
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1991

Optimal Parallel Algorithms for Periods, Palindromes and Squares Optimal Parallel Algorithms for Periods, Palindromes and Squares

(Preliminary Version) (Preliminary Version)

Alberto Apostolico

Dany Breslauer

Zvi Galil

Report Number:
91-082

Apostolico, Alberto; Breslauer, Dany; and Galil, Zvi, "Optimal Parallel Algorithms for Periods, Palindromes
and Squares (Preliminary Version)" (1991). Department of Computer Science Technical Reports. Paper
921.
https://docs.lib.purdue.edu/cstech/921

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951728?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

OPTIMAL PARALLEL ALGORITIIMS FOR
PERIODS, PALINDROMES AND SQUARES

Alberto Apostolico
Dan)' Breslauer

CSD·TR·91-082
November 1991

r

Dany Breslauerl

Columbia University

Optimal Parallel Algorithms for Periods,
Palindromes and Squares

(Preliminary Version)

Alberto Apostolico'
Purdue University and
Universita di Padova

Zvi Galill

Columbia University and
Tel-Aviv University

Summary of results

Optimal concurrent-read concurrent-write parallel algorithms for two problems
are presented:

• Finding all the periods of a string. The period of a string can be computed
by previous efficient parallel algorithms only if it is shorter than half of the
length of the string. OUT new algorithm computes all the periods, even if
they are longer, in optimal O(log log n) time. The algodthm can be used to
compute all initial palindromes of a string within the same bounds.

• Testing if a string is square-free. We present an optimal O(loglogn) time
algorithm for testing is a string is square.free, improving the previous bound
of O(logn) given by Apostolico [1] and Crochemore and Rytter [12].

We show matching lower bounds for optimal parallel algorithms that solve the
problems above on a general alphabet. The lower bounds for testing if a string
is square-free and finding all initial palindromes are derived by a modification of
a lower bound for finding the period of a string [7).

·Partially supported by NSF Grant CCR-89-00305, by NIH Library of Medicine Grant ROI-LM05118, by
AFOSR Grant 90-0107, by NATO Grant eRG 900293 and by the National Research Council of Italy.

tpartially supported by an IBM Graduate Fellowship. Part of the work done while visiting at Universita
de L'Aquila, L'Aquila, Italy. •

tPartially supported by NSF Grant CCR-90-14605.

1 Introduction

We present optimal CReW-PRAM algorithms for the problems of finding all periods of a
string and testing if a string is square-free. Both solutions are the fastest possible optimal
paranel algorithms for these problems over a general alphabet. The two algorithms start
with many independent calls to a string matching routine which are performed in parallel
and the results of the string matching problems are later combined to give an answer to the
problem being solved.

A parallel algorithm is said to be optimal if the time-proc~ssorproduct, that is the total
number of operations performed, is equal to that of the fastest sequential algorithm. Note
that a simple algorithm can compute all periods of a string in constant time if n 2 processors
are available. Another simple algorithm can test if a string is square-free using n3 processors.

A lower bound of ft(lo~~;n) by Beame and Hastad [4], for computing the parity of n
input bits on a CRCW-PRAM with any polynomial number of processors, implies that most
interesting problems would take at least that time. However, many problems on strings,
including the problems solved in this paper, have trivial CRCW·PRAM algorithms that
work in constant time using a polynomial number of processors. This fact suggests that an
optimal parallel algorithm that is faster than that lower bound is possible. Our goal is to
design fast optimal parallel algorithms.

1.1 Periods

A string S[l..n] has a period p if Sri] ~ Sri +p] for i ~ 1 ... n - p. The period of S is defined
as its shortest period. The period of a string is computed in linear time as a step in Knuth,
Morris and Pratt's sequential string matching algorithm [15] and in optimal O(loglogn)
parallel time on a CRCW-PRAM as a step in Breslauer and Galil's string matching algodthm
[6]. A recent lower bound by Breslauer and Galil [7] shows that the O(log log n) bound is the
best possible over a general alphabet, where only comparisons between symbols are allowed.
However, Breslauer and Galil's [6] algorithm as well as an algorithm discovered by Vishkin
[21] compute the period p only if p ::; r~li knowing the fact that p > r~l is sufficient to
obtain good string matching algorithms. We show that given an optimal parallel algorithm
for string matching one can compute all the periods, including those which are longer than
half of the length of the input string, in the same processor and time bounds of the string
matching algorithm. In particular Breslauer and Galil's [6] algorithm can be used to obtain
an optimal O(log log n) time CRCW-PRAM algorithm that computes the period of a string.

A palindrome is a string whicp. reads the same forward and backward. Formally, S[1..k]
is a palindrome if Sri] ~ S[k + 1 - i] for i ~ l..k. A string S[l..n] has an initial palindrome
of length k if the prefix S[1..k] is a palindrome. We show how our algorithm can be used to
detect all initial palindromes of a string in the same time bound. We can prove also that this
is the best time bound possible for any optimal parallel algorithm that solves this problem
over a general alphabet. The lower bound is obtained by a modification of a lower bound
for string matching of Breslauer and Calil [7] and will be described in the full paper [8].

1

1.2 Squares

A nonempty string of the form xx is called a square. A string that does not contain any
square is caned square-free. For example, the strings au, abab and haba aTe squares which
are contained in the string baababa. It is trivial to show that any string of length larger
than three on an alphabet of two symbols contains a square. However, there exist strings
of infinite length on a three letter alphabet that are square-free as shown by Axel Thue
[19, 20] at the beginning of the century. We develop an efficient parallel algorithm that tests
if a string is square-free, improving to O(1oglogn) the previous bound of O(logn), given by
Apostolico [1) and Crochemore and Rytter [12]. A version of our algorithm which will be
descr.ibed in the full paper [2] can detect all squares in the same bounds. We prove also
that this is the best time bound possible for an optimal parallel algorithm that solves this
prC!blem over a general alphabet.

There exist few sequential algorithms to solve this problem. Algorithms by Apostolico
and Preparata [3], by Crochemore [9J and by Main and Lorentz [17] find all the squares in
a string of length n in O(nlogn) time. Main and Lorentz [17] also show that O(nlogn)
comparisons are necessary even to decide if a string is square-free. In another paper, Main
and Lorentz [18] show that the latter problem of deciding whether a string is square-free
can be solved in O(n) time if the alphabet is finite. Crochemore [10] also gave a linear time
algorithm for this problem.

In parallel, an algorithm by Crochemore and Rytter [12] can test if a string is square-free
in optimal O(1og n) time. This algorithm uses O(n2

) space. Other algorithms by Apostolico
[1] can test if a string is square-free and even detect all the squares in the same time and
processor bounds using only linear auxiliary space. The algorithm for testing if a string is
square-free is even more efficient in the case of a finite alphabet and achieves the same time
bound of O(1og n) using only 10;11. processors. Apostolico's algorithms [1] assume that the
alphabet is ordered, an assumption which is not necessary to solve this problem. All these
algorithms are designed for the CRCW-PRAM computation model.

All the parallel algorithms mentioned above are optimal since the time-processor product
is O(nlogn) which is the best possible in the case of a general alphabet. Apostolico's [1]
algorithm for testing square-freeness in case of finite alphabet is also optimal since the ~ime

processor product is O(n), the best running time of a sequential algorithm for this problem.
The algorithm described in this paper is a parallel version of the sequential algorithm of

Main and Lorentz [18].

1.3 The CRCW-PRAM model

The algorithms described in this paper are for the concurrent-read concurrent write parallel
random access machine model. We use the weakest version of this model called the common
CRCW-PRAM. In this model, many processors have access to a shared memory. Concurrent
read and write operations are allowed at all memory locations. In case that several proces
sors attempt to write simultaneously at the same memory location, we assume they always

2

a.ttempt to write the same value.
OUT algorithms use a string matching algorithm as a "black-box" to find all occurrences

of a short string in a longer string. The input to the string matching algorithm will consist
of two strings: pattern[l..m] and text[1..nJ and the output is a Boolean array match[l..n]
that has a true value at each position where ~n occurrence of the pattern starts in the text.
We use the Breslauer and Galil [6] parallel string matching algorithm that takes O(log log n)
time on a IOI5~ogn "processor CReW-PRAM. This algorithm is the fastest optimal parallel
string matching algorithm on a general alphabet as implied by a lower bound of Breslauer
and Galil [7]. If a faster string matching algorithm on a finite alphabet exists, it would imply
a faster algorithm for finding the periods and for testing if a string is square-free.

We use also an algorithm of Fich, Ragde and Wigderson [13] to compute the minimum
of n integers in the between 1 and n in constant time using an n-processor CRCW~PRAM.
We use this algorithm, for example, to find the first occurrence of a string in an other string.
After the occurrences are computed by the string matching algorithm mentioned above, we
look for the smallest i such that match[i] = true.

Finally, we use the following theorem:

Theorem 1.1 (Brent): Any synchronous parallel algorithm of time t that consists of a total
of x elementary operations can be implemented on pprocessors in rxlpl + t time.

This theorem can be used for example to slow down a constant time p-processor algorithm
to work in time t using pit processors. Coming back to the example above, which finds
the first occurrence of one string in an other, we see that the second step of finding the
smallest index of an occurrence takes constant time on n processors, while the call to the
string matching procedure takes O(1og log n) time on logk.gn processors. By Theorem 1.1 the
second step can be slowed down to work in O(log log n) time on -'"J processors.

og ogn

2 Finding the periods

We describe an algorithm that given a string S[O..n] will compute all the periods of S. The
output of the algorithm will be a Boolean array P[1..n] such that P[i] = true if and only if i
is a period of S. Note that, for the convenience of the presentation, in this section the input
string S[O..n] is of length n + I and starts with SIO].

We will prove the following theorem:

Theorem 2.1: There exists an algorithm to compute P[1..n] that takes O(log log n) time
using logk,gn processors.

Corollary 2.2: The period of a string S can be computed in the same time and processor
bounds.
Proof: The period of S is the smallest i such that P[i] is true. We use the technique of
Fich, Ragde and Wigderson [13] to compute the minimum of n integers in the range l..n in
constant time using an n-processor CRCW-PRAM. (This step can be slowed down to work
in optimal O(log log n) time by Theorem 1.1.) 0

3

Corollary 2.3: All initial palindromes of a string S can be computed in the same time and
processor bounds.
Proof: Suppose we want to compute all initial palindromes of a string w that does not
contain the symbol $. We present w$wR (where wR is the string w reversed) as input to the
algorithm that computes all periods of a string. Each period of this string corresponds to an
initial palindrome of w. Two copies of the string w$wR are aligned with each other shifted
by some offset and the overlapping parts are identical if and only if the overlapping part is
an initial palindrome of w. This reduction was used by Fischer and Paterson [14]. 0
Example: The string abaab has an initial palindrome aba. This initial palindrome corresponds
to the period abaab$ba of the string abaab$baaba.
Proof of Theorem 2.1:

The algorithm will proceed in independent stages which are all computed simultaneously
and described in the next section. In stage number "l, 0 ~ "l < m, we will compute only
P[n -Ill + l..n -lll+1]j where the sequence {Ill} is a decreasing sequence defined as 10 = n,
1"+1 = L~I.,J and m is the smallest integer for which 1m = o. Note that each stage is assigned
to compute a disjoint part of the output array P and the entire array is covered.

We denote by T., the time it takes to compute stage number Tf using P., processors. The
number of operations at stage Tf will be denoted by 0., = T.,P.,. We show later how to
implement stage number Tf in T., = O(log log 1.,) time and 0., = I., operations using Breslauer
and Galil's [6) parallel string matching algorithm.

Since all stages of our algorithm are executed in parallel the total number of operation
performed in all stages is 2:., 0., ~ 2::., (~rn = O(n) and the time is maxT'I = O(log logn).
By Theorem l.I the algorithm can be implemented using logi:.gn processors in O(loglogn)
time. 0

2.1 A single stage

We describe a single stage Tf, 0 ::s "l < m, that computes P[n -I., + l..n -1"+1] in optimal
O(log log I.,) time. Note, that since a period p implies that S[O..n - p] = S[p..n], there must
be an occurrence of S[O..1'1+1J starting at each position p which is a period of S in the range
computed by this stage.

We start with a call to a string matching algorithm to find all occurrences of S[O..I"+1]
in S[n -1'1 +l..n]. Let qi, i = l..r, denote the indices of all these occurrences (all indices are
in the string S[O..n], thus n - III < qi ~ n -1.,+1).

If there were no occurrences found, the string S has no period in the range computed
by this stage and all entries of P[n - I" + l..n - 1'1+1J can be set to false. Otherwise, we
continue with another call to a string matching algorithm to find all occurrences of S[O.. I"+1]
in S[O.. I., -1]. Let pi, i = l..k, denote the indices of all these occurrences (note that PI = 0).

If there was only one occurrence of S{O.. I"+1] in S[n -I., +I ..n], it can be verified to be a
period in 0(1.,) operations. However, if there are r > 1 occurrences, O(rl,,) operations may
be needed to verify all of them. Luckily the sequences {Pi} and {qi} have a "nice" structure

4

as we show in the follow.ing lemmas. This structure enables us to proceed efficiently to test
which of the g/s is actually a period of S.
Lemma 2.4 (Lyndon and Schutzenberger [16J): If a string of length m has two periods of
length p and q and p + g :$ m, then it has also a period of length gcd(p, g).

Lemma 2.5: If a string A[l..l] has period P and occurs only at positions PI < P2 < ... < Pk
of a string B[l.. r~f]], then the Pi'S form an arithmetic progression with difference p.

Proof: Assume k ;::: 2. We prove that p = Pi+1 - Pi for i = 1 ... k - 1. The string A[l..l]
has periods p and g = Pi+1 - Pi. Since P :$ g :$ rtll by Lemma 2.4 it has also,a period
of length gCd(P1 q). But P is the shortest period so p = gcd(p, g) and P must divide g. The
string B[P'..Pi+1 + 1- 1] has period p. If g > P then there must be another occurrence of A
at position Pi + P of B l a contradiction. 0

Lemma 2.6: The sequences {Pi} and {g;} form an arithmetic progression with difference
P, where P is the period of 8[O..1.,,+d.
Proof: The sequences Pi and gi are indices of occurrences of a string of length 1"'+1 + 1
in strings of length 1TJ. Recall that lTJ+1 = L31."J. By Lemma 2.5 the PilS and g;'s form an
arithmetic progression with a difference P, the period of 8[0..1'7+1]' 0

The sequences {Pi} and {gil can be represented using three integers (each): the start of
the sequencel the differencel and the length of each sequence. This representation can be
easily obtained from the output of the string matching algorithm in constant time and 1TJ
processors.

Some of the gils can be ruled out of. being periods of 8 immediately as we show in the
following lemma.

Lemma 2.7: If k < r then g; is not a period of 8 for 1 :$ i :$ T - k.
Proof: Assume gi is a period of 8 and 1 5 i :::; T - k. In this case S[qi ..n] = 8[O..n- gil. The
string 8[gi ..n] has r - i + 1 > k occurrences of 8[0..1"'+11, which are gi'" gr· But 8[0..n - qi]
has only k occurrences of 8[0..1.,,+1]; contradiction. 0

There might be two reasons why qr +P is not included in the {gil sequence:

1. If S[g, + P..N] # S[O ..N - g, - 1'], and N = min(n, g, + l' + 1,+,) we call it a
mismatch.

2. If there is no mismatch then the only reason that qr + P is not in the {gi} sequence is
that gr +P +1"'+1 > n. We call this case an overflow.

Lemma 2.8 (a mismatch): If S[g, +p ..N] # S[O..N - g, - PI then, S has at most one
period in the range computed by this stage. This only possible period may exist if k :::; r

and it is gr-k+1'

Proof: By Lemma 2.7 all qi, 1 .$ i < T - k + 1, are not periods. Assume gi is a period and
i > r - k + 1, then S[g, ..n] = S[O ..n - g,J. Since r - i + 2 S; k and Pi = (j - 1)1', also
S[g, +p ..N] = S[P'_i+2 ..N - g;J. By the assumption of a mismatch S[g, +p ..N] # S[O ..N
g, - pJ. So S[P'_'+2 ..N - giJ # S[O..N - g, - PI· But S[P'-i+2"P'-i+2 + 1'+1J = S[O..I'+1J
and also N - gr - P :$ ITJ+1i contradiction. 0

5

Lemma 2.9 (an overflow): If S[q. + P ..n) = S[O ..n - q. - P] then:

a. If r < k then qI, '"0' qr are periods of S.

b. If r 2:: k then qr-k+21 '0' q,. are periods of S. In this case qr-k+t can also be a period of
S.

Proof: Assume S[q,. + P ..n] = S[O ..n - qr - Pl. It is enough to show that qi is a period of
S, for max(r - k + 2,1) ::; i :::;: T.

By the definitions of the {q;} and {p;} sequences

since both substrings are covered by r - i + 1 occurrences of 8[0 ..1'/)+1]' Since r - i +2 < k
also

But n - q. - P < 1.+I and S[q. + P ..n] = S[O..n - q. - Pl. By taking prefixes of (2)

(3)

By comhining equalities (1) and (3), we get that S[O ..n - q;] = S[q;oon]. 0
The computation in stage 'TJ can be summarized as follows:

1. Compute the {q;} and {p;} sequences.

2. If k :::;: T, check if qr-k+t is a period of S.

3. If S[q. + PooN] = S[O ..N - q. - P] then,

a. If T < k, then qI, .. , q.. are all periods of S.

b. If r 2: k, then qr-kt21 '0' q,. are all periods of S.

Lemma 2.10: Stage Dumber TJ is correct and it takes O(log log [71) time and 0(1T/) operations.
Proof: Correctness of the algorithm follows from Lemmas 2.7, 2.8 and 2.9. The two calls
to a string matching algorithm to compute the {qi} and {pd sequences take O(logloglTJ)
time and 0(1'1) operations if we use Breslauer and Galil's [6] string matching algorithm.
The sequences {qi} and {Pi} can be represented by three integers which can be computed
from the output of the string matching algorithm (which is assumed to be a Boolean vector
representing all occurrences) in constant time and 0(/'1) operations. Steps 2 and 3 can be
done also in constant time and O(l,J operations. D

6

2.2 A lower bound

The algorithm that finds all periods of a string described above achieves the best time bound
possible for an optimal parallel algorithm as implied by a lower bounds of Breslauer and Galil
[7J. This lower bound can be modified to a lower bound for finding the initial palindromes
of a string.

The reduction from periods to inital palindromes of Corollary 2.3 does not "imply the
immediate translation of the lower bound to this problem. The details of the lower bound
will be given in the full paper [8].

3 Looking for squares

We describe an algorithm that tests if a string S[l..n] is square-free in O(log logn) time on a
l:~~!gnn -processor CReW-PRAM. This algorithm is optimal since the time-processor product
is O(nlogn), the same as the running time of the fastest sequential algorithm on general
alphabet.

We wHl prove the following theorem:

Theorem 3.1: There exists an algorithm that tests if a string S[1..n] is square-free and
takes O(log log n) time using I::~:gnn processors.

The algorithm will work in independent stages which are all computed simultaneously. In
stage number 71, 1 S 71 S flog2n-1l, we look only for squares xx where2lJ -l S Ixl < 2lJ+l-:-1.
If a square is found, a global variable will be set to indicate that the string is not square-free.
Note that the complete range of possible lengths of x is covered and if there exist a square
it will be discovered.

We denote by T't/ the time it takes to compute stage number 11 on PlJ processors. The
number of operations performed in stage 11 will be denoted by O't/ = T't/P't/.

We show later how to implement stage 71 in T't/ = 0(1oglog21J) time and 0IJ = O(n)
operations using Breslauer and GaliI's [6] string matching algorithm. Since there are O(log n)
stages, the total number of operations is O(n log n). By Theorem 1.1 the complete algorithm
can be implemented in maxT't/ = O(log log n) time and l:;~:;n processors.

3.1 A single stage

We describe a single stage 71,1 S 71 S rlog2n - 11, that looks only for squares xx where
21J - 1 S Ixl < 2IJH - 1. Every comparison to a symbol S[q] out of the range S[1..n] is
assumed to be answered as unequal.

Partition the input string S[1..n] into blocks of length I7j' where IIJ is defined as IIJ = 21J - 1 .

That is, block number k, for 1 S k < I;;' is S[(k-l)l7j +l..kIIJ]. Stage 71 consists of sub-stages
which are also computed simultaneously. There is a sub-stage for each block of length IIJI in
which the algorithms checks if there is a square xx such that 21J - 1 S Ixl < 21/H - 1 and
the first x contains that block.

7

Each such sub-stage starts with a. call to the str.ing matching algorithm to find all occur
rences of the kth block, S[(k-I)I,+l..kl,L in S[(k+I)/, ..(k+4)/,-2]. Let P, < p, < ... < P.,
be the indices of these occurrences. Then (k + 1)11/ ::; Pi::; (k + 3)11/ - 1 for 1 ::; i ::; r.

Note, that for each square xx such that 21/ - 1 ::; Ix[< 21/+1 - 1 and the first copy of x
contains the block S[(k - 1)/, + l..kl,] there must be an occurrence of S[(k - 1)1, + l..kl,]
at position (k -1)11/ + Ix] + 1. This occurrence is included in the {pil sequence.

Lemma 3.2: For each pi, we can verify in constant time and 0(11/) operations if there is a
square xx of length p, - (k - 1)1, -I that contains the block S[(k -1)1, + l..kl,].
Proof: Let 1 = Pi - (k - 1)11/ - 1 be the length of the square we are looking for. For all
(in the range kl, < (:0; (k - 1)/, + I check if S[(-I] = S[(J and if S[(] = S[(+ I]. Let
(L be the largest index in tills range such that S[kl, + I..(LJ = S(kl, + I + I..(L + I) and
(R be the smallest index such that S[(R..(k - 1)/, + I] = S[(R - I ..(k - I)I,J. Using the
algorithm of Fich, Ragde and Wigderson [13] we can find (L and (R in constant time and
0(11/) operations.

We show that there is a substring xx of length 1containing the block S[(k -1)11/ + l..kI1/l
if an only if (L ~ (n -1. Recall that since there is an occurrence of S[(k -1)11/ + l..k11/l at
position P" we know that S[(k -1)1, + l..kl,] = S[P, ..pi + I, -IJ.

If (L ~ (R - I then S[(R -I..(LJ = S[(R..(L + I]. The last equality means that there are
squares of length 1starting at positions (n - 1 up to (L - l + 1.

On the other hand, if there is a square xx such that the first x contains S[(k-I)11/ +1..k11/l
that starts at position"., then for all (in the range". +Ixl :0; (:0; (k-I)I,+I, S[(-Ixll = S[()
and for all (in the range kl, < (< ". + lxi, S[(] = S[(+ Ixl]. But (L < (R - I so
S[(L + IJ oF S[(L + Ixl + I] and S[(R - lxi-I] oF S[(R -I]; a contradiction to the existence
of a square of length [xl at position 1r. D

We could verify all the Pi'S in constant time using Lemma 3.2 but it might take O(rl1/)
operations if the length of the {piJ sequence is r. Luckily, we do not have to verify all the
Pi's. If the length of the {Pi} sequences r > 2 then there is a square as the following lemma
shows:

Lemma 3.3: If the number of occurrences of S[(k-I)/,+ l..kl,] in S[(k+ 1)I,..(k+4)I, - 2]
is larger than two then S[1..nl has a square. This square is actually shorter than the squares
which are supposed to be found by this stage.
Proof: All the OCCllIrences {Pi}, I :0; i :0; r satisfy (k + 1)/, :0; Pi :0; (k +3)1, - 1. If r ~ 3
then either P2 - PI ::; 11/ or 113 - P2 ::S 11/. In this case there is a square of length P2 - PI or
P3 - P2 (respectively) starting at position PI or P2 (respectively). D

The computation in each sub-stage of stage 71 can be summerized as follows:

1. Compute the {Pi} sequence.

2. If the {Pi} sequence has more than two elements then by Lemma 3.3 the string S[1..nJ
has a square. This square will be found also by some stage J.L, J.L < 1].

3. If the {Pi} sequence has at most two elements, check if these elements correspond to
squares using the procedure described in Lemma 3.2.

8

Note that if the {Pi} sequence has only a small number of elements we can actually find
all the squares efficiently using Lemma 3.2. The complete details of an algorithm that finds
all the squares will be described in the full paper [2].

Lemma 3.4: Stage number 1/ is correct and it takes O(loglogn) time on logk.gn processors.
Proof: For correctness we have to show that if the string S[1..nJ has a any square xx,
2'1 - 1 :s: [xl < 27j+l -1, then some square will be found.

Assume there is such a square. Since 211/ - 1 ::; lxi, there must be a block of length 171

that is completely contained in the first x. The sub-stage assigned to that block will either
find the square xx or conclude that there is a shorter square by Lemma 3.3. In both cases
a square has been found. Note that some squares can be detected by several sub-stages
simultaneously.

Stage 1/ consists of r- independent sub·stages. In each sub-stage, step number 1 takes,
O(log log I,.,) time and 0(171) operation. Steps number 2 and 3 take constant time and 0(1,.,)
operations. Since all sub-stages are computed in parallel the time stage 1/ takes is O(log log 171)

and the total number of operations performed is r-1,., = O(n). 0,
Theorem 3.1 follows from the last lemma since the log n stages are executed in parallel.

3.2 A Lower Bound

We prove a lower bound for testing if a string is square-free by a reduction to the lower
bound for string matching by Breslauer and Galil [7). This lower bound is on the number
of comparison rounds the algorithm performs when there are P comparisons in each round.
This bound holds for the CRCW-PRAM model in case of a general alphabet where the only
access an algorithm has to the input strings is by comparison of symbols.

Breslauer and Galil [7] show that an adversary can fool any algorithm which claims·
to check if a string has a period shorter than half of its length in less than n(f~l +
10glogrl+p/n12p) rounds of p comparisons each.

We will not go into the complete details of that lower bound. We only use the fact that
the adversary of Breslauer and Galil [7] answers the comparisons in each round in such a
way that after n<r~l +]oglogrl+p/n12p) rounds it is still possihle that the string S[l..n] has
a period shorter than half of its length, or that it does not have any such period. The string
generated by that adversary has also the following property: If Sri] = S[;], for i < j, then
for any integer k, such that k =i mod (j - i) and I ~ k ~ n, S[k] = Sri].
Lemma 3.5: The string generated by the adversary of Breslauer and Galil has a period
smaller than half of its length if and only if it has a square.
Proof: If the string generated by the adversary has a period which is shorter than half the
length of the string then there is a square starting at the beginning of the string, which is
this period repeated twice.

It remains to show that if there is a square then the string has a period shorter than
half of its length. Assume that a square of length 21, starts at position i. This means that
Sri + k] = Sri + / + k] for k = 0.. / - I. By the property of the string generated by the

9

adversary, the string S[1..n] has a period l, which is smaller than half the length, of S. 0
Now, we are ready to prove the lower bound.

Theorem 3.6: Any optimal parallel algorithm that tests if a string S[l..n] is square-free
takes f!(log log n) time.
Proof: Any optimal algorithm performs at most nlog n comparisons in each round since the
fastest sequential algorithm that solves this problem takes O(nlog n) time as shown by Main
and Lorentz [17]. Assume an algorithm performs p = nlogn comparisons in each round.
By the lower bound of Breslauer and Galil [7] and Lemma 3.5 after n(log log n) rounds the
adversary can decide if S[l..n] is square-free or not, fooling any algorithm which terminates
in less rounds. 0

Optimal O(log n) time algorithms for detecting squares designed by ApostoHco [1] work
under the assumption that the alphabet is ordered. The following corollary shows that
alphabet order can not help.

Corollary 3.7: The same lower bound holds even if order comparisons, which result in
less than, equal or greater than answers are allowed instead of the equal or unequal type of
comparisons.
Proof: Breslauer and Galil's [7J lower bound holds also in this case. 0

References

[1] Apostolico, A. (1991), Optimal parallel detection of squares in strings, CS- TR-91-026,
Purdue and Algorithmica, in press.

[2] Apostolico, A. and Breslauer D. (1991), An optimal O(log log n) time parallel algorithm
for detecting all repetitions in a string, In preparation.

[3] Apostolico, A. and Preparata, F. P. (1983), Optimal off-line detection of repetitions in
a string, Theoretical Computer Science 22,297-315.

[4J Bearne, P., and Hastad, J. (1989), Optimal Bound for Decision Problems on the CReW
PRAM, Journal of ACM 36:3, 643-670.

[5] Brent, R. P. (1974), The parallel evaluation of general arithmetic expressions, J. ACM
21,201-206.

[61 Breslauer, D. and Gatil, Z. (1990), An optimal O(loglogn) parallel string matching
algorithm, SIAM J. Comput. 19:6, 1051-1058.

[7] Breslauer, D. and Galil, Z. (1991), A lower bound for parallel string matching, Froc.
23nd ACM Symp. on Theory of Computation, 439-443.

[8] Breslauer, D. and Galil Z. (1991), Finding all the periods and initial palindromes of a
string in parallel, manuscript.

10

[9] Crochemore, M. (1981), An optimal algorithm for computing the repetitions in a word,
Information Processing Letters 12:5, 244-250.

[10] Crochemore, M. (1986), Transducer and repetitions, Theoretical Computer Science 45,
63-86.

[11] Crochemore, M. and Rytter, W. (1990), Usefulness of the Karp-Miller-Rosenberg al
gorithm in parallel computations on strings and arrays, manuscript.

(12] Crochemore, M. and Rytter, W. (1991), Efficient Parallel Algorithms to Test Square
freeness and Factorize Strings, Information Processing Letters 38, 57-60.

[13] Fich, F. E., Ragde, R. L., and Wigderson, A. (1984), Relations between concurrent
write models of parallel computation, Proc. 3rd ACM Symp. on Principles of Dis
tributed C!0mputing, 179·189.

[14] Fischer, M. J. and Paterson, M. S. (1974), String-Matching and other products, SIAM
AMS proceedings) Vol 7, 113-125.

[15] Knuth, D. E., Morris, J. H. and Pratt, V. R. (1977), Fast pattern matching in strings,
SIAM J. Comput. 6, 322-350.

[16] Lyndon, R. C. and Schutzenberger, M. P. (1962), The equation aM = bN~ in a free
group, Michigan Math. J. 9, 289-298.

[171 Main, G. M. and Lorentz, R. J. (1984), An O(nlogn) algorithm for finding all repeti
tions in a string, Journal of Algorithms 5, 422-432.

[18] Main, G. M. and Lorentz, R. J. (1985), Linear time recognition of squarefree strings,
in Combinatorial Algorithms on Words, Edited by A. Apostolico and Z. Galil, 271-278.

[19] Thue, A. (1906), Dbe' unendliche Zeichemeihen, Norske Vid. Selsk. Skr. Mat. Nat.
](I. (Cristiania), Nr. 7, 1-22.

[20] Thue, A. (1912), Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen,
Norske Vid. Selsk. Skr. Mat. Nat. J(l. (Cristiimia), Nr. 1, 1-67.

[21] Vishkiu, U. (1985), Optimal parallel pattern matching in strings, Information and
Control 67, 91-113.

II

	Optimal Parallel Algorithms for Periods, Palindromes and Squares (Preliminary Version)
	Report Number:
	

	tmp.1307986960.pdf.zKEUE

