\left(w e_{i}\right)$ on $w e_{i}$ must contain at least one point on interval $C I_{j}$, for every edge e_{j} on $R C_{i}$,

Proof. This follows from the fact that edge e_{j} is completely visible from every point on interval $C I_{j}$ (see Figure 9).

The next section gives the sequential and parallel algorithms for computing the shortest weakly visible subedge s of P.

Figure 9: Edge e_{j} is completely visible from every point on $C I_{j}$.

4 Algorithms for the SWVS Problem

We are now ready to present the algorithms for computing the shortest weakly visible subedge s of P. The correctness of these algorithms is based on the observations made in Section 3. Conceptually, these algorithms are quite simple.

We need some simple notation (we only give that with respect to the chain $R C_{i}$). If vertex $l v\left(w e_{i}\right)$ is nonconvex, then let r_{i} be the ray originating from $f v\left(w c_{i}\right)$ and passing $l v\left(w e_{i}\right)$, and let r_{i} first hit $b d(P)-w e_{i}$ at point h_{i}. Denote the chain along $b d(P)$ from $l v\left(w e_{i}\right)$ counterclockwise to h_{i} by $R P_{i}$ (called the right pocket of $w e_{i}$). The following properties of $R P_{i}$ are easily seen to be true:

- The chain $R P_{i}-\left\{l v\left(w e_{i}\right), h_{i}\right\}$ can intersect at most two edges of $W V E$ (i.e., $w e_{i+1}$ and $w e_{i+2}$), and if this is the case, then $C_{i}=\emptyset$.
- Point h_{i} is contained in chain $R C_{i}$, and h_{i} is the first point on $R P_{i}$ that intersects the ray τ_{i}, where r_{i} is viewed as a half-line (otherwise, some point on $R P_{i}$ would have not been weakly visible from $w e_{i}$).
- The only point on $w c_{i}$ from which every point on $R P_{i}-\left\{l v\left(w e_{i}\right), h_{i}\right\}$ is visible is $l v\left(w e_{i}\right)$.

For every vertex v_{k} of $R C_{i}-l v\left(w e_{i}\right)$, let $I C P_{i}^{k}$ be the internal convex path connecting $l v\left(w e_{i}\right)$ and v_{k}, and let w_{k} be the line segment on ICP ${ }_{i}^{k}$ such that w_{k} is adjacent to v_{k}. Let r_{i}^{k} be the ray originating from v_{k} and containing w_{k}. Note that r_{i}^{k} must intersect $w e_{i}$. Let the intersection point of r_{i}^{k} and $w c_{i}$ be $i p_{i}^{k}$.

The general procedure for solving the SWVS problem is as follows.

Algorithm SWVS.

Input. A simple polygon P of n vertices.

Output. The shortest weakly visible subedge s of P.
(1) Compute $W V E$ for P. If $|W V E|<7$, then compute $s\left(w e_{i}\right)$ on every edge $w e_{i} \in W V E$, find s from these $s\left(w \epsilon_{i}\right)$'s, and stop.
(2) For every $w c_{i} \in W V E$, perform the following computation on chain $R C_{i}$:
(2.1) Vertex $\operatorname{lv}\left(w e_{i}\right)$ is convex. For every vertex v_{k} on $R C_{i}^{l}$, compute the segment w_{k} on $I C P_{i}^{k}$ (by Corollary 2) and the intersection point $i p_{i}^{k}$ between r_{i}^{k} and $w e_{i}$; let interval I_{k} be $\left[f v\left(w e_{i}\right), i p_{i}^{k}\right]$. For every vertex v_{k} on $R C_{i}^{\gamma}$, compute $i p_{i}^{k}$ by Lemma 5 , and let I_{k} be [$\left.f v\left(w e_{i}\right), i p_{i}^{k}\right]$.
(2.2) Vertex $l v\left(w c_{i}\right)$ is nonconvex. For every vertex v_{k} on $R P_{i}-l v\left(w e_{i}\right)$, let interval I_{k} be $\left[l v\left(w e_{i}\right), l v\left(w e_{i}\right)\right]$. For every vertex v_{k} on $R C_{i}^{j}-R P_{i}$ (resp., $R C_{i}^{r}-R P_{i}$), compute I_{k} as in Step (2.1), by using Corollary 2 (resp., Lemma 5).
(2.3) Compute the characteristic interval $C I_{j}$ for every edge e_{j} on $R C_{i}$. Let the set of characteristic intervals so obtained be I_{i}^{R}.
(3) For every $w e_{i} \in W V E$, perform computation similar to Step (2) on chain $L C_{i}$. Let the set of claracteristic intervals so obtained be I_{i}^{L}.
(4) For every $w e_{i} \in W V E$, compute $s\left(w e_{i}\right)$ as follows: Let

$$
\alpha_{i}=\max \left\{l p_{k} \mid\left[l p_{k}, r p_{k}\right] \in I_{i}^{R} \cup I_{i}^{L}\right\}
$$

and

$$
\beta_{i}=\min \left\{r p_{k} \mid\left[l p_{k}, r p_{k}\right] \in I_{i}^{R} \cup I_{i}^{L}\right\}
$$

If $\alpha_{i} \leq \beta_{i}$, then let $s\left(w e_{i}\right)$ be any point on interval $\left[\alpha_{i}, \beta_{i}\right]$; otherwise, let $s\left(w e_{i}\right)=\left[\beta_{i}, \alpha_{i}\right]$.
(5) Let $s=s\left(w e_{j}\right)$, where

$$
\left|s\left(w e_{j}\right)\right|=\min \left\{\left|s\left(w e_{i}\right)\right| \mid w e_{i} \in W V E\right\} .
$$

Lemma 8 Algorithm SWVS can be implemented in $O(n)$ time sequentially, and in $O(\log n)$ time using $O(n / \log n)$ CREW PRAM processors in parallel.

Proof. The sequential implementation of Algorithm SWVS is as follows. Step (1) is performed by first using [20,21] and then using [1, 7], in $O(n)$ time. Steps (2) and (3) are implemented by using $[1,7]$. That these steps take $O(n)$ time follows from the fact that each chain C_{j} involves in the computation for at most six edges $w e_{i} \in W V E$. Steps (4) and (5) can be easily implemented in $O(n)$ time. Therefore, the overall time complexity is $O(n)$.

The parallel implementation does the following. Step (1) is done by first using [5] and then using [6], in $O(\log n)$ time using $O(n / \log n)$ CREW PRAM processors. Steps (2) and (3) are performed by using [5] and paralle] prefix [16,17]. Steps (4) and (5) are easily handled by using parallel prefix $[16,17]$. Therefore, the parallel algorithm runs in $O(\log n)$ time using $O(n / \log n)$ CREW PRAM processors.

5 The Rectilinear Case

In this section, we study the special case of the SWVS problem where the polygons are rectilinear (i.e., each edge of the polygons is either vertical or horizontal). We present very simple and optimal solutions to solve this case, both sequentially and in parallel. As for the general SWVS problem, we also give interesting geometric observations for solving the rectilinear case. These geometric observations enable us to design extremely simple algorithms for this case. The parallel model we use in this section is the EREW PRAM.

In the rest of this section, we let P be a rectilinear simple polygon of n vertices. For a subchain $C(i, i+3)=\left(c_{i}, e_{i+1}, e_{i+2}\right)$ of $b d(P)$, we call $C(i, i+3)$ a concave chain of P iff edge e_{i+1} is nonconvex (i.e., the interior angles of P at v_{i+1} and v_{i+2} are both greater than π), and call edge e_{i+1} the center cdge of $C(i, i+3)$. Let the line containing an edge e_{j} be $l\left(e_{j}\right)$. We say that a concave chain $C(i, i+3)$ is upward (resp., downward, leftward, rightward) if e_{i+1} is horizontal (resp., horizontal, vertical, vertical) and if no point on $C(i, i+3)$ is strictly above (resp., below, to the left of, to the right of) line $l\left(e_{i+1}\right)$.

For every vertex v_{i} of P, if v_{i+1} (resp., v_{i-1}) is nonconvex, then let τ_{i}^{+}(resp., r_{i}^{-}) be the ray starting at v_{i} and containing e_{i} (resp., e_{i-1}). If ray τ_{i}^{+}(resp., r_{i}^{-}) is associated with v_{i}, then let $h\left(r_{i}^{+}\right)$(resp., $h\left(r_{i}^{-}\right)$) be the point on $b d(P)-e_{i}$ (resp., $b d(P)-e_{i-1}$) that is first hit by τ_{i}^{+}(resp., $\left(r_{i}^{-}\right)$).

A subchain C of $b d(P)$ is said to be x-monotone (resp., y-monotone) iff the intersection between C and every vertical (resp., horizontal) line is a single connected component. A subchain C^{\prime} of $b d(P)$ is said to be a staircase iff C^{\prime} is both x-monotone and y-monotone. Polygon P is said to be x-monotone (resp., y-monotone) iff $b d(P)$ can be partitioned into two x-monotone (resp., y-monotone) chains.

Let $C(i, i+3)$ be an upward concave chain (the other cases are similar). Then the following properties of $C(i, i+3)$ can be easily seen to hold (see Figure 10).

- The only possible weakly visible edge of P on $C(i, i+3)$ is the center edge e_{i+1} of $C(i, i+3)$.
- If $e_{i+1} \in W V E$, then the following are true:

1. The subchain of $b d(P)$ from $h\left(r_{i+3}^{-}\right)$counterclockwise to $h\left(r_{i}^{+}\right)$is x-monotone.

Figure 10: Illustrating some properties of $C(i, i+3)$.
2. Both v_{i} and v_{i+3} are convex.
3. The subchain of $b d(P)$ from v_{i} (resp., v_{i+3}) clockwise (resp., counterclockwise) to $h\left(\tau_{i+2}^{-}\right)$ (resp., $h\left(r_{i+1}^{+}\right)$) is a staircase, and the subchain of $b d(P)$ from $h\left(r_{i+2}^{-}\right)$(resp., $h\left(r_{i+1}^{+}\right)$) clockwise (resp., counterclockwise) to $h\left(r_{i}^{+}\right)$(resp., $h\left(r_{i+3}^{-}\right)$) is a staircase, as shown in Figure 10.
4. $s\left(e_{i+1}\right)=e_{i+1}$.

The following lemmas are useful for our algorithms.
Lemma 9 If polygon P has two concave chains $C(i, i+3)$ and $C(j, j+3)$, where $C(i, i+3)$ is cither upward or downward and $C(j, j+3)$ is either leftward or rightward, then P is not weakly visible from any of its edges.

Proof. For any vertical edge e^{\prime} of P, there must be some points on either e_{i} or e_{i+2} (both are vertical) that are not weakly visible from e^{\prime}. For any horizontal edge $e^{\prime \prime}$ of P, there must be some points on either e_{j} or $e_{j \neq 2}$ (both are horizontal) that are not weakly visible from $e^{\prime \prime}$. Hence the lemma follows.

Corollary 3 If polygon P is neither x-monotone nor y-monotone, then P is not weakly visible from any of its edges.

Proof. If P is not x-monotone, then it must have a leftward or rightward concave chain. If P is not y-monotone, then it must have an upward or downward concave chain. That P is not weakly visible follows immediately from Lemma 9.

Lemma 10 Suppose that polygon P has only upward and downward (resp., leftward and rightward) concave chains. Let $C(i, i+3)$ be such a concave chain. Then WVE consists of at most two edges of P : (i) the center edge e_{i+1} of $C(i, i+3)$, and (ii) the edge e_{j} such that e_{j} contains both the points $h\left(r_{i}^{+}\right)$and $h\left(r_{i+3}^{-}\right)$(if such an edge e_{j} exists).

Proof. Observe that the segments $\overline{v_{i+1} h\left(r_{i}^{+}\right)}$and $\overline{v_{i+2} h\left(r_{i+3}^{-}\right)}$together partition P into three subpolygons. Because of edges e_{i} and e_{i+2}, only those edges of P that intersect all these three subpolygons can possibly be weakly visible edges of P. The only edges of P that intersect the three subpolygons are e_{i+1} and e_{j} (if such an e_{j} exists).

Lemma 11 Suppose that polygon P is x-monolone and has two distinct upward (resp., downward) concave chains $C(i, i+3)$ and $C(j, j+3)$. Then P can possibly be weakly visible from at most one edge e_{k}, such that e_{k} contains all the points $h\left(r_{i}^{+}\right), h\left(r_{i+3}^{-}\right), h\left(r_{j}^{+}\right)$, and $h\left(r_{j+3}^{-}\right)$, if such an edge e_{k} exists.

Proof. The segments $\overline{v_{i+1} h\left(r_{i}^{+}\right)}, \overline{v_{i+2} h\left(r_{i+3}^{-}\right)}, \overline{v_{j+1} h\left(r_{j}^{+}\right)}$, and $\overline{v_{j+2} h\left(r_{j+3}^{-}\right)}$together partition P into five subpolygons. Any weakly visible edge of P must intersect all these five subpolygons, and edge e_{k} is the only such candjdate (if it exists).

Lemma 12 Let C be a staircase chain on bd (P). Then if C has more than four edges, then no edge on C can be in WVE.

Proof. Such a staircase C must have at least two nonconvex vertices u and v. Let e be an arbitrary edge of C. then e can be adjacent to at most one of u and v (say, v). For e, there must be some point p on the edges of P adjacent to u such that p is not weakly visible from e. Hence $e \notin W V E$.

Let e_{j} be an edge in $W V E$ such that e_{j} is on a staircase of $b d(P)$ and that e_{j} is not the center edge of any concave chain of P. There are two possible cases for e_{j} : Either both vertices of e_{j} are convex or exactly one vertex of e_{j} is convex. We consider first the case where exactly one vertex of e_{j} is convex. WLOG, let v_{j} be convex and v_{j+1} be nonconvex (the case where v_{j} is nonconvex and v_{j+1} is convex is symmetric). It is easy to see that the following properties of e_{j} hold:

- Vertices v_{j-1} and v_{j+2} are both be convex. Therefore, e_{j} must be adjacent to an ending edge of a maximal staircase of $b d(P)$.
- Suppose that line $l\left(e_{j}\right)$ is horizontal (the other case is similar). Then the subchain of $b d(P)$ from $h\left(\tau_{j+2}^{-}\right)$counterclockwise to v_{j-1} is x-monotone.
- The subchain of $b d(P)$ from v_{j+2} counterclockwise to $h\left(r_{j}^{+}\right)$is a staircase, and the subchain of $b d(P)$ from $h\left(r_{j}^{+}\right)$counterclockwise to $h\left(r_{j+2}^{-}\right)$is a staircase.
- Let $H_{j}=\left\{h\left(r_{k}^{-}\right) \mid v_{k}\right.$ is on the subchain of $b d(P)$ from $h\left(r_{j+2}^{-}\right)$counterclockwise to v_{j-1} and v_{k-1} is nonconvex $\}$. If $H_{j}=\emptyset$, then $s\left(e_{j}\right)=v_{j+1}$. Otherwise, let α_{j} be the point in H_{j} that is closest to v_{j} among all the points in H_{j}; then $s\left(e_{j}\right)=\overline{\alpha_{j} v_{j+1}}$.

The case where both vertices of $e_{j} \in W V E$ are convex has the following properties:

- Vertices v_{j-1} and v_{j+2} are both convex. Hence e_{j} is an ending edge of a maximal staircase on $b d(P)$.
- The subchain of $b d(P)$ from v_{j+2} counterclockwise to v_{j-1} (i.e., $C(j+2, j-1)$) is monotone with respect to line $l\left(e_{j}\right)$.
- Let $R H_{j}=\left\{h\left(\tau_{k}^{-}\right) \mid v_{k}\right.$ is on $C(j+2, j-1)$ and v_{k-1} is nonconvex $\}$, and $L H_{j}=\left\{h\left(\tau_{k}^{+}\right) \mid v_{k}\right.$ is on $C(j+2, j-1)$ and v_{k+1} is nonconvex). Let α_{j} (resp., β_{j}) be the point in $R H_{j}$ (resp., $L H_{j}$) that is closest to v_{j} (resp., v_{j+1}) among all the points in $R H_{j}$ (resp., $L H_{j}$). If both α_{j} and β_{j} do not exist, then $s\left(e_{j}\right)$ can be any point on e_{j}. If exactly β_{j} (resp., α_{j}) does not exist, then $s\left(e_{j}\right)$ can be any point on the segment $\overline{\alpha_{j} v_{j}}$ (resp., $\overline{\beta_{j} v_{j+1}}$). If both α_{j} and β_{j} exist, then $s\left(e_{j}\right)=\overline{\alpha_{j} \beta_{j}}$.

Lemma 13 If $W V E \neq \emptyset$, then $|W V E|=O(1)$.
Proof. There are two cases. If P is x-monotone or y-monotone but not both, then by Lemmas 10 and $11,|W V E|$ can be at most 2 . If P is both x-monotone and y-monotone, then $b d(P)$ has at most four maximal subchains such that each subchain is a staircase. There are totally 4 ending edges on these four maximal staircases and there are at most 8 edges that are adjacent to the ending edges of these four staircases. Hence in this case, the lemma follows from the properties of the edges in $W V E$ that are on a staircase of $b d(P)$.

Our results on solving the rectilinear case of the SWVS problem are summarized in the following lemma.

Lemma 14 Given a rectilinear polygon P, there are extremely simple and optimal algorithms for computing, both sequentially and in parallel, (i) WVE, and (ii) the shortest weakly visible subedge s of P. The sequential algorithm runs in $O(n)$ time, and the parallel algorithm runs in $O(\log n)$ lime using $O(n / \log n)$ EREW PRAM processors.

Proof. The sequential algorithm easily follows from the above observations. It only needs to do the following: (1) Check the monotonicity of P with respect to the x and y axes, (2) identify the $O(1)$ edges of $W V E$, and (3) find $s(e)$ on each edge $e \in W V E$. The parallel algorithm is also very straightforward and makes use of only simple EREW PRAM operations such as parallel prefix $[16,17]$. The details of these algorithms are left to the reader as an exercise.

6 Conclusion

We continue the study of the weak visibility problems on simple polygons that were first considered by Avis and Toussaint [1] and then by many others [5, 6, 7, 10, 20, 21]. We present new geometric
observations on the weak visibility of simple polygons. We show that, by using these geometric observalions and the previously known algorithms in $[1,5,6,7,20,21]$, the problem of computing the shortest weakly visible subedge of a simple polygon can be solved optimally, both sequentially and in parallel. Our sequential algorithm for this problem runs in $O(n)$ time, and our parallel algorithm runs in $O(\log n)$ time using $O(n / \log n)$ CREW PRAM processors. We also give geometric observations that lead to extremely simple and optimal solutions to the case of this problem where the polygons are rectilinear. We expect the observations that we present to be useful in solving other visibility problems.

References

[1] D. Ayis and G. T. Toussaint. "An optimal algorithm for determining the visibility polygon from an edge," IEEE Trans. Comput., C-30 (12) (1981), pp. 910-914.
[2] B. K. Bhattacharya, D. G. Kirkpatrick, and G. T. Toussaint. "Determining sector visibility of a polygon," Proc. 5-th Annual ACM Symp. Computational Geometry, 1989, pp. 247-254.
[3] B. K. Bhallacharya, A. Mukhopadhyay, and G. T. Toussaint. "A linear time algorithm for computing the shortest line segment from which a polygon is weakly externally visible," Proc. Workshop on Algorithms and Data Structures (WADS'91), 1991, Ottawa, Canada, pp. 412-424.
[4] B. Chazelle and L. J. Guibas. "Visibility and intersection problems in plane geometry," Discrete and Computational Geometry, 4 (1989), pp. 551-581.
[5] D. Z. Chen. "An optimal parallel algorithm for detecting weak visibility of a simple polygon," Proc. of the Eighth Annual ACM Symp. on Computational Geometry, 1992, pp. 63-72.
[6] D. Z. Chen. "Parallel techniques for paths, visibility, and related problems," Ph.D. thesis, Technical Report No. 92-051, Dept. of Computer Sciences, Purdue University, July 1992.
[7] Y. T. Ching, M. T. Ko, and H. Y. Tu. "On the cruising guard problems," Technical Report, 1989, Institute of Information Science, Academia Sinica, Taipei, Taiwan.
[8] J. I. Doh and K. Y. Chwa. "An algorithm for determining visibility of a simple polygon from an internal line segment," Journal of Algorithms, 14 (1993), pp. 139-168.
[9] H. ElGindy. "Hierarchical decomposition of polygon with applications," Ph.D. thesis, McGill University, 1985.
[10] S. K. Ghosh, A. Maheshwari, S. P. Pal, S. Saluja, and C. E. V. Madhavan. "Characterizing weak visibility polygons and related problems," Technical Report No. IISc-CSA-90-1, 1990, Dept. Computer Science and Automation, Indian Institute of Science.
[11] M. T. Goodrich, S. B. Shauck, and S. Guha. "Parallel methods for visibility and shortest path problems in simple polygons (Preliminary version)," Proc. 6-th Annual ACM Symp. Computational Geometry, 1990, pp. 73-82.
[12] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. "Linear time algorithms for visibility and shortest paths problems inside triangulated simple polygons," Algorithmica, 2 (1987), pp. 209-233.
[13] P. J. Heffernan and J. S. B. Mitchell. "Structured visibility profiles with applications to problems in simple polygons," Proc. 6-th Annual ACM Symp. Computational Geometry, 1990, pp. 53-62.
[14] J. Herslıberger. "Optimal parallel algorithms for triangulated simple polygons," Proc. 8-th Annual ACM Symp. Computational Geometry, 1992, pp. 33-42.
[15] Y. Ke. "Detecting the weak visibility of a simple polygon and related problems," manuscript, Dept. of Computer Science, The Johns Hopkins University, 1988.
[16] C. P. Kruskal, L. Rudolph, and M. Snir. "The power of parallel prefix," IEEE Trans. Compui., C-34 (1985), pp. 965-968.
[17] R. E. Ladner and M. J. Fischer. "Parallel prefix computation," Journal of the ACM, 27 (4) (1980), pp. 831-838.
[18] D. T. Lee and A. K. Lin. "Computing the visibility polygon from an edge," Computer Vision, Graphics, and Image Processing, 34 (1986), pp. 1-19.
[19] S. II. Lee and K. Y. Chwa. "Some chain visibility problems in a simple polygon," Algorithmica, 5 (1990), pp. 485-507.
[20] J.-R. Sack and S. Suri. "An optimal algorithm for detecting weak visibility of a polygon," IEEE Trans. Comput., C-39 (10) (1990), pp. 1213-1219.
[21] S. Y. Shin. "Visibility in the plane and its related problems," Ph.D. thesis, University of Michigan, 1986.
[22] G. T. Toussaint. "A linear-time algorithm for solving the strong hidden-line problem in a simple polygon," Pattern Recognition letters, 4 (1986), pp. 449-451.
[23] G. T. Toussaint and D. Avis. "On a convex hull algorithm for polygons and its applications to triangulation problems," Pattern Recognition, 15 (1) (1982), pp. 23-29.

fig. 1

(a)

(b)
fig. 2

fig. 3

fig. 4

fig. 5

fig. 6

fig. 7

fig. 8

fig. 9

fig. 10

[^0]: *This research was partially done when the author was with the Department of Computer Sciences, Purdue University, West Lafayette, Indiana, and was supported in part by the Office of Naval Research under Grants N00014-84-K-0502 and N00014-86-K-0689, the National Science Foundation under Grant DCR-8451393, and the National Library of Medicine under Grant R01-LM05118.

