View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1992

Testing a Simple Polygon for Monotonicity Optimally in Parallel

Danny Z. Chen

Sumanta Guha

Report Number:
92-027

Chen, Danny Z. and Guha, Sumanta, "Testing a Simple Polygon for Monotonicity Optimally in Parallel"
(1992). Department of Computer Science Technical Reports. Paper 949.
https://docs.lib.purdue.edu/cstech/949

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4951736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

TESTING A SIMPLE POLYGON FOR
MONOTONICITY OPTIMALLY IN PARALLEL

Danny Z. Chen
Sumanta Guha

CSD-TR-92-027
April 1992
Revised 9/92

Testing a Simple Polygon for Monotonicity
Optimally in Parallel

Danny Z. Chen*® Sumanta Guhat

Abstract

We show that, in parallel, an n-vertex simple polygon can be tested for monotonicity
optimally in O(logn) time using O(n/logn) EREW PRAM processors, and we present
two different optimal parallel algorithms for solving this problem. Qur result leads to
an optimal parallel algorithm for triangulating simple polygons that runs in O{logn}
time using O(n/logn) EREW PRAM processors if the polygons are monotone.

Kegywords: Parallel algoritlims, compulalional geomelry. simple polygons

1 Introduction

In [17], Preparata and Supowit show how to test a simple polygon for monotonicity se-
quentially in optimal linear time. In this paper, we present two different optimal parallel
algorithms for testing the monotonicity of an n-vertex simple polygon, and we discuss a
consequence of our result for the parallel triangulation of simple polygons. Our parallel al-
gorithms are based on the geometry of Preparata and Supowit {17]. However, the algorithm
in [17] appears to be essentially sequential while our algorithms require considerable ma-
chinery from the theory of parallel computation. Both our algorithms run in O{logn) time
using O(n/logn) processors. The first algorithm is conceptually very simple and consists
of a reduction from the monotonicity test problem to the problem of computing in parallel
the visibility of nonintersecting line segments {from a point [2]. The second algorithm is
perhaps more practical and is based on a squarc-root divide-and-conquer strategy. The
parallel computational model we use is the EREW PRAM. For a discussion of the PRAM
models and in particular the EREW PRAM, we refer to [13].

We need to introduce some definitions. Let P be a simple polygon with vertices wvp,

U1, -+ -5 Tp.1 In counterclockwise order around its boundary {we denote the boundary of P

*Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556,
This research was partially done when this author was with Dept, of Computer Science, Purdue University,
West Lafayette, Indiana and was supported in parl by the Office of Naval Research under Grants N000O14-
84-K-0502 and N00014-86-K-0689, the National Science Foundation under Grant DCR-8451393, and the
National Library of Medicine under Grant R0O1-LA[05118.

'EE&CS Department, University of Wisconsin-Milwaunkee, PO Box 784, Milwaukee, WI 53201. This
research was partially done when this author was with the EECS Depl., University of Michigan, Ann Arbor
and was supporied in patl by NSF/DARPA Grani CCR-9004727,

by bd(P)). The edge 77371 of P is denoted by e;. (Throughout this paper, all indices are
taken modulo of n.) A chain C;; = (e, €it1, ..., €j_1) is a sequence of conseculive edges
on bd(P). Chain Cj; is said to be monotone with respeci to a straight line ! if for any line
I that is orthogonal to I, Cj; N I consists of at most one point. Polygon P is monotone
if and only if there exists a line / such that 4d(P) can be split into two chains C;; and Cy;
both monotone with respect to {. If this is the case, then P is said to be monotone with
respect to [(see Figure 1 for example). Twa points p and g in P are visible to each other
if and only if segment T (whose endpoints are p and g) lies completely within P. P is said
to be slar-shaped if there exists a point ¢ € P such that g is visible to every other point of
P (see Figure 2 for example).

In this paper, we shall prove the following thcorem:

Theorem 1 Whether an n-vertex simple polygon P is monolone can be decided optimally
in O(log n) time using O(n/logn) processors in the EREW PRAM model, and, if so, a line

[with respecl to which P is monotone can be obtained within the same complezity bounds.

Chazelle's recent breakthrough in finding an optimal sequential linear time algorithm for
triangulating a simple polygon [4] settled probably one of the most important outstanding
questions in computational geometry. However. parallel algorithms for triangulating simple
polygons still lag by a factor of logn {except in the CRCW PRAM model). Currently, the
best PRAM a.lgorii;hms for triangulating an n-vertex simple polygon run in O{logn) time
using either O(n) processors on the CREW PRAM (10, 18] or O(n/logn) processors on
the CRCW PRAM [11). (The EREW PRAM, of course, is less powerful than the CREW
PRAM, which is less powerful than the CRCIY PRAM.) Goodrich {10] shows that if it is

already given that a polygon is monotone with respect to a particular line, then the polygon

awrmpeym s

can be triangulated optimally in O(logn) lime using O(n/logn) CREW PRAM processors.
Cole and Goodrich [7] show how to test a simple polygon for star-shapedness optimally in
O(log ») time using O(n/logn) CREW PRAM processors. Chen [5] gives optimal parallel
algorithms for testing the star-shapedness of simple polygons and for triangulating mono-
tone and star-shaped polygons, all in O(logn) Llime using O(n/logn) processors on the
EREW PRAM.

A consequence of Theorem 1 is that simple polygons of certain types, in particular mono- :
tone (and star-shaped) polygons, can be detected and triangulated optimally in parallel.

Together with Theorem 1, we then have:

Theorem 2 An n-verlez simple polygon can be triangulated optimally in O(logn) time

using O(nflogn) EREW PRAM processors if the polygon is monotone or star-shaped. O
2

The rest of the paper is for proving Theorem 1. The next section reviews some definitions
and observations from [17]. Sections 3 and 4 present our two algorithms, respectively.

Section 5 mentions some open problems.

2 Preliminaries

To avoid undue repetition, we assume familiarity with the paper by Preparata and Supowit
[17] and restrict ourselves to quoting a few relevant definitions and results.

The length of C;; = (e, €iy1, - .-, €j-1), denoted by |Cy;|, is & if Cy; consists of & edges.
For example, |Cij| = j —ifor ¢ < j,and |Cij| = n— i+ jfor i > 7. The boundary of P,
bd(P), is a close chain of length n.

The polar diagram of the input polygon P is defined as lollows. For each edge ¢; of P,
draw a semi-infinite ray from the origin O in the direction from v; to »;.;. Without risk
of confusion we denote this ray by e; too. The polar rays eg, €y,...,€e,_1 together partition
the polar range [0, 27} into n consecutive wedges (a wedge is a sector in the polar diagram
bounded by two polar rays). Note, of course, that e;;; may not be adjacent to e; in the
polar ordering. Supposc these wedges are 3o, 51, .. ., fn—) in counterclockwise order starting
from By, where fp is the wedge on the counterclockwise side of ep. Let a;, 0 < i< n -1,
be the wedge from e; counterclockwise to e;4q if the angle from e; counterclockwise to €zl
is < 180° and the wedge from e; clockwise to €;1y, otherwise. Given a chain C;;, define
aC;;) to be the wedge Ui;zak. Obviously, a(C;;) is one contiguous wedge because ay U
@x41 15 2 connected component for every & € {i,i+1,...,j - 2}.

For a wedge Sy C oCi;), we define the multiplicity of By with respect to a(Ci;) to be
{ax | Brr € ax, & € {i,i+1,...,5— 1}}|, i.e., the number of wedges a; that contain the
given . It is not difficult to sec that for every 0 < &' < n — 1, the multiplicity of S
with respect to a(bd(P}) is no smaller than 1 as the boundary of P is not sell-intersecting.
If each of a sequence of consecutive wedges Sy has multiplicity m with respect to a(Cij)s
then we say that the wedge which is the union of all the Gy’s in the sequence also has
multiplicity m with respect to a(C;;}. Two wedges are said to be entipodal if their union
contains a line passing through the origin.

The following lemma characterizes the monotonicity of a simple polygon.

Lemma 1 (Preparata and Supowit [17]) A simple polygon P is monolone if and only
if ils polar diagram coniains at least one pair of antipodal wedges f; and B; both of multi-
plicity I with respect to a(bd(P)). If this is the case, then P is monotone with respect to

any infinile line contained in the union of two such antipodal wedges. o

e

Because of Lemma 1, whenever the multiplicity of a wedge is larger than 1, that multi-

plicity is simply taken to be 2. The following lemma is also useful in our algorithms.

Lemma 2 (Preparata and Supowit [17]) Given a chain Cjj, one can in time O(|C;;|)
compute the wedge o(Cy;), as well as a partition of a(Ci;), by some subsel of the polar rays
from chain Cj;, into O(|C;;]) consecutive wedges alternately having labels 1 and 2. Wedges
with label 1 all have multiplicity 1 with respect to a(Ci;), and wedges with label 2 all have
multiplicity 2 with respect to a(C;). a

Suppose that we partition bd(P) into n/log n chains Cologns Clogn,2logns - - +» Crlogn,0
of length log » each. We denote each Cli=1)logn.ilogn bY dd;. Then by Lemma 2, each a(bd;)
(together with its partition as stated in Lemma 2) can be computed in O(log n) time using
one processor. Furthermore, this computation can be done for all the bd;’s in O(logn)
time using O(n/logn) EREW PRAM processors (by assigning one processor to each bd;).
Henceforth, we assume that this computation has been done for all the &d;’s, and we store

the partition of each a(bd;) (with its labels) in an array of size O(log n).

3 The First Algorithm

This section gives a paraliel algorithm for testing the monotonicity of P that is conceptually
very simple. This algorithm reduces the monotonicity problem to a problem that can be
solved by using the cascading divide-and-conquer technique [2, 6].

Suppose that each a(bd;) is bounded by two polar rays p; and ¢ and is {rom p; coun-
terclockwise to g;. Without loss of generality (WIL.OG), we assume that no a(bd;) consists
of only a single polar ray (i.e., for every 7. a(bd;) # {p:}). Let the polar angle of a polar
ray be 8(r).

We now transform each a(bd;) to a horizontal line segment s; in a plane P. We assume
that plane P has the z and y coordinates, and that the points (z,y) and (z + 2r,y) are
identical in P for all values z and . Hence topologically P is a cylinder. The transformation
is as follows. Let point {; = (8(p;), i) and point r; = (8(g;),¢) in P. If 8(p;) < 8(g;), then let
s; = Lirg; if 8(pi) > 8(q:) or |a(bdy)| = 2r. theu let s; = (0,4)r; U Ij(2x, 7). Note that s; is

one contiguous segment in P. This transformation gives us n/log n horizontal line segments
in P. Later in this section, when we refer to “visibility” in P, we assume that the only
“opaque” objects in P are the n/logn scgments s;. Note that this transformation can be
easily done in O(1) time using O(n/logn) EREW PRAM processors.

The following lemmas are essential to the algorithm in this section.

Lemma 3 For any a(bd;), suppose that a wedge w C a(bd;) has label 1 with respect to
a(bd;). Then w has multiplicity 1 with respect lo a(bd(P)) if and only if the portion of the
horizontal segment in P corresponding to w is completely visible to both the points (0, +00)
and (0, —c0) in P.

Proof. Let the portion of the segment in P corresponding to w be s(w). If s(w) is
completely visible to (0, +00) (resp., (0,—o0)) in P, then there is no chain bd; (resp., bd;:)
such that j > ¢ (resp., j' < i) and that a(bd;) (resp., a(bd;s)) contains a polar ray in the
interior of w. Hence the multiplicity of w with respect to a(bd(P)) is the same as the
multiplicity of w with respect to a(bd;). If the multiplicity of w with respect to a(bd(P))
is 1, then there is no ex C bd; such that j 3# ! and that a polar ray in the interior of w
is contained in ¢y. But this implies that s(w) is completely visible to both (0, +c0) and
(0,—c0) in P. O

Lemma 4 The portions of every s; thal arc visible 1o (0,+00) (resp., (0,~00)) form al

most two connected components.

Proof. We only prove the case for (0, +c0) because the case for (0, —oc) is similar. Among
the n/log n horizontal segments in P, only those ;s such that j > 7 may affect the visibility
of s; from (0, +00) because they are all above s;. Tot B; = Uj»ibd;. Then B, is a contiguous
chain, and hence o B;) is a contiguous wedge. Thus the portion of s; that is hidden by these

8;’s from (0, +00) in P forms at most one connected component, and the lemma follows. 1

Corollary 1 The portions of every s; that are visible lo both (0, 400) and (0, =) form

O(1) connected components.

Proof. An easy consequence of Lemma 4. O

The rest of the algorithm goes as follows. (1) Compute the portions of each s; that are
visible from both (0,+oc0) and (0, —o0) in P. (2) Sort the portions of all the s;’s that are
visible to both (0, 400) and (0, —0) according to the z-coordinates of their endpoints. (3)
For each 7, based on the outcome of step (1), obtain from the partition of a(bd;) the set W;
of wedges with multiplicity 1 with respect to a(bd(P)). (4) Find all the antipodal pairs of
wedges in the union of all the W;'s.

Step (1) can be done in O(logn) time using O(n/logn) EREW PRAM processors by
using the algorithm in [2]. Step (2) takes O(logn) time using O(n/logn) EREW PRAM
processors by using [6] since there are totally O(n/logn) endpoints. Step (3) is easily done
in O(logn) time using O(n/logn) EREW PRAM processors (by using one processor for

each W;). Step (4) can be done by using an algorithm which is very similar to the one

g

e —— e -

used by Goodrich for computing in parallel a farthest pair of points in a convex polygon
[9]. The algorithm in [9] computes all the antipodal pairs of wedges for n wedges sorted
by the cyclic ordering of polar angles, in O(logn) time using O(n/logn) CREW PRAM
processors. In our situation, the number of wedges with multiplicity 1 is O(n) and those
wedges are already sorted (based on step (2)). We basically follow the steps in [9], except
that we use an EREW PRAM merging algorithm [3, 12] in Step 4 of [9). All other steps
of [9] can be easily implemented on the EREW PRAM in the same complexity bounds. In
total, the algorithm for testing the monotonicity of a simple polygon in this section takes
O(log =) time using O(n/logn) EREW PRAM processors.

4 The Second Algorithm

We now present an algorithm that uses a square-root divide-and-conquer strategy. This
algorithm is perhaps much easier to be adapted for other parallel computational models
than the algorithm in the previous section. We focus only on the computation of finding all
the wedges with multiplicity 1 with respect to a{bd(P)) because the rest of the algorithm
(i.e., for obtaining all the antipodal pairs of wedges with multiplicity 1) is same as in Section
3.

In this section, instead of transforming each a(bd;) to a line segment in a 2-dimensional
space, we view a(bd;) as an arc A; C [0,27) on the unit circle C centered at the origin (A;
= [0,2m) il [A;] = 27). In total, there arc n/logn arcs A;. For a chain C on bd(P), we
denote the arc corresponding to o(C') by A(C).

The following fact can be easily observed: For a bd;, a2 wedge w C a(bd;) has multiplicity
2 if and only if either (i) w has multiplicity 2 with respect to a(bd;) or (ii) w is contained
in a(bd(P) — bd;). I the information for hoth (i) and (ii) is available for all i, then the rest
of the computation is same as in the previous scction (i.e., using Corollary 1 to find in each
o(bd;) the wedges with muitiplicity 1 with respect to a(bd(P)) and using a modification
of the algorithm in [9] to compute all the antipodal pairs of wedges with multiplicity 1).
The information on (i) is already computed in Section 2. The computation for (ii), that
is, finding a(bd;} N a(bd(P) — bd;} (i.e., A(bd(P) - bd;) N A;) for each bd;, is the main task
of this algorithm, and we only discuss how to compute A(bd{P)—bd;)} N A; for every i, i =
1,2,...,n/logn.

The algorithm is based on the lollowing lemma.

Lemma 5 For any two chains C' and C" on bd{ P) that are disjoint ezcept at their end-

points, let w be the wedge corresponding lo the intersection A(C') N A(C”) (i.e., w = a(C")

—r

N oC")). Then w has multiplicity 2 with respect to o(bd(P)).

Proof. Easy and omitted. O

By Lemma 5, A(C’) N A(C”) can be represented by a single arc on € (which corresponds
to w = a(C’) N &(C”")) with multiplicity 2. Using this representation, if A(C") (resp., A(C"))
is partitioned into kgr (resp., k¢w) subarcs which alternately have multiplicities 1 and 2,
then A(C’ U C") can be partitioned into at most kgr + kg 4 1 subarcs which alternately
have multiplicities 1 and 2. We use an array to represent the partition of A(C') (into subarcs
which alternately have multiplicities 1 and 2) for cach chain C processed in the algorithm.
The algorithm recursively computes the partition for a chain C from the partitions for its
subchains based on a square-root divide-and-conquer strategy.

Now, because only A(bd(P)— bd;) N A; is computed for every i, we simply assume that
Aj; is one single arc with multiplicity 1 with respect to a(bd;) (i.e., we ignore the partitioning
information for (i) in this computation). llence Lhe input to the procedure below consists of
an ordered set 5™ = {A4;, 4y, ..., Anflogn} of n/logn arcs, and each arc A; has multiplicity
1. We call a subset § of 5" consisting of consecutive A;’s a contiguous subset of $=. Note
that for each contiguous subset § = {4}, A;41, ..., A} of §7, UL ;A is one contiguous
arc, and we denote it by U(S).

The procedure for computing A(bd(P) — bd;) N A; [or all { is as follows.

Input. A contiguous subset § of 5~ with |5} = m.

Procedure P(5,m)
If m = 1, then return the only element in $:
otherwise,

2

1) partition § into g = m/? contiguous subsets $;, S5, ..., S, of size m!/2 each,
g

(2) recursively solve the g subproblems in parallel, and
3) compute the partition of I/(.5) by using the partitions of U(§)), U(S2), ..., U(S,
g
(each stored in an array), with m processors and in O(logm) time, storing the

partition of U(S) in an array.

If we could perform the conquer stage of P(.5.]5]) in O(log|S}) time using O(|S|) EREW
PRAM processors, then it is easy to see that P(.5™, n/logn) would run in totally O(logn)
time using O(n/log n) EREW PRAM processors. Therefore, we only need to show how to
perform the conquer stage computation in the claimed complexily bounds.

In the conquer stage, we have already computed recursively the partitions of U/(5S;),

U{S2), ..., U(S,), which are stored, say, in arrays Ly, La, ..., Ly, respectively. We want

to compute the partition of U(S) (whose subarcs alternately have multiplicities 1 and 2)
and store the partition in array Lg. In order to do that, we compute in parallel, for each
85, U(S — §;) n 5;, and store U(S — S;} N §; and the partition of U{S;) — U(S - §;) in
appropriate locations of Lg.

For a subset §; of §, welet Pre; = {U(S,), U(S2), ..., U(5;-1)} and Sue; = {U(S;41),
U(S342)s --+» U(Sy)}. I both U(Pre;) and U(Suc;) are available, then the portions of
U(S;) that overlap with U(Pre;) U U(Suc;) can be easily obtained, hecause each of U(5;),
U(Pre;), and U(Suc;) is a contiguous arc. WLOG, we only show the computation with
respect to Pre; since the computation with respect to Suc; is similar.

The computation of the conquer stage on Pre; is as follows. First, for each j, broadcast
in parallel the endpoints of cach U(5;) to all Prey’s, for & < j. The two endpoints of each
U(S;) defines an arc on C. Hence cach Pre; consists of O(m1/%) arcs. Then for every j
in parallel, U(Pre;) can be computed in O{logm} time using O(m!/?) processors on the
EREW PRAM by using the preprocess procedure in the parallel algorithm for computing a
minimum circle-cover (1] (given a set of arcs on a circle, the minimum circle-cover problem
is to compute a subset of arcs of minimum size such that the union of the arcs in the
subset covers the whole circle). Since U(Pre;) is a contiguous arc, U(Pre;) N U(S;) is also
a contiguous arc (with multiplicity 2) and can be computed in O(logm) time using one
processor.

Given, for every j, U(S — §;) N U(S5;) (which has multiplicity 2) and the partition of
U(S;) — U(S - 8;) (which is available from L;). we compute Ls that contains the partition
of U(S) whose subarcs alternately have multiplicities 1 and 2, one subarc per element in Lg.
We claim that |Ls] = O(m). This claim can be easily proved by induction (by assuming
|Lj| = O(m'/*) and by using the fact that U(Pre;) N U(S;) is at most one subarc of U(5)
with multiplicity 2 for each j). Now, observe that the arcs in @ = {U(S;) - U(S-5;) | j
=1, 2, ..., m/?} are pairwise disjoint (except possibly at their endpoints). Remove from
{1 all the empty ares and denote the remaining set still by Q. Sort the O(m!/?) arcs in Q
according to their endpoints (in O(logm) time using O(m!/?) EREW PRAM processors
[6]). Then we have a partition of I7(5) of the form

Xs = U(S1)-U(§ - 55}, fn, U(83) = U(S ~ S;), 12y ..., U(Sjq)) = U(S - S5), Ty

where every U(53) = U(S) for some & and I; is the arc between U(S%) — U(S - ;) and
U(S;41) — U(S — S;). Note that it is possible that I; = @ and that for all but at most one
7, if I; # @, then I; has multiplicity 2. By using parallel prefix [14, 15}, the partition X5

of U(S) whose subarcs alternately have multiplicities 1 and 2 can be easily obtained from

awpep e rm e cimes . o e

X in O(logm) time using O(m/logm) EREW PRAM processors, because | Xg| = O(m).
Then X% is stored in array Lg in O(1) lime using O(m) EREW PRAM processors (the
k-th subarc in X5 is stored in the k-th element of Lg).

Overall, the conquer stage takes O(log m) time using O(m) EREW PRAM processors.

5 Conclusion

An important problem is, of course, that of finding an optimal parallel algorithm to trian-
gulate arbitrary simple polygons. Goodrich has solved this problem on the CRCW PRAM
[11]. Whether the same bounds as in [11] can be obtained for triangulating simple poly-
gons on the CREW PRAM and CREW PRAM still remains open. Till that is achieved,
however, an interesting endeavor would be to prove theorems like Theorem 2 for other
classes of simple polygons. This is in the spirit of the papers by ElGindy and Toussaint [§]
and Lee and Chwa [16] where the authors, prior to Chazelle’s discovery [4], try to identify
“triangulation-linear” classes of simple polygons which admit of triangulation in optimal

sequential time.

References

(1] M. J. Atallah and D. Z. Chen, “An optimal parallel algorithm for the minimum circle-cover
problem,” Information Processing Leffers 32 (1989), pp. 159-165.

[2] M. J. Atallah, R. Cole, and M. T. Goodrich, “Cascading divide-and-conquer: a technique for
designing parallel algorithms,” STAM J. Compuiing 18 (1989), pp. 499-532.

[3] G. Bilardi and A. Nicolau, “Adaptive bitonic sorting: An optimal parallel algorithm for
shared-memory machines,” STAM J. Computing, 18 (2) (1989), pp. 216-228.

(4] B. Chazelle, “Triangulaling a simple polygon in lincar time,” Proc. 1st IEEE Symp. on
Foundations of Computer Science, 1990, pp. 220-230.

[5] D.Z. Chen, “Efficient geometric algorithms in the EREW-PRAM,” Proc. 28th Annual Aller-
ton Conf. on Communicaiion, Conirel, and Computing, 1990, pp. 818-827.

[6] R. Cole, “Parallel merge sort,” SIAM J. Computing 17 (1988), pp. 770-785.

[7] R. Cole and M. T. Goodrich, “Optimal parallel algorithms lor polygon and poini set prob-
lems,” Proc. {th ACM Symp. on Compuiational Geometry, 1988, pp. 201-210.

(8] H. ElGindy and G. T. Toussaint, “On geodesic properties of polygons relevant to linear time
triangulation,” The Visual Computer 5 (1989). pp. 68-74.

(9] M. T. Goodrich, “Efficient parallel techniques for computational geometry,” Dept. of Comp.
Sci., Purduc University, West Lafayette, Indiana, 1987.

(10] M. T. Goodrich, “Triangulating a polygon in parallel,” J. Algorithms 10 (1989), pp. 327-351.

[11] M. T. Goodrich, “Planar separators and parallel polygon triangulation,” Proc. of the 24k
Annual ACM Sympostum on Theory of Computing, 1992.

[12] T. Hagerup and C. Rub, “Optimal merging and sorting on the EREW PRAM,” Information
Processing Letters 33 (4) (1989), pp- 181-185.

[13] R.Karp and V. Ramachandran, “Parallel Algorithms for Shared-Memory Machines,” " Ifand-
book of Theoretical Computer Science. Edited by J. van Leeuwen, Volume 1, Elsevier Science
Publishers, 1990,

— gy

[14] C. P. Kruskal, L. Rudolph, and M. Snir, “The power of parallel prefix,” IEEE Trans. Com-~
puters C-34 (10) (1985), pp. 965-968.

{15] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” J. of the ACM 27 (4) (1980),
pp. 831-838.

[16] S. H. Lee and K. Y. Chwa, “A new triangulation-linear class of simple polygons,” /nterna-
tional J. Computer Mathematics 22 (1987), pp. 135-147.

[17] F. P. Preparata and K. J. Supowit, “Testing a simple polygon for monotonicity,” Information
Processing Letiers 12 (1981), pp. 161-164.

(18] C. K. Yap, “Parallel triangulation of a polygon in two calls to the trapezoidal map,” Algo-
rithmice 3 (1988), pp. 279-288.

10

	Testing a Simple Polygon for Monotonicity Optimally in Parallel
	Report Number:
	

	tmp.1307986960.pdf.DiVyA

