
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1992

Testing a Simple Polygon for Monotonicity Optimally in Parallel Testing a Simple Polygon for Monotonicity Optimally in Parallel

Danny Z. Chen

Sumanta Guha

Report Number:
92-027

Chen, Danny Z. and Guha, Sumanta, "Testing a Simple Polygon for Monotonicity Optimally in Parallel"
(1992). Department of Computer Science Technical Reports. Paper 949.
https://docs.lib.purdue.edu/cstech/949

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

TESTING A SIMPLE POLYGON FOR
MONOTONICITY OPTIMALLY IN PARALLEL

Danny Z. Chen
Sumanta Guha

CSD-TR-92-027
April 1992

Revised 9/92

Testing a Simple Polygon for Monotonicity
Optimally in Parallel

Danny Z. Chen"'

Abstract

Sumanta Guhat

We show that, in parallel, an n-vertex simple polygon can be tested for monotonicity
optimally in O(logn) time using O(n/logn) EREW PRAM processors, and we present
two different optimal parallel algorithms for solving this problem. OUf result leads to
an optimal parallcl algorithm for triangulating simple polygons that runs in O(logn)
time using O(n/logn) EREW PRA!\I processors if the polygons are monotone.

J(eywtJTd~; Parallcl algorithms, compulalional geomclQ'. simple polygons

1 Introduction

In [17], Preparata and Supowit show how to test a simple polygon for monotonicity se­

quentially in optimal linear time. In this pap/:'[, we present two diIferent optimal pa.rallel

algorithms for testing the monotonicity of an II-vertex simple polygon, and we discuss a

consequence of our result for the parallel triangulation of simple polygons. Our parallel al­

gorithms are based on the geometry of Preparata and SlIpowit [17]. However, the algorithm

in [17] appears to be essentially sequential while our algorithms require considerable ma­

chinery from the theory ofparallcl comput.ation, Bot.h our algorithms run in O{logn) time

using O(nJlog n) processors. The first algorit.hm is conceptually very simple and consists

of a reduction from the monotonicity test prohlem to the problem of computing in parallel

the visibility of nonintersecting Line segments from a point [2]. The second algorithm is

perhaps more practical and is based all a square-root divide-and-conquer strategy. The

parallel computational model we use is t.he ERE\V PRA1L For a discussion of the PRAM

models and in particular the ERE'''V PRA\\T, we refer to [13].

We need to introduce some definitions. Let P be a simple polygon with vertices Vo,

VI, ... , Vn_l in counterclockwise order around its boundary (we denote the boundary of P

-Department of Computer Science and Engineering, IJniversity of Notre Dame, Nolre Dame, IN 46556.
This research was partially done when this author was wit.h Dept. of Computer Science, PllTduc University,
West Lafayette, Indiana and was supported in part by lhe Office of Naval Research under Grants N00014.
84-I{-0502 and NOOOl4-86-K·0689, the National Science Foundation under GranL DCR-8451393, and the
National Library of Medicine under GranL ROl·LM05118.

IEE&CS Department, University or Wisconsin-Milwaukee, PO Box 784, Milwaukee, WI 53201. This
research was partially done when this author was WiLh the BECS DepL, University of Michigan, Ann Arbor
and was 511pported in part by NSF/DARPA Granl CCR-9n04727,

1

by bd(P)). The edge VjVi+! of P is denoted bye;. (Throughout this paper, aU indices are

taken modulo of n.) A chain Gij '= (ei' ei+l, ... , ej_l) is a sequence of consecutive edges

on bd(P). Chain Gij is said to be monotone with respect to a stmight line I if for any line

I' that is orthogonal to I, Gij n I' consists of at most one point. Polygon P is monotone

if and only if there exists a line I such that bri(P) can be split into two chains Gij and Cji

both monotone with respect to 1. If this is the case, then P is said to be monotone with

respect to 1 (see Figure 1 for example). Two points p and q in P are visible to each other

if and only if segment pq (whose endpoints are]J and q) lies completely within P. P is said

to be star-shaped if there exists a point q E P such that q is visible to every other point of

P (see Figure 2 for example).

In this paper, we shall prove the following theorem:

Theorem 1 Whether an 11.·vertex simple polygon P is monotone can be deci(Ie(I optimally

in O(log 11.) time using O(11.jlog 11.) proces.w)rs ill the EREW PRAM model, and, if so, a line

I with respect to which P is monotone can be obtained within the same complexity bounds.

Chazelle's recent breakthrough in finding an optimal seqllentiallinear time algorithm for

triangulating a simple polygon [4] settled probabl)r one of the most important outstanding

questions in computational geometry. However. parallel algorithms for triangulating simple

polygons still lag by a factor of log 11 (except in the CRC\V PRAM model). Currently, the

best PRAM algorithms for triangulating an ll-vertex simple polygon run in O(logn) time

using either 0(11.) processors on the CRE"V PRAIvI [10, 18] or O(njlogn) processors on

the CReW PRAM [11]. (The EREW PRA"tI,r, of course, is less powerful than the CREW

PRAM, which is less powerrul tha.n the CReW PRAM.) Goodrich [10] shows that if it is

already given that a polygon is monotone with respect to a particular line, then the polygon

can be triangulated optimally in O(log 11) t.ime llsing O(njlog n) CREW PRAM processors.

Cole and Goodrich [7] show how to test a simple polygon for star-shapedness optimally in

O(logn) time using O(njlogn) CREW PRAM processors. Chen [5J gives optimal parallel

algorithms for testing the star-shapedness of simple polygons and for triangulating mono­

tone and star-shaped polygons, all in O(log1/) time using O(n/log11.) processors on the

EREWPRAM.

A consequence of Theorem 1 is that simple polygons of certain types, in particular mono­

tone (and star-shaped) polygons, can be detected and triangulated optimally in parallel.

Together with Theorem 1, we then have:

Theorem 2 An n-vertex simple polygon can be trian91lfate(1 optimally in O(1og n) time

using O(njlogn) EREW PRAM pmcessort: if the polygon is monotone or star-Sha]led. 0

2

The rest of the paper is for proving Theorem 1. The next section reviews some definitions

and observations from [17]. Sections 3 and 4 present our two algorithms, respectively.

Section 5 mentions some open problems.

2 Preliminaries

To avoid undue repetition, we assume familiarity with the paper by Preparata and Supowit

[17J and restrict ourselves to quoting a few relevant definitions and results.

The length of Gij = (e;, ei+I, ... , ej-d, denoted by IGijl, is kif Gij consists of kedges.

For example, IGijl = j - i for i < j, and ICijl = n - i + j for i > j. The boundary of P,

bll(P), is a close chain of length n.

The polar diagram of the input polygon P is defined as follows. For each edge ei of P,

draw a semi-infinite ray from the origin 0 in the direction from Vi to VitI_ Without risk

of confusion we denote this ray by ej too. The polar rays eo, el, ... , en_l together partition

the polar range [0, 2rr) into n consecutive wedges (a wedge is a sector in the polar diagram

bounded by two polar rays). Note, of COllrse, t.hat ei+I may not be adjacent to ei in the

polar ordering. Suppose these wedges are 130, {3I, ... , 13n-I in counterclockwise order starting

from Po, where Po is the wedge on the counterclockwise side of eo. Let ai, 0 ::; i ::; n - 1,

be the wedge from ej counterclockwise to ei+I if t.he angle from ei counterclockwise to eitl

is ::; 180°, and the wedge from ei clockwise to eit}, ot.herwise. Given a chain Gij, define

a(Gjj) to be the wedge U{:~ak' Obviollsly, n(Cij) is one contiguous wedge because Ok U

ak+I is a connected component for every ~. E {i, i + 1, ... , j - 2}.

For a wedge Pk' ~ a(Gij), we define t.he multiplicity of 13k' with respect to a(Gij) to be

I{ak I 13k' ~ Ok, k E ii, i +1,. _. ,j - I} }I, i.e., the number of wedges ak that contain the

given 13k" It is not difficult to see that for every a .::; 1.:' :s; n - I, the multiplicity of (3k'

with respect to a{bd(P)) is no smaller th<lll 1 as t.he bounda.ry of P is not self-intersecting.

If each of a sequence of consecutive wedges rh, has multiplicity m with respect to a(Gij),

then we say that the wedge which is the union of all the 13k/'S in the sequence also has

multiplicity m with respect to o(Cjj). Two wedges are s<lid to be (lntipo(hd if their union

contains a line passing through the origin.

The following lemma characterizes the mOllotonicit.y of a simple polygon.

Lemma 1 (Preparata and Supowit [17]) A simple polygon P is monolone if and only

if its polar diagram contains at least one pair oj antipodal wedges 13i and 13j both of multi·

plicity 1 wilh respect to o(bd(P)). If this is the case, then P is monotone with respect to

any infinite line contained in the union of two 811Ch antipOll(l1 wedges. 0

3

Because of Lemma 1, whenever the multiplicity of a wedge is larger than 1, that multi­

plicity is simply taken to be 2. The following lemma is also useful in our algorithms.

Lemma 2 (Preparata and Supowit [17]) Given a chain Gij ,one can in time O(]Cijl)

compute the wedge a(Cij), as well as a partition of a(Cij), by some subset oj the polar rays

from chain Gij, into O(ICijl) consecutive wedges altemately having labels 1 and 2. Wedges

with label 1 all have multiplicity 1 with respecf to a(Cij), and wedges with label 2 aU have

multiplicity 2 with respect to a(Cij). 0

Suppose that we partition bd(P) into njlog n chains CO,logn, Clogn,21ogn, ... , Cn-logn,O

oflength logn each. We denote each C(i-l)logn,ilogn by bdi. Then by Lemma 2, each a(bdi)

(together with its partition as stated in Lemma 2) can be computed in OOog n) time using

one processor. Furthermore, this computation can be done for all the bd;'s in O(logn)

time using O(njlogn) EREW PRAM processors (by assigning one processor to each bclj).

Henceforth, we assume that this computat.ion has been done for all the bdi'S, and we store

the partition of each a(bd;) (with its labels) in an array of size O(logn).

3 The First Algorithm

This section gives a parallel algorithm for testing the monotonicity of P that is conceptually

very simple. This algorithm reduces tIle monotonkity problem to a problem that cau be

solved by using the cascading divide-and-cOlH]uer tecl11liql1e [2, 6].

Suppose that each a(bdi) is bounded by two polar rays Pi and qi and is from Pi coun­

terclockwise to qi. Without loss of generality (WLOG), we assume that no n(bd;) consists

of only a single polar ray (i.e., for every i. o{bf1i) ¥- {Pi}). Let the polar angle of a polar

ray T be 8(r).

We now transform each a:(bdi) to a horizontal line segment Si in a plane P. We assume

that plane P has the x and y coordina.tes, and t.hat the points (x, y) and (x + 211", y) are

identical in P for all values x and y. lIencE' topologically P is a cylinder. The transformation

is as follows. Let point li = (8(pil, i) and point 1'; = (8(qi), i) in P. If 8(Pi) < 8(qil, then let

Sj = LiT;; if 8(Pi) > 8(q;) or ja(bd;)1 = 2r.. thell let Sj = (0, i)rj U li(211", i). Note that Si is

one contiguous segment in P. This transforma.tion gives us njlog n horizontal line segments

in P. Later in this section, when we refer to "Visibility" in P, we assume that the only

"opaque" objects in P are the njlogn segment.s Sj. Note that this transformation can be

easily done in 0(1) time nsing O(njlogn) EREW PRAM processors.

The following lemmas are essential to the algorithm in this section.

4

t

r
!,

Lemma 3 For any a(bdj), suppose that a weflge w ~ a(bdj) has label 1 with respect to

a(bd j). Then w has multiplicity 1 with respect to a(bd(P)) if and only if the portion of the

horizontal segment in P corresponding to w is completeLy visible to both the points (0, +00)

and (0, -(0) ;n P.

Proof. Let the portion of the segment in P corresponding to w be sew). If sew) is

completely visible to (0,+00) (resp., (0,-00)) in P, then there is no chain bdj (resp., bdj')

such that j > i (resp., j' < i) and that a(bdj) (resp., a(bdj')) contains a polar ray in the

interior of w. Hence the multiplicity of w with respect to a(bd(P)) is the same as the

multiplicity of w with respect to a(bdj). If the multiplicity of w with respect to a(bd(P))

is 1, then there is no ek C bdj such that j =I i and that a polar ray in the interior of w

is contained in ak. But this implies that. sew) is completely visible to both (0,+00) and

(0,-00) in P. 0

Lemma 4 The portions of even) Si thai. (Ire risible to (0,+00) (resp., (0,-00)) form at

most two connected components.

Proof. We only prove the case for (0, +00) because the case for (0, -00) is similar. Among

the nllog n horizontal segments jn P, only those s1's such that j > i may affect the visibility

of Sj from (0, +00) because they are all above Si. Let Bi ;,;:; Uj>ibf[j. Then Bi is a contiguous

chain, and hence a(B;) is a contiguous wpdge. Thus the portion of Si that is hidden by these

81'S from (0, +00) in P forms at most one roullPcted component, and the lemma follows. 0

Corollary 1 The portions of every Si that are visible fo both (0, +00) and (0, -00) form

0(1) connected components.

Proof. An easy consequence of Lemma 4. 0

The rest of the algorithm goes as follows. (1) Compute the portions of each Si that are

visible from both (0,+00) and (0, -(0) in P. (2) Sort the portions of all the 8;'S that are

visible to both (0, +00) and (0, -00) according to the x-coordinates of their endpoints. (3)

For each i, based on the outcome of step (1), ohtain from the partition of a(bdj) the set Wi

of wedges with multiplicity 1 with respect to n(br/(P)). (4) Find all the antipodal pairs of

wedges in the union of all the Wi'S.

Step (1) can be done in O(logn) time Ilsing O(njlogn) EREW PRAM processors by

using the algorithm in [2]. Step (2) takes O(logll) time using O(njlogn) EREW PRAM

processors by using [6] since there are totally O(njlogn) endpoints. Step (3) is easily done

in O(1ogn) time using O(njlogn) EREvV PR:U,I processors (by using one processor for

each W..). Step (4) can be done by using an algorithm which is very similar to the one

.5

used by Goodrich for computing in parallel a farthest pair of points in a convex polygon

[9]. The algorithm in [9] computes all the antipodal pairs of wedges for n wedges sorted

by the cyclic ordering of polar angles, in O(logn) time using O(njlogn) CREW PRAM

processors. In our situation, the number of wedges with multiplicity 1 is O(n) and those

wedges are already sorted (based on step (2)). We basically follow the steps in [9], except

that we use an EREW PRAM merging algorithm [3, 12] in Step 4 of [9]. All other steps

of [9] can be easily implemented on the EREW PRAM in the same complexity bounds. In

total, the algorithm for testing the monotonicity of a simple polygon in this section takes

O(logn) time using O(njlogn) EREW PRAM processors.

4 The Second Algorithm

We now present an algorithm that uses a squ<lre-root divide-and· conquer strategy. This

algorithm is perhaps mnch easier to be adapted for other parallel computational models

than the algorithm in the previous section. \Nc focus only on the computation of finding all

the wedges with multiplicity 1 with respect to n(ufl(P)) because the rest of the algorithm

(l.e., for obtaining all the antipodal pairs of wedges with multiplicity 1) is same as in Section

3.

In this section, instead of transforming each a-(bdi) to a line segment in a 2-dimensional

space, we view a(bdi) as an arc Ai ~ [0, 2rr) on the unit circle C centered at the origin (Ai

= [0,211") if IAil = 2rr). In total, there arc njlogn arcs Ai. For a chain e on bfl(P), we

denote the arc corresponding to aCe) by A(e).

The following fact can be easily observed: For a bdi , a wedge w ~ a(bf!;) has multiplicity

2 if and only if either (i) w has multiplicity 2 with respect to a(bd;) or (ii) w is contained

in a(bd(P) - bdi). If the information for hoth (i) and (ii) is available for all i, then the rest

of the computation is same as in the previolls sC'ction (i.e., using Corollary 1 to find in each

a(bdi) the wedges with multiplicity 1 with respect to a:(ufl(P)) and using a modification

of the algorithm in [9] to compute all the antipodal pairs of wedges with multiplicity 1).

The information on (i) is already computed in Section 2. The computation for (ii), that

is, finding a(bd;) n a(bd(P) - bd;) (i.e., A(bd(P) - bd;) n A;) 1m each bd;, is the main task

of this algor1thm, and we only discuss how to compute A(bd(P) - bd;) n Ai for every i, i =

1,2, ... , njlog n.

The algorithm 1s based on the following Icllllll<l.

Lemma 5 For any two chains el and e" all bel(P) that are (lisjoint except at their end­

points, let 1V be the wedge corresponding fa 'he inte/'section A(G') n A(ell) (i.e., w = a(e')

G

n a(GII
)). Then w has multiplicity 2 with respect to a(bd(P)).

Proof. Easy and omitted. 0

By Lemma 5, A(G') n A(efl
) can be represented by a single arc on C (which corresponds

to w = a(G/) n a(e")) with multiplicity 2. Using this representation, if A(e') (resp., A(Gil))

is partitioned into kc' (resp., kc") subarcs which alternately have multiplicities 1 and 2,

then A(G' U Gil) can be partitioned into at most kc' +kc" +1 subarcs which alternately

have multiplicities 1 and 2. We use an array to represent the partition of A(G) (into subarcs

which alternately have multiplicities 1 and 2) for each chain G processed in the algorithm.

The algorithm recursively computes the partition for a chain G from the partitions for its

subchains based on a square-root divide-and-conquer strategy.

Now, because only A(bd(P) - bd;) n .4; is computed for every i, we simply assume that

Ai is one single arc with multiplicity I with respect to a{bdil (i.e., we ignore the partitioning

information for (i) in this computation). lienee the input to the procedure below consists of

an ordered set S· = {AI, A 2, ... , Anflagn} of 11 Ilog n arcs, and each arc Ai has multiplicity

1. We call a subset S of S· consisting of consecuti\'e .4;'s a contiguous subset of S·. Note

that for each contiguous subset S = {Aj, A j +1 , ••• , 11k} of S·, U7=:jA/ is one contiguous

arc, and we denote it by U(S).

The procedure for computing A(bd(P) - bd;) n Ai [or all -i is as follows.

Input. A contiguous subset S of S· with 18) = m.

Procedure P(S, m)

If m = 1, then return the only clement in S:

otherwise,

(1) partition S into 9 = m 1/2 contiguolls subsets 51, 52, ... , Sy of size m 1/2 each,

(2) recursively solve the 9 subproblems ill parallel, and

(3) compute the partition of U(S) by using the partitions of U(Stl, U(S2),"" U(Sg)

(each stored in an array), with m processors and in O(logm) time, storing the

partition of U(S) in an array.

If we could perform the conquer stage ofP(S.ISI) in O(log 151) time using 0(151) EREW

PRAM processors, then it is easy to sec that P(.S'·, nllogn) would run in totally O(logn)

time using O(n{logn) EREW PRAM pi'ocessors. Therefore, we only need to show how to

perform the conquer stage computation in t.he claimed complexity bounds.

In the conquer stage, we have already computed recursively the partitions of U(St},

U(S2),"" U(Sg), which are stored, say, in arrays L I , L2, , .. , Ly , respectively. We want

to compute the partition of U(8) (whose subarcs alternately have multiplicities 1 and 2)

and store the partition in array Ls. In order to do that, we compute in parallel, ror each

Sj, U(S - Sj) n Sj, and store U(S - Sj) n Sj and the partition of U(Sj) - U(S - 8j) in

appropriate locations of Ls.

For a subset Sj of S, we let hej = {U(S,), U(S,), ... , U(Sj_l)} and Suej = {U(Sj+l)'

U(Sj+2), ... , U(Sg)}. If both U(Prej) and U(SUCj) are available, then the portions of

U(Sj) that overlap with U(Prej) U U(SUCj) can be easily obtained, because each of U(Sj),

U(Prej), and U(SuCj) is a contiguous arc. WLOG, we only show the computation with

respect to Prej since the computation with respect to Suej is similar.

The computation of the conquer stage on P,·ej is as follows. First, for each j, broadcast

in parallel the endpoints of each U(Sj) to all Pre",'s, for k < j. The two endpoints of each

U(Sj) defines an arc on C. Hence each Prcj consists of O(m l / 2) arcs. Then for every j

in parallel, U(Prej) can be computed in O(logrn) time using O(m1 / 2) processors on the

EREW PRAM by using the preprocess procedure in the parallel algorithm for computing a

minimum circle-cover [1] (given a set of arcs on a circle, the minimum circle-cover problem

is to compute a subset of arcs of minimum size sllch that the union of the arcs in the

subset covers the whole circle). Since U(Prej) is a contiguous are, U(Prej) n U(Sj) is also

a contiguous arc (with multiplicity 2) and call be computed in O(logm) time using one

processor.

Given, for every j, U(S - Sj) n V(Sj) (which has multiplicity 2) and the partition of

U(Sj) - U(S-Sj) (which is available from Lj). we compute Ls that contains the partition

of U(S) whose subarcs alternately have multiplicit.ies 1 and 2, one subarc per element in Ls.

We claim that ILsI = O(m). This claim can he easily proved lJy induction (by assuming

ILjl = O(ml
/ 2) and by using the fact that. U(Prej) n U(Sj) is at most one subarc of U(S)

with multiplicity 2 for each j). Now, observe that the a.rcs in 0 = {U(Sj) - U(S - Sj) I j

= I, 2, ... , m1
/

2
} are pairwise disjoint (except possibly at their endpoints). Remove from

o all the empty arcs and denote the remaining set still by O. Sort the O(m l / 2) arcs in 0

according to their endpoints (in O(log 111) t.ime using O(ml / 2) EREvV PRAIvf processors

[6]). Then we have a partition of [1(S) of the form

where every U(Sj) = U(8IJ for some k and I j is tIle arc between V(Sj) - U(S - Sj) and

U(Sj+l) - U(S - Sj). Note that it is possil>le t.hat. I j = 0 and that for all but at most one

j, if I j i 0, then Ij has multiplicity 2. By using parallel prefix [1'1, l,s}, the partition Xs
of U(S) whose subarcs alternately have multiplicities 1 and 2 can be easily obtained from

8

Xs in O(logm) time using O(mJlogm) ERE'W PRAM processors, because IXsl ::; O(m).

Then X sis stored in array L s in 0(1) time llsing O(m) EREW PRAM processors (the

k-th subarc in Xsis stored in the k-th element of Ls).

Overall, the conquer stage takes O(logm) time using O(m) EREW PRAM processors.

5 Conclusion

An important problem is, of course, that of finding an optimal parallel algorithm to trian­

gulate arbitrary simple polygons. Goodrich has solved this problem on the CRCW PRAM

[11]. Whether the same bounds as in [11] can be obtained for triangulating simple poly­

gons on the CREW PRAM and EREW PRAM still remains open. Till that is achieved,

however, an interesting endeavor would be to prove theorems like Theorem 2 for other

classes of simple polygons. This is in the spirit of the papers by EIGindy and Toussaint [8J

and Lee and Chwa [16] where the authors, priot' to Chazelle's discovery [4], try to identify

"triangulation-linear" classes of simple polygons which admit of triangulation in optimal

sequential time.

References
[1] M. J. Atallah and D. Z. Chen, "An optimal parallel algorithm for the minimum circle-cover

problem," Information Processing Ldtcrs 32 (1£189), pp. 159-165.

[2] M. J. Atallah, R. Cole, and M. T. Goodrich, "Cascading divide-and· conquer: a technique for
designing parallel algorithms," SIAM J. Compl/tillg 18 (1989), pp. 499-532.

[3) G. Bilardi and A. Nicolau, "Adaptive bitonic sorting: An optimal parallel algorithm for
shared-memory machines," SIAM J. Computing, 18 (2) (1989), pp. 216-228.

(4] B. Chazclle, ''Triangulating a simple polygon in linear time," Proc. 31st IEEE Symp. 011

Foundations of Computer Science, 1990, pp. 220-230.

[5] D. Z. Chen, "Efficient geometric algorithms in the EREW-PRAl\l," Proc. 28th AIIIluul Aller­
ton Conf. on Communication, COl/trol. (I"d Compllti"g, 1990, pp. 818-827.

[6J R. Cole, "Parallel merge sort," SIAM J. Compllfillg 17 (1988), pp. 770-785.

[7] R. Cole and M. T. Goodrich, "Optimal parallel algorithms [or polygon and point set prob­
lems," Proc. 4th ACM Symp. on Computatio1lal Geometry, 1988, pp. 201-210.

[8] H. EIGindy and G. T. Toussaint, "011 geodesic properties of polygons relevant to linear time
triangulation," The Visual Computer 5 (19$9). pp. 68-74.

[9] M. T. Goodrich, "Efficient parallel techniques for comput.ational geometry," Dept. of Compo
Sci., Purdue University, West Lafayet.t.E', Indiana, 1987.

[10] M. T. Goodrich, "Triangulating a polygon in parallel," J. Algorithms 10 (1989), pp. 327-35l.

[Il] M. T. Goodrich, "Planar separators and parallel polygon triangulation," Proc. of the 24th
Annual ACM Symposium on Theory of Complltiug, 1992.

[12] T. Hagerup and C. Rub, "Optimal merging and sorting on the EREW PRAM," Information
Processing Letters 33 (4) (1989), pp. 181-185.

[13J R. Karp and V. Ramachandran, "Parallel Algorithms for Shared-Memory Machines," " IIand­
book of Theoreticaf Comp1lterScicl1ce. Edited by J. van Leeuwen, Volume 1, Elsevier Science
Publishers, 1990,

9

,
r

[14] C. P. Kruskal, L. Rudolph, and M. Snir, "The power of parallel prefix," iEEE TrailS. Com­
puters C-34 (10) (1985), pp. 965-968.

[15] R. E. Ladner and M. J. Fischer, "Parallel prefix compntation," J. of the ACM27 (4) (1980),
pp. 831-838.

[16] S. H. Lee and K. Y. Chwa, "A new triangulat.ion-linear class of simple polygons," Interna­
tional J. Computer Mathematics 22 (1987), pp. 135-147.

[17] F. P. Preparata and K. J. Supowit, "Testing a simple polygon for monotonicity," Ilifonnaiion
Processing Letters 12 (1981), pp. 161-164.

(18] C. K. Yap, "Parallel triangulation of a polygon in two calls to the trapezoidal map," AIgo­
rithm;ca 3 (1988), pp. 279-288.

10

	Testing a Simple Polygon for Monotonicity Optimally in Parallel
	Report Number:
	

	tmp.1307986960.pdf.DiVyA

