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Abstract

We are investigating support for distributed, hierarchical scheduling of tasks
on autonomous, heterogeneous computing systems. Many researchers have
studied the related problem of determining near-optimal task placement in
systems possessing some of these attributes. Their algorithms assume the exis
tence of mechanisms to gather information about the system, move tasks, and
perform other related operations. We are attempting to define and construct
these mechanisms in an abstract fashion that allows them to be generalized to
other distributed architectures.

Autonomous systems consist of one or more subsystems connected by a
message-passing communications mediumj at the lowest level, a processor is an
autonomous system with DO subsystems. Processors within the same system
may be of different types. All information, behavior, and policy pertaining to
an autonomous system is private and local to that system. Any sharing of this
information is at the discretion of the local system.

The goals of our research are to provide scalable mechanisms for efficient im
plementations of scheduling policies on systems ranging from a few workstations
on a local-area network to thousands of machines spread over a large geograph
ical area and connected by arbitrary interconnection links. We are examining
the requirements of these systems for different levels of security, reliability, load
sharing, and location transparency. We hope to be able to characterize these
and other properties in a scalable mechanism that does not impose undue load
demands while supporting a wide range of distributed scheduling policies.
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1 Introduction

This paper describes work being done under the MESSIAHS l project. We propose
to define and build distributed, hierarchical scheduling mechanisms for autonomous,
heterogeneous systems. We will first define some necessary terms, and then we will
give background information and describe the scheduling support mechanisms we
intend to build.

Autonomous systems consist of one or more subsystems connected by a commu
nications medium; at the lowest level, a processor is an autonomous system with no
subsystems. A key feature of autonomous systems is that all information, behavior,
and policy pertaining to a system is private to that system. Any sharing of private
information is at the discretion of the local system.

OUT systems are distributed, which communicate by passing messages over an
external communications channel. Such systems are often called multicomputers (as
defined in [12)) or loosely-coupled systems, as opposed to tightly-coupled parallel
machines that communicate through shared memory.

Heterogeneous systems are multiprocessor systems that may have processors of
different types. They may have different architectures, computation speeds, operating
systems, and devices. In contrast, homogeneous systems have the same architecture,
although they may vary in performance.

There are many examples of systems that share some of these qualities. Shared
memory parallel processors such as the Sequent Symmetry are homogeneous, tightly
coupled systems. Networks of workstations such as those described in [1, 7, 8] are
homogeneous and loosely-coupled. (13) describes a heterogeneous, distributed system
of workstations. None of these systems support autonomy.

It is vital that a system for distributed computation support autonomy because
of the prevailing decentralization of computing resources. There is usually no longer
a single, authoritative controlling entity for the computers in a large organization.
A scientist may control a few of his own machines, and his department may have
administrative control over several such sets of machines. That department may be
part of a regional site, which is, in turn, part of a national organization. No single
entity, from the scientist to the national organization, has complete control over all
the computers it may wish to use.

A feature of autonomy that affects long-lived jobs is revocation. For example, a
computation might start on an unused workstation at night. If the local scheduling
policy determines that the job would no longer be run, the acceptance of the program
must be revoked, and it would have to be migrated within the system. This might
OCCllI if the user returned to his workstation in the morning, or if the load average
rose above a certain threshold. Efficient implementations of revocation would use
mechanisms such as cbeckpointing and process migration. These mechanisms can
also be used later in developing fault tolerance and load balancing schemes. Without

1 MEchanisms for Scheduling Support In Autonomous Heterogeneous Systems.
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a revocation facility, autonomy is not possible, and the available processing power may
be decreased as users refuse to allow their machines to run jobs from the distributed
system.

Heterogeneity is important because it yields the most cost-effective and efficient
method for performing some computations. For example, a large computation might
have certain pieces best suited for execution on a supercomputer, while other parts
might run best on a hypercube or a graphics workstation. If the distributed system is
restricted to only using one architecture, the computation will suffer needless delay.

Within a distributed system, there are two levels of scheduling: the association of
tasks with processors, also called task placement, and the choice of which task to make
ready on a given processor. Our work concentrates on facilities for the former. Our
definition of a task includes the conventional model of a computationally intensive unit
in a Jarger program, as well as a set of database queries (see [4]), output requests, etc.
Thus, our mechanisms could be used in the scheduling of queries to a large distributed
database, to manage a set of output devices such as printers efficiently, or to allocate
network resources for large data transfers. For simplicity of description, we will use
the conventional model of scheduling tasks on processors.

Many researchers have studied the related problem of task placement in dis
tributed systems; however, their algorithms have assumed either that all processors
are similar, or that they have total control of all processors in the system. We have
found no evidence in the literature that the more general case, with heterogeneous and
autonomous systems, has been studied. We have likewise found no reports describing
the mechanisms necessary to implement algorithms for such systems.

An important distinction must be drawn between the scheduling support mecha~

nisms and the scheduling policies (and associated algorithms) the mechanisms sup
port. The algorithms that implement the policies are responsible for deciding where
a task should be run, while the mechanisms are responsible for gathering the infor~

mation required by the algorithms and for carrying out the policy decisions. The
mechanisms provide capabilitYi the policies define how that capability is to be used.

The scheduling support mechanisms we are developing will support systems that
are autonomous, heterogeneous, and distributed. Unless noted otherwise, all uses of
the terms autonomous system and system in this paper refer to autonomous, hetero
geneous systems.

The remainder of this paper describes the goals for our scheduling mechanism (§2),
the system architecture model (§3), our proposed approach to solving the problem of
supporting distributed scheduling (§4), an example to illustrate our model (§5), our
areas of planned research (§6), and our conclusions (§7).

2 Goals and Assumptions

We have five goals for our scheduling mechanism:

3



efficient scheduling The mechanisms must support scheduling algorithms in an ef
ficient manner. An optimal support mechanism would have all the information
required by an algorithm available at all times, and this information would be
perfectly accurate. We will measure the efficiency of our support mechanisms
through simulations to determine the relative difference between the schedule
produced by an algorithm using our mechanisms, and the same algorithm run
ning with perfect information.

scheduling autonomy There should be no forfeiture of local control. The mecha
nisms must support the autonomy of the policy for each systemj only those data
the local policy wishes to advertise should be advertised. Each machine within
the system is free to have a local scheduling policy that does not conform to a
global policy, and the mechanisms must support this.

scalability The architecture should work on systems ranging from a single work
station to thousands of processors, with interconnection schemes ranging from
local area networks to wide area networks.

noninterference The monitoring overhead and message traffic must be kept low so
as to not adversely impact performance within the system.

extensibility Since we cannot foresee all requirements of scheduling algorithms, the
mechanism must be extensible. In particular, the representations of systems
and tasks must adapt to the requirements of users.

We have made several assumptions when designing the system. Our work builds
on earlier work that defined mechanisms for task migration (see [9]) and architecture
independent task and data representations (see [6]). Any machine that submits tasks
to the system must reciprocate by accepting scheduling requests) but not necessarily
honor them. The makeup of the system is dynamicj machines are free to leave or join
the system at any time.

Equally important is what we do not assume. We do not assume that communica
tion between systems is reliable, or that a subsystem belongs to only one autonomous
system.

3 The Architecture Model

We intend to build our autonomous systems in a hierarchical fashion, which is a
model often used in the real world. For example, the Internet is composed of many
autonomous systems, one of which is the set of computers at Purdue University.
Within the Purdue hierarchy, there are many subordinate autonomous systems, in
cluding those used by the School of Engineering (ecn), the Department of Computer

4



..
I Ibredbeddre

I blays I
... I Inyneve

'.

J
raphael I

....•. I leonardo I

i

'.

:~

; I SERG I i

IXINU~ypm~ (

I Department I '.
..

[::IRenaissance

I I
".. CAPO

\

;
;

;,

.
\
\

..
I

/'

I;..
.' Heidelberg i puce

(Internet Purdue ( cs [
'.

J Oregon Slale I '. EeN I'\"

Figure 1: A Sample Autonomous System Architecture

Sciences (cs), and the Computing Center (puce). The computer sciencemacmnes de
compose into several groups: the general-use department machines, the Software En
gineering Research Center, the XINujCypress project, and the Renaissance project,
among others. Within each of these sets there are many machines, which could be
further grouped into autonomous systems. At the lowest level, each machine can be
viewed as an autonomous system. This is pictorially represented in figure 1.

Note that networks are not autonomous systemsj sets of machines are. Au
tonomous systems are logical, administrative groupings; they mayor may not cor
respond to physical groupings of machines. The interconnection network for a set
of machines may suggest an efficient grouping of autonomous systems. For example,
bredbeddie and blays are machines on the same local-area network, and owned by the
same researcher, so it is natural to place them within the same autonomous system.
The nyneve node is an example of a machine under administrative control of two
research projects, the XINU project and the Renaissance project; therefore it belongs
to two autonomous systems.

We have defined autonomous systems as hierarchical constructs, where an au
tonomous system is made up of one or more subordinate systems. We call an encap
sulating autonomous system a parent, and a subordinate system a child. Thus, in our
example, CS is the parent of SERC, Renaissance, etc., and they are its children. As is
demonstrated by nyneve, a system may have multiple parents.

f

,

4 The MESSIAHS Approach

In MESSIAHS, each autonomous system in the hierarchy has a scheduling support
module that is responsible for maintaining the set of information required by the
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scheduling policy and for moving tasks between systems. 2 It provides the mechanism
upon which the scheduling policy is built. There are two facets to the local policy
that our modules support: task placement and task acceptance. Task placement
algorithms take a set of tasks and a description of the underlying multicomputer
and devise an assignment of tasks to processors according to an optimizing criterion.
Because our systems are autonomous, each has a local policy to determine if a task
assignment will be accepted.

Our method for implementing the module has three main parts: the system de
scription vector, the task description vector, and the protocol used to communicate
between systems.

4.1 The system description vector

The system description vector encapsulates the state of a system and is used to
advertise its abilities to other systems that may request it to schedule tasks. The
vector is the information base a scheduling module uses to choose a candidate system
for a task from among its subordinate systems.

At this time, the system description vector is designed to support the scheduling
of conventional tasks. A properly designed mechanism will allow us to tailor the
vector to the application, e.g. the distributed database mentioned earlier.

To determine what information should be passed in the vector, we surveyed the
existing research and noted the classes of information used for scheduling algorithms.
We augmented the set with items we expect will be desired in the future. Factors in
this set include:

• memory statistics (available and total)

• processor load (queue length and percentage of busy time)

• special services (I/O devices, vector processors, etc.)

• system characteristics (processor speeds, the number of processors, etc.)

• communication costs (point-to-point, start up, read/write)

• a measure of the system's willingness to take on new tasks

Each scheduling support module within the system will have the ability to cache
information to build a history of behavior for subordinate systems. This history
mechanism will be user-configurable, and information on the history characteristics
of each datum (e.g. permanence, mean, standard deviation, etc.) will be passed with
the datum. The representation of these data is an open problem and is one of our
current areas of investigation.

2We will often use the notation "X" as a shorthand for "the scheduling module for autonomous
system X."
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4.2 The task description vector

The task description vedor is analogous to the system description vector; it represents
the resource requirements of a task. The task vector is used by the task acceptance
facet of the scheduling policy in conjunction with system description. The task ac
ceptance function can be thought of as a task filter that compares the two vectors,
subject to the local policy, and decides if a task should be accepted.

• memory requirements

• estimated run time

• originating system

• special services required

• estimated communications load

4.3 The protocol

The communications protocol defines the interaction between scheduling modules
within the autonomous system. All information passing and inter-module coordina
tion takes place through the protocol.

Conceptually, the protocol has three channels: the control, update, and task chan
nels. The update channel advertises system state. The task channel moves a task
between systems, and the control channel is used to pass control messages and out of
band data.

4.3.1 The update channel

The update protocol is message based. Each message contains the system description
vector for the autonomous system, and consists of a message header and a fixed set
of data, followed by an optional set of application-defined data. The interpretation
of the application-defined data is done by the two modules at opposite ends of the
channel. The update channel is unidirectional; the recipient of an update message
returns no information through the update channel. The update channel makes no
attempt to ensure reliability. If a reliable message passing mechanism exists, it may
be used. As noted in [3], networks are generally reliable under normal use.

At periodic intervals a module will recompute its status vector and advertise the
updated vector through the update channel. The length of the period is a locally
tunable parameter. When the countdown timer for the period expires, the scheduling
support module recomputes the state representation for its autonomous system, and
advertises it. This is done regardless of how recently it received updates from other
systems. We will investigate the use of a multicast facility for this channel, such as
described in [2, 5]. Provision is also made for polled updates, whereby a system can
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query another as to its status through the control channel and receive a reply through
the update channel.

Update cycles cannot be allowed in the communications structure of a system.
An update cycle occurs when two or more systems exchange update messages and
compute their status vectors based on those messages. Such behavior causes an
ever-increasing overestimation of system resources. For any system, there are three
sets of systems that could pass it updates: its children, its parents, and its siblings
within the hierarchy. In order to avoid update cycles, we do not allow parents to pass
update messages to their children. Also, we tag the updates passing from child to
parentj these are the only updates used in the computation of the system description
vector. Updates from siblings are passed to the task placement module, but are not
incorporated into the system vector. In this way, we have placed no restrictions on
the communications structure within an autonomous systemj it may range from being
nonexistent to being a fully connected graph within the hierarchy.

4.3.2 The control channel

The control channel is intended to be a bidirectional, reliable, message based channel.
Although reliable message passing has been a topic of research (see [10, 14]), there
does not exist an accepted and widely implemented standard for reliable message
passing. Therefore, we will encapsulate our messages in a reliable stream protocol
such as TCP [11]. A control message consists of a header, including an ID number for
the message and a message type, and data that depends on the type of the message.
The defined control message types are:

SCHED-REQUEST The sending system requests another system to accept a task for
execution. This request includes a copy of the task description vector for the
referenced task.

SCHED-ACCEPT The recipient of a SCHED-REQUEST accepts the request by replying
to the requester with this message. The data for this message includes the
identification number of the accepted SCHED..REQUEST message.

SCHED...DENY The recipient of a SCHED..REQUEST message passes its refusal to accept
the request to the requester. The data includes the identicfication number of
the rejected SCHED..REQUEST message.

TASK..REQUEST The system requests a task from another system (used in receiver
initiated load balancing schemes). This request includes a copy of a task de
scription vector describing tasks the requester will accept.

TASK-ACCEPT The system accepts the task request. The data for this message in
cludes the identification number of the accepted TASK....REQUEST message. The
task is moved through the task channel.

8



A

R

RR

Figure 2: A simple autonomous system hierarchy

TASK....DENY The requested system will not migrate a task to the requesterj either it
is unwilling, or it has no matching tasks. The data includes the ID number of
the rejected TASK....REQUEST message.

TASK....REVOKE A system that has been executing a task is no longer willing to do so.

STATUS_QUERY Query the state of a system. A system description vector will be
returned through the update channel in response to this request.

4.3.3 The task channel

We intend to use a reliable streaming protocol to implement the task channel. Al
though a task is conceptually a single message, and thus could be sent within a reliable
message protocol, this is not feasible for two reasons. First, as noted previously, there
15 not a standard facility of this type available. Second, message size limits in exist
ing protocols are typically about 64 kilobytes, which would force a large task to be
fragmented into several messages and reassembled.

The task channel transfers a task between two nodes in an autonomous system.
Once a task's destination has been negotiated using the control channel, a task channel
is opened to move the task. This may either be directly between the source and
destination, or by a special form of delivery called proxy transfer. Proxy transfer is
used when the destination is inside an autonomous system that prohibits an outside
system from directly accessing its members. In this case, the task is delivered to the
encapsulating autonomous system, which is then responsible for forwarding the task
to its destination.

5 Example

We now present a simple example of how our mechanisms could be used. In this
example, Xm denotes the scheduling module that implements our mechanism, running
on system X. Xp denotes the program that implements the scheduling policy.

Consider the simple hierarchy displayed in figure 2. Let us assume that the update
period for each system is one minute, so that every minute, each system evaluates its
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system state and sends an update message to its parent. Thus, RRm and RL", send
updates to R",. R", and L", send updates to A",. Depending on the timing of the
update messages, R", may use outdated information about RR or RL when computing
the description vector to send to A",.

Suppose that a user submits a job composed of a single task to Rp • Rp compares
the requirements of the task against the descriptions of capabilities it has for itself
and its children. It determines that it will not take the task, but finds that, according
to the most recently received updates, RL is capable of handling the task, and RR is
not. Rp sends a SCHED-REQUEST control message to RLp • RLp decides to accept the
task, so RLp sends a SCHED-ACCEPT control message to Rpo Rp then opens a task
channel to RLp and uses it to transfer the task. If RLp had not accepted the task, it
would send a SCHED.nENY message to Rp • Rp would send a SCHED....REQUEST message
to Ap , because no node within R's autonomous system would accept the task.

When the computation of the task is partially completed, RLp determines that
the local policy dictates that RL will no longer work on the task. It suspends the
task and sends a TASK-REVQKE control message to Rw Rp concludes that it has no
children eligible for the job, and passes a SCHED....REQUEST message to Ap •

Ap determines it cannot take the task. Lp has the capability to process the task, so
Ap passes a SCHED....REQUEST message through the control channel to Lp • Lp accepts
the task, and a task channel is opened between RLp and Lp to transfer the task.

6 Research Areas

We are investigating three areas of research that will lead to a prototype implemen
tation of MESSIAHS. Each area has its own questions that must be answered. The
areas are:

description vectors The fixed content of the system and task description vectors
must be set. To determine the fixed content, we surveyed existing scheduling al
gorithms and are analyzing them to find similarities and common requirements.

protocol design This requires determining the information each channel carries,
and its format. Particular issues that must be addressed are the representation
of the task and system vectors, and the formalization of the control messages.
We will examine the possibility of extending the update channel to allow parents
to pass update messages to children without causing update cycles.

programmer's interface We will have to specify the interface to the scheduling
support module for implementers of scheduling algorithms.
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7 Conclusions

We have described a distributed, hierarchical scheduling system for autonomous sys
tems. We w.ill be completing the design and using a prototype implementation with
simulation studies to determine the viability of our approach.

Supporting scheduling in autonomous, heterogeneous systems is a difficult task.
Because information about an autonomous system might not be exported, external
schedulers might have to make decisions based on incomplete information. If we
want our systems to be scalable, we must condense the information that describes a
system so that the size of an update message does not grow in relation to the number
of processors in the system. The heterogeneity of the system introduces difficulties
in the transfer of tasks

We believe the work presented here will support many applications. Scientists
will be able to use a heterogeneous group of machines to solve complex computational
problems; idle workstations can be harnessed to run jobs; research groups will be able
to combine their resources to solve problems in ways not possible before.

References

[1] Bradley Norman Babin. DCS: A System for Distributed Computation. Master's
thesis, Oregon State University, May 1988.

[2] K. Birman, R. Cooper, T. Joseph, K. Marzullo, M. Makpangou, K. Kane,
F. Schmuck, and M. Wood. The ISIS System Manual, Version (2.1), September
1990.

[3] David R. Boggs, Jeffrey C. Mogul, and Christopher A. Kent. Measured Capacity
of an Ethernet: Myths and Reality. Technical Report 88/4, Digital Equipment
Corporation, Western Research Laboratory, September 1988.

[4] Michael J. Carey, Miron Livny, and Hongjun Lu. Dynamic Task Allocation in a
Djstributed Database System. In Distributed Computing Systems, pages 282-291.
IEEE, 1985.

[5] S. Deering. Host Extensions for IP Multicasting. RFC 1054, Stanford University,
May 1988.

[6J R. B. Essick IV. The Cross-Architecture Procedure Call. PhD thesis, Univer
sity of Illinois at Urbana-Champaign, 1987. Report No. UIUCDCS-R-87-1340,
Architecture independent task representation.

[7] Christopher A. Gantz, Robert D. Silverman, and Sidney J. Stuart. A Distributed
Batching System for Parallel Processing. Software-Practice and Experience,
1989.

11



[8] Michael J. Litzkow. Remote UNIX: Turning Idle Workstations Into Cycle Servers.
In USENIX, pages 381-384, 2560 Ninth Street, Suit 215, Berkeley, CA 94710,
Summer, 1987. USENIX Association.

[9] J. K. Ousterhout, A. R. Cherenson , F. DougHs, M. N. Nelson, and B. B. Welch.
The Sprite Network Operating System. IEEE Computer, pages 23-36, February
1988.

[10J C. Partridge and R. Hinden. Version 2 of the Reliable Data Protocol (RDP).
RFC 1151, Network Information Center, Apri11990.

[11] J.B. Postel. DoD standard Transmission Control Protocol) January 1980. RFC
761.

[12J Eugene H. Spafford. Kernel Structures for a Distributed Operating System. PhD
thesis, Georgia Institute of Technology, 1986.

[13] M. Stumm. The Design and Implementation of a Decentralized Scheduling Fa
cility for a Workstation Cluster. In Proceedings of the 2nd IEEE Conference on
Computer Workstations, pages 12-22. IEEE, March 1988.

[14] David Velten, Robert Hinden, and Jack Sax. Reliable Data Protocol. RFC 908,
Network Information Center, July 1984.

12


	Scheduling Support for an Internetwork of Heterogeneous, Autonomous Processors
	Report Number:
	

	tmp.1307986960.pdf.BfuTK

