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ABSTRACT

111m. [nsung. Ph.D., Purdue University, Augusl 1091. On Surface Design with 1m.
plicit Algebraic Slirfaces. Major Professor: Chamlcrjil Hajaj.

Computer Aid~-d Geometric Dc:'Iign (CAGD) is a rapidly growing area that in.

vol",," thoor;", and tecbnique. from many disciplines such as computer science and

mathematiC!! as well a.s engineering. One of the m""L important subjects in CAGD

is 10 efficiently model physical objccl9 witb a .urfllce or collection of surfaces for

many applicatiolll of CAD/CAM, computer graphics, medical imaging, robotics and

clc. Most research in surface modeling has heen largely domino.ted by the theory

of parametrically represented surfaCe:!. While they hve heen successfully used in

representing physical objects, parametric 'urfaces are confronted with SOme problems

when objects represented with them /Ire manipulated in geometric modeling sysleIM.

In recent ycaT'!l, increasing attention ha.s bccn paid to algebraic surfaces thM lire

implicitly dc~ned by a polynomial equation, and provide a more general cla..s of

surfllCC:S a~ lower degree.. In this Lhcsis, we con.ider the problem of modeling COm pIe"

geometric objeclS witb smooth piecewise algebraic surface patchcs. We prcsent an

interpolation algorithm, called Hermite interpotatioo, which charILCteri2es a c!a.ss of

all algebraic ,urfaces of a specified degree thlLt interpolate given poinls and space

curvcs with tangent plane conLinuity. The Hermite interpolation algorithm with l"""t

squares approximation lransforrns the geometric problem o[ algebraic surface design

into a linear algebra problem which can he .olved efficiently. Dased on this ~lgebraic

model, we explore the c!o.ss of quintic algebraic surfaces Lo .mooth convex polyhedra

wj~h " mesh of smooLh piecewise algebraic surface paLches. Degrees of freedom in

constructing wire [r"mcs for polyhedra arc used to control .hapes of curved models

of polyhedra. The open problem of modeling polyhedra having arbitrary shapes

witb quintic triangular algebraic surface palches is considered. Pinally, We present iL

heuristic algorithm which quickly compuLe. a good piecewis" linear approximation o[

iI given digitizc.d space curve. Thi. algorithm SeTves as a primary lool in I'o!ygonizing

triangular algebraic surface patches.



I. INTRODUCTION

Computer Aided G~'Omelric Design or CAGD is a rapidly growing arca lbal in.

volves th""riCil II.nd lechniques from many disciplines such M compUler scicnce and

malhemati"" WI well /IS enginecring. The primary gG1l.l of CAGD is to create geo

melrie model. of phy.ical objects, and to automlLle the process or design, ;"nalysis,

and manuracturing. Fa.ciHt:l.ling 9ueh modeling and an:l.ly~is is getting more ILtlcn.

lion io industry hecau.se constructing computer prolotypes and analy~ing them s;".-.;'s

time and money in lhe manufacLuring process. Efficient construction and manipula.

tion of geometric objects i. necessary in many applications of CAD/CAM, computer

graphiC5, medical computing, pattern recognition, rohoti"", vision, and etc.

One of the most important Bubjects in CAGD is to model or repr<-'Sellt physical

ohjects with a surface or collection of surfaces_ The tools from areas of mathematics

like algebraic and dilferential geometry, and approximation theory have played key

roles in eleploriug the mathemll.tical concepts of surface., and eleploiting them in

implementing geometric modeling systems.

Moot rCilearch in BuTface modeling h"" been largely dominated by lhe theor~' of

parametrically represented surfacCil, such as B~ier surfac,,", Coons p;"Lch"". and lJ.

spline surfae"", due to their highly desirable properliC8 in modeling [13, 14,25]. While

they have been successfully u9ed in representing physical objects, parametric surfllC""

are conrronled wilh some prohlems when objecls reprcscnled Wilh them are manip.

uIM<-'<i in geometric modeling systems. The nClribility or plLrametric surfaces eOmC8

with the cost of high degrees or surfacC8_ For inBlance, computing the intersection or

two parametric ~urfaeC8 or even moderately low dcgCCC9 iB elepensive. Since a bidegree

n p;"ramctrie surface ~an be an algebraic 9urfa~e of a degree up [0 2n1, lwo bi~ubic

parametric 9urf;"cC8 intersed in a ~urve of a degr.,., up to 321.
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III reccol yeaT'9, incIC4.!Iing attention lia... heen piLid to algebraic surfaces that are

implicitly defined by iL polynomial C<juation f(~.y, =) = O. Algebmic surfac"" provide

a more general class of "urfa",," which is closed under geometric opcratiolCl like orrsct.

Ling (6]. while the c1i1l1. of parametric .ur[aces is not. In [ad, all ralional Jlaramclric

.urfaces call he represented in implicit form, althoush the rev"",,, i5 not true.

[n CAGD, keeping the degr""" of ""rfae"" low;. important because high degree

surfaces enlail various computational problems although Lhey give more Oexibility

in surface design. The rcodiliall of surfaces frequently incllld~'t1 in CAGD applica

tiOllS [28} presents a view on the hierarchy of surfae"". Plan"" and quadric., two

simple clll.!.SCOi of algehr;,,;c 5urfaCeJ, a.re well known, and comprise important primi

ti"e! in geometric modeling systelll.9 due to their simp1ici~y. The limited fie;.;ibility of

planeJ and quadrics lead. to an inveJtigation of the cla.l' of cubic algebraic surfaceJ,

searching for marc flexibility. Tori, that arc a type of quartic algebraic .urfaceJ, Me

frequently used as modeling primitiveJ since they are adequate for some applications

like joining two pipeJ.

The nellt cl....scs of surfaceJ in the hierarchy of algebraic surfac,," thu are used

in CAGD /Ire par/lmetric quadrics and biquadrics which are included in the claJ'lses

of algebraic surfac,," of degrccs 4 and 8, respectively. Although they arc /lble to

model more complex geometric objecl.'l, their flexibility is also Be"erely limited [28J.

Parametric cubics alld hicubics reside in the c1ll..5..ics of degrees 9 /ll]d 18, respectively.

Bi'luartic surfaces belong to the c1a.l. of even higher degree in the hierarchy. (Scoe

Figure 1.1.)

Now, we observe gap. between the class,," of algebraic surfaces lypically u.ed in

CAGD. The gaps become more prominent considering ~hnt lhe class of parametric 'ur

face. or algebraic degree n is a proper .ub.et of the whole c11L!i' of degree n. Then, we

naturally /Irriv" at tbe following questioJU: what about quartic and quinlic nlgebraic

surface.? Arc ,ellLic algebraic surface:l imulcquale 115 geometric modeling lools? The

work in this thesis has originated from Buch qUC9tioD.9 in the hope of filling th" flaps

in the hierarchy with /llgebraic surfaces ha.ving moderalely low degrees.

~.

Figure 1.1 The Hierarchy of Algebraic Surfan'S
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There hOLve been St"cral lIoLiccable works in computing algcbr";c surface.; for ge

ometric modeling. Dahmen [201 pTescntl'<! all algorithm that COIl:lI'''''15 11 m""h of

.mooLh piecewise quadratic slirface patches for "Dille special type of polyhedron.

Scderberg [66, 67] discussctl some tcchni,!",," for [[el;) form algebraic surface mod

eling, paying special aUcmion to cubic surfaces. He introduced the concept of control

palms in b"ryccmric coonlini\Les as a way of defining ,'nd controlling a piecewise

algebraic surface patch, though a morc eOllcretc conlrolling scheme nee.:ls La be de

'·eloped. Guo [32J used cubic surface patchC5 to smoolh il polyhedron where cubic

patches for faces arc connccl('(! with two c;.;Lra cubic pMch"". Quartic surf"ee:; were

used by HolTmann ct al. [36J and Middledilch et a1.115) to blend two primaf)' quadric

surfaces. In his thesis, Warren [75J investigatL'<I the mathematical structures of alge.

braic surfaces that meet a gh'en surface with II spL'Cir.ed ordcr of grometric continuity,

and applied the theory to the blcnding problem with low degree algebrllic surfaces.

l\osters {40jstudicd high·order continuous blending of algebraic sllrfaces.

In spite of all the previous resullS, much work remains to be done to e~l'lore th"

pOlential of algebraic surfaces as elTcctive lool9 of CAGD. In particular, the capability

of modeling a mesh of three dimensional data wilh smooth piecewise algebraic surface

palches is esselltial because OnCe it is achieved, physical objects can be modeled using

algebraic surfaces, and can be included in geometric 1110deliug .yslem.s for further

manipulalion. Hence. creating complex geometric objects wiLh smooth piecewise

algebraic surface palches is the first step toward construclion of a geometric modeling

system with algebraic surfaces lIS primiti"e tools.

In thi. lhesis, lI'e propose a direction of exploration of moderalely low degree alge

braic surfaces as tools of CAGD. In Chapler 2, we <Ievise all interpolation algorithm,

called Hermile interpolation, for algebraic surfaces. This algorithnl takes as inpnt

pOSilional and (oplionally) lirst derivMive information of poinLs lind space curves,

parametrically or implicitl)' given, and charM:terizcs, in lenn. of the nullspace of "

matrix, the spar.e of all the algebraic surfaces of a specified degree that smoothly in.

lerpolate the specifiNi geometric data. Given inplll o:'lata, it prodnces a homogeneous

,
linear system, where unkllowns are coelliciem.s of algebraic surfllccs, such lhaL allY

algebraic surfaces with coellicienl'l that nrc solution. IIf the system interpolale lhe

input dala. The Hermite interpOlation algorilhm serves as a fundamenLal 1001 for

finding algebraic surfaces of a 9p""ified des"'e mC<lting with liLngen~ plnne conlinuity.

In Chapter 3, We consider how to choo.o;e an inslance .udace from a fiLmiiy of

iLlgebraie surfaces, resulting from Hermite inlerpolation. In geomeLric modeling sy•.

tem.s, a user mll.'lt be able to selecl a surface interactively with geometric intuition.

The cl"-Ss Or family of algebraic .urfa.ces, computed wilh Hermile inlerpolation, is

expressed in temu of the nu1l9pace of a malrix thal can be spanned by a set of basis

VeclOl"9. The dimension of lbe mzlbpace equals the number of degre.... of freedom

left afler consuming, for interpolo.tion, sOme of the degrees of freedom of tbe c1i1S5 of

algebraic surfac,," of a given degree. We apply I"""t square approximation to selection

of a surface from the family by cOlll!uming the remaining degrees of freedom properly.

Through Hermite interpolation and least square approximalion, Lbe geometric prob.

lem of algebraic surface design i9 transformed into a linear algebra problem which can

be solved efficiently. A scheme of coolrolling shapes of algebraic surfaces in the family

computed by the Hermite interpolatioo algorithm i. investigated in the barycentric

coordinale system.

Theo, we aLlempl to generate a mesh of smoolh piecewise algebraic surface

patch"". In Chapter 1, triangular surface patch"" arc taken from the class of quin1ic

algebraic surfaces 10 9moolh a given convex polyhedron. Each edge of a polyhedron

is replaced by a conic CurVe with .....,ociated normal directions, and lhen each face is

replaced by a quintie algebraic patch Lhat fleshes the three boundar}' curvcs. E~ch

conic CUrVe can be selected Wilh a degree of freedom, and iLs shape or sharpness C,'n

be used to conlrol the shape of lriaogular surface patches. Then, we consider Lhe

more geoeral problem of smoolhiog 110 ..rbiLrary polyhedron. We presenL some ideas

for coping wilh nonconvexity of a polyhedron, and di9Cu.. open problem.s that nem

to be resolve<! in smoothing arbitrary polyhedra with algebraic surfaces.
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In Chpter .5, We consider how to approximate ,," arbitrary three dimcn~ion/ll

space curve, m;ulc of II + I poinl!, with m Iinc scgmcnls. Gener;,.Ling piecewise lin

c/lr approximations of digitized or deMoly sampled curves is /Ill imporlant problem

in image processing, paLtcrn recognition, geometric modeling, ILnd computer graph.

;C.l. Even though much altention hM been paid to the plano.( CurVe '""'c, litt]e work

h"" addr"".cd space curVe approximation. The heuri.!ic algorithm We prl.'3cnl in

this chapLer con.umcs O(N;,..n) time and O{n) "pace. It i. based upon the notio".

of CurVe length and spherical image which are the fundamental concept. describing

intrin.ie properties of "pace curves. In thi9 work, this heuri.tic pkcewisc linear seg.

menlation algorithm provides .. basic tool for gcncr"ting an adaptive polygonization

of algcbraic tri"ngular surf<U:e patches, computed in CbapLer 4.

Finally, Lhi. thesi~ i••umma.rizcd, and open problems for future re.ca.rch arc

di.cu.sed in Chapter 6.

7

2. HERMITE INTERPOLATION FOR ALGEBRAIC SURFACES

Thc primary objective of this v,.ork is to con.truct Or ",ppro~imaLc physic"l ob

j"C1.s u.ing mcshes of algebraic aurf"ce patches. For Besthetic or function",l rcasoD.9,

iL is u.ually required tli"t tbe surf"ce patches meeL with geometric continuiLy. In

many ",pplication., C' or tangent plane continuity is sufficient. In his thcsi~, War.

rcn (71i] inve:ltig"Lcd algebraic .lrucLures of all surfaces meeLing a gi"cn algehraic

surface smoothly "La point or along a curve on tbat .urface. IIe applied ideal theory

to characterize Lhe cl.... of such surfaces in len"" of polynomial expre5sions.

In Lhi. cbapter, we present an algorithm, called Hermite inLerpolation, which al.

gorithmiCll.lIy characLerizes tbe class of 1111 algebraic surfaces of II bed degree which

satisfy given geometric specifications. [nput to Lhi. algoriLhm i. II. combinMion of

points IlIId algebraic .pace curves that arc ellpressed either implicitly or p..r",melri.

cally. The point.. and .p;tcc curves filly h"ve associated first deri ...... tive informaLion in

the form of normal vedoTll tbat define tangent planes at the points and space Cllrl'cs.

Gi...eo an algehr&ic .urface S: f(:r,y,::) '" 0 of degree n, Lhe Hermite interpolation

algorithm COll5tructs a homogeneoU9 linear .y.tcm Mp: = 0, M, e Rft,.n., X e R"'

of OJ equations and ll" IInknown. where the uoknowns x are n.(", (ft~3)) coefficicnts

of S. ' Only when the rauk r of M( is 1095 th ..n the nl.lmber of Lhe coefficients ".,

docs there exist a nontrivial solution to ~he system. All the vectors cxcept 0 in the

nul1space of M 1 form a family of algebraic surfaces of degree II, satisfying lhe given

illput specifications, \\"h0ge coeffidenl.9 are e~pres.ed by homogeneous combillation.

of q(== o. - r) free p.l.tametcrs where q is the dimension of the nullspace.

As a result, the Hermite interpolation algorithm characterizC5 the family of al

gebraic Sl.lrfacC9 with specified geometric properties in tcrlrul of the nullspace of iL

I An .Igebraic .Ur(Bt< of d.groe n b.. (n~.) len....
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mill';x. The algorithm is al.o useful in proving the exislence Or aonexi.!"nc" of alga.

[,raic surf"",," of degree n 'illisfying the inp"t specific;,.L;,,"••ince, when the mnk or

MI is "v, there is only the trivial.olution 0 which <lOal not correspond to an algcbmic

surface.

This chapler is orS1lniu:d 11.'1 follow._ F'l"5t, in Section 2.1 we present .ome fun.

dOomeRI,,] definition. and a key thcorem lI.1'd throughout the th""j•. In Section 2.2

and 2.3, the Hermite interpolation algorithm is de'''ribcd. In Section 2.4, we bricny

cODsider geometric continuity, and prove thal OUr algorithm finds It. family of all the

deirll.ble surface with Gl rescaling contiouity. Then, 'Orne compulationalll.'lpecls of

Hermite interpolatioo are cOllsidered along with .evcr;,.1 example. of computing low

degree algebraic surfacC9.

2.1 PreliminariC9

We give briefder,nition. of certain lerm.. we need and al.o "tate a form of llczout

theorem. For detailed aud additional definition~, refer to [I, 73]. For any multi_

variate polynomial !, partial deri""tiVC9 arc written by Bubscripling, for example,

!~ = lJl/az, IZlJ = {J21/(lJ:z:lJg), and "a on. An algebraic surface of degree n in n' is

implicitly defined by a single polynomial equation J(:z:, g,.;) = r:'+.i1"~S" C;Jl:Z:'y'Z. =

o where tbe coefficienlB G;. of ! are rcal numbe1'9. The ll2IllllU or gradient of

lez,y,::) = 0 i. the vector function fill = (f~,I•.t.). A point p = (ZO,gO,zo)

on a surfa.ce is a regular point if the gradient at p i. not null. Otherwise, the

point is ~ingular. An algebraic surface I(z,g,.:) = 0 i. jrredllc:ible if I(z,y,z) docs

not factor OVer the field of complel\" numbers. ,\n algebraic ~pll.Ce curve is defined

by the COmmon intel"!lection of two Or mOre algebraic surfaccs. Although it is not

known if a complete algebraic .pacc curve can be complelely delermined by lhe

interseclion of only two ourfaces, in geometric design, We often rcotricl Our comid_

eration to a specific CUrVe segment which is contained in the inlersection of two

algebraic surface:!. ,\ raliollal parametric space curve is rCpTcoented by the triple

,
G(~) = (z = GI(.. ),y = G2{~),.: = G,(~»), where Gl, 0 1 and 0, arc ralional func.

tions in ~. The degree of 0.0 algebraic surface iJ the number of intersection. belween

the surface and a line, properly couoting complex, infinite and mulliple inte,,~'C_

tion.. Thi. degree is 0.1.0 the Bame Il.!I the degree of the der,ning polynomial. The

rlegrCl;l of an algebraic space curve is the number of intersection. between the curve

1Lnd a plane, properly counting complex, infinite and multiplc inte,.,;cction•. The de

gree of all algebraic curve ~egmeot given II.! the intersection CUrVe of two algebraic

~UrflLCC9 is also no larger tban the product of the degrees of the two surfaces. Further

more, the degree of a rational parametric curve i. tbe .ame as the maximum degree

of the numerator and denominator polynomials in the defining triple of rationai func.
tiOM.

The following definition. arc pertinent to our Hermile inlerpolation illgorilhm:

Definition 2.1 LeL p = (P~,P.,P.) he a point with an associated normal "eclor

n = (n~,n.,n.) in n~. An algebraic surface S : I(:z:,y,.:) = 0 is ~aid lo

contain p with C' or tangent plan" continuity if

(I) I(p) = !(p.,P.,p,) = 0 (containment condition), and

(2) filf{p) is nol zero /lnd V I{p) = on for 'ome nonzero 0 (langency condition).

Defioilion 2.2 Lel C be an algebraic space curve with an a~Jocia!cd ' .. ry_

ing normal vector n(z,g,z) = (n~(z,y,.:),Il.(:z:,y,.:),n.(z,y,=)), defined for

all poinlB on O. All algebraic ourface S !(:z:,y,=) = 0 is said 10

contain C with 0' or tallsent plane continuilY if

(1) I(p) = 0 for all poinlB p or C (containment condition), and

(2) filJ(p) is nol identically zero !Lnd V I(p) = on(p) for some 0 and for all points p

of C (tangency condition).

Definition 2.3 An algebraic surface S: f(:z:,y,.;) = 0 io said lo Hermi!e interpolale

a given colk'Ction or poinls and space curvco wilh 1I.!i.0ciated normal vectors. if 5

contains all the point. /lnd "pace curVe:! with 0' continuily.
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The following is One form of IlW\l\ theorem, the oldest theorem of 1I.Igchraic

geometry. As will be secn, this theorem plays an imporLan~ role in proving the

correctncss of the Hermite interpolation algorithm.

Theorem 2.1 (BOZDllL) An algebraic curve C of degree d inlcr:;ecl9 nn 1I.lgebr1l.1c surface

S of degree n in cX1I.cIly nd poinl.li, properly counling complex, infinite, nnd multiple

illlcr:;cctio"s. or C intcrse.:l.s S infinitely orten, Lhal is, a COmponent of C lie.< entirely

on S.

2_2 Interpolation of Points with Norm..!.

2.2.1 ContainmenL

From the containment condiLion of Dcfinilion 2.1, it (01101"5 lhaL any algebraic

surface S: f(z,!!,.:) '" 0, wbose cDflflieients .atisfy the lin=r equation j(p) = 0 will

contain the point p. for a set of l: data. points, this yield. /.: homogeneous line..r

cQuaLioM. Since division ol f(z,!!,z) '" 0 l>y a nOnZero number do,," not change Lhe

surf::tce lhe polynorni::tl f(z,!!,::) represents, an algebraic .urface of degree D h...., in

Iact, F = (~i3) -1 degrees of freedom. Interpolatioll of all the point.. is achieved by

seJecting ao algebraic sllrface ol degree n sueb thaL F <:: r, where r (::; k) is the rank

of a .yslem of /.: homogeneous linear equation•. Similar approach"" [Dr cOllstructing

algebraic surfac,," thaL interpolate point.. can be (ound in [.59].

2.2.2 Containment with Tangency

A poinL p '" (Pz,Pv,P.) wiLli. IL normlLl.ector n = (n.,II., n.) delermin""a unique

plane P : n~z +n.!! + n,Z - (n~pz +nvp. +n,p,) '" 0 ILt the poiot p. An algebraic

sllrface S : /(2:,!!, z) = 0 o[ degree II that Hermite interpolal"" the point p, can he

consLructed by seUing up a linear ,ystem of equalions as follows:

For each poiol p wilh a normal vector n = (1I~,nv, tl.),

I. containment condition Use the linear equallon f(p) = 0 in the unknown coeffi.

cienl'l of S.

II

2. (angeney condition Select one of lhe following;

(a) Jrn~ # 0, usc the equations n~f"(p)-n"!r(P) =: 0 and II r f,(p)-n.f.(p) =:

O.

(b) Ifn,:f. 0, usc lhccquations n.fr(p)-n.J.(p) =: 0 and n.J.[p)-n,J.(p) =
o.

(e) If", # 0, use the "quation. n.J,(p)-n.f,(p) =: 0 ilnd n.f,(p}-n.f.(p) =:

O.

3. Nexl, en.ure lh..lthe coefficient. ol 1(::,!!,:) '" 0 satid}'ing the above three

lillear eQuaLiolls, additionally saLi~fy the constraints 'V f(p) # 0, ~ince nonlan

geDcy ..Lp may occur if S lurns oul to be singular at p.

The proof of corredncss of the above algorithm follow. Irom the follOWing lemma.

Lemmll. 2.1 The equll.lions of the above IIlgorilhm sati.fy Delinition 2.1 of point COn.

tainmenl and langency.

Proof: The lirsL linear equation j(p) '" 0 .aLisli"" conLainment by deliniLioli. We now

.how that the remaining equaliolU .atidy 'V f(p) = a· n for /I nonZero a. Sincc n

is not ::t null vector, withoul loos of generality, We may asSlime Lhal n~ # 0 in sLep 2

abo'·e. Other CMc.'9 of n. # 0 or n~ # 0 clln be handled analogollsly. Now let a '" ~,

assuming n~ # O. Theo f~ '" a· n~ and substituting it in the selected linear eqllalion

nzf. - n.fz '" 0 yields f. '" D' n, ::tnd subslituting it agllin in the other .eJected

lioCllr equation Dzf. - n.fz '" 0 yield. f, = a· n •. Hence 'V f(p) '" n' n. Finally,

nole thal jz = 0 for nz # 0, in the selecled linear cqllation~ of ste]> 2(0.), would cause

'V j(p) '" 0, whicli We ensured would nol bappen in slep 3 of the "Igorithm. "ence

fz "# 0 and 50 n # 0 and the lemma is proved. 0

2.3 lolerpolll.tion of Curv"" with Normals

The varying norm"l vcc:tor ",,"ociated wiLh /I. space curve C can be defined Im

plicitly by the lriple n(2:,!!,::} '" (n.(2:,!!, ~), n.(z, y, z), 1I,(:r,!!, ~)) "'here tlz, n. ,'nd
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". atc polynomial. o[ maximum degree m and <Iefinctl (or all points p = (:r,y,:)

along the CUrYe C. For the ~pccial ca.sc of a rationill eUn'" which we shall lrcat

separately in Subsection. 2.3.1.2 and 2.3.2.2, the "arying nDrm~1 vIdor "n" be also

defined parametrically iI.!i n(~) =: (:I' == nz(s),y:= '1.(.),.: =: n.(s)), with n., "" and

n. now rational functions in 5.

2.3.1 Containment

2.3.1.1 Algebraic Cum",: Implicit Definition

Let C: Ud:r,!I,=) = D,h{:r,y,=) = 0) implicitly define an algebraic space curve

of degr"" d, The irreducibility of the curve is nol a resLridion, since redudblecun'C9

Can be handled by treating each irreducible CUrVe COmponent separately. For preci.e

definitions of irreducible COmponents of an Algebraic curve, .ee fiJ]. The containment

condition (.... well as the tangency condition) rcquire9 the interpolating surface to be

zero at II. finite number of points On the curve, To en'Ure containment of a specific

irreducible componcnt requin.,. cho<>.'ling this finitc number of points on tbat compo

nent, The precise number, dcriv<>d from Dezout thcorem, i. II. linear function of the

dcg"", of tht curvc Component,

Tbe situation is mOre complicat<>d in the r""l !eUing, if we wi.h to achieve sepa.

rate containment of one of pO:l5ibly .everal connected rcal o"ab of a single irreducible

component of tbe space CUrVe. There is a nonlrivial problem of .peeifying a singlc

isolated rea.l oval of a curve. See [5] where a "olution i. derived in term:l of a decom_

pooition of "pace into cylindrical cclL, which separatC:5 out the variou. componenl.s of

any real cun'e (or any real algebraic Or semi.algebraic seq.

An intcrpolating "urfMe S : I(z,y,:) = 0 of degr~ II for Containment of an

irreducible curve componcnt C, is computed as follows:

1. ChDO.'ie II. set L< orlld+ 1 poinl.s On C, L, = {Pi = (:r;, Yi, =i}li = I,·", nd+ i).

The "cI L< may be computed, for example, by tracing the intcrsection of It =

13

h = 0 [7J. Thu~, "llcrnativcly, an algebraic curve may be gil'en ,\5 a list of

poinLs.

2. Nc~l, scL up "d + I homogeneous Un"a, .,quaLion• J(p,) = 0, for all Pi E L<.

Any nOllbiv;,,1 solution of this linear system will represent an ,'lgchraic su,face

which interpol"l.,. the cnlire curVe C.

The proof of correct",,"" of the above algorithm i. captured in the rollowing Lemma.

Lemma 2.2 To satisfy Ute containment condition of an algebraic CUr"e C of degr~ d

by an algebraic .urface S of deS'""'l n, it suffice9 to sM'sfy Lhe containment Condition

of nd + 1 poinl.9 of C by S.

Proof: This is essentially a reotatement of BC20ut theorem in SecLion :U. Making S

contain nd + I poinl.s of C ensUr"" that S mu.t intersect C infinitely often and hence,

S must contain the cntire curve. 0

Recall that S : I(z, y, =) = 0 of degree n h"" F = ("~') - I degree. of freedom.

Let ~ be the rank of the "ystcm of nd + 1 linear equation., There are nonLrivial

solutions to this bomogencoU5 .yatem if and only if F > rand i1 unique nontrivial

solution when F = r. Again, an int.crpola~ing surface can be obtained by choosing a

dcgree n such tbat F ~ r,

2.J,1.2 Rational Curve. : ParameLric Definition

When a CurVe is given in ri1tional pi1ri1metric form, iLa equaLions Can be usc<l

directly to produce a linear system for interpolation, ins!ei1d of first computing "d + I

poinLa on the curve. Let C: (:r = G,(I),y = G,{I),z = G,(I)) be /l rational curve of

degree d. An interpolating surface S : I(:r, y, =) = 0 of deg"", n which comain. C is

cumputed as follows:

I. Substitute (:r = G,{I),y =G,{t),.: = G~(J)) into the equaLion I(x,y,.:) = 0_

2. Simplify and ratiOnalize the cxpression from step I to obti1in thl! numerator

Q(I) = 0, where Q is a polynomial in I of degree at most nd with coefficient.



wbich are bomogeneou. lincar exprc:.. ion. in the coeflici'm1.9 of I. Par Q to be

identically zero, "",ch of i1.9 coefficien1.9 mu.t be zero, and hence we obtain a 'ys

tern of a~ mast lid+ I linear equations, where thc unknown. are the coeflitien1.9

of f· ,\ny nontrivial solution of this lincar system will rcpresent /I surface S

which interpolates C.

Lemma. 2.3 The containment condiLion i. aatisficd by step 2 oC the above algorithm.

Proof: Obvioll9. 0

2.3.2 Containment with Tangency

10 order to Hermite interpolate an algebraic curve C with a normal vector n by

aO algebraic surface 5, We again need to solve a homogeneous linear system, whose

equatious sLem from both Lhe containment condition and the tangency condition. of

Definition 2.2.

2.3.2.1 Algebr..ic Curves with Normals; Implicit Definition

As bdore, let C: (fl(z,y,z) = O,I,(x,y,r):= 0) implicitly define an irreducible

algebrllic space curve of degree d, together wilh an associatrd normal vector defined

implicitly by the triple n(z,y,z) = (lIz(X,y,z),n.(z,y,z),n.(x,y,z)) where nz, n.

and ". are polynomials of maximum degree 11'1 and defined for all poin1.9 p = (;r, y, c)

along the cur"e C. A Hermite interpolating surlace 5 ; I(z, y,:) = 0 of degree n

which conULins C \l.-ith C' continuiLy i. then computed "" follows;

1. Choosea.eL L, ofnd+ t poin1.9 On C, L. = {p;= (;r;, Yi, zi)li = I"" ,nd+l).

The 6e~ L, may be computed, as before, by tracing Lhe intcr.lection of II = 12 =
o.

2. Construct .. list L, of (II + 11'1 - I)d + I point. normal pairs on C, L, =

{[(Zi, y;, ~,), (II", n.i, n ,;lIIi = I"", (n + 11'1 - I)d + I), where (nzi, n~i. n.i) =

n(;ri, Yi, z;) for ..11 i. Thu., aILernati~-c1y,an algebraic curve C and its ll.S9ociaLed
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normal vector n may (cither or hath) [,e givcn IU a li.t of poillt"j or point-normal

pail'll.

3. containment condit jon Next, set up tid + I homogeneous linear equatioll'

I(Pi) '" 0, for Pi E L" i = 1"" ,lId+ I.

4. tangency condition

(a) Compute t(z, y, z) =V fl(Z, y, z) )( V12(z, y, z). Note t =(I~, t., I,) is thc

tangent \'ector to C.

(b) SelecL One or the following;

i. If!z t- 0, use the equation I. '11, - n.· f. = O.

ii. If I. t- 0, u.e the equation f~· n. - n~· f. = o.

iii. If I. 'f: 0, u.e tbe equation I~ ·n. -nz · I. = O.

Subllti~ulc each poinl·normal plLir in L, into the ahove .e1eeted equation

to yield (n + II'l - I)d + 1 IL<1diLionalllomogeneou. line..r e<)uations in the

coefIicienLs oC I(x,y,z).

5. In lotal, we obtain II. homogeneous system of (2n + m -I)d + 2 linear equation,.

Any nontrivial solution of tbe homogeneous line.ar s)'lltem, for which, addition.

ally, V f is nol identically zerO for all poinls o[ C (that i., the sudace 5 is not

singular Illllil poin1.9 along the curve C), will repre.ent a .urf..cc which Hermite

interpolate. C.

The proo[ of corrccLnCll. of lhe above algorithm fol1ow9 from !.emnln 2.2 alld the

following lemma, which shows why the selecta( equation of step 'I(b), evaluated a~

(n + m - l)d + I point·normal pairs, i. sufficient.

Lemm.. 2.4 To satisfy the tangency condition of an algebr..ic curve C of degree Ii

with II. normal vecLor n of degree 11'1, by Iln aigeblllic surf..ce 5 of degree n, it suffic,,"

to .atisfy the tangency condition aL (II + m - IJd + I points of C by 5 as in step .1

or tbe above algorithm.
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Proof: 10 sLep 4(h), a:,.ume, without I""" of generality, ~hal t~ '" O. Then the selectl.,J

equation
Dy mulLiplying a to eqllation (2.3) and subtracting equaLion (2.6) from iL, we ohtain

1"·n.-n.·I.=o (2.1)
1~·t~=a·n~·I~ (2.7)

valid for all poinLs of C. NexL, [rom the definition of II normal Ve<;tor of .. sp"ce curve,

valid for all poinLs ofC. Now iL is imp"""ible that both n"(%.y,~) /lnd n.(z,y,z) arc

idcotically 2<:ro along C, since i[ they were, then equation (2.3) would imply ~hat

n~ ·I~ '" 0, and as we lLS5umcd. (haL j~ '" 0, would in Lurn imply Lh/lt also n~ = 0

along C, which would contradict the earlier assumption Lhat n is not identically zero.

Hence, at least, one of n. and n, mll5L /liso be nonzero. Without loss of generality,

let n. '" O. Al.o, le~ o(%,y,~) = ;:-. Then,

We flr1lL fihow lhat if equation (2.1) is eY3luBted aL only (n +m _ I)d + I poinLs of C

in step 4(b) abo"c, iL bolds for all poinLs on C. EquaLion (2.1) delin"", an algebr"ic

surface H of degr"" (n +m -I) which inte,."ecLs C of dcgree d lit OIL moot (n +m -I)d

poinlS. Invoking Dezout th"llrem, it followo thaL C musL lie enLirely On thc surface

11. lIence equation (2.1) is valid along the entire CurVe C.

Wc now show that sLep 4 of ~he above algoriLhm satisfies thc Langency coudition

as specified in DefiniLion 2.2. Since t of stcp 4(a) is a tangent vector aL all poinlS of

C, aod the surfacc S : f = 0 contains C, the gradient vector V I is orthogonal to t,

which yields the <'quaLion:

(2.S)'~=a'n~

and since I, '" 0, finally obtaiu

1. containment condition SubsLituLe (z '" Cl(s),y = C,(s), ~ '" Ga.[~}) into lhe

equation f(:l:,y,z) = O. This resulLli in, aL mosL, lid + I bomogenCOlls linear

equaLions M in SubsecLion 2.3.1.2.

llil.lid aL all points of C. Hence equation. (2.4), (2.S), and (2.8) together imply LhaL

V/('l',y,z) '" Cl' n for all points C and some nonzero a. l lIence, lhc tangency

condiLion of Definition 2.2 is met.. 0

2_3.2.2 RaLional Curv"", with Normals: Parametric Definition

2. Langency condiLion

\Vhen both a fipace curvc aud its associated normal vector are given i" ratiOIl,,1

paramcLric form, thcir equations Cao be used directly 10 produce a linear system [or

inLerpollLtion, inst<=! of lir1lt computing points and poinL'normal pai,." o[ the curvc.

Let C : (% = G,(s),y '" G1(.),z = Ga.(s») be a raLional curVe o[ degree d with

a normal vector n(s) '" (n~(s),n~{s),n.(s»of degree m. ,\ Hermite interpolating

surface S : 1(%, y, z) '" 0 or degree n which contaiD'!l C with C' conLinuiLy is compulcd

as follows:

(2.2)

(2.3)

and substituting iL into equlLtion (2.1) yields

(2.·1) (a) CompuLe V/{s) '" Vf(G'(S),Gl(S),G~(s))and l(s) = (1;,~, 1;). Note

Lhat l '" (I" I., I.) ig the LangenL .'cetor 10 C.

I. '" a· n.

for 1111 poinLs on C. From equaliom (2.2), (2.·1) and (2.5) we obtain,

I~' I~ + a· n•. /. + a· n.· I. = 0

(2.5)

(2.6)

(b) Select one o[ (he following:

i. If I. '" 0, use Lhe equation fy(s)· n,(.) - n.(.. ) - 1,(.) = o.
'F,om Ibe <q"~tioo (2.6) We Ie< that a("",v, <) mu"' nol be ido"t".lIy zero .Iong C. roroll,orw;.."

'il[ '" (O,O,O) for points olocg C ~nd would eoo".di,tlhe f",,"ho, wo eh.... " noo"ioi.1 ""Iolion
for ,h••urf".. s: ['" 0 wh... 'il[ io nO' idenlie"Uy IOro.
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ii. If Iv '# 0, US" the equation f~(3J' 11,(3) - ,,~(.. ). f.(s) =: O.

iii. If I, # a, use the equation f~( .. ) - n.(s) - ",(aj. lvra) = o.

In each """''', the IHlmer..tor of the simplified ration,,1 polynomial is ~eL La

zero. This yields ILL most, (II - I)d+m + 1 additional homogeneous linear

equatiollS in the coeflicienL9 of the .urface S: f(~,y, =) = o.

3. In total, ""e obtain a homogencoll:l "y.tem of at most (211 - lId + m + 2 linc.llr

equation•. r\ny nontrivial solution o[ the linear sy.tem, for which additionally

'VJ i. not identically zero for all points o[ 0 (that i., the .urface S i. not singular

along the curve 0), will represent a surface which Hermite interpolates O.

The proof or corrcctnes. of the above algorithm follow. [rom Lemma 2.3 and the

[ollowing lemma.

Lemma 2.5 J[ we choose 11 nonuivial solution [Dr which the resulting Hermite inter

polating ."rface 5 is not singular along the entire CurVe C, step 2 guarant""" that tlie

tangency condition o[ Definition 2.2 is met.

Proof: The proof i~ very similar to that of Lemma 2.4 with minor modifications and

i. omitted. 0

2.4 Geometric Continuity

In the Hermite interpolation algorithm, tang'''lt plane continuity between two

surfaces is achieved by making the tangent planes of the two .urface:. identical at

a point or at all points along a cornman curve of intersection. Thi. defini~ion o[

continuity agrees with Heveral other definitionH o[ 0' geometric continuiw giv"n for

parametric and implicit algebraic "urfaces. De Rose (63] ga,"e a definition of higher

orders of g""metric continui~y betwo:cn parametric Hurf"""" where two surfac"" F, alld

F, meet with order /.; g""metric continuity Dr G~ continuity along a Curve C if and

only if there exist reparametcrizatiollS FI and F; o[ F, lind F1, respectively, .uch that

all partial deriY3tivc:l of F: and F; up to degro:c /.; agree along C.

Warren [75J formulated nn intuit;ve definition of G~ continuity hclm:,'cll implicit

,urfae"" as following:

Definition 2.4 Two algebraic surfaces ((:t,y,::) = a and y(;r.!I,=) == 0 meet with

C" rC:c'lcalillg continuity at a point p Or along an algebraic curvo C if and only if them

exists two polynomials a(:r,y,;;) aDd b(""y,=), noL identically zero at p or along C,

such thal all derivatives of oj - by up to degree k vani.h at p or along C.

This formulation is mOrc gelleralthall just making all the partials o[ I(;r;, y, =) = 0

and y(;r;,y, =) = 0 agree at a point or along a curve. For example [75), consider the

intersedioll of the cone I(o:,y,=) =;r;y - (;r; + y - =)' = 0 and the plane y(o:,y, =) =

;r; = 0 along the line defillcd by two pllLn",,;r; = 0 and y =:. It is not hard to see that

the:.e two surflU:cs meet smoothly along the line since the normals to J(;r;,y,=) = 0

at each point On the line arc scalar multiples of thooe to y(:r,y,=) = o. nut, this

scale [actor is a fUlletion o[ =. Situatiou.. like this arc thu~ corrccted by allowing

multipliCAtion by rescilling polynomials, DOt identically 'lero along an inte,,"cction

cur'·e. Note that multiplication of a .urfuce by polynomialo nonzero along a cun'c

docs lIot change the geometry of the aurfaee in the neighborhood of the curve. 10 [26J,

Garrity et a1. ahowed that both defillitioll.'l of geometric continuity [or a pllrametric

and an implicit surface are cquiY31ent by introducing the concept of i\ malli[old which

dcscrib ... an intrilUlic and local pro]>Crty Dr a surface.

The definition for CO rescaling cootinuity correspond. to the containment defini

tion in Section 2.1. The following lemma shows that the 0' cOlltinuity dellnition in

Scction 2.1 agrC'C5 with the G' rc:lcaling contilluity definition.

Lemma 2.6 G' rescaling continuity between I(:r,y,z) == 0 and g(;r;,y,=) = 0 al a

COmmOn point p Or along a common curve 0 correspond. to J(;r;,y,=) = 0 and

g(x,y,=) = 0 having common tangent plan"" III p or along e"cry point of C.

Proof: The requirement for G' rescnling continuity is that there exist a(z, y,=) and

6(;r;,y, z), not identic;,.lly zero at p or along C, such that

8(al - 6.'1)
= o~/+oJ~-b~g-b.'1~8.
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o at p or alollg C,

Since p or C is contained in bOlh f and !J (that is, J =: 9 = 0 at p or along C), the

r"'luircmcnt becomes

8(ilf - h9)

a,

fJ(al- 6g)
.~

o al I' or along C,

0./ +aI, - b.g - 6y,

o Ql" <>r alollg C.

2.5 Computational Aspe<:l!I o[ Hcnnile Interpolation

The b""ic mechanic. of I1"rmite interpolation for algebraic surfat"", iL'I presented

in the algorithms or Section 2.2 and Section 2.3, Me

I. geometric properlil':S or IL surface La be designed nrc d,,"crib~'<i in tt''1Il' of a

combination of point., cur"'"" and pos.illly associated normal weLo""

2. lbC5C properti"" MC lranslated into 11 homogeneous linear system of "quaLions

with cKlra surface constraints, and

aI, = bg,.

which means (f., Iv.!.) == H9.. 9.,9,) a~ p or along C. Hence, I and 9 are r"'luired

to have Common tangent plan"" at p or along C. 0

The correctnes~ proofs in Section 2.2 and Section 2.3 imply th;"t Hermite interpo.

lation lied. all the algebraic .urf;u:"" which have common t;"ngent plan,," M IL point

or a CUrVe. h '11.0 yidd. the following theorem.

Theorem 2.2 Bermite interpolation find. all the algebraic aurfac,," F which m~t a

surface H at a point p or along a curve C on fl with G' r,,"caling continuity.

A family of algebraic surfac"" F as in the above theorem can be cOD.truded in

the Hermite interpolation framework of Sectiou 2.3 9..'1 follow•. Given a surface fl

and a point p or curve C on Jl, defiued implicitly or parametrically, the input Lo the

Hermite interpolalion algorilhm is lhe point p or the curve C and the normal v""tor

to p or C obtained directly from the 'V IJ, e..... luued at p Or aloDg C. Th" algorithm

thcn yields a .0luLion for the coefficients of the ramily of algebraic .urfae",", which

meet H at p or along C with C', tangent plane, or G' rC9caling continuity. Several

examples of this arc provided in the next section.

3. nontrivial solutions of the linear system are computed.

In this section, we discus. some computational ""pecl'l or lIermile inLerpolation, anti

give several e;o;ampl"" of algebraic .urf"ce d""ign wjlh Hermitc interpolaLion.

2.5.1 On Computing Nontrivial Solution.

A. exphLined before, the Hermite interpolation ;"lgorithm converls geometric prop.

erties of a surf;"ce iulo a homogeneous linear .y.tem:

Mlx= 0 (MI E R ... • ... , x E R~·J,

where 11; is the number of "'Iuatio". generated, ". i. the number of unknown coelli.

cienl'l of a .urface of degree" (n. = (n!~)), MI i3 .. ma.~rix for the linear equation3,

and x i... vector whooe elemenl.s are unknown coefficients or;" surface.

In order l030lve the linear .y.tem in a computation.lly stable manner. we compute

the .ingular ""Iue decompooition (SVD) or MI [31]. Hence, Ml i~ tlecompooed ""

MI = UEV
T

where U E R ...• ... and V E Rn. u • are orthonormal matrices, and :s ==

di"9(U"U1""'U,) E R ... ••• i. a diagonal matrix with diagonal elemenl.s U, 2: U, 2:

... 2: u. 2: 0 (. = min{n;, ".}). It Clln be proved that the rank r of MI i~ the number

of the pooilive diagonal elemenl.s of E, Ilnd that the IMt nv- r column. of V 'paD the

null.pace of MI· Hence, the noutrivial .olution. of the homogeneous li"ear sy.tem

are compacUy e"pres~ed as:
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R, Ilnd Vj ;3 th~ jlh column of V}, or X '" V".~.w where V"._. E Rn·_!""_·l ;9

made of the I....Ln" -r calum"" of V, "lid w i. a (n. _ r) vcctor for free pMamelCr:J.

Example 2.1 Computal;on or Nontrivial Soh.nions

lcL C : (;f". :~::,O), and n(t) '" (~, ~,O), which is from the jnlc~r.ction of

a .phere .:r' + y' + :7 - I :: 0 with the plane % = O. To find a surface of degree 2

which lIermite interpolates C, we let /(:r,1/,=) = ",,,,1 + c1yl + c,:' +c.zy +c,y: +
C."'" + c,z +CoY + "9: + <:10' F,om the containment condition, we gel 5 e<juatiolls.

CIa - c.+ OJ = 0, 2CT - 2.:,:= 0, 2"'0- 20;1 +4el = 0, 2";0 + 2"'4 =: 0, "0+'. +Cl = 0,

and (rom the tangency condition, We also gel 5 equaLions, -2c~ +2c. =: 0, --Ie" = 0,

-.jc. :: 0, 4"" :: 0, 2c~ +2c. :: O. In matrix form,

0 0 0 0 0 0 -I 0 "
0 0 0 -2 0 0 2 0 0 0 ~

4 -2 0 0 0 0 0 0 0 2 "0 0 0 2 0 0 2 0 0 0 '.0 0 0 0 0 0 0 "MIX:: :: O.
0 0 0 0 2 0 0 0 -2 0 ~

0 0 0 0 0 -4 0 0 0 0 ~

0 0 0 0 -. 0 0 0 0 0 '.
0 0 0 0 0 • 0 0 0 0 "0 0 0 0 2 0 0 0 2 0 '"

The E in the SVD of M 1 i. di"9(S.657, ·1.899, U99, 2_828, 2.828, 2.828, 2.0, 10414,

0.0,0.0)."

'Tbe ,.blc."ne.d.ulls. or LlNPACK ,.... uoed to compUl< lhe SVD of MI'

2J

lienee, .....e occ thi\t Lhe rank of M, i. 8, and the null "pace of M, i~

0.0 O.5i735

0.0 0.577.15

1.0 0.0

0.0 0.0

0.0 0.0
x", ""V, +W2V10 = WI +w,

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 -0.57735

Tbe nontrivial .olution. arc obtained by making 'Ure that the frcc parametel'll WI

and W, do not .....nish simullancously. Hence, the HermiLe interpolaLing ,urface is

!(::;, y, ...) :: O.57735w,%' +0.57735w,y' + WI:' - 0.57735wl :: 0 which h"-'l One dcgrcc

of frceclom in controlling il.s codli.cienl.s. The8udace !(::;,y,:):: 0 can be made Lo

cOnl.ain II point, BIly, (1,0,1). Thllt i., !(l, 0, I) = 0.57735wl +W, -0.57735w, :: w, ::

O. SO, the circular cylinder !(::;,y,:):: 0.57735w,(%' +y' -1) :: 0 is an appropriaLe

HermiLe interpolating sudace. 0

2.5.2 Bounding the Degree of Surf;u:cs

The tolal number of linear equation. generated for a possible algebr1l.1c surface of

degree n to Hermite interpolate k points with fixed constant normal directions and

also Lo cont"in, with C I continuity, I splice curves of degree d wiLh IISsigned normal

directions, varying as 11. polynomial of degree 01, i. 31: + {20 + m _ I)dl + 2/. This

number becomes:ll: + (21\ - I)dl +01/ +2/ when all the space curv"=! and ,,".ocialed

normal vectors "re delined parametrically.

For 11. given conli.guration of points, curves, and normal vectors, the al>ove inter

polation scheme "Uows one to both·upper and lower-bound the degrce of Hermite

interpolating sud"c,,".
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I. [,owrr "Qund LN ~(n) he the rank of a homogeneous .y~tem or linear equation.,

ohLained from the givcn g~'OmcLrie configur"Lion and .ud"ee degree n. The r"nk

Lells u. Lhe ex"c~ number or independent constrainLs on the coefficient. of the

deoired algebraic surf"ce of degree n. Dependencieo nrise from .paLial interrela

tionships or the given points and curvC!. From the rank, we can conclude lhat

lherc exi.l. no algcbraic .urface of a degree IC!. Lhan or equal to no where no

i. the larg,,"l n .uch that F(n) < r(n) with F(n) == (";3) _ I.

2. Upper Bound Alternati\-.:Iy, the smallest n Can he chO:!en such that F(n) 2: r(n).

The nonuivi..1solutions of tbe linear .y.l~m repr""eDl.' II (F(n) _ r(n) + I).

parameler family (with F(n) - r(n) degrCC!l of freedOm} of algehraic surfaces or

degree n which interpolate the given geometric data_ We .elecL .uitab!e surfac""

from this family, which mldition"lly ."li.fy OUr non.ingul11Tity "-nd irreducibility

constraints.'

L Two skewed lin,," in .pace with conslant dirC'CLion norma[, C/lnnol be Hermile

interpolated ....-ith nOndegener"-le quadric .urfo.c,,"_ The Only qUallric which sal

isfies bolh containmenL and langency conditions reduc,," into two pl,,-n,,".

2. Two lin,," in apace with constant direclion normals can be Hermite inlerpolat~..J

with a qua.dric ~urriLCe if and only if the lin,," are par.. llei or iuLernccL at II poillt,

and the normal. arc not orthogonal to the plane conlaining Lhem. The quadric

is a cylinder when the lines /lre parallel, and a cone when the linC5 interned_

3. The minimum degree or an algebraic .urface, which lIermite imerpolal"" two

lin,," in 'J>l!.Ce, one with" conslant direction norm"l, the other with D. lineD.r1y

varying norm,,-I is three.

4. Two linC!! with linellrly wrying norl1lil.l. can be Hermite interpolated by a

quadric in only .ome ~peei,,-I c,,"es. In general, a surf..ce of at ie,,"t degree

three i. nceded. When quadric surface interpolation " possible, the quadric i.

either a hyperboloid or one shed (the lWO lines may he p"fallel, internecling,

or skewed) or a hyperbolic: paraboloid (the (wo linl!:! e"n only be internecting Or

skewed).

2.5.3 Exampl,,"

In thi. "ub~edion,we exhibit the method of HermiLe interpolation by co".trucling

lowest degree Hermite interpolaLing 9urfllCI!:! for joining and blending primary surfaces

of solid models 11:1 well as for JIC!!hing curved wire frllme model. of physical objects. '

Example 2.2 (JOINING I) A Cubic Surfo.ce for Smoolhly Joining Two ElIlp(ic Crlin.

'00
'Th. IOlnt;on. of Bllth. cutupl"" in thi••ubsctlion wo'" obt1linod. u,ing MACSYMA in which

Gnu..i.n ditui".tio"olgo,ilhmi'Bpplied, Th. '""""n ..... toe~pr ... onlulinn. mn",cl ly. b.w,,,'«,
th. ,inguln. ""I". decomp""itio" .Igo'itbtu ...... uaod in our impl.tu."....'io•. Ofcou the IOlulion
.p"""" ore tb. "'m. whichever m.thod t<l b. u...! in computing tho "n]lopocc. Bl,j,ough Ih. b""",,,
'hnt opBn II.. voclor oubop.aoo Bro dill.r.nl,



Consider computing a low,,"t degree "urface which clln .moothly join two trun.

cat.,,) elliptic cylindeJ"!l GY~, : (y + I)' + f - I '" 0 for:r S -2 and C)'L, :

25=' + 36y' - 96:ry + 64:r' - 100 '" 0 for 3:: + ·Iy =: o. Here, we iIIu~lratc

the Hermite interpolation technique which nOl only computcs the unique cubic

intcrpolating "urface but aiso prov"" that degrce three i. the~ for 110 alge.

braic .urface to sati.fy the smooth·join requiremeot for this configuration. We

take an ellipse C I (-2,$,if."r) on CYL, with tbe associat.,,) rational normal

11,(1) : (0,~,iT.r) and another elli",e C, : ("'.!~\~l·,~,;:i:\'r) On CI'L, with

lhe "".oc;ated r..tion"l normal 11,(1): (~, "~+J,l91', tr*). Both C1 and C,.~

normals are respectively chosen in the same direction> "" the gradien~ of their cor.

responding surfaces CYLI and CYL,. Th;. ensurel that any Hermite interpolitt.

ing .urface for 0 1 and CJ will ,,1'0 meet OYL, and OYL, smoothly along these

curves. A degree t,,·o alge!.>r"ic surface does not suffice for Hermite interpolation,

since the r....ok of the construct.,,) linear system is greater than 9 which i. the de.

grees of freedom of a quadric .urface. (Note that a quadric surface hM 10 coeffi_

cients.) Next, .... a pas.sible Hermite interpolant. consider a degree three algebraic

surface with 20 cocffieieul.s. Applying the Hermite interpolation algorithm of Sub.

section 2.3.2.2 to the CUrVes resull.s in 26 linear equations (28 e'luations are .up.

posed to be generated, hut 2 of Lhe 28 are degeneratc.). The rank of this linear

system i. 19, and thl19 tbere is a unique cuhic Hermite interpolaLing .urface. which is

f(:r, y, =) = r, (2y='-:r=~_5:'+8yJ-4:ry'-4y'+B:r'y+24:ry _By __l:rJ_11 :r'+.1:r+20).

See Figure 2.1. 0

Example 2.3 (JOINrNG 2) A Quartic Surface for Smoothly Joining Thr"", Circillar

Cylinders

Consider computing II low,,"t deg""" .urface which .mooLhly join. three truncated

orthogonal circular cylinders CYLI : :r2+y' -I = 0 for = ;?: 2, C1'Ll : y' +;:' _ ( '" 0

for z =: 2, and Cl'~a: =' +:r'-I = 0 for y =: 2.

In [76], a degree lh'e surface is found for joining these eylinders. After IIpplying

the Hermite interpolation algorithm, we lind Ollt that the minimum degree for such
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joining surfac,," i. ~, and we get II 2-parameter (one degree of freedom) family of

algehraic surfaces.

As before, we take a circle 0 1 : (;f;r, $,2) on C)'L J With the "-'SOciitted rit.

tional normal III(t): (if."r.~,0), the circle 0,: (2, mr,~) on OI'L, with the

associated raLional normal n,(t) : (O, if."r. ~), and the circle CJ : (;f,.,2,~) On

CI'LJ with Lhe associated ratiooal normal IIJ(I) : (;:i:\'r,O, ~:~~'). Again, all C" C,

and Ca's oorm~l. are r""pcctively chosen in the .",me direction /Ill the grsdienlS of

their corr,,"ponding surfac,," CYL I , OYL., and CYLJ • Thi~ enSUres thaL ~ny Her

mite interpoiating surface for C" C" and Oa will &Iso meet C1'L" C)'L" and CYLa

.moothly along these curv,,". A degree three algebraic: ~urface doC'S not suffice for Iler.

mite interpolation, ~ince the rank of the resulting linear system is greater Lhan 19.

Ne~t, /Ill a pus.ihle Hermite inlerpolant, consider a degree four algebraic surface with

35 coefficients, and 31 degrees of freedom. Applying the lIermite interpolation algo

rithm to Ihe curv"," r,,"ults in,,2 equation•. The rank of this linear 'r.tem Is 33, and

Lhu. there i. a 2·parameter f..mily of quartie Hermile interpolating ""rfac,,", which

is /(z,y,=) == rl=4 + ~y=J + ~:I';:J _ ~=3 + 2r,y':' + ~:I'y:'_

~y:' + 2rJ:r'=' - ~:r=' + r.=' + "'i~o" yJ= + ~:ry'= _ 'It~O" y'= +
~:r'y=- ~:ry= +~y=+ ~:rJ= - ~:r'= + ~:I';: + ''*lo,,:+

r,y' + ":IS" :ryJ_ ~yJ+2rl:r'y'- ~:I'y' + r,y' + "'i~O'IZJy _ ~:r'y +
~:ry+~y +r,:r'- ~:ra+r,:r'+ ',*~"'I:r+ "';'?

An iMtance of thi. family (r, = I, r, = 10) i. shown in Figure 2_2. [t sliould

he noted that every surface in Lhe computed family i. not alwars "Ilpropriate for

geometric modeling. The quartic surface in Figure 2.3 is one used in Figure 2.2. On

the other hand, the surface in Figure 2.1, which i. not useful for geometric modeling,

is also in the .ame family with rJ '" 1 and r, = -1. 0

Example 2.-1 (JOINING 3) A QuarLic Surface for Smoothly Joining Four Circular

Cylinders

[n thi. example, we compute a 10wClIt degree sllrface which smoothly joilJ~ four

truncated parallel circillar cylindeJ"!l del1ned by CY L, : y' + :' - I == 0 for :r ;?: 2.
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C}'L, : y'+:'_1 = 0 (or:>::::; -2, GYL,: (y-.I)~+=~-l = 0 (or x ~ 2, and

CYL,: (y-.1)' +:'_1 = 0 for x:::; -2.

The HermiLe interpolation lechnique indiCoiltes thaL the minimum degree for such

,~joioing .urface is 4, and compuLe:! /I 2-parnmeler (onc degree of freedom) f"mil}' of

algebraic surfaces which is I(",y,z) = h"z'+ 'ty'z' - Tyz~+rl:' + fry' - TY'+

.,y' + ;.,y + ~x' - ~x~ + '" An instance o( this family (I", = 392,

., = -8GB) is sho....n in Figure 2.5. a

Example 2.5 (BLENDING I) Hyperboloid P/llchcs for Blending T ....o Perpendicular

Cylindel'll

The case of two circnl"r cylindel'll is /I common tcsl CilSe (or blending algorithms.

Various different w"-ys have been given. ((or example, see (35, 50, i6J) for computing

a snitable .urf"ce which smoolh.,. Or blends the intersection o( two equal radius

cylinders, GYL, : :r' + =~ - I = 0 and CYL, : y' +z' - I = O. We cOll.'lider an elliple

CIon CY Ll (it is the inlel'lledion with the pl"-ne 3:>: + y = 0), dcfined pllramclrically,

G, : (;f,-r, f!!r,~) wiLh the "".ociated r"lionlLlnormal III(l) = (rl:';r,0, ~), and

lhe ellipse C,an C}'L, defined implici~ly, C" ((yl +::' -1 = 0,,, +3y = 0) with

the associated normal 111('", y, =) = (0, 2y, 2=). As 11 possihle Hermite interpol"nt, we

consider a degree two algebraic surface. Applying the meLhod of Subsection 2.3.2.2, 10

C, results in 8 equations, 5 from the containment condition and 3 from the tangency

condition. (5 equalions arc supposed to be generated, but 2 of these turn out to be

degenerate). Par C" ....-e l15e the method of Subseclion 2.3.2.1, and fin;L compule L, =

{(O, 0, I), (-3, 1,0), (3, ·1, 0), (-2.4, 0.8, -0.6), (2.4, '0.8, .O.G)} and L, = {((O,O, 1),

(0,0,2)), [(·3, 1,0), (0, 2, Oll, 1(3, ·1, 0), (0, ·2, O)J, ((.2.4,0.8,.0.6), (0,1.6,-1.2)], [(2.4,.

0,8,.J1.6), (0,.l.Ii,-1.2)J). From these li.ts, we get 10 equations, 5 from the contilinmenL

condilion and another 5 from the tangency condition. lIence, o"erall Lhe linear system

consists o( 10 unxnowns and 18 equation•. The rilnk of Lhis system is 9, and hence

we ge~ the unique surface sollltion fl("',y,z) = r,(x
'

+ y~ _ 8:1 + G",y + 8 = 0).

Thi. quadric .atisfies both the non.ingnlariLy and irreducibilily constrilim.s. It i. "
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hyperboloid o( one sheet and the lo....""t degree surface ....hich blends, logclher ....ilh a

symmetric hyperboloid f,(:>:,y,:) = .,(:>:' + y' - 8:' _ Gxy +8 = 0), the intersection

of the Lwo cylinders. Sec figure 2.6. a

Example 2.G (llLENDING 2) A Quanic Surface for lliending '1''''0 Elliplic Cylinders

In this example, we compute a lowcsl degree surf"ce .... hich hlen<1. lwo perpen

dicular elliptic cylinders. We have seen a quadric blending of the circular cylinders

in Example 2.5. IIere, we lry a qu"rtic blending surface by taxing differenl tJ"Pcs of

input curVe:!.

Input to IIermitc inlerpolo.tioD is defilled by CY Ll : yl + 4:' _ 4 = 0 for :>: ~ I.

CYL,: y'+4:'--1 = 0 for x S -I, CYL,: 9,,1+ y'_9 = 0 forz ~ I. and

GYL,: g,,' +yl_ 9= 0 for z:S-1.

The Hermite interpolation algorithm proves LhM 4 is the minimum degree for

such a blending surface, and getlerat.,. a linear system with 72 eqnatio,," of mnk 33.

The 2-parll.meLer (one degree of (reedom) family o( algehraie .urfaces is I(x,y,z) =

.,z·-~yl:'_~",,:z+~:'_··'1'::" y'_ ·"5;1" ,,'yl+101"1':'M~.1 y'+
W,,' + r,,,'-~. Ao instaoce of Lhi. (amily (" = I, ., = 2) is .hown in

Figure 2.7. a

Ex"mple 2.7 (FLESHiNG 1) A Quartic Surface for Smoothing "- Corner of II. Tablc

Interpolation can be ,,"eful in generating an "lgebraic corner blending surface_ We

look for a quartic surface S : 1(", Y. z) = 0 which .mooth. ouL the COrner of It lablc_

In fact, S is a fleshing surface o( a wire fr"me made of the edgcs of the corner:

C, : ((y' +::' - 25 = 0,:>: =0), and C, : ((,,' + z' - 25 =0,1.' =0). ""-ch wire is

as.'loci"tcd wilh" normal vector which is chosen in the .ame direcLion as Lhe graclients

o( the .ide of table, the cylinder in C, and C1. That is, 11,(,",1.',:) = (0. 2y,2:), "nd

1I1(X,y,::) = (2",,0,2=). It

'Of eou..... ,phe,•• wbich .. '1u.d,.'ie•••n d. lb. job. DUl, w. ddi.or.rely ell""" ,j,. deg=
four 10 give ,h. idea or a f.mily of inlcrpolaling ,.,fae",. All<>. 11\;, bigb« dog,ee alKch,alo ,",r.ce
i. more U.xibl. ro, .hapc eonlrol.



30

The interpolation matrix MI. produced by lJermite interpolation, is " 32 X 3S

matrix (321iOCAt equation. and 35 coefficicn15 for" quartic ~utfacc) whose rank lurn.

out 10 be 2-1. The null,piLCe of M, i. of dimclISion 11 rcprl:'lcntcd by a family of quartic

su.(ae,," 1(:::, y, =) = T,Z' +('11/ +r~:z; +Sr.),,~ + (r,y' +(r7% +5,,)11 +T,O"" +Sr,l:t'

25ro- 25r, ),,1+(TIY' +(r~%+5.,)11'+(••:t' - 25r,)y+'.:t' +5'4"" - 25ro" - 125r4):+
(r, - .,)y' + (rt'" +Sr.)V' + (r.2;2 +5,,,% - 25ro - 25r, +25.,)y' + (f,X' +5ro,,' _

25.,% -125r.l!r + (r,O - Td,,' +STll'" + (-25'0 - 25"0 +25., ):r' _ 125rl13: +625••"

An inoLan"c f(:r,y,:) = -1250 _:z:1 - y' - :r:';' _ y':' +50;' +751/' + 75:z:' in this

family i. shown with the I"hle in Figure 2.S. 0

2.6 Summary

In Ibi. chapter, we pre:.cnt"CI the Hermite interpolation algorithm for algebraic

5urfac,,". With the algorithm, it W"-ll possihle Lo characleri~e Lhe cla.s.s of algebraic

surfaces of a fixed degree thn.l have given positional and tangential properLies, in ternu

of lhe nullspaee of a matrill'. The rank of the matrill', produced by the algorithm, w""

used in proving exi.tence or "onexi.tence of algebraic surfaces of a given degree. We

also cOll.idered computational aspectll of the algorithm, and ill"'Lrated the usefuln.,..

of the Illgoritbm from .everal examples.

A. al'C9ult of application of tbe HermiLe interpolation algorithm, a cl"-ll' or family

of algebraic surfaces is computed, when the degree i. high enough, where the family is

C>;pl'C:!Sed as a subspa.ce of R'" or dimelL'lion nv - r. In geometric design, it i. hoped

that an appropriate surface can be selected interactively and intuit;'·cly from the

family. Choosing /I proper surface from the family i. equivalent Lo assigning proper

valul':'l Lo free parameters. In the Cbapter 3, we consider how an instance surface ,s

selected inter...ctivcly with geometric intuiLion.

Figure 2.1 Smooth Joining of Two Cylinders with 11 Cubic Surface

Figure 2.2 Smooth Joining of Three Cylindel1i with a QUMtic Surface

:ll



Figure 2.3 r\ ~Good" Quartic Surface

.•
Figure 2..1 A "Bad" QlIilnic Surface

·12

FigHe 2.5 SmooLh Joining of Four Cylinders with a Quarlk Surf"ce

Figure 2.6 Smooth Blending of Two Cylinders wi~h a Quadric Sllrface



3. A COMPUTr\TIONAL MODEL FOR ALCEBllAIC SUllFACE FITTING

In the foregoing chapter, We dcscribl-d how a class of algebriL;c surfiLce; with given

geometric propertiCOl is characterized in terlm of the nullopace of iL matri;.;. In prac

tice, an illJltance ourface must be interao::tively selected from the el"-'lS with geometric

intuition ouch thalthe oeleded aurface has desirable properties (for example, no self

intcl'9ccliona) witbin a m.'ccs...ry Tegion. In thi. chapter, We prC!ent a computational

model fOT the algebraic "~rface fittillg problem. Thi. model is dcsigned to crfectively

choose an illolance ourface amllng m"IlY pos.ible on.,. in the family. We also consider

how the Bernoteill-Bezier basio ca.n be uoed to help control the ohape of the selected

.urfa.ce intuitively.

Fitling nf algebTaic cUrVcs (primarily lincs and cnnics) h.... bccn considered ex.

tenoively by many .."thonl [3, 15, 17, 27, 51, 65J. A good exposition of exact and

leallt .quarcs fitting of algebraic cUIV"" and ollTfaccs through given d"t.1 poinl..oi, w....

prcsenlcd by PraLL (59J. Scderberg [68J prcsented the ide" of en inlerpoliLlion of

d"ta points and curv"" with implicit algebraic surf"c,,". These previous ....-arks On

inlerpol"lion arc exteoded by our Hermite interpolation algorithm which can handle

langential informalion (G'l as well as positional information (GO).

The model we conoider in this chapter io based upon a proper normalization of

coeffidenu of algebraic surfaccs as well as leallt "q"ares approximation .1nd "ermile

inlerpolalion. The mathematical model we derive is a constrained minillli:<iLtion prob.

lem of the form:

Figure 2.7 Smootb Alending of Two Cylinders with a Qu,utic Surf~ce

Pigure 2.8 Table Corner mending with a Qu~rtic Surface

"

minimi:e

subjed to

xTMATMAJI"

MIX =: 0

xTx=:l,
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where MI E R ... ••• and Mol. E R ....• arc maLrices for interpolation and l"""l

squares appro;o;imalion, respectively, aed x E an, is a vector conLaining coefficienLs

of an algebraic smface.

In Seclion 3.1, we consider interpolation, lealil squares appro;o;imation. and nor_

maliz"tioll in det"il, alld e);"I'[aio how the minimization problem is derive<!. Then, in

SccLion 3.2. compact computational algorithms arc describe<! with e;o;amplcs. In Sec

tion 3.3, we cOJ15ider how the geometric propertiCOj of the Bernslein-Be:zier b""is arc

u.ed for shiLpc conlrol of "lgcbraic .nrfacc.'Oi which arc contained in "f"mily computed

by Hcrmite interpolalion.

3.1 "Iatric"" for [nterpolaLion, Appro>;imation and Normalization

G~ rescaling conLinuous surfaces of a fi;o;ed degree, we can generale "n intcrpolalion

matri;o; M, whose nullspace capturC9 a subset of the whole eiass. This tccblLique is

based on lhe follOWing theorem whose proof is found in [75J.

Th~'Orem 3.1 l.et g(z,y,=J and h(:z:,y,=J be distinct, irreducible polynollliaL.. [f lhe

surf"ces g(:z:. y, =) =(l "nd h(:z:,y, =) =(I inlel"llect lransvcl"!lally in a single irreducible

curve C, then any ;tlgebraic surface I(:z:,y,=) = (l th"l meets g(:Z:.!I,=) = (l with G~

rescaling continuity along C mu..t be of the form I(:z:,y,=) = o(z,y,=)g(:z:,y.=) +

P(:z:,y,=}h*+'(:z:,y,=}. If g(z,y,=) = (I and h{:z:,y,=) = 0 shre co COlllIDon COlDpo

oents at infinity, then the degree of a(:Z:,1I,=)g(z,y,=):S: degree of l(z,1I,=) and the

degree of P(:z:,y,=)hk+l(:z:,y,=):S: degree of /(:z,y,=).

Example 3.1 Algebraic Surfaces with (jI and G3 Rescaling Continuil}'

For given curves C;, i = I"", /, which arc the transversal intersectiun of given al

gebraic surfac,," g.(:z:, y, =) =0 and h;(:z:, y, =) = 0, respecth'ely, a surface I(z, y, =) =(l

conLaining space curves C; with G~ rescaling continuity can be consLruclively oblaincd

by the relations

Since g; and h; are known surfaces, the unknown coefficients arc lhose of I, Q; and

/3;. When the hypothesi. of Theorem 3.1 is met, the polynomials Q; and {3; arc of

bounded degrCCi!. From (3.1), we see that lhese unknown coefficients form a .yslem

of linear equalions, yielding an interpolation matri>; MI for G" rescaling continlliLr.

Consider" space curve C defined by the twoequalions I,(z, y,:) = :z2+2y'+2=7 -2 =

(l aod h(z,y, =) = z =O. We compute a cubic surface /3(:z:,y, =) =0 which meds b

along C v.-ilh G' rescaling continuity lUI follows: A general cubic algehraic "urface is

given by 13(:Z:. y, =) = "':Z:~+C,yJ+c,:J+"<4:z:7y +C,:z:y1+C<lX'=+C7:Z::' +csyl= +coy=1+

e,o:Z:1I=+c"z'+cny2+cIJ:1+<:":Z:Y+C[lY"+Cl~=+<:'7Z+C[ W+CIU"+C," := O. Eq lla ting

lhe generic /3 for (jI rescaling cODtinllity as explained, we have IJ(z,y. =) = (r[:z: +

(3.1)I{:z:,y, =) = O';(z, y, =)g,(:z:, y•.::) + /3;(:z:, y, :)h7+'(:z:, y, =}, i = 1,'" ,/.

In Ch"pler 2, We explained how an interpolatioo matrix M, ERn."." is generated

by Lhe Hermile interpolation algorithm, and how its nlll1.pace is computed. Only

when the rack r 01 MI is I,,", than lh~ number of lhe coefficicnts n., does Lhere exist

a nontrivilLl .olulion to tb~ linear system. All vectors excepl 0 in tbe null. pace or

MI form a family of algebraic sUrf"CC9, satisfying Lhe given input specification. whose

codticieDUI lLrc expressed by homogeneous combinations of q free paramelers where

q = nv - r i. tbe dimen.ion of the cullspace. In Hermite interpolation, tangent plane

or C' continuity is achieved by forcicll normal. of tangcnt planes of a surface Lo be

par"Hel to those of given poinUl or space CUrVC9.

For some applicaLioD!l of gcometric modeling, such &s ship hull design, how"v"r,

more lhan Langent plane coolinuity may be desirable. ,\s explained in Section 2.4, Lhe

concept of smoolhness i. generaliud by definiog higher order geometric continuity.

In Section 2.·1, it was shown Lhat the Hermite interpolation algorithm finds all 011_

g"braic surfaces of a given degree meeting each olher with C' or G' rescaling con.

tiouity. Even though we arc currently unable to translale geometric specifications

for G~ resealing continuily (k <:: 2) into a matrix MI whose nullspace caplures ;ill

3.1.1 Interpolalion



rw+ r3z+r,)/,("" y, z)+ ~,f,(""y,::)3, yielding the linellr equation" CI _ r, _~, = 0,

c,-2r~ = 0, c,-2r3 = 0, c.-.~ = 0, c,-2r, = 0, c~-r, = 0, cT-2r, =0,

Cs - 2r, = 0, CD - 2r~ = 0, e,o = 0, Cll - ~, = 0, Cn - 2r, = 0, CI3 _ 2r, = 0,

Cit = C" =C'D = 0, CIT + 2r, = 0, c'B+2., = 0, C'9+2r, = 0, Ojo+2r, = °in

the unknown, CI,'" ,e,o and rl,"', r,. By diminating." ... ,r, from the equatinn~,

we get .. hnmogeneous linear system MIX = 0 in terms n[ f,'s cocfficient.. c"", ,ClO.

I\n instance cubic surface (r, = 1, r, = -I, r, = I, r. = 1, r. = 2) I,(x,y,:) =

2,,'-2y:
1
+2x:'+2"'+2Y':+:<:':-2,,-2y3+2xY'+2y'_x'y+2y+3x'+x'-2x-2

is shown in Figure 3.1.

10 the Bame way, we c..n compute a qu..rtic surface [.(""y,,,) = 16:' _ J6y,,3+

32x,,' +32,,' +16y',,' - J6",y:' - 16y:' +24x' ,,' +32x,,' _ 16y': +32",y'" +32y'",

8:1:'y.: + 16y.: + 32",': + 16x': - 32",= - 32= - 9y' _ 16.:y3 _ 16y' + Is",'y' +323:y' +

16y1 - 8x3y - 8x' y + 16xy + 16y +24x' + 32.:' _ 8:1:' _ 32:1: _ 16 which meels 13 with

G' rescaling continuity along tbe curve defined by 13 and I.(x, y,.:} = y = 0. a

3.1.2 Normalization

To comp"te aD algebraic surface Lhat approximales given datIL in the IClL.'lt squares

sen.c, one needs to first define a di.t.&"ce metric which is menningful and CompuLa.

tionallyefficient. The Grometrjc distance of II. point p from Il. surrace S : I{:z;,y,:) = 0

is the Euclidean diSl.anee from p to tbe narest point on S. However, computing the

geometric distance from a point to a" algebraic surface it..elf entails a computation_

ally elt"peo.ive procedure, and who" the metric is adopted for .urface approximation,

thc problcm becomes eVell more intractable. !I commonly ll9ed approximation to ge

ometric disLance from a. point to implicitly reprcsented algebraic cu....cs and .urflLCCS

is the \....Iue I(p}, called algebraic distance. Since c[{3:,y,,,) = 0 represent.. the same

•urface for "II e '" 0, the coefficients of [ are fimt norm..lized such tha.t I(:z;, y,~) = 0

i. II. reprcsentation of the equivaleoce class (c[(""y,:) = Olc '" OJ.
The normalization we .hal1llge is a quadratic normalization of the form :oc:Tx = 1.

Wbile SOme variations [17, 59, 65) of a quadratic normalization have been proposed

J9

in fitting sca~tered pl ..nar d..ta with conic curves, it is nol e/lSily S~'Cll how different

quadratic or nonquadratic normalization9 affect 9urface fitling when the degree o[ a

surflLCe is greater th;,.n 2, a case of considerable illtereit for geometric madding. The

norm ...lization x T
X = 1 is a sphere in the coefficient vector space, and does not ha....e

singularitics. That i9, thi, normalization eliminates only the degenerate surrace with

all Zero coellicienl.3 from possible solutions. This normaliZAtion also leads to compact

aod efficient algorithms [or surface fitting. H remain9 opcn to determine 1\ generalized

quadratic normalization of the form xTMNx = I, where M N is no longer the identiLy

matrix, with good qualitie for 9urface fitting.

3.1.3 Least Squ..re:s Approximation

When the rlLnk r of all interpolo.tion matrix Mr E R"""- is less than nu, the

dimension or the coefficient ....eclor, tbere exi.t.. a family of algebraic surfaces wLlich

satisfy the given geometric constraint.. wherl: the underdetermined coemcicnts can be

homogeneously expre:s.ed in terms of q (= n. - r) free parameLel"li. !In importanL

problem is to select a .urface ioteractively and intuitively which is most appropriale

ror a giveo application. Sclecting an instll.n,e 8urface from the family is equiv;,.lent to

assigning valuC:l to each of the q parameters.

L""'lt squares approximation call belp choose a surf;,.ce and conLrol its sll;I.pe.

When there are some degree! or fr~om left, we may additionally specify a set o[

point.. Or CUrVes "roued given input data, which approximately describes a desirahle

surface. Tbe final fi~ting surface can be obtained by consuming the remaining degrees

of freedom viII. least "quar.,. apprtlJrimation to the additional data set.

The algebraie di8tance I(p) i. straightforward to compute and, in Ca.'5e ~he daLa

point is close to a surface, approximate it.. geometri, disLance quite well. When

the .um of squarC9 of lhe algebraic distancC:l of all points is minimized, one obtain•

algebrai<:ally nice solutions. Eacb row o[ an approKimation matrix M A is computed

by e..... luating each term in I(""y,.:) a~ thl: cortC:lponding point. Then, the sum



of squares, minimized in le.... t sCJlIine.! approximation, i. expresscd a:I II MAX II' =

xTM"TM"x.

In addition to the algebraic distance, I'll' also consider a nonalgebraic distance

metric IiVJf;1II' Samp:lon [65] proposed il3 use, in conic curve fiUing, .... a distance

measure which i., in ract, the firet order approximation 10 geometric di.tance, With

Llii. melrie, a better approximation to geometric dislance is achie''3ble, however, only

at the elCpense of several iterative applicalion. of least squares approximalion. We

give an example of applicalion of this metric to a quadratic surface filling problem.

Containment of poinL9 lind curves io not the only way to produce MA. The matrix

for higher order inlerpolation Can be used .... an approximalion malrix when a surface

is not flexible enongh for the higher order iolerpolalion. For iMtance, in Example 3.1,

suppose that there are more poinL9 lhat mu.t be contained in a fitting 'urface. Then,

it may nol be pos.ible lhata cubic 'urface !,(x,y,=) = 0 noL only mceL9/, with G'

rescaling continuity but abo eontailL9 the extra poinL9. If G' continuity i. permissible,

We can generate MI for containment of the intel"ll'Ction CUrVe (G' ), and the poinL9

(GO) usiog the Hermite interpolation technique, and the matrix produced in the

el(ample can be u.ed .... M A. That i., the remaining degre"" of rreedom, afler CI

interpolation, arc used so that the (J2 rescaling continuily requirement i••ati.fied

lIS much .... pO:91lible. However, mOre effort mu.! be made to see clenrly how Lhis

algebraic illterpolation lind approximation technique affecl3 Lhe resulLing algebraic

surface geometrieally.

3_2 Computing Oplimum Solution.

In the foregoing section, we explained bow the algebraic surface fiUing problem is

transformed ioLo a conslrained minimization problem of the form:

minimi=" xTM ATM"x

subject fo MIx'" 0

xTx= I,

·lJ

whereM" e R""··, MI E Rn,xn. and X eRn•. Thi. minimizaLion problem appeal":i

in 'ome application. [3D]. In [29), a .olution was obtained by applying HousellOlrler

tr;"nsformations to M I Lo obt;"in its orlhogonal decompooilion, and lhen direc~lJ'

computing eigenvalues and eigenveclo... of a reduced matrix. In this .ection, We

consider sOme C,,",," of the surface filtiog problems which arise in geometric design, and

describe different algorithIT19 where the singular value decomposilion (SVD) "lgorithm

i. applied to computalion of eigenlliLluC9 and eigenveclol":i. In e;"ch case, We ....Ume a

quadrdic normalization connraiol which alwllYo guarantees a nontri"ial .011ltion.

3.2.1 Interpol;"tion and Approximation

In Subsection 2.5.1, the nullspace is expressed Il!I x '" Vn._.w where I'n._. e

Rn.x(n.-.) is made of the l....t". - r column. of the right singular vectors V, and

W i. ;" (n. - r)-vector whose e1cmenL9 are free parameters appearing as coellicien15

or a family of algebraic ourfaces. r\ final .urface i. selecled by providing proper

values for w, by a sb;"pe control proc""•. One method is for;" USer to specify /In

approximate .hape of /I. desired ourf;"ce with an additional set of points or curve.! ;"nd

let a geometric modeling aystem autom;"liclllly find a solulion vector w. Then what

lhe .y.tem need. to solve efliciently is /I. constrained le.... t squares problem: minimi..

xTM"TM"x aubject 10 MIX = 0 and x TX = I.

The sohllion lo this rnioirniution problem Can be expressed analy~ic;"lIr in

dosed form. From Lhe inlerpol;"tion requirement, We get x = \'n._.w M be.

fore. lIence, after removing the Iin""r conotrainL9, we get to the problem lIIilli

III;" wTVn:_.M" TM"Vn._.w subj..,/ 10 wTw = I. Note thnt Vn:_.M"TM" V•• ~,

is a posilive definite matrix, and this problem is equivalent to minimi~ing the m

tio of two quadratics R(w) '" (wTVn:_.MATMAV•• R.wl!(wTw). R{w), which i.

known as R.ayleigh's quolient, i. minimiud by the firet eigen..ector W = Wmin of

Vn:_.M"TM" Vn._.. aod iL9 minimum mlue i. the smallC9l eigen\";"l\\c '\"';n [71].



ill5L""d of compuling the "igenvoxto", and ei8cnv"lu"" of V~_.M"TM" Vft.~.

directly as in [29J, we apply 'ingul"r ViLlue decomposition to M" V.,_. withouL com'

puting V.~_.M"TM" V".~. explicitly 1~3). Thi. lead. to a numerically Chc.lper cOm.

puLation. Here. weas~ume that no;:: n.-r, and thM the rank ofM"V•• _. b n.-r.

(That is, thcre arc enough line"r con.Lraints Lo con.ume Ihe remaining deg,,,,,,, o[

freedom.) Then, M"V••_. = PflQT where P E Rfto"·o and Q E n(.,-')>«.'-')

arc orthonormal maLrices, and fl = dillg("'I, ...... ,···,"'•• _.) € R,,""(R.-.j with

Wi;:: ...... =:. ... =:'wft._. >0_

Now,

QflTpTpflQTw

QflTflQTw .

Here, flTfi is a (fl. - r) X- (nv - r) diagonal malrix- with il diagonal entry w? > 0,

i = 1,2,···,(n. - r). Then, [rom the above equ"lion, flTfl(QT w) = A(QTw ) which

impli", tbat the fil"!lt eigenvector woo;. of Vft~_.M"TMAVft._. is such Llmt QTWm;R =

e n._. where en._. = (0,0,··· ,0, If isll. {n.- r).veclor, and it.. minimum wlue ).,m,n

is w~._ •. Hence, Woo;n is tbe last column of Q. Once we compute Q, We get the

coefficient.. of the algebraic surface x = V... _.Qen._.. which i. not a zero vector, and

hence sati.fics the normalization constr"inl.

Example 3.2 Quartic Surfac... for Smoothly Joining Four Cylindrical Surfae...

In tbis ex-ample, we determine" surface S: [(I,!!,::) = 0 whi[h smoothly join~

rour cylindel'!l which aregh'en as GYL1 : y1+::'_1 = 0 for:: =:. 2, GYL,: y1+;:I_1 =

o for"':5 -2, G1'L, ;,,'+y'-1 = 0 [or;: =:. 2, and GYL. :",'+y'_1 =0 for

;z :5 -2.

The interpolation r"'luirCmcnL is [or S to meet the four cu,,·... on the cylindel'!l

with C' continuity. Hermile interpolalion for a 'Illar!!C smf"cc S general"" MI E

R"""" (6~ lin""r equation. and 35 cocfficient..) whose rank i. 33. I Thi. impli... a

2·p"rameter family of quartic surfaces .",tisfying Lhe inlerpol"lion conslraint...

Then we need lo _elecl, from this family, a surface with de-ired sh"pe. We usc least

squares appcox-imllLion during this prot ..... To ilIu_trate the effect or approx-imnlion,

lwo set.. of points arc ch""en: S, = { (0, 1.75 ,0), (0, -1.75. 0), (.1, 1.25, 0), (-I, .1.25,

0), p, 1.25,0), (I, -1.25, 0) } and 5, = {(O, 1.25, 0), (0, -],25, 0), (.0.5, 1.125,0),

(-0.5, ·1.125, 0), (0.5, 1.125,0), (0.5, -1.125, 0)). (Sec rigure 3.2.)

For the l"""t 'quar"" Il.ppcox-imalion with a normaliUllion, lbe cigenvalucs and

eigenvectOl'!l for SI and 5, arc computed. As a result, we oblain >'""n<, = 1.265.129 .

10-', Am;n<, = 5.097809 .10-3, [S,(z, ",;:) = 0.315034:z:' + 0.273947y' + 0.315034:' _

0.8·19216 - 0.035612",4 - 0.030137:z:'y' - 0.030137:<';:' + 0.005'174y' _ 0.O:lOI3iy';:'

0.0:15612;:" and /...,(:<,y,z) = 0.281104:<1 + 0.615161y' + 0.281104z' _ 0.201225 +

0.005325:<' - 0.323706I',,' - 0.323706I2Z2 _ 0.329031y. _ 0.323706y';:1 + 0.005325;:<.

The two computed surfaccs arc shown in Figure 3.3. 0

3.2.2 Leasl Squar"" Approximation Only

At time.. one dcsir'" a. _uMace which i_ only the I"""t squares approx-irnalion from

given geomelrie dala. This is nILen tbe case wben straightforward inLerpolalion lcads

10 a prohibitively high algebraic degree of the r",ulting SUrfil[e_ Tbis I"""L squares

problem is just a special case (MI = 0) of the minimization problem in the previous

subsecLion. In this ClISe, V..._. disappca.", in tbe _olution, which resulls in x = Qe.,.

EXilmple 3.3 Least Squar... Approx-imlltion 10 Given Poilll.:l : Algebraic Di.L"nce
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Example 3.4 llerILtive Weighted Leasl Sqllareol Approximation to Lhe Poinls: Non.

algebraic Distance

Tbis argumen~ suggcst:l lhat di51/(p), the weighted algebraic dislance, ;s a goo<l

apprOXimation Lo the geomelric dist"nce, and lh"l

is the firs~ order approximation to the distance from p lo f. When J' is close to Lhe

surface, Vf(p) i. a good approx-imaLion to Vf(q). Inlhl~ case, Ihe ex-prcssion (3.2)

b""ome.

/-f(p)II V f(p)111
VI(p)· V /(p)

l-f(P) JlVf(p) III
II V /(,111'

I f(p) I o!!.' d' (I
II Vf(p) II - ,,.It p.

(3.3)

(3.,1)

I: f(p)'

t •• •11.11 V f(p) II'
I: disl/(p)' =

t•• •11 p

I:: /(p)'.
t···11 p

is minimized instead of

However, the solution whicb minimizC9 the exprcs.ion (3.3) can nol be easily expreosl-d

in clO!ed (arm due to inltodUclion oI tbe weight II V /(p) II.
Thi. numerical intractllbilily Can be avoided by an ilerati,e refinemelJt algorithm.

First, We compute x(o), coefficienlll of a surface /(0)' such thal (3..1), the slim of

'quar"" of algebraic dis lances, is minimized. To do lhi., M A = MA(o) is obtninl"d as

before. The gradien~ of /(0) givC9 an initial approximaLion of V /(p)_ Then, dividing

ellch row of M A by II V I(D)(p) II for e>.eh corresponding p r""[llls in MA(I) which is,

then, singular-value-decomposed to compute X(I} and h,), Thi. process is repealed

furlher producing a sequence of I(~) which refines the .olulioll. In ",,"ch iteration, f(l)

is expected to he a. belt"r IIpproximatioll to the surface We are lrying 10 find.Vf(q)
0= f(q) = f(p) +V/(p)· (til V/(q) 11)+···.

0.06839), (0.3283·1, ·0.67743, ·0.05892), (0.13922, ·0.59102, ·0.11233), (0.20366, _

0.71310, ·0.17960), (0.31615, -0.6·1298, ·0.23526), (0.41615, ·0.5,1803, .0.28378), (.

0.01352, ·0.72637, ·0.35770), (0.09109, ·0.68925, ·0.41407), (0.08685, .0.72867,

0.27968), (0.18959, -0.62765, ·0.46521), (0.1983,1. -0.6701-19, ·0.33577), (0.35025,

0.4·1569, ·0.5359·1), (0.38550, ·0.49832, ·0.42532), (0.27772, ·0.54~93, .0.50640),

(0.29999, -0.59612, -0.38273) l.
Eacb row oI MA is obLained by simply evaluiLting, a~ each point, Llle b""is of

quadrics: { ,,', !l, :', "y, y:, :", ", y, =, 1 }. Afler applying SVD Lo MA, We gel a

quadric surface whose crror·oI-fit is ), ..;. = 2.281646 .1O~T. 0

In ~hc previous example, Lh" sum of squal'C'l of algebraic di.tances i. minimized,

which are, ill fact, contour level. of the function to = I(",y, =). Tile algebraic dil

tances are not always Llle same .... the corresponding geomelric di.lances, which are

the actual distances (rom tbe point:l lo the surface_ Somelimes, it may be mnre

desirable to minimize the sum of 'quar"" of rC41 distaDces. Unfortunately, lhis nonal.

gebraic, geometric mel ric enLails an intraclable minimiZiltion problem whose solution

can not be expressed analytically in closed form. Samp.on [65J U3ed II. oonalgebraie

di.taoce metric, which approxiITlll.tcs geomelrie distance. in fiUing conic CUrVC9. Thi.

concept can be naturally extended to Lhe surface filling problem_ We gel lo lhis

nOnalgebraic metric via a differenL derivation"" follows.

First, let U9 rCCllII that the di.lance from a point p to a .urfaee f(:r,y,=) = 0

is the distance from p to II. nea.res~ p<>inl On tile .nrfllce. Let q be the poinl On lhe

surfllce which r""ult.s io the di9l.ILIlCC. Then, Lhe line in the direction of the normal of

/ at q musl pMS lhrough p, and q = p + I 11:)1:111 wbere the absolute value of I i. lhe

geomeLric distance. From Taylor's expansion,

lIence,

::::l 1-/(p}II V f(q}1I
1V /(p). V f(q) (3.2) In EXllmple 3.3, we have computed M A = MA{Q)' and f(oJ' The Table 3.1 il

luslralC5 the result of application of the iterative IIlgorithm lo the points uSI~1 in
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:1-3 InteracLive Shape Control of Hermile Interpolaling Surfaces

As memionl-d before, the result of Jlermile interpolation is a q parallleter famil;'

of algebraic surfaces f(:r,y,z) = 0 of a given degree IhM satisfy gi,-en geometric

properli"". The equation of the family h.... the generic form

Ex"mple :1.3. The geo. disl'ul"" column .how" the "U'" of "IUMe" of the rcal ge

ometrk dislnnce. ] fOT frll' am] the "Is. distance column shows the ""llIc of the

c;.;prcssion (3,-1), the sum of squares of the "Igebrilic lIistanc'" for hl)- It is ob,erved

thM the sum uf SquMes of the geometric lIi.t"nces lIecre1\Ses il.> ileraliollS proceed,

which implies that hk) eOUl/erges to a surface which is expeclell lo bl'Sl-lil Ihe giveu

point daLa. It i. al.o inleresling lo notice thal the sum of squares of the algebmic

dislancCOl makes a quantum jump at the ~r:;t iteration, and lhen converges 10 aloc,,1

minimum. 0

where each c'il is a homogeneous linear combination of q-paramclers rl, '1, '_', ',.

In the previous section., we proposctl lo u.e least squares appro>:illlation to scl""l

an initial inslance surface from the famil)' oblainL-d from Hermite inlerl'olalion_ E,-en

though We can get some geometric inluition from least squares approximation, we Illa~

wanl to change the shape of the compUle<l .urface inleractively b~' modifying the

"alll"" of the free p"r"meteB_ However, .ince the compule<l surface I(I,y.~) = 0 is a

polynomial in the standard power ha:;is, its coefficients are algebraic_ not gl'Onletrir.

Thal i., they contain liltle intuili"e geometric informalion. heoce Ihey do not provide

il coovenienl tool with which the shape of an algebraic surface can be controlled

inLuilively.

Sederb"rg [G61I'rC5enLed an idea 10 which free form piecewi5e al~ebraic surface

paLche. are defined ill lri\'ilriale barycenlric coordinates using a reference letrahedron

'The seo'ml';t di'tan,es w... toltul.l.,.] by ..,h·iJ,g • 4-b~·.4 '~'''e", of nonl;n••, "'1"'1;0,"0,
deli"ed ",illg Ih. I,as,ange muhipli.. melhocl.

(3,5]

" "_ift_i_,

1(:r,y,~)=EE E C;;k·:r'y'ZI=O,
;..0,,,0 bO

Table 3-1 The Gcometri~ lind Algebraic Dj.lanCe:!

, geo. distnnce a/g. di1rlance

0 3.9Ui480319t:'OS 2.281616641,,-07

2.870799913e-05 2.1!17249375e-07

2 2.7li29115G6e·05 2.472207775e-07

3 2.696617975,,·05 :H65526316e·07, 2.661304527e-05 2.·161413816c-07

5 2.642308921...05 2.45922-1774,,·07, 2,632187346",05 2.45B047987e-07

7 2.626807583e-05 2.457421127,,·07

8 2.623953195e-05 2.457087993e-07

8 2.622HOO16e-05 2.45691125·Ie-07

26 2.620735209e-05 2.456712015,,-07

27 2.620735193,,-05 2,45671201·1.,..07

28 2.620735184,,·05 2.·156112013e·07
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and .. regutar J..llicc of conlrol points imp03ed on the tdrahcdron. The cocfficienls

of ..."cface defined in Lhi. II-lly aTC "".igned Lo the control poinl.:l, and there i. IL

meaningful reiaLion.hip bcLw~n the cocrlidcl1Ls and the .h"pc of the '''fface.

The enencc of hi. idea i. to cOlloider all ;"lgebraic ",,<fMC [(x,y,:) = 0 Il.'I the

zero contour of the triv;nialC {unclion w = f(x,y, :). Note that Ihe ,urface equaLion

of the (;,.mily of Hermite intcrpolatinlllllgcbraic surfaces conla;ns q free \'ariahlcs r;

in il.ll cocfficico19. A .pecific portion of " .urface can be selected for .hape control

by defining II tetrahedron which enclooC!l thnt portion. Ghrcn a Lch"hl'dron, the

polynomial I(:r, y, =) in power basi. can be symbolically converled inlo a polynomial

F(., /, u) in bar}'ccntric coordinates, defined I"-ith respeclLo the Letrahedron.

Let a tetr;"hedron he ,pecified by the four nOl1copJan;"r verticr:s P...." po"o, POll",

;"nd P...,. Then, Lhe coordin;"Les P == (:r,y,.:) of a point inside the letr;"hedron ue

related to the baryceoLric coordinaLes (~, I, ul by P =: 3P~CQ+ fPo..Q + uP_ + (I _ 3

1- ujP..." 3, u, t, (1- 3 - 1- u) > O. Control points on the tetrahedron ;"re defined by

P,j' =: ~P"OII+ *PO~" +~P_ + ~-;:j-' Poco for nonnegative intege~ i,i, Ii: sllch that

i + i + Ii: :s n. Each cooLrol poinL is ll.S!Iociated with II weight w;,l, which is a linear

combination of ri, i =: 1,2"", q. Allthl:'le together define the q'parameter algebraic

surface family in barycentric coordinate.-,

(J.G)

Example 3.5 Com·elSion from Power to Bernstein

Consider, "" a simple example, a quadric .urfnce which Ilermite interpolates a line

LN : (1 - C, C. 0) with a norma.l (0,0, I). The lIermite interpolaLion algorithm returns

a5 parameter family [(::,y,.:) =: °of algebraic ~ur(ac"", as in (3.5) with n =: 2. where

Cloo =: r" CllO =: 2r" CIa' =: r•• C'OO =: -2rlo Colo =: r" Coli = f., COlO =: -2r" Ccm =

r], COO, =: r7 ,and <'oco =: rl· For II. given tetrahedron with vertices Poco =: (2,0,0),

Po..u = (0,2,0), POII~ = (0,0,2), "nd Poco =: (O,O,O), the "ur(~ce j(:r,y,.:) =: °is

lriln,formcd 10 F(3, t, u) =: 0, as ill (3.6) with n =: 2, wher" Wooo =: f" Woo, =: r, + r"

."

WIO, =: -r, + r, +2r., W1IO = r,. and W,ce =: r,. 0

Since the weights W;jt of 1"(3,I,u) =: 0 for a q-parameLer fa.mily of algehraic Sur

filCes have only q degrees of freedom, they ca.n'L be selected Or modified independently.

For example, suppooe w, =: r, +r,+r~+2r.-I, w. =: r, +r,+ r. +5, and "'3 = r~+r•.

From Lhese, we can derive Lhe linear relation w, -w,-w3-6 =: 0 hct\~een Lhe weighl"

and then ao invariant ~w, -~w, - ~w~ =: 0 which musL be satisfied each time ~ome

of the weights arc modified. (For notational simplicity, lI'e ""SUme the weights Ue

indexed by a single number il:lst""d of a triple.)

In general, luing Gau..ian elimination, we can deri\"e a

sysLem of iOViLriant equation.

I,(llow" lloUlj," " ~w<l 0

I,(llow" ~w,,···, llowc ) 0

from the Jioear expression. of the weight.

w,
w,

w.(r"r,,···,r.) =: W ••

Changing Lhe weights can now he considered as mo\"ing from II. weight \'eclor

IV =: (w"w,,".,w,) lo another IV' =: (w:,w~"".w:), with the constraint lhnt

lloW =: W' - W i~ a .oluLion of the sysLem of in\"'ri~nl equaLions.

E:xilmple 3_6 Shape Control of a Filmily of Quadric Surface.



3.4 Summary

bas" .olution LUVo = (d,ll.w~, ... ,Ll.W~) where ll.w~'. are expres.ed lineMly through

anoLher set of froc parameters PI, 1':1,.", P•. lienee, 1ILl.1Volli i. a lJuadr"tic function

Q(p!, 1':1, •• ', P.) of Lhe new parametel'll.

Since Q is quadratic, Q(p" p"." ,P.) is minimized at tbe solution of the linear

syslem 'VQ(p" 1'2,"., P.) = O. If the minimum of Q occurs at a point (I'~'~"'" P~),

theo Ll.W
o = (d, ll.w~, ... ,Ll.w~) corresponding to the point clefincs the de.ired change

of wcigh~ W?,"', w, haviog Lhe minimum effect, in the least ''1UMCS ,ense, On the

.hape or the surface. The InstOUlCO .urface cor=ponding \0 the new weigh1. lV' =

W + ll.WD will then rellect predominantly the effect of the change of WI by Ll.WI = d.

Example 3.8 Heuri.tic Approach to Shape Control Using 2.Norm

Consider the .urface in Example 3.6 again. This time we wish to 1'1111 tho piLtch

more toward POOl, and bence setll.W(I(Q = -15. From the invariant .ystem in which

ll.Woo:l i9 replaced by ·15, Ll.WlQl = Ll.Wooo = ll.wuo = ll.W,1XI = PI, Ll.WOl" = !l.wllXI =
-Ph Ll.wlXIl = 1':1, ll.W,OI = P3, ll.Well = P., and We obtain Lhe quadratic fUllction

Q(PI' Pl, P3, Pi) = 225 + 6pf + p~ + 1'3 + P~. Q h"" the global minimum at PI = 1'2 =

P3 = P. = o. Hence, tho inDuence of the change of all the weight! other than W<m, is

minimi~ed hy .eUing to zero their ll.w, that i., not changing them at nil.

Tbi. new illStance is .hown in Figure 3.·1 (bottom right). Note lhal the o,"er"ll

sbape of the new .urfnce pal.Ch, othcr than elMe to P"", hM not changed a. much a,

the .urface patch in Figure 3.4 (upper right), even though w"'" b"" clecrea.scd by a

larger 'amount. 0

The in ......riant system for the family of algebraic slirfaces in Example 3_5 is ll.wOIO+

ll.wooo = 0, ll.w"," -ll.wooo = 0, ll.W,oo + ll.w_ = 0, ll.WllO -ll.WOllO = 0, ll.w,oo

ll.wOllO = 0. Figure 3.·1 (upper Icrt) sho.....s an in'lance from the family where WOlIO =

-·1, WOOl = 4, lL'OO1 = a, WOIO = 4, wOll = 1·1, w"'o = -·1, w,o:> = ·1, WIOI = 12,

Wl10 = -4, and "">00 = -,I.

Now, suppose we want to pull the .urfa.ce p"lch toward the control poin~ POO1
(the leftmost verlex in the figure). Thi. can he achieved by decrCiLSing the "alue of

WOOl, .ay, ll.w"" = -7.

Other ll.w;j~ can be arhitrarily chosen"" loog iI.S they .atisfy the equation. in the

invariant system. Let ll.wOlIO =ll.tu:!o:> =AWllo =ll.WlnO =-I, ~Wloo '" IlwolO = I,

ll.woo, = -,1, ll.w,e, = ll.WOII = -2. Thc new in. lance .urf..ce i. shown in Figure 3--1

(upper right). 0

Example 3.7 Shape Control or a Family of Quartic Surfaces

Figure 3.4 (bolLom left) ilIu.trate:! three different insLance. of the family compmed

in Example 2.3, corre:!ponding to the thr"", different values or WOlIO for Poco = (0,0,0).

As a weight Wooo increase:! rrom a negative value, the surface appr04che. to PlQl. Tbe

surface pa.9'e:! through Pooo when WIlCll = 0, alld gets Bep..rated into three irreducible

components "" Wooo becomes positive. (See also Figure 2.3 and 2.-1.) 0

Sometiml'9, We may want to sec how the "hape of a Burfa.c" chango a.:J /I speci~e

weight i. modified. However, if a weight, ""'y, w, i. modified, then thi. modification

affecl! other weights ..... rdiLled in the invariant sysLem. Usually, the linear sr.tem or

invariant ""Iuation. i. underdetermined, yielding an infinite number of choice. or ll.w,

(; = 2,3",· ,c). Then, how can we .elect ~he other weigh~ Buch that their e/fects 10

w, are minimized?

One p,,".ible heuriSLic is La minimize Lhe 2·norm of (Ll.w.,··· ,ll.w,), and bence

the 2-norm 1ILl.1V1I, = (ll.w; + ll.wi + ... + ll.wn~ of ll.1Y. For /lWI = d, ""e know

thaL the linear syslem

J,(d,ll.w",,·, ll.w,)

I,(d,ll.w],···,ll.w,)

o

o

"

[,(d,.o.Wl'···,Ll.w,) 0
In Lhis chapter, we con.icleral ho"" the geometric problem of ~n<ling algebraic

sudacl'9 is tran.formed into a linear algebr" problem throllgh Hermite interpolation,
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!<l/I.5l squa,,,,, approxim"t;ofl, iLfld normalizi1lion. A compacl algorithm (or .olving

the algebraic model efficiently w"" prC:'lenloo wilh exampl"". Although Lhe algeh,.. ic

{ormulation of the geometric problem pr<::'lcnLcd in this chapLer, .<.'Sults in a compacl

computatiofl, it must be enhanced by adding morc geometric constraints such lhallhe

algebraic formulation can ..Iso handle undC:'lirILble phenomena appearing in algebraic

surface dC:'lign. [n Ch;,.pter 6, We discuss .1Ich unfavorable phenomena of i1lgch,,,;c

surface! in details. We "Iso proPOlloo " .u,fact conlrol scheme in which Lhe shape of

iL spoc:ific portioll of An algebraic surfiLee i. controlled wiLh geometric intuition in lhe

barycentric coordinaLe system.

Figure 3_1 A Guhic C2 Continuous Surface

-.

Figure 3.2 Poinl!i to be Approximated

53
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Figure 3.3 Two Different Least squares Approximation.

Figure 3.4 Interactive Shape Control Using Barrccnlric Coor<lillat""



4, SMOOTHING CONVEX POLYHEDRA WITH QUINTIC SURFACES

Modeling II trillngular m""h of three dimensionl\l data with smooth I.iecewise

surfaces is a ....-ell studied problem. Traditionally, m""t of the previoU!l works have used

parametrically represented surfaCe:!, (See the recent .urvey paper [23J,) On the other

hnd, there arc only few r,,"uits where implicitly reprcsentLod algehraic .urfacC9 arc

used 1\8 modeling tool. ['la, J2, 67J. In /20j, Dahmcn u~cd quadric algebraic surfacC9

to smootb a special type of polyhedra splilling a face iMo severlll subfac,," whicb,

~ometim"", produce wave·like oscilla.tion. beLw""n patches due to the limitations of

quadric surfac"". Guo [32) prcsented an algorithm ",-hiel, constructs a ffiCOih of cubic

algebraic surface patches smoothing a polyhl'dron where cuhic patches for faces are

connected by two extra cubic patch"" belw""n fac"". It S""1nS that there hl\S been

liule succ",," in gencrating a mesh or.mooth piecewis" palch"" of algebraic surfaces

of nonuivial degree'.l greater than three which provide more fiexibility,

In thi. chapter, we in"cstigate how tbe ellIM of quinlic algebraic surfac,," can b"

uLilized in CAGD, In particular, we show how tbis ell\... of .urf""es can be u.ed to

smoolh a convex polvhedron, Somelim"" it has heen stated lhat degree 5 i. so high

thal quintic algebraic surfaces may not be appropri;"te for geomeLric modeling. While

il is true thal a whole quimic algehraic .urface behaves unpredictably, we only need

a p;"tch of a surfate for geometric modeling, not a whole snrface. The work in this

chapler sbows thal lriangular patcbes of quintic algebraic surfaces ;"re fiexibl" enough

to be wed as effective modeling tools while degree 5 is low enough to allow efficient

computation•.

We Illisume, without loss of generalily, that a given convex polyhedron h.... only

triangl.llar faccs. To smootb a conve); polyhedron with tangent plane conlinuous

trianguliLr .urface patches, we first con.truct a quadric wire frame by replacing each

Lodge of the polyhedron wilh a conic Cl.ln'e whose shape is comwlled Ly a single

parameler. The llormals /llong the Cllrv,," /Ire derived from the polyhedron, and arc

associated wilh the CUrVe'L The normal3 II10ng the CUn'cs lhen provide t,lngent plane

informalion Illong the conic CUrv,," thllt musl be s/ltisfied by incidenl surface p1l.tchcs.

Then, lbe triple of boundary curv,," and normals for each face is lIerlnitc illterpolatcd

and approximated in the lca:lL squar,," sense u3ing our computational model, which

is slightly different from the model explained in the previous chapter:

minimi=e II MAX - b 11 2

~ubjecl /0 MIX == 0,

Quintic algebrllic .urf""" patches ohtained by solving the above problem give;" cur-'ed

model for the polyhedron,

This chapter is orgllnized Il.S follows: In Section 4_1, we explain, .tep.by-step,

how a convex polyhedron i. smoothcrl, and how ClLCh tdaogular implicit patch is

displllYeci interactively, Seclion ~,2 is devoLed to expl"ining why singularities uSllally

occur ;"t the thr"" verticcs of trilUlgular palches. As an example, a given conVeX

polyheclron is smoothed with three different shape conlrol parameters in Section 4.3.

In Seclion 4.-1, we discuss open problems on smoothing;" nonconvex polyhedron ,,"itlt

quintic algebraic surfac"", Finally, this chapter is summarized in Section .1.5,

4.1 Generation of a Quintic Algebra.ic Triangular Palch

In this 6ection, we show 'l"",by-step how to compute each triangular quintic

algebraic surface palch. Each edge of a triangular face of a polyhedron is replaced

by a quadric curve with quadric p/lr;"melrie ralionll.lnormal directions that conform

to the p09itional and tangenlial information derived from the polyhedron. The three

boundary curves wilh normals lire smoothly fleshed by a quintic implicit algebraic

surface. Then, lite computed triangnlar patch i. polygonized for Interactive display.
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·1.1.1 Generation or a Quadric Wire

First, we gi,'c a. dc~nition of a quadric wire.

Definition -1.1 Let Crt) = (:$t, $to $) and N(I) :: (~,WR.~) be lwo triples

of quadr.. tic raLion,,1 parametric polynomials. Then, the pair IV(l) '" (C(l), N(l))

is called a quadric wire if there cxi.19 a qUiLdric ~urfacc q(z,!/,=) :: 0 such Lhal

q(C(I)) '" 0 alld '\7q{C(I)) is proportional Lo N(l) ror all!.

"0

Po

np'

",
....••C)";···:"C·O··O·"··"·•.-_....:-.11..,

In olher word, we take, from a quadric sur[ace, " conic CUrVe and gradient vectors

'''''Lrieted o.long the curve, and usc them as boundary cur""" of II quadric wire frame.

The first .tep toward••moothing a convex polyhedron is \0 compule /I conic cUrVe

C{I) gi"cn two point and unit normal "cdor pai", (Po, no). (PI, Il,) and iL normal vector

npl of a plane containing Po Ilnd PI .lIch thaL

• .. compuLed conic cun-e pilSSC9 through Po ilnd PI.

• its tangenLs at Po and PI Me perpendicular to no and n,. r"'pectivc1y, and

• the CU"'e is contained in the plane which contain. Po and"" and has the pl"'ne

n011llll1 npl.

Furthermore, we force C(O) == Po "'nd C(l) '= PI so th",L the segment of C(l) [or

o :s; t :5 I i. u,ed il..!I '" wire. To compute C(t), Lhe normal veclOrs no and n, ",re

projected onto the plane P On which C(t) will lie. (S"" Figure ol.l.) This projecLinn

results in II. cnntrol triangle Po - PI - Pl' (po, i. computed as the inLer:scctinn or Lhe

two langent linC9 orthogonal to the projections of "0 and nl.) Lee (.121 presenL~-d"

compa.ct meLhod for computing II conic CUrI-'e C(l) from the conLrnlLrianglc. In his

formulation, the conic i, expressed in DernsLein·Dczier rorm:

where W; > 0, i == 0,1,2 "'re shape contral p",ameters. ,'n often used parame'

lerization, called Lhe rho-conic parameterization. is given by ,he special choice of

Figure 4.1 Compulation of a Conic Curve

Wo == w, == I - P, w, == P, 0 <:: P < I. Then Lhe p"r"meter p me""urcs Lbe sh",pnC5s

of the conic Cur"e. Le~ Pol == (Po + PI)!2 be the midpoilll of Lbe chord/>Ol'" Theil.

p h"" a property that C(0.5) - Pol = p(p> - Po,). From thi., we can Sec LhaL i\S p

is increillled, Lhe conic gels mOre curved. In particular, it i. known thaL p = 0.5 for

parabolll.ll, 0 < P <:: 0.5 for ellipsCii and 0..] <:: P < 1.0 for hyperbolilS.

Once C(I) i. computed, we lind a quadriltic surface q(x, y,~) == 0 such thM N(I),

which is .. rCiitrictioll of 'Vq(x,y,~) along C(t), interpolatCii I'lo and I'll al t == 0 and

l == I, respeclively. COll5ider a quadric .urface q(x, II, z) == CIX2 +c,y' +CJZ1 +C,%y +
ClYZ + ","zx + crX + c.1I +co: + CIO == O. A quadric .urface has 9 degre"" of freedom

in its coefficients. The first cOll.traint on q(x,y,:) == 0 is that it musL contain Crt).

The HermiLe interpola.tion algorithm gives 5 linear equlLtions where Lhe unknowns

arc C;, i = 1,2"", 10. IL i. obvious tl1iLl 5 equlILions arc required considering De?o\lt

Lheorem which impliCli that if a. conic interscc1.5 with a quadric surface at mOre thall

4 poin1.5, the cune is contained in the surface.

Hence, 4 (== 9 - 5) degrees of freedom remains, and these must be used to inLer.

polaLe Lhe normal vecLors at the two end poinll. Intcrpolll.ting 110 and III at Po and

PI' respecLively, r,,"ulls in 2 mOre linear con.traint:l which leav,," 2 degreCli of frce

dom in choooing a quadric surfn.cc. In fact, we observe that fixing one more normal

vector at il point on the cUr"e fixes normal vectors along the whole Clln'C. Consider
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the special c/I.'Ic of Theorem 3_1 wher<;:: given a quadric wire defined by a quadric

surface a(z,y,:) "" 0 and a plane b(z,!.',:) =: 0, there is a family orqua<.1ric surfaces

el", y,:) = 0 willi one degree of freedom such that c(z,y,:) =: rtQ(z,y. :)+P6(z, y,:)'.

This implies thal the rank of the linear sy.tern (or flormit" interpolation of the quadric

wire is at most 8. lienee, three normal vectors determine normal \'ccLors along lhe

enLire quadric curv",

rn OUr implementation we specify the third normal vector"" follows: first, Lhe

average 1101 '" (no + n.)(2 is computed, and thon "01 ;5 proj<>eLcd into the plane

which conlains C(O.5), and ,. orthogonal 10 the langent """Lor C'(O.5). Then, we

usc Ihe projected veclor ... N(0.5). The family of quadric 5ur[acC9 q(z,y,=) =: 0

compuled thi, wILy gives the gradient vccLor V'q(C(I)) Lh"L i9 u,ed "" N(t).

'1.1.2 Hermite Interpolation of a Quadric Tri"ngle

,'" mentioned before, each triangul"r face nr a polyhedron is replaced by a Lrian

gubr surf"ce p"Lch. To do 90, e"ch edge is replaced by a qua.dric wire forming II. wire

frame for the polyhedron. To clarify our description, we give tho following definition"

Definition 4_2 An augmentt'd trianSle is a 9-tuple T = (Po,P',P:I,na,Jl"""np1al'

"pln ,OpI1a) where Pi, i = 0, 1, 2, arc three vertice< of Il. tri"ngle willi. Lhe correspond_

ing unit normal vectors n.. ; == 0,1,2, "nd npi;; arc normal vectOI1l of the planes

which will conlain the quadric wires compuLed from (pi, II;) "nd (Pj,oi)'

Definition 4.3 A quadric triangle i5 Il. ~riple QT == (Wa[I), W,(l), IV,(t)) or quadric

wires 5ucb that IVo(l) == WI(O), ~VI(I) == IV,(O), ~nd 11',(1) == IVo(O). I

"
an "lgebrILlc surface of degree n grows dramatically iUi n increases. lI~nce, for a filS!

computMion ILnd les. numerical errors, keeping II in a re"-lon,,!>le range is "ery im

portant. In the below, We discu:iS a lower bound of degrce of algeLr,lic snrfacl'S Lh"t

C/ln Hermite interpol"te a quadric tri"ngle.

Consider "n algebraic surface of degree 0 for smooth interpolatloll of a <]\mdric

"'ire Well = (C(l), N(I)). According to Bezou~ theorem, 2J1 + 1 constrilints on the

coefficients of f ILro required for f to conLain C(t) which is 'Iua<imlic. For tilngcnt

plane continuity, the Hermite intelpollLtion algorithm in Sub.""'ion 2_3.2.2 produces

(11- I)d+m + I = 2(0 - I) +2 + I additionallincar equations. In total, .In +2 linear

equ"tion. "re generated for smoo~h interpollLtion. However, it is uniformly ob,er"ed

that ~he rank of the linelLr 9}'stem i9 ,In, while we Can not prove this illgebraicillly ....

of now. We "re led to the following conjecture;

Conjecture 4.1 Let W(t) == (C(t),N(/)) be a quadric wire. Given an nlgebrllic sur_

fad~ !(:r,y,z) = 0 or degree 0, the rank of the linear .ysLem general~d hy Hermite

interpolation Lo to smoothly interpolate W(I) is 411.



cont/l.inm~nt condition., and th~ equatioIl! for it. tangency condition. J Ilenc~, six

additional rank deficiencil.'Ol with the previoU! tbree indicate that Lhe minimum o[

12n - 9 and ("t3
) is believed to be the maximum possible rank of the Jincnr .yst"m

that is generated by Hermite interpolation algori~hm.

Since an Illgcbraic surface j(~,y,:) '= 0 of degree n h1lll (nt3 ) coefficicnLs, and

Ihe rnnk of the linC.lr sysLem should be lcs. than the lIumber of coefficients for a

nontrivial sur[/lCe to exist, we find oul that 5 i. tbe minimum degree required. In

the quintic cas", there are 56 coefficienl!! (55 degrce:l of freedom) and the rank is

at moot 51, which rcsulLs in a family of interpolating surfaccs with at least four

degrCC9 of freedom in selecLing an instance .urface from the family. Even Lhough

.ome special combination. of three quadric wires caD be interpolated by a surface o[

de~ les. tha.n 5, for example, three quadric wir"" from a .phere, Lhe probability

that such spa.tial dependency OCCUI'S, given an arbitrary triplc of conics with normal.,

is inlinit""imal. Hence, the conjcctured lower degrce bound is Light.

4.1.3 l.ealIt Squar... Approximation to Contour Levels

A. a result of Hermite interpolatiotl of a quadric triangle QT, a family of quinLic

algebraic .urfaces J(~, y,:) = 0 with II.t lell9t 4 degr""" o[ freedom is u.ually obtained.

Then, we need Lo USe thC:le remaining degn:es of freedom appropriaLely to select an

instance quintic .urf/ICe from this family. W~ can additionally speciry a set of poinLs

inside the qUlidric triangle, whicb. approximately describe Ii desim1>le .urface patch. fI

final filling snr[ace may be obtained by consuming the remaining degree! of freedom

through least squar... approximation to this Bet of poinl!!.

When ch0gen from the family via least squares approximation, the selected quintic

surface i. not alway. good in the light or geomeLric modeling. For example, a surface

which .elf·intenlecl!! inside the quadric triangle is no~ prll.Clically useful though it

approximates the ~dditional points bC:lt as well iJ.li satisfics the smooth inLerpolation

"Asoin, for each 'ur.c, we enn chome point-nnrmal p.i .. ot ,he two end pain!!. The ""ulling two
lineor equation••hould he 1ine.,ly dependenl On thc equ..ion. from the <nnl"nmenl .<quirement.

requirement. Hence, in the approximation .tep, we must be careful not Lo scle-ct a

surface which is singular in. ide the quadric triangle. First of all, we obsen'e thnL, in

general, any surface which .moothly interpolaL... Lhe quadric Uiangle, thM i., Lhree

conics with normal directions, i••ingular at the three vertic.... In Section 4.2, we

show that just making the normal vectorn of threc conics consistent at Lhe intersection

poinLs i. noL enough to have a .udace that i. regular at the three poin1.s. In fact, the

rat"" of changel! in the normal vectors at the intenlccLion poinl!! affect Lhe regulariLy

of a .urface. However, the .ingularitie:s only aL the three verLices, not along the whole

cur"e, do nOl harm the .month continuity requiremenL hetween surface patches. fI

more serious problem i. the .ingularity of II. .urface inside a quadric Lri~ngle.

Let 50 '= {u; E R~li '= I"", I} be a set of poinl!! which approximately describ"" a

d""irable .urface paLch. Then, we Can get a linear .y.tem MAX = 0, where e~ch row of

M A i. obtained from J(v;) '= O. Then the conventional least squares approximaLion is

to minimize II MAX II' over the nullspace of MI. However, our experiments .how tha~,

in many CM,,", .ingulariti... occur il13ide the quadric triangle_ Millimi~ing II MAX 111

makes a [""uILing Burface approximate the .et or points closely, hOlvever, this simple

algebraic approximation can nol prevent Lhe .urface from .e1f-intenlccting inside the

triallgle.

To provide mOre geometric control in leMt squares approximation, we suggest LhaL

Lhe contour levels of a surf/ICe are appTtlximated rather than onl~' the sllrf~ce. In fact.

the implicit .urface J(~,y,=) =0 is tbe zero contour of the [unction ur =J(z,y,:).

Consider .ome smooth region of a .urface. Since all the partial deri.",tiv,," or w =

f(z, y, z} are well dcfined in the region, the conLour le\-e1. beha,"e well in the proximity

of Lhe zero contour. In Our scheme, We fi ..l generate 50 = {(Vi, n;ll' '= I"" ,II where

U; i. a.n approximating point. and no' i. an approximating gradient vector at U;. Then,

from this seL, we construct two more sets 5 t = {udu; = U; + oni, i = 1"", I}, and

5~1 '= {w;lw; = Vi - on;, i '= I.···, II for some .mall 0 > O. Then, we get the

least sqnares sy.Lem M A = b from three kind. of equation., f(Uil '= 0, J(u;) = I.

and j(w,') '= -I. Approximating these threc kind. of equlllions [orces the function
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w = l(z,y, z) to have well .trucLured Contour Jevc!5 •.." much Il5 pOll.i!>1" ncar the in.ide

of a. quadric triangle, and We notice that this heuri'l;" rcrno"!'" 'clf-intern""!io". in tbe

region significantly. In Subsection 4.1.5, we gi"" ~ heuri.Lic algorithm ror generation

of the point-normal set So.

-1.1.-1 Fleshing a Wire Frame

Now, We arc led to the following computational model:

millimi.::e II MAX - b II'
subject 10 MtX '" 0,

whereMI E n"·d~ is a Hermite interpolation matrix, and M A ERn.'" and b E R""

arc a malrix and a veclor, rcspectivcly, for conlour I"vel approximation, and x E RJO

is a vector containing coef1icienl~ of a quintic algebraic surface /(cr, y,.::) = o.
Again, the nullspace of MI is compactly exprcs5L'Il as X == l(,o_.w where W E

R'G-•.• After substituting for x, We arc led to II MAX _ b II = II MAV,._.w _b 11_
Theo, an orthogonlll matrix Q En"··... i~ computed such that

where R, E R(,s-·l.(J'-r) is upper triangular. (This factorization is called a

Q·R factorization [31)). Now, let

4.1.5 Di.pliLY of the Triangular Algebraic Palch

A. implicitly defined algebraic ."rfaces ha1l" become increasingly important in

geometric modeling, 5everal algorithms [or di.playing them h..,·c emerged. Implicit

algebraic aurfaccslend LhelJl!lc1vC5 naturally to ray tradng [34). Scderbcrg cL a!' [69J

uscd a '''0.0 line display method which elTern improvement in speed and correctly dis.

play. !ingulariLics. Even though both apprmchcs produce Im"g"" of good qualities,

the compUlational coot i~ high. Al!o, these Btatic proccsse'! do not allow illteractiv"

display of BlirflLCcs. 00 the other hand, polygoni....tion of implicil ~urfacC9 I_I, 161 ran

usc the capability of the graphics hardware which provide. very fast interactive reno

dering. Allgower [.1) ll~ed simplie... to approximate II. ~urface with polygonal mcsh"".

In !16j, Bloomenthal presented a numerical technique that approximatcs an implicit

slirface with a polygond reprcsentll.tion. The technique is to surronnd an implicit

surface with an octrce, at whose corners the implicit function is sampled to gencrMe

polygolt9. Although, in general, they sample implicit ~urfaccs well, these polygo

nization methods are not well ,uited to our purpose which is to draw an implicit

triangular surface patch with .iagular vertices. A major problem is how to isolate

only II. nec"",ary part. Clipping ~urraccs might be added to the polygonization al_

gorithms, however, the current polygonization algorithms do not handle singulMitics

well.

In our display routine, We walk ovC[ implicit quintic surfaces only around the

neecssary region~ prOducing polygons which approximate triangular patches. Since

smooth segments of intersectiOn curves of two algebraic surface'! are e""ilr lraccd [7),

and we lITe 10 display smooth portions of implicit .urfaccs, the algebraic space cun'"

tracing routine performs well for this walk·over. Note th,lt although the ncshing

quintic surfaccs are usually .ingular at the three verticcs of a quadric triangle, the

boundary c\""cs can be traced """ily from Iheir parametric equations.

The following simpie recursive procedure produccs an adaptive polrgonization of a

triangular algebraic ourface patch. Let f(:r,y,;:) == 0 be a primary surface whose trian.

gular portion, clipped by three plancs h,(:r, y,.::) '" 0, i == 1,2,3, is to he polygonized.
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(See FiguTe 4.2.) Initially, the triangle To =: (Po, Ph Po) i. a rough approximation

of the surfil.Ce patch. Each boundary curve, obtained from the intersC'Ction of J and

h;, is traced producing a sequence of points on the curve, then an adaplive piecewise

linear approximalion of order 2~ for SOme given d is computed. In Chapter 5, We

present an algorithm lhal quickly genelat.,. such a piecewise linear approximation

given a sequence of poinls in :lD "pace. Then, To is refined into four triangles by

introducing the:l points Qo, QIl and Q, where Q;, i:= 0,1,2 is the middle point

of each adaplive segmentation of order 24. The clipping plan.,. for the .ubdivided

triang1.,. can he compnted from the normals of the Lwo triangles incidenl to the edge.

Theil, each new edge is traced, and its adaplive piecewise linear approximation of

order 2~-1 is produced. In this way, this new approximaLion is further relined by

recursively subdividing each lriangle until SOme sLopping criterion is met.

While the method produces a regular, but adaptivc, network of polygons, it could

be improved further to generate more adaptive polygonio:.1tion. RaLher lhan subdi

viding all the triangles up to tbe same level, each triangle is examined to See if il is

already a good approximation to the surface porLion ilis approximaLing. Il is rdincd

only when the ans ....-er is no. Some eriterions for such local refinement ;l.Ie suggested

in (4, 16J. 1I0wever, to design an irregular adaptive polygonizaLion algorithm with

robust local refinement criterions, remains open.

Figure 4.2 Recursive Refinement of a Triangle

In lhis section, we consider why the quintic surfaces which Hermite interpolate

quadric triangles are u.ually .ingular at lhrcc vertices.

4.2 Wby Singularities?

We al.o usc the nbov!! rCCUl"!livc subdivision scheme to produce So == {(""llilli '"
I,···,I) used in SUb8cction 4.1-3. lnitially, only the boundary cun'"" Me known,

and each time IL neW curve is Lo be haced in the above illgorilhm, ,l <junrlric wire is

computed as expJaiocd in Subsection -1.1.1 from the information On the inili,ll and

final poin19, their norm"J. and clipping plane. The generated quadric wire gives

appro"imnLc CUrVe and normal ;ofo,mation, and is traced to gener,'lc point. and

normals. The final polygonal approximMion obtained in lhis way glv"," a set o[ points

which are used in ["""L .qua= appro",.imaLion. We observe that this heuriSLic mclhod

work quite well whell the p ....Iue is in the rC""Dnable ...ngc, Bay, 0.25 S P S 0.75.

Figure 4.3 displays a polygonization of a triangular algebraic surface patch, and the

points u.ed for le&st sqU<l.T.,. approximaLion.

We firsl review SOme blLSic concepts of differential geometry [18, .19). A B"dllCe

S C R;l is regular aL a point peS if there exists a neighborhood V C R;l and

II. map X : U _ V n S of an open ,el U in f(l onto V n S c R" such thaL

x{u, III = (z(u, til, y(u, til, ~(u, lI)) is differentiable, homeomorphic, and ils differential

dx. ' R
O

- R' is one-lo-one for each q E U. A 'lIrfllCe S is regtilllr if, ill each

poioL on S. S is reguillr. Intuilively .peaking, a surface is regulilr at il point if a

neighhorhood of the point in lhe surface can be oblained by taking a piece of a plnne,

deforming it in a noL too violent f""hion, in sneh /l way that the r""ulling surface h....

no .ingularities like sharp points, edges, or ,elf-intersections at Llie pOinL anel it makes

sense to Bpeak of a tangenl plane Ilt the point. By taking such a mllp from a pl,'ne Lo

a. surface, il becomes poosible for It regular surface lo have a differenLial and integral

calculus which is ,tTieUy comparable with the calculus On the Euclidcilll plane R1.

-1.2.1 A Review of Diff~renLiai Geometry
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A (Aogent vector \0 II regular surface S at" point pES is the tangenL Veclor 0'(0)

of 11. dirrcrcntiablccurvc Q: (-e,<) --. S with 0.(0) '" p. The plane Tp(S) spanned

l>}' all Langent "celom to S al p, i, called the Langent plane 10 S aL p which i., in

fact, a two dimeo.jonal """LOT space. For IL regular point pES, a unit vector which

is perpendicular Lo Tp(5) is c;,.lIed II unjt Dorm,,! "!'rtpr at p. For each q E x(U},

We define .. dilTcrcntiablc field of unit normal vectors N x(U) ---0 R" such Lh"t

N(q) =: 1Ii:::: II (q). where x. = ~ ILnd Xv =~. The map N: S --. S', laking its

"alues in the un;t sphere, is clLlied the Gauss map of S, where 5' is a unit sphere.

Then the Gauss map is differentiable, and ita dilTcrclllialdNp of N aL p;. II linear mnl'

from Tp{S) to T.(S). It m"""Ur"" the rate of the normal vector N in a neighborhood

of p.

The following lemma providcs a condition which mU5L be .aLisfied when the "nil

normal vectors of II surface S change in the neighborhood of regular points. ILs proof

i. found in Chapter 3, pp. 140 of [181.

Lemma 4.1 The dilTerenLial dNp : Tp(S) -. Tp(S) of the Gau.s milop i. a self-adjoint

linear map, Lhat is, (dNp(w,),Wz) '" (whdNp(Wl)) where w, and Wz are Iwo inde

pendent tangent vectors at II. regular point p, and (".) is Lhe inner producl of two

vcelom.

meet at p and they share the same normal diredion alp. We look for iI surface S

which smoothly intcrpolate:! thc curvl.'9. thal is,

• the normals of tangenl plancs of S along the curves musl coincide wilh the

normals of the eun'CS, and

• S is regular at p.

A straightforward application of Lemmil ~.I yield. the following theorem which

presenLs IL necessary regularity condilion on the curvcs and normal directions.

Theorem 4.1 Lel G,(u) and C1(v) be two paramelric curv"" wilh parameLric normal

direclion. N,(u) and N1 (u) such thal C,(O) '" Cz(O) '" p, and lhal NI{O) and N,(OJ

are proportional. Then, any surface 5, which interpolatcs the curvcs with langent

I ,..,.. I , I INilO).,,!!O)) (c:IO!·_'J;I0)Jpane coo InUI y, IS smgu ar a p nn "'19 lit,lolll = IIN,lOlll-

Proof: Suppose lhat S i. a .urface which smoothly inlerpolatcs the cur"cs, lind is

regular ILt p. Then, we have a local paramelriulion x : U __ V n S of an open sci

U in R
l

onLo V n S c fi3 for a neighborhood V of p such that

• x(O,O) '" p,

By the definiLion of the dilTerential,

Then, by Lemma '1.1, for S to be regular /1t p, iL shouid bc lhat

(4.1)

• X. '" ~(O,O) '" q(O) and )C. = ~(O,O) = Cj(O), and

• the Gauss map N of S i. such Lhat N(C,(u)) = IIZ:I:lll and N(C1{uJ) '" IIZ:i~llr

~.2.2 Interpolalion of Two Parametric CUTVCS

The symmetry of the linear map dNp , implied by Lemma ~.I, entails a nec,,"sary

condition thaL musL be sali.fied belween tangent vectOl'S and the rate:l of changes in

normal vectOI1l al a regulaT poim. IL implie:! that, given two regular cUrV,," pllSsing

through a. regular point on /1 ."rface, the unit normal voctor mu~t challge along each

curve nti.fying the equality in Lemma 4.1.

Consider the problem of IlermiLe interpolation of two p.'Iramclric .pace cUrVcs wilh

normal direcLions, meeting at a point. LeL Cl(ll) and C,(,,) be the two parametric

curv"" with parameLrically repr""enlcd normal direction. Nl(u) and N~(,,) .uch lhaL

CI(O) '" G,(O) = p, and NI{O) and N1(O) arc proporLional, lhal i., the Lwo curvcs

-,--'
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N:(u) II N,r..) II -Nlr.. } II Nit,,) II' I
II N,(u) II' 0=0

:= 11':(0) II 11',(0) 11-11',(0) II NIC ... ) Lo
II 11',(0) 11 '

Since (N,(O) ,) - 0 (dfl (, ) , ) - W;(OI,I.) - lNj(O),cl!0)) I. 'h- "m- ••y
, " -, ~", u - IIN,(Olil - IIN,(O)II . .. ~ ~ ,

,{ dN ( )) (e:rel,Nlla)) H 'h ,. (, I) bwe go Xu, p x" '" UN,(Olil . once, c equo Ion '. ccomes
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of the [acC5 incident to each edge (P"P.i), and take it.. erOl. product with the "eclor

Pi - p; La gel the edge normal vecLor npl;j. AfLer the norm..l dOla are computed,

quadric wires arc generiLlL'd for i1 p ,,,Jut which is interactively selected by a IISer.

Example 4.1 Construction of Quadric Wire Frames

4.3 Smoothing a Convex Polyhedron

In. Section 4.1. we d""cribed how lo comp,ne a quinlic triangular algebraic Sllr.

face patch from a given augmented triangle. A convex polyhedron is smoothed by

replacing ils fae"" with lhe triangular palchel meeLing each oLher wilh tangent plane

contilluity. For augmellted triangl"" T = (AI, Ph 1':1, no, III. n2, nplOL. npin, npil0) or

fac"" of a polyhedron, the normal data., i.e., lhre<: verteX" normals and lhrl'" edge

normals, mlrlt be provided as Yo-ell il.S lhe given Lhree vertices. [n 'ome applicalions,

the normal data may come with a solid, bUl only verlic.... and lheir fiLei"l inrormalion

are usually provided. The verlex normal II; aL each vertex p; can be computed by avo

er<lging lhe normals or the faces incidenllo the '·erlex. Also, we average the normals

The above theorem implies thot enforcing two curv"," Lo have the same normal

vectors at an inlersection point does not guaranLee the regularity of an interpolat.

ing surface a~ the point. The equation in the theorem is a necessary condilion for

regularity, indicating lhat, if the given curv"," and their normal5 do not satisfy the

equation, any smoothly inlerpolating surface must be .ingular at p_

Thi. issue has been also addressed in the literalure of paramelric surface fitting.

Peters {56J showed thaL nol every melh of parametric CUrVel with well·defined Langenl

planes at the m""h poinls can be interpolated by smooth regularly parametrized sur.

fiLca with one surrace patch per amah f/ICe. In {55J, he used singuhLrly parameLrized

sudaca to enclose a mesh point when mesh curves emanating from the poinl do noL

satidy a constrainL, called the verte" enclosure constraint.

-T-~'---

(N:(O),C~(Oll _ (Cj{O),N;fO))
II 11',(0) II - II 11',(0) II o

Figure 4.4 lind 4_5 "how two quadric wire framC9 for the .ame conVeX pol;'hedron'

with the p values 0.4 and 0.75, re.pecLivcly. 0

Example 4.2 Smoothed Polyhedra with Quintic Algebraic Surface Palch""

Each of the 32 fae"" of the polyhedron in Example 4.1 is replaced by a quintic im.

plicit algebraic surface which smoothly nelhel ils quadric lriangle. The relull is the

piecewise tangent plane continuol1.9 quinlic algebraic sllrface m""h thal smoolhs lhe

given polyhedron. Figures 4.6, 4.7, and 4.8 illustrate the lIl""h for p = 0.4,0_5, and

0.75, relpeclively. As mentioned before, ellipses, parllhol,lS, and hyperbola.s are used

as quadric wires for p = 0.4, 0.5, and 0.75, respedively. 0

·1.4 Toward. Smoothing an Arbitrary Polyhedron

10 the foregoing sectioll.9, II'C showed that algebraic surfaces of degree five, moder.

aLely low, can be effectively UlIed in smoothing convex polyhedra. IL is natural that

We con~inue to work on smoothing an arbitrary polyhedron, nol necessarily convex.

In this section, We consider all approach lo this open problem which is based On face

subdivision.

-1.4.1 A Characterization or Existence or Conic Curv""

The convex polyhedron smoothing scheme presented in the previous sections con

sisls of lwo .teps. The firsl step i. to construct a quadric wire (r"Dle of a given

polyhedrOn, and then each quadric lriangle i. Aelhed by a quintic algebraic surface.

As will be seen. edges or a convex polyhedron can be aly,-ays replaced by <Juadric wires

'Thi. polyhedron ua gyroelongaW triangular bi."pola ..iLh illl,..:lang"l.r r""", Iri.ng"lal«l.



wiLhouL creaLing cusp-like connectioIl.'l. However, in Cillie of" nonconvex polyhedron,

conie curves, that do nol have inflection poinLs, are not flexible enough Lo model

nonconvex shapes.

In CI\GD, piecewise polynomial cubic curves ha.ve b""n u,eful in filling arbilrary

shapes due Lo their d""irable properli." such"" their c"l'"bility of h"ving C' continuily

belween cum::s, and zero curvalure at inflection points [SSJ. On the olher hand, conic

splines have been found ade<juale in repr""enting arbilrary shapes (53, 58J. Coni" in

r"tional polynomial form h"ve the advanlages, over cubi", of low computational cost

and a. rich body of mathematical r""uILs. 10 partieul"r, adhering to conics "lIowo us

to conlinue to explore the e1....., of quintic algebraic surfaces iIlI geometric modeliog

tools.

In this .ub.eclion, we derivc a criterion which determincs if a Qu"dric wire

W(I) == (C(I), N(I)) cao interpolate given two poiol and UOil normal veclor pairs

(Po,1I0), (Ph nJl in 3D .pace. Here, by ioterpolalion oC normal vcelo"" we mean

strict interpolation where W(O) a.nd IY(I) have the ""'me directioT15 as 110 and "I,

rcepectively. Thi. resLriction guar..ntecs cOl\lltruct;on oC qu",dric wite frames which

are frcc of cu.p-like conncctiolUl.

We firnt consider Ihe plaoar case, and derive a criterioo which tel~ if lhere exists

a conic curve that interpolatce two given point ""d uniL normal "ector pail"!! Po ==

(Po, 110) ",nd P, == (Pl, II,) where P<I = (Po~, 1'0» and p, = (PI~, PI.) are two points on

a. plane with lI.'I.ociated unit normal vectors 110 == (nQ~,no~) aod II, == (n,.,II,.). To

be mOre precise, we give the followiog definition:

Delinilioo 4.4 Let Po '" (Po, 110) and Pl = (PI, "l) be two given pair,. A conic 'egmenl

S(Po,Pd i9 said to 'moothly interpolate Po and P, if there exis19 a nondegenerate

conic curve J(.:,y) = 0.:1 +2hzy + 1Jy~ +2gz +2/U +c ,ueh that

• S(Po,P,) i. a continuous segment of J{.:,y} == 0,

• Po and PI "re Lhe end poinlll of ScPo, Pd, "nd

7J

• the gr"dienL. of [(.:,y) == 0 at Po and Pl have the .ame directions as "0 and "I,
L' I I th . d ~Vf{pol ir.! - 1 d ~V[(·'l!"11 Irespec IVe y. n 0 er "'or ., Il/IPolllC"11 - ,an II 1(,,!f.Iln,1I == _

Given a pair P == ((p~, p~), (n~, ".)), we can define Tp (", y) == n~(z _ p~) +n.(y

P.) == 0 which is the eqnalion of the tangent line lbat passes Lhrough (P.. p,) and hil:l

1\ norm,,1 direction (n~, n.). NOlc thalthe normal of the tangcnlline T/{:r,y) '" 0 h""

the .ame direclion "" ("~,II.), and divides a plane into a posilive halfspace ((.:,y) E

R1ITp(z,y) > OJ, and" negative half.p"ce ((.:,y) E R'ITp(.:,y) < OJ.

Lemma 4.2 LeL Po and PI be on a nondegenerale conic J(.:,y) == az' +2h.:y +by' +
2g.: + 2Jy + c == o. Then, TlPo,vI(Poll(pd' T(Pl.V1f.JlI(Po) > o.

Proof: Without 105!l of gener"Hty, we assume that Po == (0,0), and /'1 == (1,0). Sinee

'V f(:e, y) = (2a.: +2hy +2g,2hz +2by +2j), 'VJ(O, 0) == (29,2f) and V /(1, O) ==

(2" + 29,2h + 21). Hence, 1(Po.V/lPon(", y) = 2g.: + 2Jy, and 1(.,.V/l.,ll(Z,y) =

(20 +2g)(" - I) + (21. +21)y. From the containment condi~ions of the lWo pOillts,

J(O,O) == c = 0, and J(I, 0) == a +2g +c == O. Then, 1(""V/fPon(p!l' 1'r...v11I,,)I(Po) ==
2g(-20 - 2g) = 2g{-2(-2g) - 2g) == 19~ ;:: o. rr 9 == 0, it follow. thala = c ==

9 == 0 in which ease J(.:,y) reduces iolo two lines. Since we /\'s'ume Lhat /(.:,y) is

nondegenerate, 9 # 0, and We h"ve proven the lemma. 0

The geomelrie interpret .. tion of the inequality TlPo.VI(PoIJ{pd· Tl."V/l.,U(Po) >°
is lhat Po i. On the posilh'e (negative) half.pace of TfI. if "nd only if P, is on the

positive (negative) halrsp...,e of T".. The following theorem .how. Lha~ this condiLion

is, in faet, a sufficienl a.nd necessary condition.

Theorem 4.2 There exislll a conic .egment S(Pa,P,) that smoolhly inlerpolal .... two

pairs Po == (Po, 110) and PI == (p,,",) if and only ifT",(pd ·1'p,(Po) > o.

Proof: (=<0) Lel/(.:,y) == 0 be the conic that contains S(Po,P,). From OUr def

inition of smooth interpolation, it follow. lhat Tp,(p,). 1'",(",,) 1j"','i'/f"'IJ(P,)'

1(."v1(~J!l(Po) which is pD5itive according Lo Lemma .1.2.

(~) If TfI,(,'d' TfdPo} > 0, t!leo the conic segmenl On q(.:,y) == l.(",Yr' _ 1<'



TH,(x, y}. TI',{:r,y} '" 0 Or -q(:r, y) '" 0 will smoothly interpolale the ~wo pair9 where

L(:r,y) =: 0 is Ihe line conn""ling po alld P" and", is a conslant [6,1]_" 0

Now, back 10 the original problcm of compu~illg a (Juadric wire rhat smoolhly

inteqlOlatcs two given point and unil normal V'-Ctor pain; Po '" (po, no) and PI =:

(1'1,11,) ill R'. The concept of the tallgent line in ,\ plane is naturally e.dended to ,'11

oriented tangent plane Tp(x.1.',=} =: II.(:r - P.) + n.(1.' -1'.) + n,(= - 1',) =: 0 gi\'en

il pair P '" ({p"p.,p.l,(n.,,,.,n,)) in 3D SIJace, and lhis tangent plane divides 3D

space into two half.paces. In fact. Ire Sl'C lhat the incquality Tf'o(pl 1-Ttl (po) ::> 0

is also a crilerion which dctermilll:! if a {Juadric wire can smoothly interpolate two

given pairs of points and norm"l vectors.

Corollary 4.1 Givell!WO poiot alld unit 1I0rillai ""ctor pairs Pc =: (Po,ne) and PI

(1'" nil in 3D space, there exists a quadric wire W{t) =: (C(J), N(tll, contained in a.

plane determined b~· a given plane normal vector "1'101 , thal smoothly interpolates

rhe pairs if and only if TH,(p,) - T1\ (Po) ::> O.
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4.4.2 Iterative Subdivision of FacC9

In this subsection, we consider a prOCl'<:iure thal tries to produce a (Juadric wire

frame for a given polyhedron with arbitrary shape. This procedure cb""ks if the

inequalily criterion holds for each edge, and if it does, the edge is replaced ;,y a

(Juadric wire, as before. If the criterion does nOl hold, it is illevilabl" that a curve

with an intl""tion point must be used. In tid. procedure, we break the edge, and usc

two quadric wi"", meeting wilh CJ continuity rather than using a cu;,ic curve which

would require a higher degree algebraic .urface for IIermite interpolation. When

an edge is broken, the triangular face incident to the edge i. subdivided into a few

suMac,," dependiog on how many edges of the race nrc broken.

The following procedure subdivides ench race of a given polyhl'dron iterali,...l)"

uolil the criterion is mel lor all the cdg,,".

Procedum 1.I (Iterative Face SubdiVision)

rompul~ the v~rle:r flonnol" o"d edg~ nonnals;

do

r beginning of a new phD.:l~ 0/
(Of nch /aeo 0/ th~ oum:nt pol1.'h~drD" do

if Ih~ /ao~ must be subdil1idallh~n

subdivide th~ /0 ••;
endif

endror

update th~ pol1.",.dra,,;

until no lace is subdiuid~d in th. ou"""l phase

[n each pbase of the iteration, no edge is broken ioto two subedges when nceessar)",

and a proper normal vector i. IISso.iated wilh the new vertex. As of now, we do nol

know which way of /L'isociating normal V('CIONI with the ne,,- vertie,," is the best.

bowever, it must be such thal the resulling new edges and their point and normal
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vcdor pairs s;Hisfy tbe incqll ..];ty criterion as much as possi!>le without harming the

aesthetics of " quadric wire (rame Lo be computed. Once il quadric wire (rame is

constructed, we can apply the sarnc technique \0 flesh each quadric lriangle of lhe

wire frame.

Much work remain. in converting the above c}:pcrimclltal procedure into a rohm!

(ace subd'lv;.;on ;"lgoriLhm. Fil"!l~, there /Ire milny degrees of freedom in replacing each

cdge with two quadric wire:! wheo necessary. The inflection point where two wirC::!

meet with each other and a 00=1 vedar al the pojnt mu,t he specified. Also, the two

quadric wires need not be on the lame planes bul can be On differenL pJao,," as long as

the normal condiLion i. slt.tisficcl at the inflection point. Also, thero are two degree. of

freedom in selecting the P Villul'S of thetwo quadric wires, although they Ciln he u.ed

lo achieve C2 cootinuity II~ the inAe<:tion vertell" [58). S"",ondly, "" ~he fa.ce .ubdivision

proc:""s proc:eed., SOme f",ce" with bad _bape" fi")' be gener"ted. The ,,"ped ratio of

iI f",c!! or a triilogle is defioed "" the r"tio of the r"dius of the circumscribed circle to

the rll.di~ o[ the i""cribed circle. Triangl"" with large ""ped ratiD3 tend to produce

more numerical eno", in computation [18] as well """ being inappropriate [or di.pl",y

t"",hniqu... such,," Gourll.ud shading [33]. Tn OUr polyhedron .moolhing .cheme, it

appell'" to be mOre diflicultto remove self-inte"'eclion. iMide qu",dric triangl... when

the ""peet r",tios of r",c", arc large. Hence, it is imporL"nt to maintain ""pect ratios

of fac"" in a reasonable range by adaptively suhdividing them.

Figure 4.9 .hows a nonconvell" polyhedron, and Figure 4.10 illustrates 1\ cUr>-ed

object oht",ined "",, r""ult of smoothing the polyhl'<1roll. We observe wa\·e·like ascil

I",lions belween the surrace p"tche" of the subdivide'l1 filC,,", while the surface patch""

of the con\'ell" region produce pleasing curved approximation•.

-1.5 Summ"ry

In this chapter, we ell"p!o,ed lhe elllli5 of quintic algebraic ""rfaces to smooth"

given convex polyhedron with triangular fac.... [n the presenled scheme,,, wire frame

made of quadric curves and quadric normal. w""" constructed Ii",t, and then the triple

77

o[ quadric Curv... cOrfe"ponding to each face was ne"h'<1 with" quintic algebmic sur·

f""e lhrough Hermite interpolation and conlour levclle""t S'lUll"," ilpproxim",tion. We

observed that lhe minimum degrco: o[ algcbr",ic surfac... for tlii. polyhedron smoolh·

ing .cheme is at least quintic, ",nd also discussed how a triangular illgebraic surface

patch, who;e vertices may be singular, is polygonized. The problem of smoothing "'

polyhedron with "n arbitmry shape wilh quintic algebraic surfaces i••till open. We

need to devise ao nlgorithm for co""tructing good quadric wire frames for nOnCOllveX

polyhedra.

There are SOme more open problems th"t need to be mentioned. Fir.t, a more

robust method of generating the poinls and contour levels for least squar... approxi·

mation is d... irilble. While the heuristic for Ic.ul squ"re approxim"tion u.ually .....ork.

well, 'ome~im ... we mllY bave to chll.Oge the value of a in S, and B_ 1 manu",lly. Sec

ondly, although the singulariti ... at the vertic... of triangular Jl1Llchcs do not harm

geometric continuity betw""n ~hem, it will he inter... ting, "t least theoretically, lO

try to produce triangular patch which arc regular at their ve,tice!. Thi. mighl be

p"".ible via subdivision teehniqu wed in parametric surf"ce fitting.

Our ultimate goal i. to construct curved solid. with quintic algebraic .urf"",e

patch... , and then to mll.nipulate them through geometric operations such as hooleo.rl

set operations. Thi. ",bili~y will provide a geometric modeling '~'stem wilh II. compleX

w",y of creating and manipulating models of physical obje<:ls with "",rioll' geomelries.

Also, this r...careh can be fully applied to visualiOUItion of thrcc dimension",l imaging

data obtained from computed tomography (CT) "nd magnelic resonance im",ging

(MRI) techniqu... in medical imaging.



Figure '1.3 A PolygoniZ<l.lion Ilnd Poinls Generated

Figure·]A A Conve:< PolyhlXlron with Quadric Wirl.':! : p = 0.4

Figure 1.5 A Convex Polyhedron wi~h Quadric Wires: p = 0.75

Figure ·1.6 A Quintic Algebraic Surrace Ml.':!h : p = 0.,1



Figure 4.7 A Quintic Algcbr"ic Surrace Mesh: p == 0.5

Figure ·1.8 A Quintic AlgcbriLic SurfiLcc Mesh: p == 0.75

r-'igllre ·1.9 A NonconveK Polyhedron a[ter Faces Su[,<li'-i<l,,<l

r-'igure ·1.10 A Quintic Algebraic Surr"cc Mesh: p == 0,5

"'
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5. PIECEWISE L1NE,\R APPROXIMATION OF SPACE CURVES

Finding piecewise linear approximation of a digitized or densely sampled curVe is

an important problem ill image proce:!oing, patt~rn recognition, gcom~Lric modeling,

and computer graphics. Digitized curves oCCur a..s bound"ri.,. of regions or object!.

Such curve:!, usu"lIy reprC!lented /lS sequences of point!, may be m""-"ured by devices

such a..s scanning digitizers or may he generated by ev.:l.luating parametric C<juations

of "P"Ce curves, or by tracing intersection curvc.. given by implicit surfil.Ce C<jlliltion,.

They Can "bo be nbtained from experiment!. For cfficienL manipulation of digilized

curvc.., they arc typically represented in the form of sequences of line segmenLs. While

the original CUrn'Oi are made of large sequence:! of points, their "pproximations are

represeoted by a sm,,11 numher of line .egmenls th"t are visually accepl"h!e.

The piecewise linear approximation problem h"" r~ci~ milch attention, and

there exi.t many approxill1lltion Il.lgorithlll5 for thi. problem. The literature in related

"Tell.! contains many heuristic method. lhat ace direct "nd efficient even lhollgh, in

general, they do not lind an optimal approximation [22, 24, 52, 5·1, 60, 62, 61, 70, 71,

77]. Thi. problem w"" al.o treated more theoletic"Uy in the area of compulational

geometry. Imai et al. [38] presented an O(n") time algorithm for approximating a

polygonal chain of length n with a minim"l number nf line segments within a given

tolerance. The time complexily is reduced to O(n' logn) in 1·14. ;2]. However, most

of thcse work. consider only plan"r curves "" thcir input dal". "nd little "'ork h""

addrcssed space curve approximation. In many application., a three dimensional (3D)

object is designed with n set of boundary curves in 3D space which arc represented

"" a set or equations or "" II. "C<juence of point•. lIence, h...ving a good approximation

method for digitized "pace cnrves is essential. In [3!l), which is one of few works on 3D

space curve approximation, a quintic H-spline is construCled for noisy data, and the
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I~hgth of the narboux vccLor, also known Il.5 lolal curvature, is 11500 il:j the criterion

for segmentation of 3D curvcs_ This method rcquircs construction of qllimic D'9plincs,

explicit computation of curvllture and lomiah, and polynomial root isolilLion.

In this chapter, We con,ider bow to quickly produce a good piceelli"c linear ap

proximation of iL digitized space curve with a smaller number of line segments. Oath

"peed and quality arC very imporlant in most 4pplicaLions, and in par1icular, the

heuristic algorithm prcsenLed in this clw.plcr is used to polygonize implicit triangular

algebraic surf""e plI.lchcs computed in eh"ptcr 4.

Our algorithm is b1L'loo 00 the notions of curve length and spherical imas~, which

arc fUDdam~nt,,1concepts in difl'er~otial geometry {lB, 41, 49]. In Section 5.1, we firsl

define .ome terminololJY and give a mathemaLical formulation of the sp~'Cific prohlem

we are dealing with. This approximation problem is nilturaHy roouce<! to a combi.

natorial minimiLJr problem which can be staled 8.9 uGiven n points, choose a smaHer

number ill of points such thaI the maximum error of apprOXimation i, minimizcd." In

Sectioo 5.2. optimal approximation i, found by an algorithm thaL rUns in O{n~ log m)

time and 0(n210g m) 'pace. We de<crihe, in Section 5.3, a f/lSt heuristic iterati"e

algorithm which «'quic"" O(N;",n) time and O(n) .pa.ce, where N;,.. is" number

of iterations carried out. Abo, the performance o[ the heuristic algorithm On some

test C/lSe:l is analyzed. In Sedion 2.5, we illmtrate applicntions o[ tbis fast heuristic

algorithm in whicb sp"ce curves and implicit surfaces arc adilpti\"cly linearized. We

aloo apply the heuristic approximation algorithm to con.trucLion or adaptive hinar~'

!pa.ce partitioning (BSP) trcc.. [or a c!il:iS of obj~cts m:.de by re\'olution, "'here the

lin""r appro~im"tion of a curve is nalurillly e~Lended to linearly approximate the

c1,,"" of three dimensionnl curved objects, made by revolution. with nsp trees ,Ilat

"re "·ell-balanced.

5.1 Prcliminarie:!

Definition 5.1 Let C be a space curve in R". A space CurVe segment e(a.b) i, a

connected portion of a CUrve e with end points 0, b E R'.
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In order to define a curve segment without ambiguity, a tangent vector at a may be

required. Bu~ we a,uume ~his vedor is implicitly given.

Definition 5.2 A digitized .pace curve segment C(o,b,n) of order n is lin ordered Se.

quence {a '" Po'P',/"l,'" ,p~ '" b} of points p, E RJ, i '" 0, I•... n, which approxi.

mat"" e(a,b).

Approximation of a digitized space CUrVe with a smo.lI number of line segments in.

e....itably results in an IIpproximation error. The quality of approximation is measured

in temu of a given error norm lhat can be defined in man)' ways. Some commonly

u:;ed ones arc

l. maximum nOrm:

L", = mnJ: e,

2. 2·norm :

3. ar"" norm: L.... = al>solute area between curve segment and approximating

line segment.

!n this chapter, we U.e Loo as an error nOrm Lo measure a goodn",u of an ap_

proximation, although our nlgoritbms in the Inter .ection. are also compatible with

Definition 5.3 A piecewise linear approximation LA(e, II, b, m} of order m to

e(a,b,n) is an increasing sequence {o = qa,q"q,,"',qm '" n} of indices to

points in C. An error E(LA C,a,b,m} of a piecewise linear appro"im,,~ion LA

is defiooo lIS mlLlCa:!;'Sm-1 E••,(I) where the i-til .egmont error E...(i) i.

maX',SiS.,., di31(p"line(p."p",,)), and di31(J:,lfne(y,:)) is the Euclidean <li.tance

from a point J: to a line, determioed by two points y and :. '

'For !lny pain':r E n
3

, o."d 'wo oth.. pninl.o 110< E n 3, (y F <}. dial(r,Ii"'(lI,:)) ea" h.
eamp"uly e~p,<Mcd a.3 II 11 - r + l·i!':~irl(. -1/) II. w~.,. h·) II the <la' p,aduel of 'wo V"'ta..
And II-II i. the I.ng'h oC" _'or.

As poimed out in Pavlidis ct 0.1. [5'1], the problem of finding 0. piecewise Iineo.r

approximation LA can be exprl':'lsoo in two wo.ys :

I. find /I LA(C,a,b,m) such that E(LA) <' for a given I>ound < 01",1 m is milli.

mized.

2. find a LA(6,a,b,m) thaI minimize. E(LA) for a given m.

We focus mainly On the .econd lype of problem. However, 'l'e will also disc!!ss

briefly the Ill1it type of problem in Section 5.3.3.5.

Definition 5.4 The optimal piecewise linear npproximo.tion LA"(6, n, b, m} of order

m, given 6(n,b,n) and an integer m (n ~ m), is a piecewise linear approximn.

tion, nol nccesnrily unique, such that E{LAO) s: E(LA) for allY piecewise lineo.r

o.pproximation LA of order m.

Gi ....eo these definitions, the problem Co.n be stated as ,

Problem 5.1 Gi ....en 6(a,b,n) and m, find Lrt"(G,a,b,m).

5.2 An OptillUll Solution

5_2.1 An Algorithm

A naive algorithm (or Problem 5.1 would be ..... following:

Algorithm 5.1 (NAIVE)

temp", 00;

for all/he pa""ible (~:~) LA(C,a,b,m) do

cDmp"le E(L.-I.);

if E(LA) <: temp Ihen LA" == LA; temp'" E(LA);

endror
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Note Lha~ tbi~ prol>lcm II"" a rccllr:!i ...c natu,e. that is. it c,," [,,, naturally sub.

divided inlo two subproblems of the same typc. Dynamic programming, which is .1

general problem solving technique widely used in man,' disciplines [2J, can be applied

Lo this problem Lo produce a rather straightforward algorithm. We ~rst give "" algo

rithm which work. in case m is a power of 2. Then the algorithm is slightly modified

for an arbiLr",y m.

Define E!j Lo be the errOr of LA"(C,p"PJ,lj, that i" lhc small",,! error of all

piecewise linur approximation. wilh I (= 2~) segments (0 the portion of C from p,

(0 Pj· Then Elj can be cxpreosed in terms of £'1 and E1
J

as following:

S7

endfo.

cndfor

COlls/,uet LA- from Ilt;

In the hasi. ,tep, £;Ij is computed by calculating the dis(ancc:i frolll the poims PI',

< ~. < i to the line pilSsing through p, and Pj, and taking tbeir maximum. /\i is

need~-d to r~"Cursi"dy con~huct the optimal piecewise lioeM apl'roximation Once Eo:,
is computed. Note the recursive relation LI1"(6, Pi, P" 2;) '= L,I"({:, I'"~ P~'" 2"-') U

"LA"(t, p~,~, Pj, 2"-').

E:/ '= min max{El:-', Et;-') for 0 $. i < i $. n ond d> 0,,<t<, (5.1) 5.2.2 Time and Space ComplexiLy

where E?/ '= 0 if j - i $. 2".

The recursive relation gi,'c:i rise to the (oliowing dynamic programming algorithm

which compule. the minimum error Eo:. and il.'l corresponding LII" :

Algorithm 5.2 (DYNAMIC)

r hallis stcp ./

fori=Olon_1 do

for i=i+1 tondo

compule EI,;
~ndfor

~nd(ot

r ioducLi"e sLep "'

fotd= I 10 logm do

{oti=Olon_2J _1 do

forj=i+2"+llondo

EtJ' = max{ E?l"-' , 61~"'} = mini<l<i maxI E~:-', 6Z;-' 1:
Kt = l";

~ndror

Since E,', i5 computed in OU - i) time, the basis step requires O(L::d L~gi+J U
i)) '= 0(n

3
) time. Similarly, E?/ can be computed in OU _ i) time. So, the indllct"'e

5tep nceds O(n'logm) time. Also, LI1" can he constructed in 0(1'1) time. Th,"e

Lhree time bounds are combined into O(n' logm).

The algorithm uced. 0(n1) space for sloring a Lable for Er Also, 0(n110gm)

space is required to save Kt, d = 1,2,···,logm. Hcncc, the space comple;>;it~. is

0(n1 10gm).

5.2.3 An AlgoriLhm for Arbitrary m

In the algoriLhm DYN AMIC, I in E!, is doubled in each step. We can imagine a

computation Lree for Lhi~ recursive computation where ils root has vahle m, nnd each

node with mlue:r ha.:i two children with vailles ~. The nod"" of any paLh from a leaf

to a rooL have valu,,", 1,2,21,2\ ... , m, and we Can view DYN AM fC as Lraversal of

the path from a leaf to a rooL compULing, by merging two children, E:, where I is a

value of a node.

When m is nOL a power of 2, we can IIlso think of an imaginary computation tree

which is constructed all following. FirsL, m i~ IL root of the Lree. The rooL h..,; Lwo

children with ""lu,,", m' and m - m' where m ' is the larg..,;L po"''<'r of 2 less than m.



5.3.1 G'ln'e Length SIIbdivision

Algorilhm 5.3 (LENGTH)

qi+, =: j;; =; + 1;

where d(p" 1';+1) is the Euclidean dislance hetween two poims p, alllll"+l in R~.

'8 II p,+, - p;
• L. d( .) II d(I',.P,+,)(..0 p., P,+!.-,

L:llp;+I-p,1I
;~O.-,
L:d(p"p,+I)
(.. 0

(' II dC(l) II dl
10 dl

illustr"ted in the nexl two subseelion. thal neilher !neasure "lone is " good heuris.

lic. Our heuristic in Sedion 5.3.3 i. a weighted 'um of lhese lwo ",ea."ure:s, and lhi~

simple combinro measure l'ields a good initial guess.

(" let L".(i,j) he Er::d(Pl,Pl+,)"/

compule lolar =: L~;~ d(p~, p~+,);

5egle"ylh =: ceil(lo/ol/",}:

qll=:O:;=O:

whil"i<m-Ido

find Ihe large.l j such Ih"l L ...(q;,j) < s"glellyl},:

,'ssume we have a parametric representation C(l) of a CUn'e C. The lirst heurislic

is lo divide a CUrVe segment inlo .ub.egmenl.!l with the II1me curve Icugth where lhe

Clln'e lenglh i~ defined to he J: II~ II dt. This qU~lltity i~ us,,~lIy al'proxinmted

bl' the chord length as following.

Gi"on II digilized curve e(a, b, n) =: {a = Po, PI," " Po =: b}, consider il par,~metrie

Cllr\'e C{I) whore C(O) =: Po and C(I) =: p~. Then,

5.3 A Heuri,tic 501"tion

Even though lhe algorilhm DYNAMIC find. an optimal approximation, the

time and ~pace requiremenl i. eXCC59ive. As slated in Scdion 5.3.3.4, the algo

rithm i. extrcmc1}' .low e"en for modesl n, for example, n =: 400. I" many

application., iL is more dc:sirable to generate 'J"ickly a good, hut not neces.

sarily optimal, approximation. In Lhis scelion, we dc:scribe a heurislic alga.

rilhm which consists of two parts, computation of an initial approxim~tjon and

iteraLive refinement of the approximation. Our heuristic algorithm is based IIpon lhe

observa~ion that the error of a segment is a function of the length of the C"n'e seg.

ment, and the totill absolute cbange of the anglcs of lallgent "eelO" along the Clln'e

segment. The longer cun'e segment lends Lo have Lhe larger .egmenl error. ,\ 150, the

lolal angle change is a meas"re of how much a CUrVe "egment i. benl. However. il i.

Theil, a complete subtree ror ",' is built /lli when ",' I. iI. power of 2, and", _ m' j,

divided in the same way"" III w..... In Lhi~ tree, there arc two dilTcrent lyp~ of path.

from a leaf to a rOOL. One is a power palh of nodes whooe \...It, cs arc powel'>l "r2, and

the oLher is a nonpower p"lh of nod"" whose Vil.lu~ Me nol the powel'S of 2. In this

,'as", lhooe two paths .houl<1 I>e travernro in pamllcl, By synchronizing the <lr<ler of

tra"ersal of each path, and ming lWO tables, one for each p"lh, \\-e can compute E;7.

For example, lel m = 27. The power patb is I ..... 2 _ ,I ..... B ..... 16, and lhe

nonpower path is I ..... 3 ..... II ..... 27. First, Eo', I. copied into each lable. Then,

E,~ in the power path is compuled and is stored in ils tilble. Since E;' and H;', arc

available, Ef, in the nonpower path can becompulro and is storro in its table_ Then,

E;~ and E,~ are computro in the power t"ble. E~, and E~ arc used 10 compule Po,','

ill lhe non power table. In this way, the tree is tr;,.vel'SL'I.l 10 compute E~,'. It is not

dilJicn!t to sec lhilt Ihis modi~calion only increases both lime ilnd space complexiLi""

by constant factor•.

endwhile

q", =: n:
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Figure 5.2 (upper left) indicates that this algorithm produccs .... LA which approx,

irniLtcs C quilt well in flat region. of l\ cun'c, and poorly in highly cur-'cd fl'gions.

5.3.2 Spherical Image Subdivision

Con.idee a <'1,n'" C(~) with "" 11fC lc"glh p"r"mder ~ (~l, 'WI_ When ,,11 ""iL L"n

gent ,",,"CLors T(s) of C(s) are moved to Lhe origill, their eml poinls will describe ,HUn'e

On the unit sphere. This cun'e is called the spherical im"lje or spheric"l iralicaLrix of

C(s). Gh'en a CUr,'e segment, Ihe lengLh of the corresponding 5pherical image im

plies how much the unit tangenL "ecLor chang"" iLs dir""tion IIl0ng Lhe cun'e 5cgmcnt.

IIcnce, it provides 115 ,,-itll a me<Uure of the degr~ La which a cor"e gegment is bent.

lL is easily shown that the curvature "'(5) is cqoalto the r"tio of the "rc lenglll of the

spherical image, and the arc icngLh of C(s). So, the length of Lhcopherie,'l im,,!:c cor_

respOnding to a CUrVe segmenL C(s) : [0,11 is J~"'(5lds. f~ ...:(s) ds is somoLiml.'S called

lhe lotal cnrmtll!): r~91, while it also cao mean Lhe length of the Darbonlr Vector [.ll).

In practice, thi5 qoantity must be apprOlrim"ted.

Given a. digitized CUrVe G(a,b,n) == {a = Po,PI,"',p" = b}, consider all imagi.

nary par1Lmetrie clirveC(s) of arc length parameter s where C(O) = Po and C(I) == p"_

At a point Pi, s "" cI(Po,p.) .och that Cis) == Pi, where cI(Po,p,) = L:;;~d(IJ"P;+,).

Then, the cur""Lure is approximated II.'! follows:

whcre Ii i. an approxill\"ted unit tangent vector. (We will discuss how to get I,

ghortly.) Then,

~-I li+1 - I,

"" ~lId(Pi'Pi+IJlld(r"Pi+l)
.-,
E [11,+1-1,[1
i..-1l.-,

= E d(l i , l,+tl.
,gO

The simple [orlLNd.djlf'·[cncc approximation (1) 10 ,;(s) Can be replaced by the
,

",'. ',' dU,_,'."I _""" 'bpopu iLl" ern ca '!!!I£Crll!"c apprOl"ma ,on '1,,-,.,,1+01>""',01 .... lie \ I. " mue I Clle,

approximation when the points arc do'e logether. InLcgriltion no be also rcplaCL'<i

lJya betler approximation formul1\. See [l!ll for more numerical techlll'lliCS.

III llti. second heuristic method, G'(a,b,ll) i. subdivided ;1\(0 L,I(G',,,,b,m)

(O = qO,Q',Q1,"',q", = "J such that cilch subJcgmcnt 11M lhe S,lmc Icngth of the

spherical image.

Algorithm 5.·1 (IMAGE)

rieL J...(i,jl be L~~~ d(I", /"+1) '1
eompule 10101 = L.;;~ d(l., 10+1 li

5egind = ceil(/olll/lm);

qo=O:i=O:

while" < m-I do

find Ih. laryc.l j such lhol J...(qi,j) < scgindi

qi+l=j:i=i+l;

endwhile

The quantit}" J...(qi, qj) is an "pproximaLlng measure of the length of tho spheric,'l

image of the segment from P" to P'i+' , that i., I ...{q" 'n) is the tOl~I,1bsollltech,'nge in

the angles of the tilngent vectors. Ilenee, this algorithm is scnsiti"e to high curl'ilture.

In Figure 5.2 (upper right), We can sec IMAGE returns a LA which approxima(C>i

G poorly in fiaL portions of" cUn'e, and very well in highly con'ed porlions.

In the above algorithm, tangent v""tor information is mcd to subdividc a eon'e.

rr the digitized space cur"e ha.s been generatcd from equations, s.'y il PUilI11elrie

equalion or two implicit equations, the tangent "edor aL each salnple poinL Can be

computed directly from them. When instead iL digitize<l curl'e has been gi,'cn intcrm"

of a sequence or points, or dired eomplllaLion of tangent "cdon; from gil'con '~qllalions

is expensive, the langcnt veclor Ik to it cur"e C ill P' still e,11l be "l'proxil1li1I..~i br



averllgi"g lhe direel!ons of Ihe neighborillg lines of 1'* in C. [n our implefilcillation,

the tllngent vco;-tor is approximated by 5 successi,-e points as [ollows [57J:

where <:II = II "i_J X,,; 11,.0 '" II ";+1 X "i+1 II, "i = P, - Pi-I, and X means a cross

product of two vectors. In c""e tile digitizC<l curVe is open, the Bl.':5sd conditions arc

applied for tile langenl.<l at the end points as rollows [21):

5.3.3 Heurislic Subdivision

Now, we give II heuri.tic algorithm which combines the two techniques. It consists

of two steps: generation of all initial piecewi.e linear approximation LA., and iterative

refinement o[ the piceewi.e linear o.pproxim,uion LA1 to produce LA1+!.

5.3.3.1 Computalion of an Initial Approximation: LAo

An ioitial LAo is computcd by an algorithm which is a combinaLion of LENGTJ/

and {MAGE.

The weight, Q is a parameter whicb controls thc relative emphasis betwecn curve

length lind spheric"l image, and is cmpirie"U}' chosen.

t\lgorithm 5.5 (IN IT)

uloct SOmo t'olao of Cl {O ::;; Q :s I},

oampalo 101,,1 = Ll;~(Cl' d(Pl,PHI) + (I - 0)' r/(ll' Il+l));

sogsum = ceil(lalClllm);

qo:=O; i=O:

while i < Ill-I do

find Iho largo.• , j such Ihal Q' L..9(qi,j) + (1 - 0) .I...(qi,j) < soys"m;
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q'tl '" j, i '" i + I;

endwhile

qm '" II,

S~.., Figure 5.2 (hottom left).

5.3.3.2 Itemtive Refinement of Approximation! : LAl

The hybrid algorithm INIT generally prO<iuces a good piecewise line<lr al'prox_

imation. The next step i. 10 diffuse errors iteratively in order to refine the initial

approximation. Note that each segment i. made of a sequence of consecllti"e poinls

of a digitized curve, and it i! approximated by a line connecting its end poinl.<l. U.u.

lilly, the errOr of a segment decrCMcs as either of il.:i end points is "-'signed to its

neighboring segment. Hence, the blUic idea in the follOWing iterlltive algorithm !s 10

mOVe one of the end points of a segment with larger error to its neighboring segment

with les. error, expecting a decren.se or the total error or the new LA. In lhe k1h

step of the following algorithm ITER, each segment of LA~ is examined, dilTusing, if

possible, its error to OHe of its neighbol1l. LA~ tends to quickly cOnl'erge to a minimal

I.A which i. a locIII minimum. See Figure 5.2 (bottom right) and Figure 5_3.

Algorithm 5.6 (ITEn)

camp~Ie LAo fram INIT;

k:= 0,

do un Iii (saliafiod)

compale olTOrs of sogmonb in L.'h,

curmo:r:= E(LA.(C,o,h,m);

fori=Otom_ldo

if Iho OTTOr ofi-Ih sogment is larger /han

Ih"l of eilher of ils neighboring segmonls

lhen move Ihe i./h srgmenl's end poinls 10 II•• neigHor



,.j

only if /},;3 change docs rlol result in scgmcnl "rors

larger than cummz:

cndif

cndfor

LAH1 == [,,1,:

cnddo

5.3.3.3 Time and Space Comple;.;ity

First, O(n) ~ime is needed to approximate the langent vector at each poi lit. The

algorithm INIT needs to scan Lhe points and L"ngcnt n!clof>l 10 compute L..g anu

I..g first, and then L..g and I"g are scanned La divide Lhe digitized curVe. Hence,

it takC3 O{n) time. Now, cOllsider the algorithm (TER. F'irst. the segment errors o[

LA. arc computed in 0(11) time. rn the fur, loop, e"ch segmellt and ils Lwo neighbors

are e;.;amined, hence, each segment is examined twice. Sillce the segment error must

be computed for each .egment, the fur. loop require:'l O{II) computation. Therefore,

ITER tak"" O{N;,..n) lime where Nil.. is the numher of iterations. So, the time

complexity of the heurisLic algorithm is O(N;,•• II), and it is easy to sec O{II) space is

sulficient ror storing input d"tlL and intermediate daL".

5.3.3.4 Perform.nnce

We have implemented both the optimal and heuristic algorithrJl5 on a Sun .1 work.

slation and" Personallr;. workstation, expelimented with test data.

I. Fi....,re 5.2 , Folium or 0=""••
(o.) cqu.tion, C(l) = ('*'", ~,O) o. (f(r,~, ,) '" r' - 3..~+ v', g( ... ~, <) '" ,)

(b) n=I09,m=20

2. Figu,. 5.3, .... Humsn Prome .nd a Goblel

(a) POlnLl w~.. gene,atcJ r,om 12 ratlonal n.,ier '''rVe> in [57].•nd lh,,, .Iightly ,li>l"rb..J.
(b) (p"'file) n = 169, rn = 20

(e) (goblet) n = 231. rn = 20

Tables 5.1, 5.2, 5.3, and 5.4 show their performance [or .e1ectro lc:sl dala.

The integer in parcnthC5es is the number of itcmUo"s nc"dcd to urj,·c at thc local

minimum. The bottom row (LAk/LA") of each table indicates the performance of

our heuristic algorithm, and it is observed Lhallhc optimal solution is approximat,.,j

rca.sonnbly well. The program for Lhe heuristie algorithm compul"" lhe '~Pl'roximalc

solution quickly (immediately Or in a few !cconds depending on how many it"rntions

arc needed.) On Lhc other hlLnd, it lakes about 45 minutes to compute the optimal

solution for lhc (n == ·I04,m = M) example or Table 5.3.

5.3.3.5 The Centcr of CurViLturc

~, Figure 5,5, A Nonpl.nar Qua'lie Cur....,

(.) <qua.ion, (f( .. , ~.z) = 30.. ' + 61y' + Or' _ 32~. ~("'Y' ,) = .. ' + y' _ J.o~)

(b) n=(04.rn=32

5. Figure 5,0 , A Nonplanar Se~li. Co,ve

(a) <qua.io", (f(z,V.r) = 11- ..' -r·. 9( ... ~. r) '" r - .. '+ z _ 2)

(b) ,,=~34.rn"'20



~f;Q\f;r o[ c"r"al!lre, defined by c~ = fJ:tI«:t) d:t{ fJ ,,(:t) d:t, can he used"" a heuristic

thnl divid<s a Cun'e segment C(8) : [0,11 into two sllb,egmenl~ C(8) [O,e.J "ntl
C(3) : [c., 1)_

Again, e. needs to be "ppro"imated. For a digitized cun'e e(a,b,n) = (a =

"",PI,'" ,I'R = 6}, consider "n imaginMy p"rametrjc cun'e C(s) of "rc lenglh paran,

eter 3 where C(O} = "" "nd C(I) = PRO Then, at a point p" 8.0= d(l'O'p;) ,"cb lhat

C(3) = 1'" where d(l'c,p;) = L;:;'~d(p.i,pj+,). Together with the approximation of

the denominator given before, the folJmving expression r,-",ults in an approximation

o[ C. '

n_1 1'+1 _I,
.0= ~ d(l'c, 1',) II d(p" p,+I} II d(p" 1',+1).-,

L d(Po, 1';) II "+1 - f; II
.-,

= L cI(Po, p;)d(l" I'+I}.
i"o

5.-1 AppJic"tions

5..1.1 Adaptive Display of Space Curve Segmenls

Our heuristiC algoriLhm i.< well.uited 10 producing a piecewise IineM apl'roxim".

lion of a .pace curve segment given in paramelric Or implicit form. First, the curve

segment is den.e1y sampled, "nd then the linear "pproximation "Igorithm filters lhe

sampled points, producing a good approximation to the cun'e segment. Poillu on a

parametric curve are easily gener"led. A curve reprcsemed by two implicit ,"rfaccs or

an implicit surface "nd a parametric surf"ce, can be traced using" sllrf"ce int"rsection

algorithm [7J. The "paCe cun'e tr"cing algorithm i. fast when the degrees or curves

"re in a reasonable range "nel there arc no singular poinLs along the curve .egment.

As s""n cl......rly in the e;o;amples, ".mall number of line segments, ad"plivcly filtered.

C"n a.pproximate a curve segment well, resulting ill fast e1i.play. Figllre 5.2 and 5..1

"re two e;o;"mplcs of planar cllrves, lind Pigure 5.5 "nd 5.6 are e"ampl", of IlOlIplanar
'pace cun·es.

5.·1.2 Ada.ptive Displa.y of ImpliciL Surface Patch""

In Section ·1.1.5, We showed how OUt heuristic algoriLhm co!lId be used lo gen.

crale ad"plj,'e polygonil"tions of implicit tri"ngul"r quinLic Ilatdl"" in the hope or

pl"dng more lriallgles in the highly eurv~-d porlions. Figure 5.7 i. "'lather exam.

I'll' of the "d"pti'-e polygonintions of a triangulnr palch of a '!"artie algebraic sUr.

face f(z,y,:) = 0.0Ig53292: l -1.I4S09166y':~ -1.14809166,,':1 + 0.99982830:'_

1.I6662458y· - 1.I4809166,,1y' + 2.1849858 y' + 0_01853292,," + 0.99982830,,1 _
0.72183450.

5.4.3 Conslruclion of Binary Space Partilioning Trecs

The Bimuy Space Parlilioning (DSP) tree h"" been shown to provide an clTec.

tive reprr:;elLtation of polyhedr:. through lhe me of sp:.tial .ubeli"isioll, and i. an

"llernative to the lopologic"lly based B-reps. Il represents a reClirsive. hierarchic,,1

pnrlitioning, or subdivi.ion, of d dimeJlllion,,1 sp"ce. It is most easily lInderstood as

a proc,,"" which tak"" a 8ubspace and pnrtilions it by any byperpl"ne thaI i"terseds

the subspace'. interior. Thi. produc,," lwo new subspac"" tlml can bc partitioll~d
further.

An e""mple of " DSP tr"" in 2D C"" be formed br ll.ing lines to rC'Cursively

pnrtilion the plane. Figure 5.I(a) show. a ESP Iree induce<.l PMlitioning o[ the plane

and (b) shows Ihe corr""ponding hin"ry tree_ The rool node represents the enlire

pl"ne. A binary partitioning of Ihe plane is form.,.] by the line labeled IJ, ,,'SuIting in

" negative h"lfsp"ce and a posilive h"lfup"c<,. These two h"l[spac,," are represented

by the lefl and right children of the root, r""peclively. A binary partitiolling of each

halfspace may then be performed, as in ~be figure, and so On recursively. When

subdivision lcrmin"te.i, the leaf node will cor,"""ponel to an IInp"rtitioned region.
called a cell.

The primarr use or BSP trCC5 lo date has been to represellt polytope;;. This is

accomplished by .imply i\.'I.ociMing with each cell o[ the nee /I single bo[)jean atlribute

in or Ql.J!. If, in Figure 5.1, we choose cell. I and 5 lo be i.u. cells, and th~ r.... t Lo be
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Figure 5,1 Partitioning of the Plane (a), and its IlSP Tree (b)

!lJU cells, w" will have determined a coocave pol~'gon of six sides. Tbi3 method, while

conceptually very simple, is c'lpable of repr""entillg the "ntire domllin of polrtopcs,

including unbound<>d and nonmanirold varieti"'" Moreover, the algorithms thaL usc

the ESP Iree representation or "pace lire simple and uniform over the entirc domain.

This is beeause th" algorithlIl.'l only operate on the trec One node at a time and ~o

are insensitive to the complexity or the tree.

A !lumber of BSP tree algorith"," IIle kno"'-n, including affine LralUlrOrmations, .eL

operations, and rendering [~SJ, The computational complexity of th""" algorithms

depend. upon the shape Ilnd size of ellch tree. For example, consider poi'lL clas3i.

fication, The tree Is simply trav"",ed, and at cach Ilode the location of the point

with respecl to Lhe Ilode's hyperplane delermines whcLher 10 lake the lefL or right

br'lneh; this eonlinues until a Ica[ is reached. The cosL of thi3 Is Lhe lengLh of the path

taken, Now, if this point is choseo from a uniform distri!'>ution of poinls o"cr 'Ome

sample space o[ volume v. then for any cell c wilh volume u, at lree depth do, Lh e

probability p< of reaching e is simply ~ and the cost is d,. So an optimal expected

case ESP tree for poinL c1'l5si~c'ltion would he iI trce for ",-hich lhe .um of pod. over

all c i. minimized. If the embrdding .pace i. one dimensional, then thi3 is thc classic

problem of construcLing an optim'll binary search tre"; a problem soh'cd by dynamic

programmiog,

The essential idea here is that ~hc IiLrg~t cells ~hould hnve 1he .harte'sl pilths

and smallest cdls the longest. For exaIllple, ""Lisfying this obj""li"" f\Jnc~ion globally

general ... bounding volume! iL'I a. by-product: if" poly lope'. '·oIUm., is somewhat

smaller than the sample space's volume, construcLing " bounding "alume ,,-jth the

~rst hyperpl""",, o[ the tree '''''oIls in large Q!J.1 cell. with \WJ' sm.,11 depths. Now, in

the general eilSe in which tho query objec~ q hiL'l extenl, i,e. is not" point, then q "'II!

lie in more lh,," One cell, o.nd a subgraph of the tree will be visil<-od. Th"s the cost of

the query is the number of nodes in this .uhgraph. This leads Lo 11 more complicaled

objective function, which we do nol intend to examine he,e, bm the intuition taken

from point clil.'lsilieation remaiM valid.

We U3e th""e idC<l.'l in eonjunction with the linear approximation methods. de.

.cribed before, 10 build good expected elllle tre"" for .01id3 defined "" surfaceg of

revolulion (Ihat is, we cxpect thege trees to be good). Fi",t, wc orthogonally project

Ihe curve to be revolved onto the axi3 of rOLation, which i. taken to be the "erLical

z.axis. We then partition space with borizontal plan"" where cach plane comains one

of Ihe linearly IIpproximated eurve poinls. The nsp tree representing this is l\ nearly

balanced trt.'e, and each ceil will contain the surface resulting from the rCmhllion of

a single curve .egmem.

Now Lhe revoluLion of the CUrVe n"Cd nOL be along a cirde, !'>ut call be any con"ex

path for which we have consLructed a linear approximalion, Thus eaeh face of Lhe .olid

will be a quadrilateral;n which the uppcr and lower edg"" lie in cons~'Cuti"e hor;7.omal

partitioning planes, are parallel, and arc in.lanceg of a single path t'<.lge at some

dislance from the axis of revolution tlllLt is determined by Lhe revolved cu<"c, Now

thc ESP 3u!.>Lrce (or the surf,,,e between horizontal planes is obtain~.,j by recursivcly

partitioning the paLh of revolution 10 form a lle.'lrly b"lancRl lree.

The melhod we Usc is One thaL in 20 generat"" for any n·.ided convex polygon"

rorresponding nearly balanced ESP tree of size 0(11) and height O(log n). The p,\lh

cun'c is Ii"'t di"ided illto four sub-curv"", one for cach C)\Iadrant, all<l a hyperplane

containing the lirst and last poinls is constrncted. Ily com'exit)'. " sub,curl'e lies

(b)
,.)
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cOlirely in one halrspac., of its corre:iponding hrpcrplane, and ....'c call thaL haJfspace

the oul..9ide half. pace "lid lhe opposite half.pace the inside halfspace. The inLe,."""tion

or the four inside half~paccs is entirely iJl5ide Ihe polygon, and so [OTrruI an ill cell of

the nsp tree. We then consLruct independently a tree for ,,"eh SlIbCllrVC, rccllTsivelr.

We lil"!lt choose Lhe median ~cgm"nL of lhe suhenlve and partition by the plane of

the corrcsponding face. Since the path CUrVe is convex, ,,]] of Lhe raCC!l will be ill the

inside half.pace of thi. plane and an 2ll.1 cell can be creal".,) in it. oUlside halfspace.

Now each nonhorizonLal edge of the median face is IIled to define a partitioning plane

which also contains the fil"!lL/la.d point.s of the subcun'c. All of the faces cOHesl'onding

to this subcun'es' cdg", are in lhe outside halfspace, and so an in cell can be created

in it. inside balfspace, We have now bisected the .ubcurve by lh",e plane. ",'hich

comain no fac"" ami can ""'lIT.e on them, The recur:;ion continueJ unlil onlr a small

number of fac""/segments remain, say 6, al which poinl onlr f"ce planes arc used

for parlilioning, since the ca.t of the non·face partitioning plan"" out-weights lheir

comribution to balancing lhe tree, The resull for a path CUn'e of" edg"" is" nearly

balanced tree of size < 3n and heighl O(log n).

ID some seme, "'-e have con.truded a tree thal is the CrOSs product of the path

curve aud the revolved CUrve: We build a tree of horizonlal planes thal partitions

lhe rcvolved curve, and then we form _lie"" of the objecl by constructing a tree for

each segmenl or the path curve. If lhe revolved curve has m segments, then lhe

numher of faces is nm and the ESP tree is of sizc O(nm) and heighl O(lognm)

'" O(logn + logm).

The object in Figur<l 5.8 was made by rotating the curve in Figure 5.3 around nn

ellipse. Its ESP lree is fairly well-bal ..nced. The goblet in Figure 5.9 and 5_10 ""ere

made by constructing two objects u.iug the cur,'e in Figure ';,3, and then applying

a diJTercnce operation ro carve .. hole in the goblet, The IlSP trees in Figure 5.9

were obtained after applying lhe dilTerence operation, and then a union operation

wilh the ball. It i. observed thaI Rel operation. on well·balanced IlSP tre.... r~"'ull in
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well·balanced trees. The Bet operation and display were done in SCUI.PT [HI, which

i. an interactive modeling system based On !lSI' trees.

';,'; Summarr

In thi; chapter, we discuss~'d the problem of piccewise linear al'proxirnation of

a denselr sampled digilized 3D CllrVe_ Two algorithms were prcsent~..J. The algo.

rithm DYNAMIC finds the optimal linear approximation at the high exp~ll.e of

O(n J logm) lime and 0(,,110gm) ~pace. It wOllld be interesting lO.Pc if th"'e time

and _pace bOlleds can be reduced. The Algorithm, made of lNIT ~nd ITER, com_

putes 'l. heuristic linear approximalion, hascd On the fundamental noLiol1' or CIITl'e

length and spherical image of a space curve, This hellrislic algorilhlll finds a good

linClLr approximalion quickly. We /llBo show~'d tlmt our heuristic algorithm can be

applied lo display of space curves and implicit sllrfaces, and lo adaptil'e construction

of well·balanced binarr ~pace parlilioning trees of objects created by revolution.
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Figure 5.2 Folium of DC9CllrLe9
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Figure 5.3 A Human Profile and a GobleL
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Figure 5.5 II NonpJilnilr Quartic Cu"·,,
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Figure 5.6 A Nonpl:lllar S"xtic Cun-"

Figure 5.7 A Quartic Surfilce Patcb
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Figure 5.8 A Human Profile Rotated

Figure 5.9 A Goblet in BSPT
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Figure 5.10 Another Goblet in nSPT
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Table 5.1 Folium of DescarlC'l Table 5.3 The Nonplanar Quartic Curve

" 109
" '"m ·1 B 16 " 6·1 m ·1 B 16 " 61

LA. 5.25619.,..1 2.21325e-1 8.09768,,·2 2.66073.,.2 8.98677,,·3 LA. 2.01399,,-0 3.63921c-' 9.661-14e-2 2.67.185,,-2 8.39998,,·3
LA, ·1.02838,,·J 1.12.507,,-1 3.087;4<:-2 1.23695,,-2 3.760137<:-3 LA, 1.86220,,-0 2.26435"·[ 7.78874,,-2 2.2-15IOc-2 6.98709<:.3
(1:) (5) (9) (l7) (16) (14) (k) (') (32) (16) (10) (8)
LA" 4.02838... 1 1.12507.,.1 3.0,1525,,-2 8.9'1592,,·3 2.76188,,·3 r,A" 1.85530,,·0 2.26135.,.1 7.60669.,.2 2.05613.,·2 5.6%36c-3

LA./~A· 1.000 LOaD 1.0]01 l.393 1.363 LA./LA" 1.004 1.000 1.024 l.092 1.227

Table 5.2 The Goblet CurVe Table 5.4 The Nonplanar Sextic Curve

" 237
" ,,,

m 8 16 " 54
m ·1 B 16 " 6lLA. 1.0337.5.,..1 6.11455c-2 2.95784c-2 8.21535e-3 LA. 7.24214,,-' 1.72212,,-1 5.32029e-2 1.61083,,·2 1.60168,,·2LA. G.OnI9,,-2 2.90067c.2 7.76577c·3 5.fi3440c·3 LA, 4.81844".1 1.3472Sc·l 3.69400c·2 1.53000".2 3.B0315c·3(~.) (12) {17} (20) (5) (I.) (15) (IS) (13) (2) (11)LA" 5.87190c-2 2.06813c·2 5.12219c·3 l.7S97Jc·3 LA" 4.818ol4c·1 1.34728".1 3.65433".2 1.053J2c_2 3.16273c·3

LA~/LA· 1.035 1.403 1.516 3.202 LA./LA" 1.000 1.000 1.011 1.453 1.202
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6. CONCLUSION

In Lhis th""is, We have inv""ligated the possibililies of i'nplicilly delined algebraic

.urfac"" as tools of CACD. In particular, the work focused to the e1llSses of 1IIgebraic

surfar"" h1l.ving moderately low degr""", In Chapler 2, we presented an algorithmic

characLeriUltion, calk..! Hermile interpolaLion for algeb",!c surfaces, Lhat nnds a e1""s

or f"mily of algebraic sllrfacl'S of a fixed degree which sati.fy gh'en geomenic ,peri·

(icatio,,", This algorithm, computing algebraic snrfac,," meeting with tangenl plane

cOII\inlliLy, provided a primMY tool with the remaining work.

In Chapter 3, the well known leMt 'quar"" approximalion method w"-" ,lpplied 10

bell' 'eb:t an installcc .urfacc from a f1lmil)' compllt.'" by Our HermiLe interpolatiOIl

algorithm. With Hermite interpolalion and least sqllar"" npprOll"imation, combined

with a proper normalization, the geometric problem of finding algebraic surfaces was

Lranslated into a constrained minimizalion problem which can be .olved efficiently,

We abo di.cu.sed how geometric informntion, related to coeffieienl' of a polynomial

in barycentric coordinat"", can be utilized ill interadivelr controlling the shape of

algebraic surfac"" in a compuLed family wilh geometric inluition.

The class of quintic algebraic surfaces Was explored lo smooth a convex polyhedron

wiLh triangular facc. ie Chapter 4. In our scheme, the edges of IL given polyhedron

were replaced by conic cur""" wiLh associaled normal vecton< such LhaL the curv''''

and normal vectors agree wilh the verlcx and normal conditions o[ the polyhedron,

Then, the lhree conies for each face Were l\""lIed by a qllintic surface, The degrees

of [rccd.om in choosing conics were used to control the ~hape of the wire frame, and

hence the Hermite interpo\;lting algebraic surface patches. Then, We considered lhe

open problem of smoolhing all arbitrary polyhedron with quilltic algebraic surface

III

patchel. One possibility was to subdivide a fa.ce of /I. polyhedron iteratively IIntil

some condiLion on normal veelo'" is met.

In Chapter 5, \"0;:: disc\,..e<1 the problem of picccwi~c linear aprro~irnalion of a

densely ,,,mpk-d space CUrve. Two algorithms were prcscnlL-d. One Jind. an optimal

linear approximation in a high expense. The other computes 11 heuri.nit linear ap.

proximation, bi\lloo On the fundamental noLions o[ cUrVe length and .pherical image of

a space clIrve. The heuristic algorithm turned out to find a good linear "pprOximalion

quickly. The heuristic algorithm "'i1S ll.'Icd in polygOllizing the triangular algebraic

Slirface patches computed in Chapler 'I.

Our algebraic surface filting algorilhll15 have been implemented, and include..! in

Lhe geometric modeling ~Y5Lem CANITH. C,\NITII [12) i~ '1<1 X Willdo\~ Syslem

base<! algebraic geomclry toolkiL Lhat manipulates algebraic c~luMions. It hilS heen

de~elope<! to .olve ~y.teJrui of algebraic equation. and "is'lalize their multiple so.

luLion•. ApplieatiOlls of this loolkit include curve and ~lIrfilre di~pl"y, curl'e-curl-c

inlersection~, surfart.~surfarc inLel'lleclio"s, curve-.urface intersections, and elc. For

surfare fitting, CANITH lakes as input the degree of il fitting surface and a coHt.ocLion

of data point.. lied 'pllCe CUrves with or withoul "",.ocialed normal directions. Thcn,

an algebraic sllrface lhat fils the gi.en dala i. compuled through Lhe previo\lsl~'

dcscribcd computational model, and when such a ,urface exiS15, il is illteraclkc1~'

[-cndered in a di~play bulTer. (See Figure 6.1.) For convex pol)'hedron smoothing,

CANlTH takes as input a pol}'hedron and il p value, and computl:S quadric wires,

and then algebraic sllrfaces Lhat .moolh the polyhedron. Then, polygonhed triangu

lar patchC5 arc rendered interactively in a di.play bulTer. The capabilities of graphics

hardWares such lIS Hewlett_Pad"'rd 9000/370 SRX and SCI IRIS worksntion. can

be used lhrough Ollr XS library which interrac,," bcLween the X programs and the HI'

StarbMe and SCI CL graphi" librariCOi,

We have seen that implicitly rep[(':Sented algebraic surfact.'" arc "cry nalural for

inlerpolation and approximation, lIowever, lhere arc some difficull p,ohlems Lo he

solved before algebraic surfaces can bc med elTecti\-c1y for gt.'Omcl ric modeling. Firsl,
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it is not always easy La make sure Lhat inpUlpoi'liS "nd Cur",.'S lie on one rcal COlllp".

ncnt of MI algpbraic surface. One heuristic. which can be "S~-<l, i., to illclude ,'I,,,iliMy

poims and Cun'('S to brid&e Lhe &ap between sep"r"te ""rface componenls. ,\noth<=r

approach is propooed in (016) where a distance nt i.; used to &UMantee a single sheet of

a ~lIrface inside" l"lrahcdrun for dell.'ely scatter~~ll'oinL <lata. 11",,"e"er, the <I"""tion

remain. open {or producin& conditioll5 On the coefficients of the flUing .urfac,,", which

would ensure that all given point.. and cur,",~ lie on the saine continuous real surface

component.

Another unfavorable fact of algebraic .urfaces is singularity. Singularities of al.

gebraic .urfaces occur in the forms of sharp pO;nIS, sharp cdges, or self.intersc.:tions,

and tangent planes 10 .urfac"" lire not defined at .ingul"r points. While, in general,

singularities mu.t be avoided in surface modeling, they can be ".eCul in some situ.

ation. For instance, the quartic algebraic surface (the dark patch) in Figure 2.7 is

singular at the {our points where the four cylinders meet pairwbe while the surface

is regular inside the patch. In {act, singulMities Me nc.:~"'SMY in this Case becam"

no regular palch can smoothly join the cylinders. In Sc.:tion ,1.2. singul",ities Were

also useful in Hermite interpolating thTee artificially constructed conic curv"" whose

associaled normal. do not .atisfy the compatibility condition at the three intersc.:tion

points. However, it i. highly desirable to be able to control .ingularities locally On Il.

specific pori inn of all algebraic sudace, althougb we do nol know how yet-

In this work, "-c have proposed Il. direction of eKploration o{ moderalelr low de

gree algebraic surfac,," "" tools in geometric modeling systelll.'l, llllt this is the only

first slep toward construction of a practical algebraic CAGD syst<'m with a romplex

way of creating and manipulating geometric models of physical olljeds with ".Himl'

grometri"". Much work should now be undertaken.

Il~

Figure 6.1 The Alge!>r"ic Geometry ToolkiL GANITII
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