Purdue University

Purdue e-Pubs

On Surface Design with Implicit Algebraic Surfaces (Ph.D. Thesis)

Insung Ihm

Report Number:

91-057

Ihm, Insung, "On Surface Design with Implicit Algebraic Surfaces (Ph.D. Thesis)" (1991). Department of Computer Science Technical Reports. Paper 897.
https://docs.lib.purdue.edu/cstech/897

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

ON SURFACE DESIGN WITH IMPLICIT ALGEBRAIC SURFACES

Insung Ihm
CSD-TR-91-057
August 1991

ON SURFACE design with implicit algedraic sumbaces

A Thesis
Submitted to the Faculty
of

Purdue University
by

Insung Ihm

In Partial Fulfillment of the
Requirements for the Degree
or

Doctor of Philosephy

Augus: 1091

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Cbanderjit Bajaj, for his inspiration and guidance. He always provided me with an exciting research environment in which this work was possible. My gratitude eiso goes to the advisory committee members, Professors Shreeram Abhyankar, Robert Lynch, and David Anderson for their high slandards. Professor Christoph Hoffmann had scrved as a commillee member even though he could not come to my final exam due to my hectic schedule. Part of this work was done under the supervision of D_{r}. Bruee Naylor at ATLT Bell Laboratories in Murray Hill, Now Jersey. Prolessor Mycong-Soo Kim al POSTECH, Korea, always cheered me up.

My sincere appreciation goes to Dill Bouma and Andrew Royappa. Bill was all endless source of computer graphics whose utility programs made much easier the picture-making process that compriges an important part of my four years education at Purduc. Andrew, my colleague and roommate, was always patient in answering io my various, sometimes boring, queations on Unix Bysterns to "how to get ALL of our deposits back from the seemingly tough landlordsn. Also, his meticulous proofreading enhanced the quality of this theis. Learning Nihon Go from Kunihiko Okamura San let me feel somewhat shorter my last long summer in West Lafayelte. I'd also like to thank all the friends who made the G16 lab an enjoyable work place.

This research was supported in part by the David Ross Fellowship from Purdue University, NSF grant DMS 88-16286, CCR 90.0228, ONR contract N00014-88K0.102, and AFOSR contract 91-0276.

TABLE OF CONTENTS

LIST OF FIGURES vii
LIST OF TABLES ix
ABSTRACT x

1. INTRODUCTION 1
2. HERMITE INTERPOLATION FOR ALGEBRAIC SURFACES 7
2.1 Preliminaries 8
10
2.2.1 Containment 10
2.2.2 Contaimment with Tangency 10
2.3 Interpolation of Curves with Normals 11
2.3.1 Containment 12
2.3.2 Containment with Tangency
1.1
18
2.4 Gcometric Continuity
2.5 Computational Aspects of Hermite Interpolation 21
2.5.1 On Computing Nontrivial Solutions 21
.5.2 Bounding the Degree of Surfaces 25
2.6 Summary 30
3. A COMPUTATIONAL MODEL FOR ALGEBRAIC SURFACE FITTING 35
3.1 Matrices for Interpolation, Approximation and Normalization 36
3.1.1 Interpolation 36
3.1.2 Normalization
3.1.2 Normalization 39
3.2 Compuling Optimum Solutions 10
3.2.1 Interpolation and Approximation 41
3.2.2 Leasl Squares Approximation Onl 43
3.1 Summary 51
4. SMOOTHING CONVEX POLYHIEDRA WITH QUINTIC SURFACES 56
4.1 Generation of a Quintic Algebraic Triangular Patch 57
4.1.1 Gencration of a Qundric Wire 58
4.1.2 IIermite Interpolation of a Quadric 'Triangle
60
4.1.3 Least Squares A pproximation to Contour Levels 62
4.1.4 Fleahing a Wire Frame 64
1.2 Why Singularities? 67
4.2.1 A Review of Diferential Geometry 67
4.2.2 1nterpolation of Two Parametric Curves 68
4.3 Smoothing a Convex Polyhedron 70
4.1 A Cioathing an Arbilrary Polyhedron 714.4.2 Iterative Subdivision of Faces75
4.5 Summary 76
5. PIECEWISE LINEAR APPROXIMATION OF SPACE CURVES 82
5.1 Preliminaries83
5.2 An Optimal Solution 85
5.2.1 An Algorithm
85
87
85
87
5.2.3 An Alsoris Space Complexity 87
87
5.3 A Heuristic Solution 87
5.3.1 Curve Length Subdivision 88
89
5.3.2 Spherical Image Subdivision
5.3.3 Heuristic Subdivision 92
5.4 Applications 96
5.4.1 Adaptive Display of Space Curve Segments 96
S.4.3 Construction of Binapy Imcil Surlace Patches 97
975.5 Summary101
6. CONCLUSION 110

VITA

LIST OF FIGURES

Figure Page
The Hierarchy of Algebraic Surfaces 3
Smooth Joining of Two Cylinders with a Cubic Surface 31
Smoolh Joining of Taree Cylinders with a Quartic Surface 31
A "Good" Quartic Surfate 32
A "Bad" Quarlic Surface 32
2.5 Smooth Joining of Four Cylinders with a Quartic Surface 33
2.6 Smooth Blending of Two Cylinders with a Quadric Surlace 33
. 7 Smooth Blending of Two Cylindery with a Quartic Surface 3
2.8 Table Corner Blending with a Quartic Surface 34
3.1 A Cubic C^{3} Continuous Surface 53
3. 2 Points to be Approximated 53
3.3 Two Difterent Leasl Squares Approximations $5 \cdot 1$
3.4 Interactive Shape Control Using Barycentric Coordinates 55
4.1 Computation of a Conic Curve 59
4.2 Recursive Refinement of a Triangle 66
4.3 A Polygonization and Pointa Generated 78
1.4 A Convex Polyhedron with Quadric Wires: $\rho=0.4$ 78
4.5 A Convex Polyhedron with Quadric Wires ; $\rho=0.75$ 79
4.6 A Quintic Algebraic Surface Mesh : $\rho=0.4$ 79
Figure Page
4.7 A Quintic Algebraic Surface Mesh: $\rho=0.5$ 80
1.8 A Quintic Algebraic Surface Mcah : $\rho=0.75$ 80
4.9 A Nonconvex Polyhedron after Faces Subdivided 81
4.10 A Quintic Algebraic Surface Mesh: $\rho=0.5$ $\$ 1$
5.1 Partitioning of the Plane (a), and its BSP Tree (b) 98
5.2 Folium of Descartes 102
5.3 A Iluman Profile and a Goble 103
5.1 A Four Leaved Rose 104
5.5 A Nonplanar Quartic Curve 10.1
5.6 A Nonplanar Sextic Curve 105
.7 A Quartic Surface Palct: 105
5.8 A Human Profile Rotated 106
5.9 A Goblet in BSPT 106
5.10 Another Goblet in BSPT 107
6.1 The Algebraic Geometry Toolkit GANITII 113

ABSTRACT

Ihm. Insung. Ph.D., Purdue University, August 1991. On Surface Design with Ian plicit Algelraic Surfaces. Major Professor: Chanderjit Hajaj.

Computer Aided Geometric Deaign (CAGD) is a rapidly growing area that involves theories and tecbaiques from many disciplines such as computer science and mathematics as well as engineering. One of the most important subjects in CAGD is to efficiently model physical objects with a surface or collection of surfaces for many applications of CAD/CAM, computer graphics, medical imaging, rohotics and elc. Most research in surface modeling has been largely dominated by the theory of parametrically represented surfaces. While they have been successluily used in representing physical objeets, parametric surfaces are confronted with some problems when objects represented with thera are manipulated in geometric modeling systems,

In recent years, incrensing attention has been paid to algebraic surlices that are implicitly defined by a polynomial equation, and provide a more general elass of surfaces at lower degrees. In this thesis, we eonsider the problem of modeling complex geomelric objects with mooth piecewise algebraic surface patches. We present an interpolation algorithm, called Hermite interpolation, which characterizes a class of all algebraic surfaces of a specified degree that interpolate given points and space curves with tangent plape continuity. The Hermite interpolation algorithm with least quares approxinalion iransforms the geometric problem of algebraic surface design into a linear algebra problem which can be solved efficiently. Based on this algebraic nodel, we explore the elass of quintic algebraic surfaces to smooth convex polyhedra with a mesh of smooth piecewise algebraic surface patches. Degrees of freedon in constructing wire frames for polyhedra are uged to control shapes of curved models of polyhedra. The open problem of modeling polyhedra having arbitrary shapes
with quintic triangular algebraic surface patches is considered. Finally, we present a heuristic algorithm which quickly compules a good pieccewise linear approximation of a given digitized space curve. This algorithm serves as a primary tool in polygonizing triangular algebraic surface patches.

I. INTRODUCTION

- Computer Aided Geometric Design or CAGD is a rapidily growing area that involves theories and techniques from many disciplines such as computer seience and mathematics as well as engineering. The primary goal of CAGD is to create geometric models of physical objects, and to automate the process of design, analysis, and manufacturing. Facilitating such modeling and analysis is getting more attenLion in industry because construcling computer prototypes and analyzing them saves time and money in the manufacturing process. Efficient construction and manipulation of geometric objects is necessary in many applications of CAD/CAM, computer graphics, medieal computing, pattern reeognition, robotics, vision, and etc.

One of the most important aubjects in CAGD is to model or represent physical objects with a surface or collection of surfaces. The tools from areas of mathematics like algebraic and differential geometry, and approximation theory thave played kcy roles in exploring the mathematical concepts of surface, and exploiting theni in implementing geormelric modeling systems.

Most research in aurface modeling has been largely dominated by the theory of parametrically represented surfaces, such as Bézier surfaces, Coons patelisa, and Bspline surfaces, due to their highly desirable properties in modeling [13, 14, 25]. While they have been succeasfully used in representing physical objects, parametric suffaces are confronted with some problems when objects represented with them are manipulated in geomelric modeling syatems. The fexibility of parametric surfaces comes with the cost of high degrees of surfaces. For inatance, computing the intersection of two parametric surlaces of even moderately low degrees is expensive. Since a bidegree n parametric surface ean be an algebraic surface of a degree up to $2 \mathbf{n}^{2}$, two bicubic parametric surfaces intersect in a eurve of a degree up to 324.

In recent years, increasing attention has been paid to algebraic surfaces that are implicitly defined by a polynomial equation $f(x, y,=)=0$. Algebraic surfaces provide a more general class of surfaces which is elosed under geometric operations like offsetLing [6], while the class of parametric surfaces is not. [n fact, all rational parametric surfaces can be represented in implicit form, although the reverse is not truc.

In CAGD, keeping the degrees of surfaces low is important because high degree surfaces entail various computational problems although they give more fexibility in surface design. The rendition of eurfaces frequently included in CAGD applications [28] presents a view on the bierarchy of surfaces. Planes and quadrics, two simple classes of algebraic surface, are well known, and comprise important primilives in geometric modeling systems duc to their simplicity. The limited flexibility of planes and quadrics leads to an inveatigation of the class of cubic algebraic surfaces, searching for more flexibility. Tori, that are a type of quartic algebraic surfaces, are frequently used as modeling primitives since they are adequate for some applications like joining two pipes.

The next classes of surfaces in the hieracehy of algebraic surfaces that are used in CAGD are parametric quadrica and biquadrics which are included in the classes of algebraic surfaces of degrees 4 and 8 , respectively. Atthough they are able to model more complex geometric objeets, their fexibility is also severely limited [28]. Parametric eubics and bicubics reside in the classes of degrees 9 and 18 , respectively. Biquartic surfaces belong to the ciass of even higher degree in the bierarchy. (See Figure 1.1.)

Now, we observe gaps between the elasses of algebraic surfaces typically used in CAGD. The gaps become more prominent considering that the class of parametric surfaces of algebraic degree n is a proper subset of the whole class of degree n. Then, we naturally arrive at the following questions: what about quartic and quintic algebraic surfaces? Are sextic algebraic surfaces inadequate as geometric modeling tools? The work in this thesis has originated from such questions in the hope of filling the gaps in the hierarchy with algebraic surfaces having moderately low degrees.

Figure 1.1 The Hierarchy of Algebraic Surfaces

There have been several noliceable works in computing algebraic surfaces for geonetric modeling. Dalımen [20] presented ant algoritim that constructs a mesh of smooth piecewise quadratic surface patches for some special type of polyhedron. Scderberg [66, 67] discussed some techniques for free form algebraic surface modeling, paying special attention to cubic surfaces. lie introduced the concept of control points in barycentric coordinates as a way of defining and controlling a piecewise algebraic surface patch, though a mote concrete controlling scheme needs to be developed. Guo [32] used cubie surface patches to smooth a polydedron where cubic patches for faces are connected will two extra culic patches. Quartic surfaces were used by IIofmann et al. [36] and Middleditch el al. [45] to blend two primary quadric surfaces. In this thesis, Warren [75] investigated the mathematical structures of algebraic surfaces that meet a given surface with a specified arder of geometric continuity; and applied the theory to the blending probiem with low degree algebraic surfaces. liosters [40] studied high-order continuous blending of algebraic surfaces.

In spite of all the previous results, much work remains to be done to explore the potential of algebraic surfaces as effective tools of CAGD. In partictular, the capability of modeling a mesh of three dimensional data with smooth piecewise algebraic surface patches is essential because once it is achieved, plysical objects can be modeled using algebraic surfaces, and can be included in geometric modeliug systerns for further manipuiation. Hence, creating complex geometric abjects with smoolh piecewise algebraic surface patelies is the first step toward construction of a geometric modeling system with aigebraic surfaces as primitive tools,

In this thesis, we propose a direction of exploration of moderately low degree algebraie surfaces as tools of CAGD. In Chapter 2, we devise an interpolation algorithm, called Hermite interpolation, for algelbraic surfaces. This algorithon takes as input positional and (optionally) first derivative information of points and space curves, parametrically or implicitly given, and claraclerizes, in terms of the nullspace of a matrix, the space of all the algebraic surfaces of a specified degree that smoothly ineerpolate the specified geometric data, Given input dati, il produces a lomogeneous
linent system, where unkoowns are coefficients of algebraic surfaces, such that any algebraic surfaces with coefficients that are solutions of the systern interpolate the input data. The Hermite interpolation algorithm serves as a [undamental tool for finding algebraic surfaces of a specified degree meeling with langent plane continuity.

In Chapler 3, we consider how to choose an instance surface from a fanity of algebraic surfaces, resulting from Hermite interpolation. In geometric modeling systerns, a user must be able to select a surface interactively with geometric intuition. The class or family of algebraic surfaces, computed with Hermite interpolation, is expreased in terms of the nullspace of a matrix that can be spanned by a set of basis vectors. The dimension of the nullspace equals the number of degrees of freedom left after consuming, for interpolation, some of the degrees of freedom of the class of algelraic surfaces of a given degree. We apply least square npproximation to selection of a surface from the family by consuming the remaining degrees of freedom properly. Through IIermite interpolation and least square approximation, the geometric problem of algebraic surface design is transformed into a linear algebra problem which can be solved effeiently. A scheme of controliting shapes of algebraic surfaces in the family computed by the Hermite interpolation algorithm is inveatigated in the barycentric coordinate systern.

Then, we allempl to generate a moh of smooth piecewise algebraic surface patches. In Chapter 4 , Lriangular surface patches are tiken from the class of quintic algebraic aurfaces to amooth a given convex polyhedron. Each edge of a polyhedron is replaced by a conic curve with associated normal directions, and then each face is replaced by a quintic algebraic pateh that fleahea the three boundary curves. Each conic curve can be selected with a degree of freedom, and its shape or sharpness can be used to conlrol the shape of triangular surface patehes. Then, we consider the more general problem of smoothing an arbilrary polyhedron. We present some ideas for coping with nonconvexity of a polyhedron, and discuss open problems that need to be resolved in smoothing arbitrary polyhedra with algebraic surfaces.

In Chapter 5, we consider how to approximate an arbitrary three dimensional space curve, made of $n+1$ points, with m line segments. Generaling piecewise linear approximations of digitized or densely sampled curves is an important problem in image processing, pattern recognition, geometric modeling, and computer graphics. Even though much altention has been paid to the planar curve case, little work has addressed space curve approximation. The lieuristic algorithm we present in this chapter consumes $O\left(N_{\text {itar }} n\right)$ time and $O(n)$ space. It is based upon the notions of curve leagth and spherical image which are the fundamental concepts deseribing intrinsic properties of space curves. In this work, this heuristic piecewise linear segmenlation algorithm provides a basic tool for generating an adaptive polygonization of algebraie triangular surface patche, computed in Cbapler 4.

Finatly, this thesis is summarized, and open problems for future resarch are discussed in Cbapter 6.

2. HERMITE INTERPOLATION FOR ALGEBRAIC SURFACES

The primary objective of this work is to construct or approximate physical objects using meshes of algebraic surface patches. For ecsilictic or functional reasona, it is usually required that the surface patehes meet with geometric continuity. In many applications, C^{1} or tangent plane continuity is sufficient. In tis thesis, Warren [75] inveatigaled algebraic strueturea of all surfaces meeling a given algebraic surface smoothly at a point or along a curve on that surface. IIc applied ideal theory to characterize the class of such surface in terms of polynomial expressions.

In this chapter, we present an algorithm, called Hermite interpolation, which algorithmically characterizes the class of all algebraie surfaces of a fixed degree which satisly given geometric specifications. 【oput to this algorithm is a combination of points and algebraic space curves that are expressed either implicitly or parametrically. The points and space curves may have associated first derivative information in the form of normal vectors that define langent planes at the points and space curves. Gived an algebreic surface S : $f(x, y, z)=0$ of degree n, the Ifermite interpolation algorithm construets a homogencous tinear system $M_{l} x=0, M_{I} \in R^{n_{1} \times n_{0}}, x \in R^{n_{1}}$ of n_{i} equations and n_{v} unknowns where the uaknowns x are $n_{v}\left(=\binom{n+3}{3}\right.$) coeficients of S. ' Only when the rank r of $M_{[}$is less than the number of the coeflicients n_{v}, does there exist a nontrivial solution to the system. All the vectors except 0 in the nullspace of $\mathbf{M}_{\mathbf{I}}$ form a family of algebraic surfaces of degrec \mathbf{n}, satisfying the given input specifications, whose coefficients are expressed by homogeneous combinations of $q\left(=\pi_{v}-r\right)$ free parameters where q is the dimension of the nullspace.

As a result, the Hermite interpolation algorithm characterizes the family of algebraic surfaces with specified geometric propertios in terms of the nullspace of a 'An algebraic surfice of degree n has $\binom{n+3}{3}$ verms.
matrix. The algorithm is also useful in proving the existence or nonexistence of algebraic surfaces of degree n satisfying the input specificationg sinee, when the rank of M_{1} is n_{v}, there is only the trivial solution 0 which does not correspond to an algebraic surlace.

This chapter is organized as follows, First, in Section 2.1 we present some fundamental definitions and a key theorem used throughout the thesis. In Section 2.2 and 2.3, the Hermite interpolation algorithm is described. In Section 2.1, we brielly consider geometric continuity, and prove that our algorithm finds a family of all the desirable surfaces with G^{l} rescaling continuity. Then, some computational aspects of Hermite interpolation are considered along with several examplea of computing low degree algebraic surfaces.

2.1 Preliminarica

We give brief definitions of certain Lerms we need and alao state a form of Bezout theorem. For delailed and additional definitions, refer to $[1,73]$. For any multivariate polynomial \int, partial derivatives are written by subscripting, for example, $f_{x}=\partial f / \partial_{x} f_{x v}=\partial^{2} f /\left(\delta_{x} \partial_{y}\right)$, and so on. Ao algebraic surface of degree n in R^{3} is implicitly defined by a single polynomial equation $\int(x, y,-)=\Sigma_{i+j+k \leq n} c_{i j k} x^{i} y^{\prime} z^{k}=$ 0 where the coefficients $c_{i j k}$ of f are real numbers. The normal or gradient of $f(x, y, z)=0$ is the vector function $\nabla f=\left(f_{r}, f_{u}, f_{z}\right)$, A point $p=\left(x_{0}, y_{0}, z_{0}\right)$ on a surfuce is a regular point if the gradient at p is not null. Otherwise, the point is singular. An algebraic surface $f(x, y, z)=0$ is ircerlucible if $f(x, y, z)$ docs nol factor over the field of complex numbers. An algebraic apace curve is defined by the common intersection of two or more algebraic surfaces. Although it is not known if a complete algebraic space curve can be completely delermined by the intersection of only twa surfaces, in geometric design, we often restrict our consideration to a specific curve segment which is contained in the interscetion of two algebraic surfaces. A rational parametric space eurve is represented by the triple
$G(s)=\left(x=G_{1}(s), y=G_{2}(s), z=G_{3}(s)\right)_{\text {, where }} G_{1}, G_{3}$ and G_{3} are rational func. tions in s. The degrec of an algebraic surface is the number of intersections between the surface and a line, properly counting complex, infinite and multiple interseclions. This degree is alyo the same as the degree of the defining polynomial. The degree of an algebraic space curve is the number of intersections between the curve and a plane, properly counting complex, infinite and multiple intersections. The degree of an algebraic curve segmeal given as the intersection curve of two algebraic surfaces is also no larger than the product of the degrees of the two surfaces. Furthermore, the degree of a rational parametric curve is the same is the maximum degree of the numerator and denominator polynomials in the defining triple of rational functions.
The following definitions are pertinent to our Hermite interpolation algorillim:
Definition 2.1 Lel $p=\left(p_{x}, p_{11} p_{4}\right)$ be a point with an associated normal vector $\mathrm{n}=\left(n_{x}, n_{v}, n_{0}\right)$ in $\mathbf{R}^{\mathbf{J}}$. An algebraic surface $S: f(x, y, z)=0$ is said to contain P with C^{1} or tangeal plane continuity if
(1) $f(\mathrm{p})=f\left(p_{x}, p_{y}, p_{x}\right)=0$ (containment condition), and
(2) $\nabla f(\mathrm{p})$ is not zero and $\nabla f(\mathrm{p})=$ on for some nonzero a (fangency condition).

Defiaition 2.2 Let C be an algebraic space curve with an associated varying normal vector $n(x, y, z)=\left(n_{r}(x, y, z), n_{y}(x, y, z), n_{f}\left(x, y_{1} z\right)\right.$), defined for all points on C. AD algebraic surface $S: f\left(x, y_{1}=\right)=0$ is said to contain C with C^{1} or tangent plane continuity if
(1) $f(\mathbf{p})=0$ for all points p of C (containment condition), and
(2) $\nabla f(\mathrm{p})$ is not identicaily zero and $\nabla f(\mathrm{p})=\mathrm{an}(\mathrm{p})$ for some α and for all points p of C (tangency condition).

Definition 2.3 An algebraic surface $S: f(x, y, z)=0$ is said to Hermite interpolate a given collertion of points and space curves with associated normal vectors, if S contains all the points and space eurves with C^{1} continuity.

The following is one form of Bezout sheorem, the oldest theorem of algebraic geometry. As will be seen, this theorem plays an important role in proving the correctness of the Ifermite interpolation algorithm.

Theorem 2.1 (Bezout) An algebraic curve C of degree d intersects an aigebraice surface S of degree n in exactly $n d$ points, properly counting complex, infinite, and multiple intersections, or C intersects S infinitely often, that is, a component of C lies entirely on S.
2.2 Interpolation of Points with Normals
2.2.1 Containment

From the containment condition of Definition 2.1, it follows that any algebraic surface $S: f(x, y, z)=0$, whose coefficients satisly the linear equation $f(p)=0$ will contain the point p. For a set of k data points, this yields k homogencous linear equations. Sinee division of $f(z, y, z)=0$ by a nonzero number does nol change the surface the polynomial $f\left(x_{1}, y, z\right)$ represents, an algebraic surface of degree n has, in fact, $F=\binom{n+3}{3}-1$ degrees of freedom. Interpolation of all the poinis is achieved by selecting an algebraic surface of degree n sucb that $F \geq r$, where r ($\leq k$) is the rank of a system of k homogencous linear equations. Similar approaches for constructing algebraic surfaces that interpolate points can be found in [59].

2.2.2 Containment with Tangency

A point $p=\left(p_{s}, p_{v}, p_{s}\right)$ with a normal vector $n=\left(n_{s}, n_{v 1} n_{r}\right)$ determines a unique plane $P: n_{x} x+n_{y} y+n_{i} z-\left(n_{z} p_{x}+n_{v} p_{y}+n_{c} p_{z}\right\}=0$ at the point p. An algebraic surface $S: f(x, y, z)=0$ of degree n that Hermite interpolates the point p, can lye construeted by setling up a linear system of equations as follows:
For each point p with a normal vector $n=\left(n_{r}, n_{v}, n_{r}\right)$,

1. sontainmenteondition Use the linear equation $f(\mathbf{p})=0$ in the unknown coefficients of S.
2. Iangency condition Select one of the following:
(a) $\int n_{x} \neq 0$, use the equations $n_{r} f_{v}(p)-n_{v} f_{r}(p)=0$ and $n_{x} f_{r}(p)-n_{x} f_{x}(p)=$ 0.
(b) If $n_{v} \neq 0$, use the equations $n_{v} f_{2}(p)-n_{r} f_{v}(p)=0$ and $n_{y} f_{1}(p)-n_{r} f_{v}(p)=$ 0.
(c) If $n_{1} \neq 0$, use the equations $n_{x} f_{r}(p)-n_{r} f_{1}(p)=0$ and $n_{v} f_{x}(p)-n_{r} f_{v}(p)=$ 0.
3. Next, ensure that the coefficients of $f(x, y, z)=0$ satisfying the above threc linear equalions, additionally satisfy the constraints $\nabla f(p) \neq 0$, since nontan gency al p may occur if S lurns aut to be singular at p.

The proof of cortectness of the above algorithm follows from the following lemma.
Lemma 2.J The equations of the above aigorithms satisfy Definition 2.1 of point con. tainment and tangency.

Proof: The first linear equation $f(\mathrm{P})=0$ satisfies conlainment by definition. We now show that the remaining equalions salisfy $\nabla f(p)=\alpha \cdot n$ for a nonzero α. Sinee n is not a null vector, without loss of generality, we may assume that $n_{s} \neq 0$ in step 2 above. Other casea of $n_{v} \neq 0$ or $n_{z} \neq 0$ ean be handled analogonsly. Now let $\alpha=\frac{L_{1}}{n_{1}}$, assuming $n_{x} \neq 0$. Then $\int_{x}=\alpha \cdot n_{x}$ and substituting it in the selected linear equation $n_{r} f_{v}-n_{v} f_{x}=0$ yields $f_{v}=0 \cdot n_{v}$ and substituting it again in the other selected linear equation $n_{r} f_{2}-n_{2} f_{x}=0$ yields $f_{A}=\alpha \cdot n_{s}$. Hence $\nabla f(p)=\alpha \cdot n$. Finally y_{F} note that $f_{x}=0$ for $n_{x} \neq 0$, in the selected linear equations of ateps $2(\mathrm{a})$, would cause $\nabla f(p)=0$, whicls we ensured would not bappen in step 3 of the algorithm. Hence $f_{r} \neq 0$ and so $\alpha \neq 0$ and the lemma is proved. a
2.3 lalerpolation of Curves with Normals

The varying normal veetor associated with a space curve C can be defined implicitly by the triple $n(x, y, z)=\left(n_{r}\left(x_{1} y, z\right), n_{y}(x, y, z), n_{x}(x, y, z)\right)$ where n_{r}, n_{y} and
n_{1} are polynomials of maximum degrec m and defined for all points $p=\left(x, y_{1} z\right)$ along the curve C. For the special case of a rational curve which we shatl treat separately in Subsections 2.3.1.2 and 2,3.2.2, the varying normal vector can be also defined parametrically as $n(s)=\left(x=n_{x}(s), y=n_{v}(s)_{1}==n_{1}(s)\right\rangle$, with n_{x}, n_{y} and n_{4} now rational [utnetions in s.

2.3.1 Containment

2.3.1.1 Algebraic Curves: Implicit Definātion

Let $C:\left(f_{1}(x, y, z)=0, f_{2}(x, y, z)=0\right)$ implicitly define an algebraic space curve of degree d. The irreducibility of the eurve is not a restriction, since reducible curves can be handled by trenting each irreducible curve component separately. For precise definitions of irreducible components of an algebraic curve, sec [73]. The containment condition (as well as the langency condition) requires the interpolating surface to be zero at a finite number of points on the eurve. To ensure containment of a specific irreducible component requires eltoosing this finite number of points on that component. The precise number, derived from Bezout theorem, is a linear function of the degree of that eurve component.

The situation is more complicated in the real setting, if we wish to achicve separate containment of one of possibly aeveral connected real ovals of a single irreducible component of the space curve. There is a nontrivial problem of specifying a single isolated real oval of a curve. See [5] where a solution is derived in terms of a decomposition of space into cylindrical cells which separates out the various components of any real curve (or any real algebraic or semi-algebraic set).

An inlerpolating surface $S: f(x, y, z)=0$ of degree n for containment of an irreducible curve component C, is computed as follows:

1. Choose a set L_{c} of, $1 d+1$ points on $C_{1}, L_{c}=\left\{p_{i}=\left(x_{i}, y_{i}, z_{i}\right\rangle \mid i=1, \cdots, n d+1\right\}$, The act L_{c} may be computed, for example, by tracing the intersection of $f_{1}=$
$f_{2}=0$ [7]. Thus, alternatively, an algebraic curve may be given as a list of points.
2. Next, sel up $n d+1$ homogeneous linear equations $f\left(p_{1}\right)=0$, for all $p_{i} \in L_{c}$. Any nontrivial solution of this linear system will represent an algeloraic surface which interpolates the entirc curve C.
The proof of correctness of the above algorithmis captured in the foliowing lemma.
Lernma 2.2 To satisfy the containment condition of an algebraie curve C of degreed by an algebraic surface S of degree n, it suflices to satisfy the containment condition of $n d+1$ points of C by S.

Proof: This is essentially a restatement of Bezout theorem in Scetion 2.1. Making S contain $n d+1$ points of C ensures that S must intersect C infinitely often and hence, S must contain the entire curve. a

Recall that $S: f(x, y, z)=0$ of degree n has $F=\binom{n+1}{3}-1$ degreen of frcedom. Let r be the rank of the system of $n d+1$ tinear equations. There are nontrivial solutions to this homogeneous system if and only if $F>r$ and a unique nontrivial solution when $F=r$. Again, ad interpolating surface can be oblained by choosing a degree π such that $F \geq r$.

2.3.1.2 Rational Curvea : Paramelric Definjtion

When a curve is given in rational parametric form, its equations can be used difectly to produce a linear system for interpolation, instead of first computing nd +1 points on the curve. Let $C:\left(x=G_{1}(t), y=G_{2}(t), z=G_{0}(t)\right)$ be a rational curve of degree d. . An interpolating surface $S: f(x, y, z)=0$ of degree n whicli contains C is computed as follows:
I. Substitute $\left(x=G_{1}(t), y=G_{3}(t)_{1}==G_{3}(t)\right)$ into the equation $f(x, y, z)=0$.
2. Simplify and rationalize the expression from step 1 to oblain the numerator $Q(t)=0$, where Q is a polynomial in t of degree at most nd with coefficients
which are homogeneous linear expresions in the eoefficients of f. For Q to be identically zero, each of its coefficients must be zero, and hence we oblain a sygtem of at most nd +1 linear equations, where the unknowns are the coefficients of f. Any nontrivial solution of this linear system will represent a surface S which interpolates C.

Lemma 2.3 The containment condition is satisfied by step 2 of the above algorithm.

Proof: Obvious. a

2.3.2 Containment with Tangeney

In order to Hermite interpolate an algebraic curve C with a normal vector n by an algebraic surface S, we again need to solve a homogeneous linear system, whose equalions stem from both the containment condition and the tangency conditions of Definition 2.2.

2,3.2.1 Algebraic Curves with Normals; Implicit Definition

As before, let $C:\left(f_{1}(x, y, z)=0, f_{2}(x, y, x)=0\right)$ implicitly define an irreducible algebraic space curve of degree d, together with an associated normal vector defined implicitly by the triple $n(x, y, z)=\left(n_{x}(x, y, z), n_{v}(x, y, z), n_{s}(x, y, z)\right)$ where n_{x}, n_{v} and n_{s} are polynomials of maximum degree m and defined for all points $p=(x, y, r)$ along the curve C. A Hermite interpolating surface $S: \int(x, y, z)=0$ of degree n which contains C with C^{1} conlinuity is then computed as follows;

1. Choose a sel L_{e} of $r d+1$ points on $C, L_{e}=\left\{p_{i}=\left\langle x_{i}, y_{i}, z_{i}\right\} \mid i=1, \cdots, r d+1\right\}$. The set L_{e} may be computed, as before, by tracing the interseetion of $f_{1}=f_{2}=$ 0.
2. Construct a list L_{1} of $(n+m-1) d+1$ point-normal paira on $C_{1} L_{1}=$ $\left\{\left[\left(x_{i}, y_{i}, z_{1}\right),\left(n_{r i}, n_{y i}, n_{1 i}\right)\right] \mid i=1, \cdots,(n+m-1) d+1\right)$, where $\left(n_{r i} n_{y i t} n_{1 i}\right)=$ $n\left(x_{i}, y_{i} z_{i}\right)$ for all i. Thus, allernatively, an algebraic curve C and its associaled
normal vector n may (either or bolth) be given as a list of points or point-normal pairs.
3. conlainment condition Next, set up nd +1 homogencons linear equations $f\left(p_{i}\right)=0$, for $p_{i} \in L_{c}, i=1, \cdots, n d+1$.
4. tangency condition
(a) Compute $\mathrm{t}\left(x_{1}, y_{1} z\right)=\nabla f_{1}(x, y, z) \times \nabla f_{2}(x, y, z)$. Note $\mathfrak{l}=\left(t_{x}, l_{y}, t_{1}\right)$ is the tangent vector to C.
(b) Sclect onc of the following:
i. If $f_{x} \neq 0$, use the equation $f_{v} \cdot \pi_{1}-n_{v} \cdot f_{1}=0$.
ii. If $t_{v} \neq 0$, use the equation $f_{x} \cdot n_{r}-n_{x} \cdot f_{1}=0$.
iii. If $t_{s} \neq 0$, use the equation $\delta_{z} \cdot n_{v}-n_{r} \cdot \delta_{v}=0$.

Substitute each point-normal pair in L_{f} into the above selected equation to yield ($n+m-1$)d +1 additional liomogeneous linear equations in the coelficients of $f(x, y, z)$.
5. In total, we obtein a homogencous syatem of $(2 n+m-1) d+2$ linear equations. Any nontrivial solution of the bomogencous linear system, for which, additionally, ∇f is not identically zero for all points of C (that is, the surlace S is not singular at all points along the curve C, will represent a surface which IIermite interpolates C.

The proof of correctness of the above algoritlim follows from Lemina 2.2 and the following lemma, which shows why the selected equation of step 4(b), evaluated at ($n+m-1$)d+1 poinl-normal pairs, is sufficient.

Lemma 2.4 To salisfy the tangency condition of an algebraic eurve C of degree d with a normal vector n of degree m, by an algebraic surface S of degree n, il suffices to satisfy the tangency condition al $(n+m-1) d+2$ points of C by S as in step 4 of the ebove algorithm.

Proof: In step 4(b), assume, without loas of generality, that $t_{5} \neq 0$. Then the selected equation

$$
\begin{equation*}
f_{\nu} \cdot n_{r}-n_{v} \cdot f_{4}=0 \tag{2.1}
\end{equation*}
$$

We first ahow that if equation (2.1) is evaluated at only $(n+m-1) d+1$ points of C int step 4(b) above, it holds for all points on C. Equation (2.1) defines an algebraic surface H of degree $(n+m-1)$ which intersects C of degree d at at most $(n+m-1) d$ paints. Invoking Bezout theorem, it follows that C must lie entirely on the surface H. Hence cquation (2.1) is valid along the entire curve C.

We now show that step 4 of the above algorithm satisfies the tangency condition as specified in Definition 2.2. Since t of step 4(a) is a tangent vector at all points of C, and the surface $S: J=0$ contains C, the gradient vector ∇f is orthogonal to t , which yields the equation:

$$
\begin{equation*}
f_{r} \cdot t_{x}+f_{v} \cdot t_{v}+f_{x} \cdot t_{x}=0 \tag{2.2}
\end{equation*}
$$

valid for all points of C. Next, from the definition of a normal veetor of a space curve,

$$
\begin{equation*}
n_{x} \cdot t_{r}+n_{y} \cdot t_{v}+n_{r} \cdot t_{x}=0 \tag{2.3}
\end{equation*}
$$

valid for all points of C. Now $i t$ is impossible that both $n_{y}(x, y, z)$ and $n_{\lambda}(x, y, z)$ are ideotically zero along C, sinee if they were, then equation (2.3) would imply that $n_{x} \cdot t_{x}=0$, and as we assumed that $t_{x} \neq 0$, would in turn imply that also $n_{r}=0$ along C, which would contradict the earlier assumption that n is not identically zero. Hence, at least, one of n_{y} and n_{z} must also be nonzero. Without loss of generality, let $n_{v} \neq 0$. Also, let $a\left(x, y_{1}=\right)=\frac{h_{n}}{n_{n}}$. Then,

$$
\begin{equation*}
f_{v}=0 \cdot n_{v} \tag{2.4}
\end{equation*}
$$

and substituting it into equation (2.1) yields

$$
\begin{equation*}
f_{1}=\alpha \cdot n_{1} \tag{2.5}
\end{equation*}
$$

for all points on C. From equations (2.2), (2.4) and (2.5) we obtain,

$$
\begin{equation*}
\int_{x} \cdot t_{x}+\alpha \cdot n_{V} \cdot t_{V}+\alpha \cdot n_{s} \cdot t_{r}=0 \tag{2,6}
\end{equation*}
$$

By multiplying a to equation (2.3) and subtracting equation (2.6) from it, we obtain

$$
\begin{equation*}
f_{x} \cdot t_{r}=a \cdot n_{x} \cdot t_{x} \tag{2.7}
\end{equation*}
$$

and since $t_{r} \neq 0$, finally obtain

$$
\begin{equation*}
f_{x}=\alpha \cdot n_{x} \tag{2,S}
\end{equation*}
$$

valid al all points of C . Hence equations (2.4), (2.5), and (2.8) together imply that $\nabla f(x, y, z)=a \cdot n$ for all points C and some nonzero a. 2 Hence, the tangency condition of Definition 2.2 is met,
2.3.2.2 Rational Curves with Normals : Parametric Definition

When both a epace curve and its associated normal vector are given in rational parametric form, their equations ean be used directly to produce a linear system for interpolation, instead of first computing points and point-normal pairs of the eurve. Let $C:\left(x=G_{1}(s), y=G_{2}(s), z=G_{3}(s)\right)$ be a rational curve of degree d with a normal vector $n(s)=\left(n_{r}(s), n_{v}(s), n_{r}(s)\right)$ of degree m. A Hermite interpolating surface S : $f(x, y, z)=0$ of degree n which contains C with C^{1} continuity is computed as follows:

1. confaimentrondilion Substitute $\left(x=G_{1}(v), y=G_{2}(s)_{1}:=G_{3}(v)\right)$ into the equation $f(x, y, z)=0$. This resulta in, at most, $n d+1$ homogeneous linear equalions as in Subsection 2.3.1.2.
2. langency condilion
(a) Compute $\nabla f(s)=\nabla f\left(G_{1}(s), G_{7}(s), G_{3}(s)\right)$ and $\ell(s)=\left(\frac{d f}{d i}, \frac{d y}{d t}, \frac{d y}{d i}\right)$. Note that $t=\left(t_{r}, t_{v}, t_{r}\right)$ is the tangent vector to C.
(b) Select one of the following:

$$
\text { i. If } t_{x} \neq 0 \text {, use the equation } f_{v}(s) \cdot n_{x}(s)-n_{y}(s)-f_{x}(s)=0 \text {. }
$$

[^0]ii. If $t_{v} \neq 0$, use the equation $\int_{x}(s) \cdot n_{T}(s)-n_{s}(s) \cdot J_{A}(s)=0$.
iii. If $t_{s} \neq 0$, use the equation $f_{r}(s)-n_{V}(s)-n_{T}(s) \cdot f_{V}(s)=0$.

In each case, the numerator of the simplified rational polynomial is sel to zero. This yields at most, $(n-1) d+m+1$ additional homogeneous linear equations in the coefficiente of the surface $S: \int(x, y, z)=0$.
3. In tolal, we obtain a homogeneous aystem of al most $(2 n-1) d+m+2$ linear equations. Any nontrivia] solution of the linear system, for which additionally ∇f is not identically zero for all points of C (that is, the surface S is not singuiar along the curve C), will represent a surface which Itermite interpolates C.

The proof of correctness of the above algorithm follows from Lemma 2.3 and the following lemma.

Lemma 2.5 If we choose a nontrivial solution for which the reaulting Fermite interpolating surface S is not singular along the entite curve C, step 2 guarantees that the tangency condition of Definition 2.2 is met.

Proof: The proof is very similar to that of Lemma 2.4 with minor modifications and is amitted. \square

2.4 Geometric Continuily

In the Hermite interpolation algorithm, tangent plane continuity between two surfaces is achieved by making the tangent planes of the two surfaces identical at a point or al all points along a common curve of intersection. This definizion of continuity agrees with several other definitions of G^{1} geometric continuity given for parametric and implicil algebraic surfaces. De Rose [63] gave a definition of higher orders of geometric continuity between parametric surfaed where two surfacea F_{1} and F_{2} meet with order $\&$ geometric continuity or G^{k} continuily along a curve C if and only if there exist reparameterizations F_{1}^{\prime} and F_{2}^{\prime} of F_{1} and F_{3}, respectively, such that all partial derivalives of F_{1}^{\prime} and F_{2}^{\prime} up to degree k agrec along C.

Warren [75] formulated an intuitive definition of G^{4} continuity between implicit surfaces as following:
Definition 2.4 Two algebraic surfaces $\int(x, y, z)=0$ and $g(x, y, z)=0$ meet with G^{t} rescaling continuity at a point por along an algebraic curve C if and only if there exists two polynomials $a(x, y, z)$ and $b(x, y, z)$, not identically zero at p or niong C, such that all derivatives of $a f-b g$ up to degree k vanish at p or along C.

This formulation is more general than just making all the partials of $f(x, y, z)=0$ and $g(x, y, z)=0$ agree at a point or along a eurve. For example [75], consider the intersection of the cone $f(z, y, z)=x y-(x+y-z)^{2}=0$ and the plane $g(x, y, z)=$ $x=0$ along the line defined by two planes $x=0$ and $y=z$. $f t$ is not hard to see that these two surfaces meet smoothly along the line since the normals to $f(x, y, z)=0$ at each point on the line are scalar multiples of those to $g(x, y, z)=0$. But, this scale factor is a function of \approx. Situntions like this are thus corrected by allowing multiplication by rescaling polynomials, not identically zero along an interscetion curve. Note that multiplicntion of a surince by polynomials nonzero along a curve does nal change the geomelry of the aurface in the neighborhood of the curve. la [26], Garrity el al. showed that both definitions of geometric conlinuity for a parametric and an implicil surface are equivalent by introducing the concept of a manifold which describes an intrinsic and local property of a surface.

The definition for G^{0} rescaling coatinuity corresponds to the containment definiLion in Section 2.1. The following temme shows that the $C^{\mathbf{l}}$ continuity definition in Section 2.1 agrees with the $G^{\mathbf{t}}$ resealing continuity definition.
Lemma 2.0 G^{1} rescaling conlipuity between $f(x, y, z)=0$ and $g(x, y, z)=0$ al a common point p or along a common curve C corresponds to $\int(x, y, z)=0$ and $g(x, y, z)=0$ having common tangent planes at p or along every point of C.

Proof: The requirement for G^{1} resealing continuity is that there exist $a(x, y, z)$ and $b(x, y, z)$, not identically zero at p or along C, such that

$$
\frac{\partial(a f-\delta g)}{\partial x}=a_{x} f+a f_{x}-b_{x} g-b g_{x}
$$

$=0$ at p or along C_{1}
$\frac{\partial(a j-b g)}{\partial y}=a_{v} f+a f_{v}-b_{v} g-b g_{v}$
$=0$ at p or along C,
$\frac{\partial(a f-b g)}{\partial z}=a_{1} f+a f_{2}-b_{1} g-b g_{2}$
$=0$ at p or along C.
Since p or C is contained in bolh f and g (that is, $f=g=0$ at p or along C), the equirement becomes

$$
\begin{aligned}
& a f_{x}=b g_{x} \\
& a f_{v}=b g_{v} \\
& a f_{x}=b g_{1}
\end{aligned}
$$

which means $\left(f_{r}, f_{y}, f_{x}\right)=\underset{d}{\hat{k}}\left(g_{x}, g_{y}, g_{4}\right)$ at p or along C. Hence, f and g are required to have common tangent planea at p or along C. O

The correctness proots in Section 2.2 and Section 2.3 imply that Hermite interpo lation finds all the algebraic surfaces which have common tangent planea at a point or a curve. It aiso yields the following theorem.

Theorem 2.2 Ilernite interpolation finds all the algebraic surfaces F which meet surfice H at a point p or along a eurve C on $\|$ with $G^{\text {t }}$ rescaling continuity

A family of algebraic aurfaces F at in the above theorem can be constructed in the Hermite interpolation framework of Section 2.3 as follows. Given a surface $/ J$ and a point p or curve C on H, defined implicitly or parametrically, the input to the Hermite interpolation algorithm is the poini p or the curve C and the normal vector to p or C obtained directly from the ∇H, evalunted at p or along C. The algorithm then yields a solution for the coefficients of the family of algebraic surfices which meet H at p or along C with C^{l}, tangent plane, or G^{\prime} rescaling continuity. Several examples of this are provided in the next section.

2.5 Compulational Aspects of Hermite Interpolation

The basic mechanies of Ilermite interpolation for algebraic surfaces, ㄴ presented in the algoritlums of Section 2.2 and Section 2.3, are
I. geometric properties of a surface to be designed are described in terms of a combination of poinis, curves, and possibly associnted normal vectors,
2. these properties are translated into a homogeneous linear systern of equations with extra surface constraints, and
3. nontrivial solutions of the linear system are computed.

In this seetion, we discuss some computational aspects of Ilermite interpolation, and give severa! examplea of algebraic surface design with liermite interpolation.
2.5.1 On Compuling Nontrivial Solutions

As explained before, the Hermite interpolation algorithm converls geornetric propertics of a surface into a homogeneous linear system:

$$
M_{1} x=0\left(M_{I} \in R^{n_{1} \times n_{2}}, x \in R^{n_{*}}\right)
$$

where n_{i} is the number of equalions gencrated, n_{v} is the number of unknown cocflicients of a surface of degree $n\left(n_{0}=\binom{n+9}{1}, M_{I}\right.$ is a matrix for the linear equations, and X is a vector whose elements are unknown coefficients of a surface,

In order lo solve the linear ayatemina computationally stable manner, we compute the singular value decomposition (SVD) of M_{T} [31]. Hence, M_{1} is decomposed as $\mathrm{M}_{\mathrm{I}}=U \Sigma V^{T}$ wherc $U \in R^{n_{1} \times n_{1}}$ and $V \in R^{n_{2} \times n_{4}}$ are orthonormal matrices, and $\Sigma=$ $\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{1}\right) \in \mathbf{R}^{n_{4} \times n_{4}}$ is a diagonal matrix with diagonal elements $\sigma_{1} \geq \sigma_{2} \geq$ $\cdots \geq \sigma_{4} \geq 0\left(a=\min \left\{n_{i}, n_{v}\right\}\right)$. It can be proved that the rank r of M_{I} is the number of the positive diagonal elements of Σ, and that the last $n_{v}-r$ columins of V apan the nulispace of M_{I}. Itence, the nontrivial solutions of the homogeneous linear system are compactly expressed as: $\quad\left\{x(\neq 0) \in \mathbf{R}^{n \boldsymbol{n}} \mid x=\sum_{i=1}^{n_{y}-r} w_{i} \cdot v_{r+1}\right.$ where $\omega_{i} \in$
\mathbf{R}_{1} and v_{j} is the jth column of $\left.V\right\}_{\text {, or }} x=V_{n_{2}+r} w$ where $V_{n_{0}-,} \in \mathbf{R}^{n^{n} \times\left(n_{2}-r\right)}$ is made of the last $n_{v}-r$ columns of V_{1} sad w is a $\left(n_{v}-r\right)$ vector for free parameters.

Example 2.1 Computation of Nontrivial Solutions

Let $C:\left(\frac{3 t}{1+1^{2}}, \frac{1-1^{2}}{1+t^{2}}, 0\right)$, and $n(t)=\left(\frac{1 t}{1+1^{2}}, \frac{2-21^{2}}{1+1^{2}}, 0\right)$, which is from the inlersection of a sphere $z^{2}+y^{2}+z^{2}-1=0$ with the plane $z=0$. To find a surface of degrec 2 which Hermite interpolates C, we let $f(x, y, z)=c_{1} x^{2}+c_{2} y^{2}+c_{3} z^{2}+c_{4} x y+c_{5} y z+$ $c_{6} z x+c_{7} x+c_{8 y} y+c_{9} z+c_{10}$. From the containment condilion, we get 5 equations, $c_{10}-c_{8}+c_{2}=0,2 c_{7}-2 c_{4}=0,2 c_{10}-2 c_{7}+4 c_{1}=0,2 c_{7}+2 c_{4}=0, c_{10}+c_{8}+c_{2}=0$, and from the tangency condition, we also get 5 equations, $-2 c_{q}+2 c_{3}=0,-4 c_{0}=0$, $-i c_{s}=0,4 c_{6}=0,2 c_{p}+2 c_{s}=0$. In matrix form,

$$
M_{I} x=\left(\begin{array}{cccccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & -2 & 0 & 0 & 2 & 0 & 0 & 0 \\
4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 2 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & -4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -4 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 2 & 0
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{3} \\
c_{0} \\
c_{7} \\
c_{3} \\
c_{0} \\
c_{10}
\end{array}\right)=0
$$

The Σ in the SVD of M_{I} is $\operatorname{diag}(5.657,4.899,4.899,2.828,2.828,2.828,2.0,1.414$, $0.0,0.0)$. 3
${ }^{3}$ The rubrautine dixds of LINPACK was uned to compute the SVD of $\mathrm{M}_{\mathbf{I}}$.

Hence, we aec that the rank of M_{I} is 8, and the null space of M_{I} is

$$
\mathbf{x}=w_{1} v_{g}+w_{2} v_{10}=w_{1}\left(\begin{array}{c}
0.0 \\
0.0 \\
1.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0
\end{array}\right)+w_{2}\left(\begin{array}{c}
0.57735 \\
0.57735 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
-0.57735
\end{array}\right) .
$$

The nontrivial solutions are obtained by making sure that the free parameters w_{l} and w_{2} do not vanish simultaneously. Hence, the Hermite interpolating surface is $f(x, y, z)=0.57735 w_{2} x^{3}+0.57735 w_{2} y^{2}+w_{1} z^{2}-0.57735 w_{3}=0$ which has one degree of freedom in controlling its coefficients. The surface $f(x, y, z)=0$ can be made ta contain a point, say, $(1,0,1)$. That is, $f(1,0,1)=0.57735 w_{1}+w_{1}-0.57735 w_{2}=w_{1}=$ 0 . So, the circular cylinder $f(x, y, z)=0.57735 u y\left(x^{2}+y^{2}-1\right)=0$ is an appropriate Hermite interpolating surface. \square

2.5.2 Bounding the Degree of Surfinces

The total number of linear equations generated for a possible algebraic surface of degree n to Hermite interpolate k points with fixed constant normal directions and also to contain, with C^{1} continuity, l space curves of degree d with assigned normal directions, varying as a polynomial of degree m, is $3 k+(2 n+m-1) d l+2 l$. This number becomes $3 k+(2 n-1) d l+m l+2 l$ when all the space curves and associated normal vectors are defined parametrically.

For a given configuration of points, curves, and normal vectors, the above interpolation scheme allows ane to both-upper and lower-bound the degree of Hernite inlerpolating surfaces.

1. Lower-Brund Let r(n) be the rank of a homogeneous system of lineat equations, oblained from the given geomelric configuration and surface degree n. The rank tells us the exact number of independent constraints on the coefficients of the desized algebraic surface of degree n. Dependencies arise from spalial interrelationships of the given points and eurves. From the rank, we can conclude that there exists no algebraic surface of a degree less than or equal to n_{0} where n_{0} is the largest n such that $F(n)<r(n)$ with $F(n)=\binom{n+3}{3}-1$.
2. Upper Bound Alternatively, the smallest n can be chosen such that $F(n) \geq r(n)$, The nontivial solutions of the linear syatern repreaents $a(F(n)-r(n)+1)$ parameter family (with $F(n)-r(n)$ degrees of freedorn) of algebraic surfaces of degree n which interpolate the given geometric data. We select suitable surfaces from this family, which additionally salisfy our nonsingularity and irrelucibility constraints.'

One way to apply the Hermite interpolation technique to computation of a lowest degree algebraic surface which has given geometric properties, is to search through the degrees, i.e., from $n=1,2,3, \cdots$ for an interpolating surface. In Chapler 4 , we illustrate how the rank can be predieted a priori, without generating a linear system and then actually computing its rank, using only topological inlerrelationships between input curve and normal directions. However, since the dependencies between linear equations do depend on the specific spatial interrelationships of the given points and curves, it is, in general, quite dificult to bound the degree of interpolating surfaces a prioni. For example, it is possible to design input data, made of an arbitrary number of degree 4 curves with normal directions, which can be interpolated by a quadrie surface.

We now enumerate some results in which we lower-bound the degrees of some Hermite interpolating surfaces.

[^1]L. Two skewed lines in space with constant direction normals cannot be fermite interpolated with nondegenerate quadric surfices. The only quadric which salisfies both containment and tangeney conditions reduees into two planes.
2. Two lines in space with constant direction normals can be flermite inlerpolated with a quadric surfice if and only if the lines are parallel or intersect at a point, and the normais are not orthogonal to the plane containing thern. The quadric is a cylinder when the lines ars parallel, and a cone when the lines intersent.
3. The minimurn degree of an algebraic surface, which Hermite interpolatea two lines in space, one with a constant direction normal, the other with a linearly varying normal is three.
4. Two lines with linearly varying normala can be Herrnite interpolated by a quadric in only some special cases. In general, a surface of at least degree threc is needed. When quadric surface interpolation is possible, the quadric is either a hyperboloid of one abeel (the two lines may be parallel, intersecting, or skewed) or a hyperbolie paraboloid (the two lines ean only be intersecting or skewed).

2.5.3 Examples

In this subsection, we exhibit the method of Hermite interpolation by constructing lowest degree Hermite interpolating aurinces for joining and blending primary surfaces of solid models as well as for lleshing curved wire frame models of physical objects, ${ }^{3}$

Example 2.2 (JOINING 1) A Cubic Surface for Smoothly Joining Two Elliplic Cylinders
${ }^{3}$ The melutions of all the examplea in this aubsection wate obtained using MACSYMA in whicl Gnusian elimination algorithm is applied. The renson was to express solutions more clearly, however. the ningular value decomposition algotithm was used in our implementation. Of course, che solution apaces are the amme whichever mechod to be used in computing the nullspace, although the bases that apan ilie vector subapsece are diferent.

Consider computing a loweat degree surface whicli can amoothly join two truncated elliptic cylindera $C Y L_{1}:(y+1)^{2}+\frac{7}{4}-1=0$ for $x \leq-2$ and $C Y^{\prime} L_{2}$: $25 z^{2}+36 y^{2}-96 x y+64 z^{2}-100=0$ for $3 x+4 y \geq 0$. llere, we illustrate the Hermite interpolation technique which not only compulea the unigue cubic interpolating surface but aiso proves that degree three is the lowed for an alge. braic surface to satisfy the smooth-join requirement for this configuration. We take an ellipse $C_{1}:\left(-2, \frac{21^{2}}{1+1^{2}}, \frac{11}{1+1^{1}}\right)$ on $C Y L_{1}$ with the associated rational normal

 normals are respectively chosen in the same directions as the gradients of their cor. responding surfaces $C Y L_{1}$ and $C Y L_{2}$. This ensures that any liermite interpolat. ing surface for C_{1} and C_{2} will also meel $C Y L_{1}$ and $C Y L_{2}$ smoothly along theac curves. A degree two algeljraic surface does not suffec for Hermite interpolation, sinte the rank of the constructed linear system is greater than 9 which is the degrees of freedom of a quadric surface. (Note that a quadric surface lias 10 coefficients.) Next, as a possible Hermite interpolant, consider a degree tliree algebraic surface with 20 coeflicients. Applying the Hermite interpolation algorithm of Subsection 2.3.2.2 to the curves results in 26 linear equations (28 equations are sup. posed to be generated, but 2 of the 28 are degenerate.). The rank of lisis linear system is 19 , and thus there is a unique cubic Hermite interpolating surface, which is $f(x, y, z)=r_{1}\left(2 y z^{2}-x z^{2}-5 z^{2}+8 y^{3}-4 x y^{2}-4 y^{2}+8 x^{2} y+24 x y-8 y-\left(x^{3}-11 x^{2}+4 x+20\right)\right.$. See Figure 2.1. 口
Example 2.3 (JOINING 2) A Quartic Surface for Smoothly Joining Three Circular Cylinders

Consider computing a loweat degree surface which smoothly joins three truncated orthogonal circular cylinders $C Y L_{1}: x^{2}+y^{2}-1=0$ for $z \geq 2, C Y L_{2}: y^{2}+z^{2}-1=0$ for $x \geq 2$, and $C Y L_{3}: z^{3}+x^{2}-1=0$ for $y \geq 2$.
In [76], a degree five surface is found for joining these cylinders. After applying the Hermite interpolation algorithm, we find out that the minimum degree for such
joining surfaces is 4 , and we get a 2-parameter (one degrec of frectom) family of algebraic surfacea.

As before, we take a circle $C_{1}:\left(\frac{21}{1+\varepsilon^{2}}, \frac{1-T^{2}}{1+\alpha^{2}}, 2\right)$ on $C Y L_{1}$ with the associated ra. tional normal $n_{1}(t):\left(\frac{1 t}{1+n^{2}}, \frac{2-3 n^{2}}{1+t^{2}}, 0\right)$, the circle $C_{3}:\left(2, \frac{21}{1+1}, \frac{1-1}{1+1}\right)$ on $C C^{\prime} L_{2}$ with the associated rational normal $n_{2}(t):\left(0, \frac{1 t}{1+t^{2}}+\frac{2-71^{2}}{1+1^{2}}\right)$, and the circle $C_{3}:\left(\frac{21}{1+1^{1}}, 2, \frac{1-1^{2}}{1+c^{2}}\right)$ on $C Y^{\prime} L_{3}$ with the associated rational normal $n_{3}(t):\left(\frac{11}{1+1^{1}}, 0, \frac{z-32^{2}}{1+1^{2}}\right)$. Again, all C_{1}, C_{2} and C_{3} 's normails are repectively chosen in the same direetion as the gradients of their corresponding surfaces $C Y L_{1}, C Y L_{2}$, and $C Y L_{3}$. This ensures that any Hermite interpoiating surface for C_{1}, C_{2}, and C_{3} will also meet $C Y L_{1}, C Y L_{2}$, and $C Y L_{3}$ smoothly along these curves. A degree three algebraic surface does not suffice for lier. mite interpolation, since the rank of the reulling linear system is greater than 19. Next, ss a possible IIermite interpolant, consider a degree four aigebraic surface with 35 coefficients, and 34 degrecs of freedom. Applying the IJermite interpolation algorithm to the curves results in 52 equations. The rank of this linear system is 33 , and thus there is a 2 -parameter family of quartic Ifermite interpolating surfaces, which

An ingtance of this family $\left(r_{1}=1, r_{2}=10\right)$ is shown in Figure 2.2. It slould be noted that every surface in the computed ramily is not always appropriate for geometric modeling. The quarlic surface in Figure 2.3 is one used in Figure 2.9. On the other hand, the surface in Figure 2.4, which is not useful for geometric modeling, is also in the same family with $r_{1}=1$ and $r_{2}=-1$. a
Example 2.1 (JOINING 3) A Quarlic Surface for Smoolhly Joining Four Circular Cylinders

In this example, we compute a towest degree surface which smoohly joins four truncated parallel circular cylindera defined by $C Y L_{1}: y^{2}+z^{2}-1=0$ for $x \geq 2$.
$C Y L_{2}: y^{2}+z^{2}-1=0$ for $x \leq-2, C Y L_{3}:(y-1)^{2}+z^{2}-i=0$ for $x \geq 2$, and $C Y L_{4}:(y-4)^{2}+z^{2}-1=0$ for $x \leq-2$.

The Hermite interpolation teclinique indicates that the minimum degree for such a joining surface is 4 , and compules a 2 -parameter (one degree of freceiom) family of algelraic surfaces which is $f(x, y, z)=\frac{1}{14} z^{4}+\frac{1}{7} y^{2} z^{2}-\frac{4 r_{1}}{7} y z^{2}+r_{1} z^{3}+\frac{1}{14} y^{4}-\frac{1 r_{1}}{7} y^{3}+$ $r_{1} y^{2}+\frac{1}{7} r_{1} y+\frac{14 r+13 r_{1}}{275} x^{4}-\frac{24 r_{1}+13 r_{1}}{28} x^{2}+r_{2}$. An instance of this family $\left(r_{1}=392\right.$, $r_{2}=-868$) is shown in Figure 2.5. \square

Exarnple 2.5 (BLENDING 1) Hyperboloid Patehes for Blending Two Perpendicular Cylinders

The case of two circular cylinders is a common test case for blending algorithms. Various different ways have been given, (for example, see ($35,50,76$]) for computing a suitable surface which smoothes or blends the intersection of iwo equal radius cylinders, $C Y L_{1}: x^{2}+z^{2}-1=0$ and $C Y L_{2}: y^{3}+z^{2}-1=0$. We consider an ellipse C_{1} on $C Y L_{1}$ (it is the inlersection with the plane $3 x+y=0$), defined parametrically, $C_{1}:\left(\frac{7 t}{1+1^{2}}, \frac{-61}{1+r^{2}}, \frac{1-r^{2}}{1+1^{2}}\right)$ with the associated ralional normal $n_{1}(t)=\left(\frac{41}{1+r^{2}}, 0, \frac{2-2 r^{2}}{1+r^{2}}\right)$, and the ellipse C_{2} on $C Y L_{2}$ defined implicitly, $C_{2}:\left(\left(y^{2}+z^{2}-1=0, x+3 y=0\right)\right.$ with the associated normal $n_{3}(x, y, z)=(0,2 y, 2 z)$. As a possible Hermite interpolant, we consider a degree two algebraic surface. Applying the method of Subsection 2.3.2.2, 10 C_{1} reaults in 8 equations, 5 from the containment condition and 3 from the tangency condition. (5 equations are supposed to be generated, but 2 of these turn out to be degenerate). For C_{2}, we use the method of Subsection 2.3.2.1, and first compute $L_{\mathrm{c}}=$ $\{(0,0,1),(-3,1,0),(3,-1,0),\{-2.4,0.8,-0.6),(2.4,-0.6,-0.6)\}$ and $L_{1}=\{((0,0,1)$, $(0,0,2)),[(-3,1,0),(0,2,0)\},[(3,-1,0),(0,-2,0)],[(-2.4,0.8,-0.6),(0,1.6,-1.2)],[(2.4,-$ $0.8,-0.6),(0,-1,6,-1.2)]\}$. From these lists, we get 10 equations, 5 from the containment condition and another 5 from the tangeney condition. Hence, overall the linear system consigt of 10 unknowns and 18 equations. The rank of this system is 9 , and hence we get the unique surface solution $f_{1}(x, y, z)=r_{1}\left(x^{2}+y^{2}-8 z^{2}+6 z y+8=0\right)$. This quadric satisfies both the nonsingularity and irreducibility constraints, It is a
hyperboloid of one sheet and the lowest degree surface which blends, logether with a symmetric hyperboloid $f_{2}(x, y, z)=r_{1}\left(x^{2}+y^{2}-8 z^{2}-6 x y+8=0\right)$, the intersection of the two eylinders, See Figure 2.6. प

Example 2.6 (BLENDING 2) A Quartic Surface for Blending 'Iwo Elliptic Cylinders
In this example, we compute a lowest degree surface which blenkls two perpendicular elliptic cylinders. We have seen a quadric blending of the circular cylinders in Example 2.5. IIere, we try a quartic blending surface by taking different types of input curves.

Input to Ilermite interpolation is definex by $C Y L_{1}: y^{2}+4 z^{2}-4=0$ for $x \geq 1$, $C Y L_{1}: y^{2}+4 z^{2}-1=0$ for $x \leq-1, C Y L_{3}: 9 x^{2}+y^{2}-9=0$ for $z \geq 1$, and $C Y L_{4}: 9 x^{2}+y^{2}-9=0$ for $z \leq-1$.

The Hermite interpolation algorithm prover that 4 is the minimun degree for such a blending surface, and generates a lincar system with 72 equations of rank 33. The 2-parameler (one degrec of freedom) family of algebraic surfaces is $f(x, y, z\rangle=$
 $\frac{B_{1} r_{1}}{10} x^{4}+r_{3} x^{2}-\frac{10 r_{2}+B_{4} r_{1}}{16}$. An insteace of this linnily $\left(r_{1}=1, r_{3}=2\right)$ is shown in Figure 2.7. ■

Example 2.7 (FLESIING 1) A Quartic Surface for Smoothing a Corner of a Table
Interpolation can be useful in generating an algebraic corner blending surface. We look for a quartic surface $S: f(x, y, z)=0$ which smooths out the corner of a tableIn fact, S is a lleshing surface of a wire frame made of the edges of the corner: $C_{1}:\left(\left(y^{2}+z^{2}-25=0, x=0\right)\right.$, and $C_{2}:\left(\left(x^{2}+z^{2}-25=0, y=0\right)\right.$. Each wire is associated with a normal vector which is chosen in the same direction as the gradients of the side of table, the cylinder in C_{1} and C_{3}. That is, $n_{1}(x, y, z)=(0,2 y, 2 z)$, and $n_{3}(x, y, z)=(2 x, 0,2 z) . \sigma$
©of course, a phere, which in quadratie, can do the job. But, we deliterateiy close the degree four to give the idea of a family of interpolating autfaces. Also, this higher Ingree algebraic aurface
is more fexible for shape control.

The interpolation matrix M_{I}, produced by Ilermite interpolation, is a 32×35 matrix (32 linear equations and 35 coefficients for a quartic surface) whose rank turns out to be 24. The nullspace of M_{Y} is of dimension 11 reprosented by a family of quartic surfaces $f(x, y, z)=r_{1} z^{4}+\left(r_{2} y+r_{0} x+5 r_{4}\right) z^{3}+\left(r_{3} y^{2}+\left(r_{7} x+5 r_{8}\right) y+r_{10} x^{2}+5 r_{11} x-\right.$ $\left.25 r_{0}-25 r_{1}\right) z^{2}+\left(r_{2} y^{3}+\left(r_{\sigma} x+5 r_{4}\right) y^{2}+\left(r_{1} x^{2}-25 r_{2}\right) y+r_{6} x^{3}+5 r_{4} x^{2}-25 r_{\sigma} x-125 r_{4}\right) \approx+$ $\left(r_{3}-r_{1}\right) y^{4}+\left(r_{7} x+5 r_{0}\right) y^{3}+\left(r_{5} x^{2}+5 r_{11} x-25 r_{0}-25 r_{3}+25 r_{1}\right) y^{2}+\left(r_{1} x^{3}+5 r_{8} x^{3}-\right.$ $\left.25 r_{7} x-125 r_{B}\right) y+\left(r_{10}-r_{9}\right) x^{4}+5 r_{19} x^{3}+\left(-25 r_{0}-25 r_{10}+25 r_{1}\right) x^{2}-125 r_{11} x+625 r_{g}$. An instance $f\left(x, y_{1} z\right)=-i 250-x^{4}-y^{4}-x^{2} z^{2}-y^{2} z^{2}+50 z^{2}+75 y^{2}+75 x^{2}$ in this family is shown with the table in Figure 2.8. -

2.6 Summary

In this chapter, we presented the Hermite interpolation algorithm for algebraic surfaces, With the aigorithre, it was possible to characterize the class of algebraic surfaces of a fixed degree that have given positional and tangential properties, in ierms of the nutlspace of a matrix. The rank of the matrix, produced by the algorithm, was used in proving existence or monexistence of algebraic surfaces of a given degree. We also considered computational aspects of the algorithm, and illustrated the usefulness of the algorithm from several examples.

As a result of application of the Hermite interpalation algorithm, a ciass or family of algebraic surfaces is computed, when the degree is high enough, where the family is expresed as a subspace of $R^{n^{2}}$ of dimension $n_{v}-r$. In geometric design, it is lioped that an appropriate surface can be selected interactively and intuitively from the family. Choosing a proper surface from the family is equivalent to asaigning proper value to free parameters. In the Cbapter 3, we consider how an instance surface is selected interactively with geometric intuilion.

Figure 2.1 Smooth Joining of Two Cylinders with a Cubic Surface

Figure 2.2 Smooth Joining of Three Cylinders with a Quartic Surface

Figure 2.3 A "Good" Quartic Surlace

Figure 2.4 A "Bad" Quartic Surface

Figure 2.5 Smooth Joining of Four Cylinders with a Quartic Surface

Figure 2.6 Smooth Blending of Two Cylinders with a Quadric Surlare

Figure 2.7 Smooth Alending of Two Cylinders with a Quartic Surface

Figure 2.8 Table Corner Blending with a Quartic Surface

3. A COMPUTATIONAL MODEL FOR ALGEBRAIC SURFACE FITTING

In the foregoing ehapler, we describud how a class of algebraic surfaces with given geometric propertice is characterized in terms of the nullspace of a matrix. In practiee, an instance surface must be interactively selected from the class witl geometric intuition such that the selecled surface has desirable propertics (for example, no selfintersections) within a necessary region. In this chapter, we present a computalional model for the algebraic surlace fitting problem. This model is designet to eflectively choose an instance surface among many possible ones in the family. We also consider how the Bernstcin-Bézier basis can be used to help control the shape of the selected surface intuitively.

Fiting of algebraic curves (primarily lines and conies) has been considered extenaively by many authors [3, 15, 17, 27, 51, 65]. A good exposition of exact and least squares filting of algebraic curves and surfaces through given datia points, was presented by Prall [59]. Sederberg [68] presented the idea of C^{0} interpolation of data points and curves with implicit algebraic surfaces. These previous works on interpolation are extended by our Hermite interpolation algorithm which can handle tangential information (C^{1}) as well as positional information (C^{a}).

The model we consider in this chapter is based upon a proper normalization of coefteients of aigebraic surfaces as well as least squares approximation and IIermite inlerpolation. The mathematical model we derive is a constrained minimization prob. lem of the form:

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} \mathrm{M}_{\mathrm{A}}{ }^{T} \mathrm{M}_{\mathrm{A}} \mathrm{x} \\
\text { subject to } & \mathrm{M}_{\mathrm{I}} \mathrm{x}=0 \\
& \mathrm{x}^{T} \mathrm{x}=1
\end{array}
$$

where $M_{1} \in R^{n_{4} \times n_{n}}$ and $M_{A} \in R^{n_{0} K_{n}}$ are matrices for interpolation and least squares approximation, respectively, and $x \in R^{n}$, is a vector containing coefficients of an algebraic surface.

In Section 3.1, we consider interpolation, leass squares approximation, and normalization in detail, and explain low the minimization problem is derived. Then, in Section 3.2, compact computational algorithins are described with examples. In Scetion 3.3, we consider how the geometric properties of the Berngtein-Bézier basis are used for shape control of algebraic suriaces which are contained in a family computed by Hermite interpolation.
3.1 Matricea for Interpolation, Approximation and Normalization

3.1.1 Interpolation

In Chapter 2, we explained how an interpolation matrix $M_{I} \in \mathbf{R}^{\mathbf{n}^{1} \times n=}$ is generated by the Hermite interpolation algorithm, and how its nullspace is computed. Only when the rank r of M_{I} is less than the number of the coefficients n_{v}, does there exist a nontrivial solution to the linear system. All vectors except 0 in the nullspace of $\mathbf{M}_{\text {I }}$ form a family of algebraic surfaces, satisfying the given input specification, whose coefficients are expressed by homogeneous combinations of q free paramelers where $Q=n_{\mathbf{v}}-r$ is the dimension of the aullspace. In Hermite interpolation, tangent plane or C^{1} continuity is achieved by forcing normals of tangent planes of a surface to be parallel to those of given points or space curves.

For some applications of geometric modeling, such as ship hull design, lowever, more than langent plane continuity may be desirable. As explained in Section 2.4, the coneept of smoothness is generalized by defining higher order geometric continuity. In Section 2.f, it was shown that the Hermite interpolation algorithm finds all algebraic surfaces of a given degree meeting each other with C^{1} or $G^{\text {t }}$ rescaling continuity. Even though we are currently unable to translate geometric specifications for G^{\star} rescaling continuity ($k \geq 2$) into a matrix M_{1} whose nullspace captures ald
G^{k} rescaling continuous surfaces of a fixed degree, we can generate an interpolation matrix M_{I} whose nullspace captures a subsel of the whole ciass. This techutique is based on the following theorem whose proof is found in [75].
Theorem 3.1 Let $g(x, y, z)$ and $h(x, y, z)$ be distinct, irreducible polynomials, If the surfaces $g(x, y, z)=0$ and $h(x, y, z)=0$ intersect transversally in a single itreducible curve C, then any algebraic surince $f(x, y, z)=0$ that meets $g(x, y, z)=0$ with G^{*} rescaling conlinuity along C must be of the form $f(x, y, z)=a\left(x, y_{1}=\right) g(x, y, z)+$ $\beta(x, y, z) h^{k+1}(x, y, z)$. If $g(x, y, z)=0$ and $h(x, y, z)=0$ share no cominon colspooents at infinity, then the degree of $\alpha(x, y, z) g(x, y, z) \leq \operatorname{degree}$ of $f(x, y, z)$ and the degree of $\beta(x, y, z) h^{k+1}(x, y, z) \leq$ degree of $f(x, y, z)$.

For given curves $C_{i} i=1, \cdots, l$, which are the transversal intersection of given atgebraic surfaces $g .(x, y, z)=0$ and $h_{i}(x, y, z)=0$, respectively, a surface $f(x, y, z)=0$ containng space curvea C_{i} with G^{\star} rescaling continuity can be constructively obtained by the relations

$$
\begin{equation*}
f\left(x, y_{1} z\right)=a_{i}(x, y, z) g_{1}(x, y, z)+\beta_{i}(x, y, z) h_{i}^{k+1}(x, y, z\rangle, \quad i=1, \cdots, l . \tag{3.1}
\end{equation*}
$$

Since g_{i} and h_{i} are known surfaces, the unknown coefficients arce those of f, a_{i} and β_{i}. When the hypothesis of Theorem 3.1 is met, the polynomials α_{i} and β_{i} are of bounded degrees. From (3.1), we see that thesc unknown coefficients form a system of linear equations, yielding an interpolation matrix M_{I} for $G^{\boldsymbol{k}}$ reacaling continuity.

Example 3.1 Algebraic Surfacea with G^{2} and G^{3} Rescaling Continuily
Consider a space curve C defined by the two equations $\int_{l}(x, y, z)=x^{2}+2 y^{2}+2 z^{2}-2=$ 0 and $f_{2}\left(x, y_{1} z\right)=z=0$. We compute a cubic surface $f_{3}\left(x, y y_{1} z\right)=0$ which meets f_{1} along C with G^{7} rescaling continuity as follows: A general cubic algehraic surface is given by $f_{5}\left(x_{1} y_{1} z\right)=c_{1} x^{3}+c_{2} y^{3}+c_{3} z^{3}+c_{4} z^{2} y+c_{5} x y^{2}+c_{0} x^{2} z+c_{7} x z^{2}+c_{8} y^{3}=+c_{0} y z^{2}+$ $c_{10} x y z+c_{11} x^{2}+c_{12} y^{2}+c_{13} z^{2}+c_{14} x y+c_{13 y} z+c_{16} x z+c_{17} z+c_{19} y+c_{19} z+c_{20}=0$. Equating the generic f_{0} for G^{2} recaling continuity as explained, we have $f_{0}(x, y, z)=\left(r_{1} x+\right.$
$\left.r_{2 y} y+r_{3} z+r_{4}\right) f_{1}(x, y, z)+r_{s} f_{3}(x, y, x)^{3}$, yielding the linear cquations: $c_{1}-r_{1}-r_{3}=0$, $c_{2}-2 r_{2}=0, c_{3}-2 r_{3}=0_{1} c_{1}-r_{2}=0, c_{3}-2 r_{1}=0, c_{0}-r_{3}=0, c_{7}-2 r_{1}=0$ $c_{B}-2 r_{3}=0, c_{0}-2 r_{2}=0, c_{10}=0, c_{11}-r_{4}=0, c_{12}-2 r_{4}=0, c_{13}-2 r_{4}=0$, $c_{14}=c_{15}=c_{26}=0, c_{17}+2 r_{1}=0, c_{14}+2 r_{2}=0, c_{19}+2 r_{3}=0, c_{20}+2 r_{1}=0$ in the unknowns c_{1}, \cdots, c_{20} and r_{1}, \cdots, r_{3}. By climinating r_{1}, \cdots, r_{s} from the equations we get a homogencous linear syatem $\mathrm{M}_{\mathrm{I}} \mathrm{x}=0$ in terms of f_{J} 's coefficients $c_{1}, \cdots, \varepsilon_{20}$. An instance cubic surface ($r_{1}=1, r_{2}=-1, r_{3}=1, r_{4}=1, r_{5}=2$) $f_{3}\left(x_{1} y, z\right)=$ $2 z^{3}-2 y z^{2}+2 x z^{2}+2 z^{2}+2 y^{2} z+z^{2} z-2 z-2 y^{3}+2 x y^{2}+2 y^{2}-x^{2} y+2 y+3 x^{3}+x^{2}-2 x-2$ is shown in Figure 3.1.

In the same way, we can compute a quarlic surfaee $\int_{4}(x, y, z)=16 z^{4} \rightarrow 16 y z^{3}+$ $32 x z^{3}+32 z^{3}+16 y^{2} z^{2}-16 x y z^{2}-16 y z^{2}+24 x^{2} z^{2}+32 x z^{2}-16 y^{3} z+32 x y^{2} z+32 y^{3} z-$ $8 x^{2} y z+16 y z+32 x^{3} z+16 x^{2} z-32 x z-32 z-9 y^{4}-16 x y^{3}-16 y^{3}+16 x^{2} y^{2}+32 x y^{2}+$ $16 y^{2}-8 x^{3} y-8 x^{2} y+16 x y+16 y+24 x^{4}+32 x^{3}-6 x^{2}-32 x-16$ which meets f_{3} with G^{3} rescaling continuity along the curve defined by f_{3} and $f_{s}[x, y, z)=y=0$.

3.1.2 Normalization

To compute an algebraic surface that approximatea given data in the least squarea sense, one needs to first define a distance metric which is meaningful and computa tionally efticient. The Geometric digtanece of a point p from a surface S : $f\left(x, y_{1} z\right)=0$ is the Euclidean distance from p to the neareat point on S. However, computing the geometric distance from a point to an algebraic surface itself entaila a computation aily expensive procedure, and when the metric is adopted Jor surface npproximation the problem becomes even more intractable. A commonly used approximation to ge ometric distance from a point to implicily represented algebraic curves and surfaces is the value $f(p)$, called algebraic distance. Since $c f(x, y, z)=0$ repreants the same surface for all $e \neq 0$, the cocficients of f are first normalized such that $f(x, y, z)=0$ is a representation of the equivalence elass $\{e f(x, y, z)=0 \mid c \neq 0$).

The normalization we shall use is a quadratic normalization of the form $x^{T} x=1$ While some variations [$17,59,65$] of a quadratie normalization have been proposed
in fitling scatiered planar data with conic curves, it is not easily seen how different quadratie or nonquadratic normalizations affect surface fitting when the degrec of a surface is greater than 2, a case of considerable intereat for geometric modeling. The normalization $x^{\top} \mathbf{x}=1$ is a sphere in the coefticient vector space, and does not lave singularitics. That is, this normalization eliminates only the degenerate surface with all zero cocflicients from possible solutions. This normalization also leads to compact and effieient algorithms for surface fitting. It remains open to determine a generalized quadratic normalization of the form $\mathbf{x}^{\boldsymbol{T}} \mathbf{M}_{\mathbf{N}} \mathbf{x}=1$, where \mathbf{M}_{N} is no longer ithe identity matrix, with good qualilie for surface fitting.

3.1.3 Least Squarcs Approximation

When the rank r of an interpolation matrix $M_{I} \in R^{n, \times n}$ is less than $n_{v,}$ the dimension of the coefficient vector, there exisis a lamily of algebraic surlaces which salisfy the given geometric constraints where the underdetermined coeflicients can be homogeneously expressed in terms of $q\left(=n_{v}-r\right)$ free parameters. An important problem is to sclect a surface interactively and intuitively which is most appropriate for a given application. Selecting an inatance surface from the family is equivalent to assigning values to each of the q parameters.

Least squares approximation can help choose a surface and control its shape. When there are some degrees of freedom left, we may additionally specify a set of points or curves eround given input data, which approximately describes a desirable surface. The final fitting surface can be obtained by consuming the remaining degrees of freedom vin least square approximation to the additional data set.

The algebraie distance $f(p)$ is atraightforward to compute and, in case the dala point is close to a surface, approximates its geometric distance quite well. When the sum of squares of the algebraic distances of all poinls is minimized, one obtains algebraically nice solutions. Eacb row of an approximation matrix M_{A} is computed by evaluating each term in $f(x, y, z)$ at the corresponding point. Then, the sum
of squares, minimized in least squares approximation, is expressed as $\left\|M_{A} \times\right\|^{2}=$ $x^{T} M_{A}{ }^{T} M_{A} x$.

In addition to the algebraic distance, we also consider a nonalgebraic distance metric $\frac{\| f(\operatorname{lil} \mid}{\| f(p) \mid}$. Sampson [65] proposed its use, in conic curve fitling, as a distance measure which is, in fact, the first order approximation to geometric distance. With Lhis metric, a better approximation to geometric distance is achievable, lowever, only at the expense of several iterative applications of least squares approximation. We give an example of application of this metric to a quadratic surface filling problem.

Containment of points and curvea is not the only way to produce M_{A}. The matrix for higher order inlerpolation can be used as an approximation matrix when a surface is not flexible enough for the higher order interpolation. For instance, in Example 3.1, suppose that there are more points that must be contained in a fitting surface. Then, it may not be possible that a cubic surface $f_{3}(x, y, z)=0$ nol only meets f_{1} with G^{2} rescaling conlinuity but also containa the extra points. If C^{1} continuity is permissibie, we can generate M_{I} for containment of the intergection curve (C^{1}), and the points (C^{0}) using the Hermite interpolation technique, and the matrix produced in the example can be used as M_{A}. That is, the remaining degrees of freedom, afler C^{1} interpolation, are used so that the G^{2} rescaling continuity requirement is satisfied as much as poasible. However, more effort must be made to see cleariy how this algebraic ibterpolation and approximation technique affects the reulting algebraic surface geometrically.

3.2 Computing Oplimum Solutions

In the foregoing section, we explained how the algebraic surface fitling problem is transformed into a constrained minimization problem of the form:

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{x}^{T} \mathbf{M}_{\mathbf{A}}{ }^{T} \mathbf{M}_{\mathbf{A}} \mathbf{x} \\
\text { subject to } & \mathbf{M}_{\mathbf{I}} \mathbf{x}=0 \\
& \mathbf{x}^{T} \mathbf{x}=1
\end{array}
$$

where $M_{A} \in R^{n_{4} n_{n}}, M_{I} \in R^{n_{1} \times n_{n}}$ and $x \in R^{n_{0}}$. This minimization prollem appears in some applications [30]. In [29], a solution was oblained by applying Houselolder transformations to M_{I} to obtain its orthogonal decomposition, and then directly computing cigenvalues and cigenvectors of a reduced matrix. In this section, we consider some cases of the surface fitting problems which arise in geometric design, and describe different algorithms where the singular value decomposition (SVD) algorithn is applied to computation of eigenvalues and eigenveetory. In each case, we assume a quadratic normalization constraint which alwayg guarantees a nontrivial solution.

3.2.) Interpolation and Approximation

In Subsection 2.5.1, the nullspace is expressed as $x=V_{n,-r} w$ where $V_{n_{k}-r} \in$ $\mathbf{R}^{n^{n} \times\left(n_{v}-r\right)}$ is made of the last $n_{\nu}-r$ columns of the right singular vectors V, and w is a ($n_{u}-r$)-vector whose elements are free parameters appearing in coefficients of a family of algebraic surfaces. A final surface is selected by providing proper values for w, by a shape control process. One method is for a user to specify an approximate shape of a desired aurface with an additional set of points or curves and let a geometric modeling system automatieally find a solution vector w. Then what the systern needs to solve efficiently is a constrained least squares problem: minimise $\mathbf{x}^{T} \mathbf{M}_{\mathbf{A}}{ }^{\boldsymbol{T}} \mathbf{M}_{\boldsymbol{A}} \mathbf{x}$ subject to $\mathbf{M}_{\mathbf{I}} \mathbf{x}=0$ and $\mathbf{x}^{\boldsymbol{T}} \mathbf{x}=1$.

The solution to this minimization problem can be expressed analytically in elosed form. From the interpolation requirement, we get $\mathbf{x}=V_{\text {no-rw }}$ ins be fore. llence, after removing the linear constraints, we get to the problem mini-
 is a positive definite matrix, and this problem is equivalent to minimizing the ratio of two quadratics $R(w)=\left(w^{\top} V_{n_{0}, r}^{T} \mathbf{M}_{\boldsymbol{A}}{ }^{\mathbf{T}} \mathbf{M}_{\mathbf{A}} V_{n_{0}, \ldots} \mathbf{w}\right) /\left(\mathbf{w}^{\boldsymbol{T}} \mathbf{w}\right) . R(\mathbf{w})$, which is known as Rayleigh's quolient, is minimized by the first eigenvector $w=w_{m i n}$ of $V_{n_{0}-r}^{T} \mathbf{M}_{\mathbf{A}}{ }^{T} \mathbf{M}_{\mathbf{A}} V_{n_{-}-r}$, and its minimum value is the smalleat eigenvalue $\lambda_{\text {min }}$ [71].
 dircetly as in [29], we apply singular value decomposition to $M_{A} V_{n, \ldots}$ withoul corn. puting $V_{n,-r}^{T} M_{A}{ }^{T} M_{A} V_{n,-r}$ explicilly [43]. This leads to a numerically cheaper computation. Here, we assume that $n_{a} \geq n_{v}-r_{\text {, }}$ and that the rank of $M_{A} V_{n_{+}-r}$ is $n_{v}-r$. (That is, there are enough linear constraints to consume the remaining degrees of freedom.) Then, $M_{\mathrm{A}} V_{n_{2}-,}=P \Omega Q^{T}$ where $P \in R^{n_{0} \times n_{0}}$ and $Q \in \mathbf{R}^{\left(n_{1}-r\right) \times\left(n_{0}--\right)}$ are orthonormal malrices, and $\Omega=\operatorname{diag}\left(\omega_{1}, \omega_{1}, \cdots, \omega_{n_{0}-r}\right) \in \mathbf{R}^{n_{n} \times\left(n_{0}-r\right)}$ with $\omega_{1} \geq \omega_{2} \geq \cdots \geq \omega_{n_{2}-r}>0$.

Now,

$$
\begin{aligned}
\lambda w & =V_{n+-r}^{T} M_{A}^{T} M_{A} V_{\mathrm{n},-, \mathrm{w}} \mathrm{w} \\
& =Q \Omega^{T} P^{T} P \Omega Q^{T} \mathrm{w} \\
& =Q \Omega^{T} \Omega Q^{T} \mathbf{w} .
\end{aligned}
$$

Herc. $\Omega^{T} \Omega$ is a $\left(n_{v}-r\right) \times\left(n_{v}-r\right)$ diagonal matrix with a diagonal entry $\omega_{i}^{2}>0$, $i=1,2, \cdots,\left(n_{u}-r\right)$. Then, from the above equation, $\Omega^{T} \Omega\left(Q^{T} w\right)=\lambda\left(Q^{T} w\right)$ which implies that the first eigenvector $W_{\text {min }}$ of $V_{n_{4}-r}^{T} M_{A}{ }^{T} M_{A} V_{n_{r}-r}$ is such that $Q^{T} \mathbf{w}_{\text {min }}=$ $e_{n_{0}-r}$ where $\varepsilon_{n_{0}-r}=(0,0, \cdots, 0,1)^{T}$ is a $\left(n_{u}-r\right)$-vector , and its minimum value $\lambda_{\text {min }}$ is $\omega_{n,-r}^{2}$. Hence, $w_{\text {min }}$ is the last column of Q. Once we compute Q, we get the coefficients of the algebraic surface $x=V_{m},-r Q e_{n,-r}$, which is not a zero vector, and hence satisfies the normalization constraint.

Example 3.2 Quartic Surfaces for Smoothly Joining Four Cylindrical Surfaces
In this example, we determine a surface $S: f(x, y, z)=0$ which smoothly joins four cylinders which are given as $C Y L_{1}: y^{2}+z^{3}-1=0$ for $x \geq 2, C Y L_{2}: y^{2}+z^{1}-1=$ 0 for $x \leq-2, C Y^{\prime} L_{3}: x^{2}+y^{2}-1=0$ for $z \geq 2$, and $C Y L_{4}: x^{2}+y^{2}-1=0$ for : $\leq \mathbf{- 2}$.

The interpolation requirement is for S to meet the four curves on the cylinders with C^{1} continuity. Hermite interpolation for a quartic surface S generates $\mathrm{M}_{\mathrm{I}} \in$
$\mathbf{R}^{\text {oux } 3 s}$ (6.4 linear equations and 35 cocficients) whose rank is 33 . ${ }^{2}$ This inplies a 2-parameter family of quartic surfaces satisfying lie interpolation constraints.

Then we need to sclect, from this family, a surface with desired slape. We use least squares approximation during this process. To illustrate the effect of approximation, two sets of points are choaen: $S_{1}=\{(0,1.75,0),(0,-1.75,0),(\cdot 1,1.25,0),(-1,-1.25$, $0),(1,1.25,0),(1,-1.25,0)\}$ and $S_{2}=\{(0,1.25,0),(0,-1.25,0),(-0.5,1.125,0)$, $(-0.5,-1.125,0),(0.5,1.125,0),(0.5,-1.125,0\})$. (Sec Figure 3.2.)

For the least squarea approximation with a normalization, the eigenvalucs and eigenvectors for S_{1} and S_{7} are computed. As a result, we oblain $\lambda_{m i n s_{1}}=1.265 \cdot 120$. $10^{-1}, \lambda_{\text {mins }}=5.097809 \cdot 10^{-3}, f_{s_{1}}\left(x, y_{1}=\right)=0.315034 x^{7}+0.273947 y^{2}+0.315034 z^{2}-$ $0.819216-0.035612 x^{4}-0.030137 x^{2} y^{2}-0.030137 x^{2} z^{2}+0.005174 y^{4}-0.030137 y^{2} z^{2}-$ $0.035612 z^{4}$, and $f_{5}(x, y, z)=0.291104 x^{3}+0.615161 y^{2}+0.281104 z^{7}-0.201225+$ $0.005325 x^{4}-0.323706 x^{2} y^{2}-0.323706 x^{2} z^{2}-0.32903 t y^{4}-0.323706 y^{2} z^{2}+0.005325 z^{4}$. The two computed surfaces are shown in Figure 3.3. a

3.2.2 Least Squares Approximation Only

At times one desires a surface which is only the least squares approximation from given geometric data. This is often the case when straightforward interpolation leads to a prohibitively high algebraic degree of the resulting surface. This least squares problem is just a special case ($\mathrm{M}_{\mathrm{I}}=0$) of the minimization problem in the previous subscetion. In this case, $V_{m_{4}-r}$ disappeara in the solution, which results in $x=Q c_{n,}$.

Example 3.3 Least Squares Approximation to Given Pointa : Algebraic Distance
Consider that we are computing a quadrie surface $f(x, y, z)=0$ which approximates the following collection of points in the least squares aense: $S=\{(0.45166,-0.62397$,

[^2]0.06839), (0.32831, -0.67743, -0.05892), (0.43922, -0.59102, -0.11233), (0.20366, -$0.71340,-0.17960),(0.31615,-0.64298,-0.23526),(0.41615,-0.54803,-0.28378),(\cdot$ $0.01352,-0.72637,-0.35770),(0.09109,-0.68925,-0.41407),(0.08685,-0.72867,-$ $0.27968),(0.18959,-0.62765,-0.46521),(0.19834,-0.67419,-0.33577),(0.35025$, . $0.44569,-0.53594),(0.38550,-0.49832,-0.42532),(0.27772,-0.54193,-0.50640)$, (0.29999, -0.59612, -0.38273)).

Each row of M_{A} is oblained by simply evaluating, at each point, the basis of quadrics: $\left\{x^{2}, y^{2}, z^{2}, x y, y z, z x, x, y_{1} z, 1\right\}$. Alter applying SVD to M_{A}, we get it quadric surface whose error-of-fil is $\lambda_{\min }=2.281646 \cdot 10^{-7}$. 口

In the previous example, the sum of squares of algebraic distances is ninimized, which are, in fact, contour levels of the function $t=f\left(x, y_{1} z\right)$. The algebraic distances are not always the same as the corresponding geometric distances, whish are the actual distances from the points to the surface. Sometimes, it may be more desirable to minimize the aum of squares of real distances. Unfortunately, this nonalgebraic, geometric metric entails an intractable minimization problem whose solution can not be expressed analytically in closed form. Sampson [65] used a nonalgebraic distanee metric, which approximates geometric distance, in fitting conic curves. This concept can be naturally extended to the aurface fitting problem. We get to this nonalgebraic metrie via a diferent derivation as follows.

First, let us recall that the distance from a point p to a surface $f(x, y, z)=0$ is the diatance from p to a neareat point on the surface. Let q be the point on the surface which results in the distance. Then, the line in the direction of the normal of f at q must pass through p, and $q=p+t \frac{\nabla /(q)}{\left[\nabla \int(q) \mid\right.}$ where the absolute value of t is the geometric distance. From Taylor's expansion,

$$
0=f(q)=f(p)+\nabla f(p) \cdot\left(t \frac{\nabla f(q)}{\|\nabla f(q)\|}\right)+\cdots
$$

Hence,

$$
\begin{equation*}
|t| \approx\left|\frac{-f(p)\|\nabla f(q)\|}{\nabla f(p) \cdot \nabla f(q)}\right| \tag{3.2}
\end{equation*}
$$

is the first order approximation to the distance from p to f. When ρ is close to the surface, $\nabla f(p)$ is a good approximation to $\nabla f(\eta)$. In this case, the expression (3.2) becomes

$$
\begin{aligned}
\| t \mid & \approx\left|\frac{-f(p)\|\nabla f(p)\|}{\nabla f(p) \cdot \nabla f(p)}\right| \\
& \left.=\| \frac{-f(p)\|\nabla f(p)\|}{\|\nabla f(p)\|^{2}} \right\rvert\, \\
& =\frac{\| f(p) \mid}{\|\nabla f(p)\|} \stackrel{\text { del }}{=} d_{i s t_{f}}(p) .
\end{aligned}
$$

This argument suggests that $d^{\prime} f_{f}(p)$, the weighted algebraic distance, is a good approximation to the geometric distance, and that

$$
\begin{equation*}
\sum_{\text {for oll } p} d i s t_{f}(p)^{2}=\sum_{\text {for ait } p} \frac{f(p)^{2}}{\|\nabla f(p)\|^{2}} \tag{3.3}
\end{equation*}
$$

is minimized instead of

$$
\begin{equation*}
\sum_{\text {for ail } p} f(p)^{2} . \tag{3.1}
\end{equation*}
$$

Ilowever, the solution which minimizes the expression (3.3) can not be easily expressed in closed form due to introduction of the weight $\|\nabla f(p)\|$.

This numerical intractability can be avoided by an iterative refinement algorithm. First, we compute $\mathbf{x}_{(0)}$, coefficients of a surface $f_{(0)}$, such that (3.4), the sum of squares of algebraic distances, is minimized. To do this, $\mathbf{M}_{\mathbf{A}}=\mathbf{M}_{\mathbf{A}(0)}$ is obsained as before. The gradient of $f_{(0)}$ gives an initial approximation of $\nabla f(p)$. Then, dividing each row of M_{A} by $\left\|\nabla S_{(0)}(p)\right\|$ for each corresponding p restles in $M_{A_{(1)}}$ which is, then, singular-value-decomposed to compute $X_{(2)}$ and $f_{[2]}$. This process is repeated further producing a sequence of $f_{(k)}$ which refines the solution. In each iteration, $f_{(k)}$ is expected to be a better approximation to the surface we are trying to find.

Example 3.4 Jlerative Weighted Least Squares Approximation to the Points : Nonalgebraic Distance

In Example 3.3, we have computed $\mathrm{M}_{\mathrm{A}}=\mathrm{M}_{\mathrm{A}(0)}$, and $f_{(0)}$. The Table 3.1 il lustrates the resulf of application of the iterative algorithm to the points uset in

Table 3.1 The Geometric and Algebraic Distances

k	geo. distance	alg. distance
0	$3.925480319 \mathrm{e}-05$	$2.281616641 \mathrm{e}-07$
1	$2.870799913 \mathrm{e}-05$	$2.497249375 \mathrm{e}-07$
2	$2.762911506 \mathrm{e}-05$	$2.472207775 \mathrm{e}-07$
3	$2.696617975 \mathrm{c}-05$	$2.465526316 \mathrm{e}-07$
4	$2.661304527 \mathrm{e}-05$	$2.461413816 \mathrm{e}-07$
5	$2.642308921 \mathrm{e}-05$	$2.459224774 \mathrm{e}-07$
6	$2.632187346 \mathrm{e}-05$	$2.458047987 \mathrm{e}-07$
7	$2.626807583 \mathrm{e}-05$	$2.457421127 \mathrm{e}-07$
8	$2.623953195 \mathrm{e}-05$	$2.457087993 \mathrm{e}-07$
9	$2.622440016 \mathrm{e}-05$	$2.456911251 \mathrm{l}-07$
\ldots	\ldots	\cdots
26	$2.620735209 \mathrm{e}-05$	$2.456712015 \mathrm{e}-07$
27	$2.620735193 \mathrm{e}-05$	$2.45671201 \mathrm{e}-07$
28	$2.620735184 \mathrm{e}-05$	$2.456712013 \mathrm{e}-07$

Example 3.3. The geo. distafice column shows the sum of squares of the real geometric distances ${ }^{2}$ for $f_{(t)}$, and the alg. distance column shows the value of the expression (3.4), the sum of squares of the algebraic distances for $f_{(a)}$ - It is observed that the sum of squares of the geometric distances decreases at iterations proceed, which implies that $f_{(x)}$ converges to a surface whicll is expected to best-fil the given point data. It is also interesting to notice that the sum of squares of the algebraic distances makes a quantum jump at the first iteration, and then converges to a loca] minimum. \square

3.3 Interactive Sliape Control of Hermite luterpolating Surfaces

As mentioned before, the revult of Ilemite interpolation is a q parameter family of algebraic surfaces $f(x, y, z)=0$ of a given degree that satisfy given geonetric properties. The equation of the family has the generic form

$$
\begin{equation*}
f(x, y, z)=\sum_{i=0}^{n} \sum_{j=0}^{n-i} \sum_{k=0}^{n-i-j} c_{i j k} \cdot x^{\prime} y^{\prime} z^{k}=0 \tag{J.5}
\end{equation*}
$$

where each $\boldsymbol{c}_{i j i}$ is a homogeneous linear combination of \boldsymbol{q}-paraincters $r_{1}, r_{2}, \cdots, r_{0}$.
In the previous sections, we proposed to use least squares approximation to seleet an initial instance surface from the fanily olstained lrom IIermite interpolation. Even though we can get some geometric intuition from least squares approximation, we mas wanl to change the shape of the computed surface interactively by modifying the values of the free parameters. However, since the computed surface $f(x, y, z)=0$ is π polynomial in the standard power basis, its coefficients are algebraic. not geometric. That is, they contain Jittle intuitive geometric information. hence dey do not provide a convenient tool with which the slape of an algebraic surface can be controlled intuilively

Sederberg [66] jresented an idea in which free form piecewise albelraic surface patches are defined int trivariate barycentric coordinates using a reference tetraitedron

[^3]and a regular lattice of control points impoged on the tetraliedron. The coefficients of a surface defined in this way are assigned to the control points, and there is a ineaningful relationship between the coefticients and the shape of the surfince.

The essence of his idea is to consider an algebraic surface $f(x, y, z)=0$ as the zero contour of the trivariate function $w=f(x, y, z)$. Note that the surface equation of the family of Nermite interpolating algebraic surfaces contains q free variablea r_{i} in its eocficienta. A specific portion of a surface can be selected for shape control by defining a letrahedron which encloses that portion. Given a tetrahedron, the polynomial $f(x, y, z)$ in power basis can be symbolically converted into a polynomial $F(s, t, u)$ in barycentric coordinates, defined w-ith respect to the tetrahedron.

Let a tetrahedron be specified by the lour noncoplanar vertices $P_{\text {noo, }} P_{o n o}, P_{o 0 n}$, and P_{000}. Then, the coordinates $P=(x, y, z)$ of a point inside the tetratiedron are related to the barycentric coordinales (s, t, u) by $P=s P_{n o n}+t P_{\text {Dno }}+u P_{00 n}+(1-s-$ $t-u) P_{000}, s, u, t,(l-s-t-u)>0$. Control points on the tetrahedron are defined by $P_{1 j}=\frac{i}{n} P_{n 00}+\frac{2}{n} P_{0 n a}+\frac{k}{n} P_{00 n}+\frac{n-i-j-k}{n} P_{000}$ for nonnegative integers i, j, k such that $i+j+k \leq n$. Each conlrol point is associated with a weight $w_{i, k}$, which is a linear combination of $r_{i}, i=1,2, \cdots, q$. All these together define the q-parameter algebraic surface family in barycentric coordinates,

$$
\begin{equation*}
F(s, t, u)=\sum_{i=0}^{n} \sum_{j=0}^{n-i} \sum_{k=0}^{n-i-j} w_{i j k} \cdot\binom{n}{i, j, k} \cdot s^{i} t^{i} u^{k}(1-s-t-u)^{n-i-,-k}=0 \tag{3.6}
\end{equation*}
$$

Example 3.5 Conversion from Power to Bernstein
Consider, as a simple example, a quadric surface which llarmite interpolates a line $L N:(1-t, t, 0)$ with a normal ($0,0,1$). The Hermite interpolation algorithm returns a 5 parameter family $f(x, y, z)=0$ of algebraic surfaces, as in (3.5) with $n=2$, where $c_{300}=r_{1}, c_{110}=2 r_{1}, c_{101}=r_{4}, c_{100}=-2 r_{1}, c_{020}=r_{1}, c_{011}=r_{3}, c_{010}=-2 r_{1}, c_{002}=$ $r_{3}, c_{001}=r_{2}$, and $c_{000}=r_{1}$. For a given tetratiedron with vertices $P_{n \infty 0}=(2,0,0)$, $P_{0 n 0}=(0,2,0), P_{00 n}=(0,0,2)$, and $P_{000}=(0,0,0)$, the surface $f(x, y, z)=0$ is transformed to $F(s, t, 4)=0$, as in (3.6) with $n=2$, where $w_{000}=r_{1}, w_{001}=r_{1}+r_{2}$,
$w_{002}=r_{1}+2 r_{2}+4 r_{3}, w_{010}=-r_{1}, w_{011}=-r_{1}+r_{3}+2 r_{5}, w_{070}=r_{1}, w_{100}=-r_{1}$, $w_{101}=-r_{1}+r_{2}+2 r_{1}, w_{110}=r_{1}$, and $w_{200}=r_{1}$. \square

Since the weights $w_{i j k}$ of $F(s, t, u)=0$ for a q-parameter family of algebraic surfaces have only q degrees of [reedom, they can'L be selected or modificed independentily. For example, suppose $\omega_{1}=r_{1}+r_{2}+r_{3}+2 r_{1}-1, \omega_{2}=r_{1}+r_{2}+r_{4}+5$, and $w_{3}=r_{3}+r_{4}$. From these, we can derive the linear relation $w_{1}-w_{1}-w_{3}-6=0$ between the weights, and then an invariaat $\Delta w_{1}-\Delta w_{3}-\Delta w_{3}=0$ which must be satisfied each tirne some of the weights are modified. (For notational simplicity, we assume the weights are indexed by a single number instead of a rriple.)

In general, using Gaussian elimination, we can derive a system of invariant equations

$$
\begin{aligned}
I_{1}\left(\Delta w_{1}, \Delta w_{2}, \cdots, \Delta w_{c}\right) & =0 \\
I_{2}\left(\Delta w_{1}, \Delta w_{3}, \cdots, \Delta w_{c}\right) & =0 \\
& \vdots \\
I_{1}\left(\Delta w_{1}, \Delta w_{2}, \cdots, \Delta w_{c}\right)= & 0
\end{aligned}
$$

from the linear expressions of the weights

$$
\begin{aligned}
& w_{1}\left(r_{1}, r_{2}, \cdots, r_{p}\right)=w_{1} \\
& w_{2}\left(r_{1}, r_{3}, \cdots, r_{p}\right)= w_{2} \\
& \vdots \\
& w_{c}\left(r_{1}, r_{1}, \cdots, r_{p}\right)=w_{c}
\end{aligned}
$$

Clianging the weights can now be considered as moving from a weight vector $W=\left(w_{1}, w_{1}, \cdots, w_{c}\right)$ to another $V^{\prime \prime}=\left(w_{1}^{\prime}, w_{21}^{\prime} \cdots, w_{e}^{\prime}\right)$, with the constraint that $\Delta W=W^{\prime}-W$ is a solution of the system of invariant equations.
Example 3.6 Shape Control of a Family of Quadric Surfaces

The invariant aystem for the family of algebraic surfaces in Example 3.5 is $\Delta w_{010}+$ $\Delta w_{000}=0, \Delta w_{000}-\Delta w_{000}=0, \Delta w_{100}+\Delta w_{000}=0, \Delta w_{100}-\Delta w_{000}=0, \Delta w_{200}-$ $\Delta w_{000}=0$. Figure 3.1 (upper lefl) shows an instance from the family where $w_{000}=$ $-1, w_{001}=4, w_{007}=8, w_{010}=4, w_{011}=1.1, w_{020}=-1, w_{100}=1, w_{101}=12$, $w_{110}=-4$, and $w_{200}=-I$.

Now, suppose we want to puil the surlace patch toward the control points Poon (the leftmost vertex in the figure). This can be achieved by decreasing the value of w_{∞}, say, $\Delta w_{\infty m}=-7$.

Other $\Delta w_{i j k}$ can be arbitrarily chosen as long as they satisly the equations in the invariant system, Let $\Delta w_{000}=\Delta w_{200}=\Delta w_{110}=\Delta w_{020}=-1, \Delta w_{100}=\Delta w_{010}=1$, $\Delta w_{001}=-4, \Delta w_{101}=\Delta w_{011}=-2$. The new instance surface is shown in Figure J-i (upper right). ■

Example 3.7 Shape Control of a Farmily of Quartic Surfacea
Figure 3.4 (boltom left) illustrates three different instances of the family computed in Example 2.3, corresponding to the three different values of ω_{000} for $P_{000}=(0,0,0)$. As a weight $w_{\text {eoo }}$ increases from a negative value, the surface appronches to $P_{\infty 00}$. The surface passea through P_{000} when $w_{000}=0$, and gets aeparated into three irreducible components as w_{000} becomes positive. (See also Figure 2.3 and 2-1.) \square

Sometimes, we may want to ace how the ahape of a surface changes as a specific weight is modified. However, if a weight, say, w_{1} is modified, then this modification affeets other weights as related in the invariant system. Usually, the linear system of invariant equations is underdetermined, yielding an infinite number of choices of Δw_{1} ($i=2,3, \cdots, c$). Then, how can we select the other weights such that their effects to w_{1} are minimized?

One possible heuristic is to minimize the 2-norm of ($\Delta w_{2}, \cdots, \Delta w_{c}$), and hence the 2-norm $\|\Delta I V\|_{2}=\left(\Delta w_{1}^{2}+\Delta w_{2}^{2}+\cdots+\Delta w_{e}^{2}\right)^{\frac{1}{2}}$ of ΔW. For $\Delta w_{1}=d$, we know that the linear system

$$
\Gamma_{1}\left(d, \Delta w_{2}, \cdots, \Delta w_{c}\right)=0
$$

$$
\begin{aligned}
I_{2}\left(d, \Delta w_{2}, \cdots, \Delta w_{c}\right) & =0 \\
& \vdots \\
I_{1}\left(d, \Delta w_{2}, \cdots, \Delta w_{c}\right) & =0
\end{aligned}
$$

has a solution $\Delta W^{0}=\left(d_{1} \Delta w_{2}^{0}, \cdots, \Delta w_{c}^{0}\right)$ where Δw_{i}^{0} 's are expressed linearly through anoticer sel of frse parimeters $p_{1}, p_{2}, \cdots, p_{3}$. Hence, $\left\|\Delta V^{\circ}\right\|_{2}^{2}$ is a quadratic function $Q\left(p_{1}, p_{2}, \cdots, p_{4}\right)$ of the new paramelers.

Since Q is quadratic, $Q\left(p_{1}, p_{7}, \cdots, p_{n}\right)$ is minimized at the solution of the linear syatert $\nabla Q\left(p_{1}, p_{2}, \cdots, p_{4}\right)=0$. If the minimum of Q occurs at a point ($p_{1}^{0}, p_{1}^{0}, \cdots, p_{4}^{0}$), then $\Delta W^{0}=\left(d, \Delta w_{2}^{0}, \cdots, \Delta w_{c}^{0}\right)$ corresponding to the point defines the deaired clange of weights w_{2}, \cdots, w_{c} having the minimum effect, in the least squares sense, on the shape of the surface. The instance surface corresponding to the new weights $\mathrm{IV}^{\prime}=$ $W+\Delta W^{\circ}$ will then refect predominantly the effect of the change of w_{1} by $\Delta w_{1}=d$.
Example 3.8 Ileuristic Approach to Shape Control Using 2-Norm
Consider the surface in Example 3.6 again. This time we wish to pull the patch more toward P_{∞}, and henee set $\Delta w_{008}=-15$. From the invariant system in which Δw_{00} is replaced by $-15, \Delta w_{000}=\Delta w_{070}=\Delta w_{10}=\Delta w_{200}=p_{1}, \Delta w_{010}=\Delta w_{100}=$ $-p_{1}, \Delta w_{\infty 01}=p_{1}, \Delta w_{101}=p_{31} \Delta w_{011}=p_{41}$ and we obtain the quadratic funcecion $Q\left(p_{2}, p_{3}, p_{3}, p_{4}\right)=225+6 p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+p_{4}^{3} . Q$ has the global mininum at $p_{1}=p_{2}=$ $p_{3}=p_{4}=0$. Hence, the influence of the change of all the weights other than w_{002}, is minimized by setting to zero their Δw, that is, not changing thent al all.

This new instanee is shown in Figure 3.1 (botiom riglit). Nate that the overnll shape of ilie new aurfaec pateh, other than elose to $P_{\text {ora }}$, has not changed as much as the surface pateh in Figure 3.4 (upper right), even though $w_{\text {ond }}$ has decreased by a larger amount. \square

3.4 Summary

In this chapter, we considered how the geometric problem of finding algebraic surfaces is transformed into a linear algebra problem through IIermite intergolation,
least squares approximation, and normalization. A compact algorithm for solving the algebraic model efficiently was presented with examples. Although the algebraic formulation of the geometrie problem presented in this chapler, results in a compaet computation, it must be enhaneed by adding more geometric constraints such that the algebraic formuiation can also handle undesirable phenomena appearing in algebraic surface design. In Chapter 6, we discuss such unfavorable phenomena of algebraic surfaces in details. We also proposed a surface control scheme in which the shape of a spocific portion of $a n$ algebraic surface is controlled with geometric intuition in the baryeentric coordinate system.

Figure 3.1 A Cubic C^{2} Continuous Surace

Figure 3.2 Points to be Approximaterl

Figure 3.4 Interactive Shape Control Using Baryeentric Coordinates

Figure 3.3 Two Different Least squares Approximations

4. SMOOTHING CONVEX POLYIEDRA WITH QUINTIC SURFACES

Modeling a tringgular mesh of three dimensional data with smooth piecewise surfaces is a well studied prablem. Traditionaily, most of the previous works have usel parametrically represented surfaces. (See the recent survey paper [23].) On the other hand, there are only few resuils where implicily represented algelraic surfaces are used as modeling tools [20, 32, 67]. In [20], Dahmen used quadric algebraic surfaces to smooth a special type of polyhedra splilling a face into several sublaces which, sometimes, produce wave-like oscillations between patches duc to the limitations of quadric surfaces. Guo [32] presented an algorithm whicl censtructs a mesh of cubic algebraic surface patches smoothing a polyhedron where eubic patches lor faces are connected by two extra cubic patche between faces. It seems that there has been litle success in generating a mesh of emooth piecewise patches of algebraic surfaces of nontrivial degrees greater than three which provide more fexibility.

In this chapter, we invertigate how the class of quintic algebraic surfaces can be utilized in CAGD. In particular, we ohow how this class of surfaces can be used to smooth a convex polyhedron. Sometimes it has been stated that degree 5 is so high that quintic algebraic surfaces may not be appropriate for geometric modeling. While it is true that a whole quintic algebraic surface behaves unprediclably, we only need a patch of a surface for geometric modeling, not a whole surface. The work in this chapter shows that triangular patches of quintic algebraic surfaces are flexible enough to be used as effective modeling tools while degree 5 is low enough to allow efficient computations.

We assume, without loas of generality, that a given convex polyhedron has only triangular faces. To smooth a convex polyhedron with tangent plane continuous triangular surface patches, we first construct a quadric wire frame by replacing each
edge of the polyhedron with a conic eurve whose slape is controlled by a single parameter. The normals along the curves are derived from the polyhedron, and are associated with the curves. The normala along the curves then provide tangent plane information along the conic curves that must be satisfied by incident surface patches, Then, the triple of boundary curves and normals for cach face is IIermite interpolated and approximsted in the lesst squares sense using our compulational model, whisch is slightly different from the model explained in the previous clapter:

$$
\begin{array}{ll}
\operatorname{minimize} & \left\|\mathbf{M}_{\mathbf{A}} \mathbf{- b}\right\|^{\mathbf{Z}} \\
\text { subject to } & \mathbf{M}_{\mathbf{I}} \mathbf{x}=0 .
\end{array}
$$

Quintic algebraic surface patchea obtained by solving the above problem give a curved model for the polybedron.

This chapter is organized as follows: In Section 4-1, we explain, step-by-step, how a convex polyhedron is smoothed, and how each triangular implicit patch is displayed interactively. Section 4.2 is devoted to explaining why singularitics usually occur at the three vertices of triangular patches. An an example, a given convex polyhedron is smoothed with three different shape control parameters in Section 4.3. In Section 4-1, we discuss open problems on smoothing a noneonvex polyliedron with quintic algebraic surfaces. Finally, this chapter is summarized in Section 4.5 .

4.1 Generation of a Quintic Algebraic Triangular Patch

In this bection, we show step-by-step how to compute each triangular quintic algebraic surface patch. Each edge of a triangular face of a polyhedron is replaced by a quadric curve with quadric parametric rational normal dircelions ilat conform to the positional and tangential information derived from the polyledron. The three boundary curves with normals are anoothly feshed by a quintic implicii algcbraic surface. Then, the computed triangular patch is polygonized for interactive display.

4.1.1 Generation of a Quadric Wire

First, we give a definition of a quadric wire.
 of quedratic rational parametric polynomials. Tlien, the pair $W(t)=(C(t), N(t))$ is called a quadric wire ir there exista a quadric surfice $q(x, y, z)=0$ such that $q(C(t))=0$ and $\nabla_{q}(C(t))$ is proportional to $N(t)$ for alt t.

In other word, we take, from a quadric surface, a conic curve and gradient vectors restricted along the curve, and use them as boundary eurves of a quadric wire frame.

The first step towarde smoothing a convex palyhedron is to compute a conic curve $C(t)$ given two point and unit normal vector pairs ($\left.p_{0}, n_{0}\right),\left(p_{1}, n_{1}\right)$ and a normal vector $n p l$ of a plane containing p_{0} and p_{1} such that

- a computed conic eurve passes through p_{a} and p_{1},
- its tangents at p_{0} and p_{1} are perpendicular to n_{0} and n_{1}, reapectively, and
- the curve is contained in the plane which contains p_{0} and p_{h}, and has the plane normal npl.

Furthermore, we force $C(0)=p_{0}$ and $C(1)=p_{1}$ so that the segment of $C(t)$ for $0 \leq t \leq 1$ is used as a wire. To compute $C(t)$, the normal vectors n_{0} and n_{1} are projected onto the plane P on which $C(t)$ will lic. (See Figure 4.1.) This projection sesulis in a control triangle $p_{0}-p_{2}-p_{1}$. (p_{2} is computed as the interscetion of the two langent lines orthogonal to the projections of n_{0} and n_{1}.) Lee [42] presented a compact method for computing a conic curve $C(t)$ from the control triangle. In his formulation, the conic is expressed in Dernstein-Bézier form:

$$
C(t)=\frac{w_{0} p_{0}(1-t)^{2}+2 w_{2} p_{1} t(1-t)+w_{1} p_{1} t^{2}}{w_{0}(1-t)^{2}+2 \omega_{2} t(t-t)+w_{1} t^{2}},
$$

where $w_{i}>0, i=0,1,2$ are shape control parameters. An often used parameterization, called the rlio-conic parameterization, is given by the special choice of

Figure 4.1 Computation of a Conic Curve
$w_{0}=w_{1}=1-\rho_{1} w_{3}=\rho_{1} 0<\rho<1$. Then the parameter ρ mensures the slarpness of the conic curve. Jet $p_{01}=\left(\mu_{0}+p_{1}\right) / 2$ be the midpoint of the chord $p_{0} \mu_{1}$. Then, ρ has a property that $C(0.5)-p_{01}=\rho\left(p_{2}-p_{01}\right)$. From this, we can sec llat as p is increased, the conie gets more curved. In particular, it is known that $\rho=0.5$ for parabolas, $0<\rho<0.5$ for ellipses and $0.5<\rho<1.0$ for hyperbolas.

Once $C(t)$ is computed, we find a quadratic surface $q(x, y, z)=0$ such that $N(t)$, which is a restriction of $\nabla q(x, y, z)$ along $C(t)$, interpolates n_{0} and n_{1} at $t=0$ and $t=1$, respectively. Consider a quadric suriace $q(x, y, z)=c_{1} x^{2}+c_{2} y^{2}+c_{3} z^{2}+c_{1} x y+$ $c_{9} y z+c_{6} z x+c_{7} x+c_{8} y+c_{0} z+c_{90}=0$. A quadric surface las 9 degrees of freedom in its cocfficients. The first constraint on $q(x, y, z)=0$ is that it must contain $C(t)$. The lecrmite interpolation algorithm gives 5 linear equations where the unknowns are $c_{i}, i=1,2, \cdots, 10$. It is obvious that 5 equations are required considering Bezont theorem which implies that if a conic intersects with a quadric surface at more than 4 points, the curve is contained in the surface

Hence, $4(=9-5)$ degrees of freedom remains, and these must be used to interpolate the normal vectors at the two end points. Interpolating n_{0} and n_{1} at p_{0} and p_{1}, respectively, results in 2 more linear constraints which leaves 2 degrees of freedom in choosing a quadric surface. In fact, we observe that fixing one nore normal vector al a point on the curve fixes normal vectors along the whole curve. Consider
the special case of Theorem 3.1 where given a quadric wire defined by a quadric surface $a(x, y, z)=0$ and a plane $b(x, y, z)=0$, there is a family of quadric surfaces $c(x, y, z)=0$ with one degrec of freedon such that $c(x, y, z)=n a(x, y, z)+\beta b(x, y, z)^{2}$. This implies that the rani of the linear system for Ilermite interpolation of the quadric wire is at most 8 . Hence, three normal vectors determine normal vectors along the entire quadric curve,

In our implementation we specify the third normal vector as follows: first, the average $n_{01}=\left(n_{0}+n_{1}\right) / 2$ is computed, and then n_{01} is projected into the plane which contains $C(0.5)$, and is orthogonal to the tangent veetor $C^{\prime}(0.5)$. Then, we use the projected vector as $N(0.5)$. The farmily of quadric surfaces $q(x, y, z)=0$ computed this way gives the gradient vector $\nabla q(C(t)$) that is used as $N(t)$.

1.1.2 Hermite Juterpolation of a Quadric Triangle

As mentioned before, each triangular face of a polyhedron is replaced by a Lriangular surface patch. To do so, each edge is replaced by a quadrie wire forming a wire frame for the polyhedron. To clarify our description, we give the following definitions:
Definition 4-2 An augmented iriangle is a 9 -tuple $T=\left(p_{0}, p_{1}, p_{2}, n_{0}, n_{1}, n_{3}, n p l_{01}\right.$, $n p l_{12,} n p l_{20}$) where $p_{i}, i=0,1,2$, are three vertices of a triangle with the corresponding unit normal veetors $n_{11} ;=0,1,2$, and $n p l_{i j}$ are normal vectors of the planes which will contain the quadric wires computed from (p_{i}, n_{i}) and ($p_{j} \pi_{j}$).

Definition 4.3 A quadric triangle is a triple $Q T=\left(W_{0}(t), W_{1}(t), W_{2}(t)\right)$ of quadiric wires sucb that $W_{0}(1) \equiv W_{1}(0), W_{3}(1) \equiv W_{3}(0)$, and $W_{2}(1) \equiv W_{0}(0)$,

Given an augmented triangle, each quadric wire is eomputed as described previously. Then, the quadric triangle is 部hed using an algebraic surface $f(x, y, z)=0$ of degree n. The surface $f(x, y, z)=0$ must be tlexible enough to interpolate the three quadric wires smoothly, i.e., with tangent plane continuity. Though higher degrec algebraic surface provikle more fexibility, the number $\binom{n+3}{3}$ of coefficients of

[^4]an algebraie surface of degree n grows dramatically it n increases. Hence, for a fast computation and less numerical errors, keeping n in a reasonable range is very intportant. In the below, we discuss a lower bound of degree of algebraic surfaces that can Ilermite interpolate a quadric triangle.

Consider an algebraic surface of degrec n for smooth interpolation of a quadric wire $W(t)=(C(t), N(t))$. According to Bezout theorem, $2 n+1$ constraints on the coefficients of f are required for f to contain $C(t)$ which is quadratic. For tangent plane continuity, the Hermile interpolation algorithm in Subsection 2.3.2.2 produces $(n-1) d+m+1=2(n-1)+2+1$ additional linear equations. In total, $1 n+2$ linear equations are generated for smooth interpolation. However, it is uniformly observed that the rank of the linear system is dn, while we can not prove this algebraically as of now. We are led to the following conjecture:

Conjecture 4.1 Let $W(t)=(C(t), N(t))$ be a quadric wire. Given an algebraic surface $f(x, y, z)=0$ of degree n, the rank of the linear system generated by Ifermite interpolation to to smoothly interpolate $W(\ell)$ is $4 n$.

Sinee there are three quadric wires, 121 linear constraints on the coefficients of a surface are produed eccording to the above conjecture. On the other hand, we observe some geometric dependency between the thee quadric wires which leads to algebraie dependency. Firsi, since the conies interseat pairwise, there must be three rank deficiencies between the equations from the containment conditions. ${ }^{2}$ Secondly, at each vertex of a quadric triangle, two incident conics autonatically determine the normal at the vertex. It is obvious, from the method of quadric wire construetion, that this vector is proportional to the given unit normal vector. So, we see that satisfying the containment conditions for the three conics guarantees that any interpolating surface has gradient vectors at the three points as required. This fact implies that. for each conic, there are two rank deficiencies between the linear equations for the

[^5]containment conditions, and the equations for its tangency condition. ${ }^{3}$ Itence, six additional rank deficiencies with the previou three indieate that the minimum of $12 n-9$ and $\binom{n+3}{3}$ is believed to be the maximum possible rank of the linear system that is generated by Ilermite interpolation algorithm.

Since an algebraic surface $f\left(x, y_{1} z\right)=0$ of degree n has $\binom{n+3}{j}$ coefficients, and the rank of the linear systern should be less than the iumber of coefficients for a montrivial surface to exist, we find out that 5 is the minimum degree required. In the quintic case, there are 56 coefficients (55 degrees of freedom) and the rank is at most 51, which results in a family of interpolating surfaces with at least four degrees of freedom in selecling an instance surface from the family. Even though some special combinations of three quadric wires can be interpolated by a surface of degree less than 5, for example, three quadric wires from a sphere, the probability that such spatial dependency oceurs, given an arbitrary triple of conies with normals, is infinitesimal. Henee, the conjectured lower degree bound is Light.

4.1.3 Least Squarea Approximation to Contour Levels

Aa a result of Ifermite interpolation of a quadric triangle $Q T$, a family of quintic algebraic aurinees $f(x, y, z)=0$ with at least 4 degrea of freedom is usually obtained. Then, we need to use these remaining degrees of freedom appropriately to select an instance quintic surface from this farnily. We can additionally specify a set of points inside the quadrie triangle, which approximately describe e desirable surface patch. A final fitting surface may be oblained by consuming the remaining degrees of freedom through least squares approximation to this set of points.

When chosen from the ámily via least squares approximation, the selected quintic surface is not always good in the light of geometric modeling. For example, a surface which self-intersects inside the quadric triangle is not practically useiul though it approximates the additional points best as well as satisfies the smooth interpolation

[^6]requirement. Hence, in the approximation atep, we must be careful not to select a surface which is singular inside the quadric triangle. First of all, we observe that, in general, any surface which smoothly interpolates the quadric triangle, that is, three conies with normal directions, is singular at the three vertices. In Section d.2, we show that just making the normal vectors of three conics consistent at the intersection points is not enough to have a surface that is regular at the three points, In fact, the rates of changes in the normal vectors at the intersection points affect the regularity of a surface. However, the singularitica only at the three vertices, not along the whole curve, do not harm the smooth continuity requirement between surface patclies, A more serious problem is the singularity of a aurface inside a quadric triangle,

Let $S_{0}=\left\{v_{i} \in \mathbf{R}^{3} \mid i=1, \cdots, 1\right\}$ be a set of paints which approximately describes a desirable surface pateh. Then, we can get a linear system $M_{A} \times=0$, where each row of $\mathbf{M}_{\mathbf{A}}$ is obtained from $f\left(v_{i}\right)=0$. Then the conventional least squares approximation is to minimize $\left\|\mathbf{M}_{\mathbf{A}} \mathbf{x}\right\|^{2}$ over the nullspace of M_{I}. However, our experiments show iliat, in many cases, singularitica occur inside the quedric triangle. Minimizing \| $M_{A} \times \|^{2}$ makes a reulting surface approximnte the set of points closely, however, this simple algebraic approximation can not prevent the surface from self-intersecting inside the triangle.

To provide more geometric control in least bquares approximation, we suggest that the contour levels of a surface are approximated rather than only the surface. In fact, the implicit surface $f(x, y, z)=0$ is the zero contour of the function $u t=f(x, y, z)$. Consider some smooth region of a surface. Since all the partial derivatives of $w=$ $f(x, y, z)$ are well defined in the region, the contour levels behave well in the proximity of the zero contour. In our scheme, we first generate $S_{0}=\left\{\left(\nu_{i}, n_{i}\right) \mid i=1, \cdots, 1\right\}$ where v_{i} is an approximating point, and n_{i} is an approximating gradient vector at ν_{i}. Then, from this sel, we construct two more sets $S_{1}=\left\{u_{i} \mid u_{i}=v_{i}+\alpha n_{i}, i=1, \cdots, \eta\right\}$, and $S_{-1}=\left\{w_{i} \mid w_{i}=v_{i}-\mathrm{on} n_{i}, i=1, \cdots, l\right\}$ for some small $\alpha>0$. Then, we get the least squares system $M_{\mathbf{A}}=\mathbf{b}$ from thre kinds of equations: $f\left(v_{i}\right)=0, f\left(u_{i}\right)=1$, and $f\left(w_{i}\right)=-i$. Approximating these three kinds of equations forces the function
$w=f(x, y, z)$ to have well structured contomr levels as much as possible near the inside of a quadric triangle, and we notice that this heuristic removes self-intersections in the region significantly. In Subsection 4.1.5, we give a heuristic algorithm for generation of the point-normal sel S_{0}.

I.I. 4 Fleshing a Wire Frame

Now, we are led to the following compulational model:

```
miлimize || M
subject io }\mp@subsup{\textrm{M}}{1}{}\times=
```

where $M_{I} \in R^{n_{n} \times 3 b}$ is a Hermite interpolation matrix, and $M_{A} \in R^{n_{*} \times 30}$ and $b \in R^{n_{0}}$ are a matrix and a vector, respectively, for conlour ievel approximation, and $\mathbf{x} \in \mathbf{R}^{\text {so }}$ is a vector containing coefficients of a quintic algebraic surface $f(x, y, z)=0$.

Again, the nullspace of M_{I} is compactly expressed as $x=V_{\text {se- }} w$ where $w \in$ $\mathrm{R}^{\text {sa-r.4 }}$ After substituting for x, we are led to $\left\|M_{A} x-b\right\|=\left\|M_{A} V_{\text {so-r }} w-b\right\|$ Thea, an orthogenal matrix $Q \in \mathbb{R}^{n_{4} \times n_{4}}$ is computed such that

$$
Q^{T} \mathbf{M}_{\mathbf{A}} V_{s t-r}=R=\binom{R_{1}}{0}
$$

where $R_{1} \in R^{(56-r) a(30-r)}$ is upper triangular. (This factorization is called a Q-R faclorization [31]). Now, let

$$
Q^{T} \mathrm{~b}=\binom{c}{d}
$$

where c is the first $56-r$ elements. Then, $\left\|M_{A} V_{s 0-r} w-b\right\|^{2}=\| Q^{T} M_{A} V_{s a-r} w-$ $Q^{T} b\left\|^{2}=\right\| R_{1} w-c\left\|^{2}+\right\| d \|^{2}$. The solution w can be computed by solving $R_{1} w=c$, from which a fleshing surface is oblainet by applying $\mathbf{x}=V_{s o-r} w$.

[^7]
4.1.5 Display of the Triangular Algebraic Pateh

As implicitly defined algebraic surfaces have become inereasingly important in geometric modeling, several algorithms for displaying them have emerged. Implicit algebraic surlaces lend thermelves naturally to ray tracing [34]. Sederberg et al. [69] used a sean line display method which offers improvement in speed and correctly displays singularities. Even though both approaches produce images of good qualities, the compulational coat is high. Also, these static processes do not allow interactive display of surfaces. On the other hand, polygonization of implicit surfaces $\{1,16 \mid$ can use the capability of the graphics hardware which provides very fast interactive ren dering. Allgower $[1]$ used simplicea lo approximate a surface with polygonal mesher. In [16], Bloomenthal presented a numerical sechnique that approximates an implicit surface with a polygonal representation. The technique is to surround an implicit surface with an octree, at whose corners the implicit function is sampled to genernce polygons. Although, in general, they sample implieit strfaces well, these polygonization methods are not well suited to our purpose which is io draw an implicit triangular surface patch with einguiar verticea. A major problem is how to isolate only a necessary part. Clipping surfaces might be added to the polygonization algorithms, however, the current polygonization algorithms do not liandle singularities well.

In our display routine, we walk oyer implicit quintic surfaces only around the necessary regions producing polygons which approximate triangular patehes. Since smooth segments of intersection curve of two algebraic surfaces are easily traced [7], and we are to display smooth portions of implicit surfaces, the algebraic space curve tracing routine performs well for this walk-over. Note that although the fleshing quintic surfaces are usuaily singular at the three vertices of a quadric triangle, the boundary curves can be traced easily from their parametric equations,

The following simpie recursive procedure produces an adaptive polygonization of a tringutlar algebraic surface pateh. Let $f(x, y, z)=0$ be a primary surface whose trian. gular portion, elipped by three planes $h_{1}(x, y, z)=0, i=1,2,3$, is to le polygonized.

Figure 4.2 Recursive Refinement of a Triangle
(See Figure 4.2.) Initially, the triangle $T_{0}=\left(P_{0}, P_{1}, P_{2}\right)$ is a rough approximation of the surface patch. Each boundary curve, oblained from the intersection of f and h_{i} is traced producing a sequence of points on the curve, then an adaptive piecewise linear approximation of order 2^{d} for some given d is computed. In Cbapter 5 , we present an algorithm that quickly generates such a piecewise linear approximation given a sequence of points in 3D space. Then, T_{0} is refined into four triangles by introducing the 3 points Q_{D}, Q_{2}, and Q_{2} where $Q_{i,} i=0,1,2$ is the middle point of each adaplive segmentation of order 2^{4}. The clipping planes for the subdivided triangles can be computed from the normals of the two triangies incident to the edge. Then, each new edge is traced, and its adaptive piccewise linear approximation of order 2^{d-1} is produced. In this way, this new approximation is further refined by recursively subdividing cach triangle until some stopping criterion is met.

While the method produces a regular, but adaptive, network of polygons, it could be improved further to geacrate more adaptive polygonization. Rather than subdividing all the triangles up to the same level, each triangle is examined to see if it is already a good approximation to the surface portion it is approximating. 1 l is refined only when the answer is no. Some criterions for such local refinement are suggested in (4,16). However, to design an irregular adaptive polygonization algorithm with robust local refinement criterions, remains open.

We also use the nbove recuraive subdivision scheme to produce $S_{0}=\left\{\left(v_{i}, n_{i}\right) \mid i=\right.$ 1, \cdots, I\} used in Subsection 4.1-3. Initially, only the boundary curves are known, and each time a new curve is to be fraced in the above algoritlam, a quariric wire is computed as explained in Subsection -1.1 .1 from the information on the inilial and final points, their uormals and elipping plane. The generated quadric wire gives approximate curve and normal ioformation, and is traced to generate points and normals. The finai polygonal approximation obtained in this way gives a set of points which are used in least squares approximation. We observe that this licuristic method work quite well when the ρ value is in the reasonable range, say, $0.25 \leq \rho \leq 0.75$. Figure 4.3 displays a polygonization of a triangular algebraic surface patch, and the points used for least squares approximation.

4.2 Why Singularities?

In this section, we consider why the quintic surfaces which Hermite interpolate quadric triangles are usually singular at three vertices.

4.2.1 A Review of DifferenLial Gcometry

We firat review some basic concepts of diferential geometry [18, (19]. A surface $S \subset R^{3}$ is regular at a point $p \subset S$ if there exists a neighborhood $V \subset \mathbb{R}^{3}$ and a map $\mathbf{x}: U \longrightarrow V \cap S$ of an open set U in R^{2} onto $V \cap S \subset R^{3}$ such that $x(u, v)=(x(u, v), y(u, v), z(u, v))$ is differentiable, homeonnorphic, and ils differential $d x_{q}: R^{2} \longrightarrow R^{3}$ is one-to-one for each $q \in U$. A surfiace S is regular if, at ench point on $S . S$ is regular. Intuitively speaking, a surface is regular at a point if a neigliborhood of the point in the aurface can be oblained by taking a piece of a plane, deforming it in a not too violent fashion, in such a way that the resulting surface has no singularities like sharp points, edges, or self-intersections at the point and it makes sense to speak of a tangent plane at the point. By taking such a map from a plane to a surface, it becomes possible for a regular surface to have a differential and integral calculus which is strietly comparable with the calculus on the Euclidean plane \boldsymbol{R}^{2}.

A tangent vector to a regular surface S at a point $p \in S$ is the tangent vector $\alpha^{\prime}(0)$ of a differentiable curve $\alpha:(-\epsilon,<) \longrightarrow S$ with $a(0)=p$. The plane $T_{p}(S)$ spanned by all langent vectors to S at p, is called the tangent plane to S at p which is, in fact, a two dimensional vector space. For a regular point $p \in S$, a unit vector which is perpendicular to $T_{\mathrm{p}}(S)$ is called a ynitnormal vector at p. For each $q \in \mathbf{x}(U)$ we define a differentiable field of unit normal vectors $N: x(U) \longrightarrow R^{3}$ such that $N(q)=\frac{x_{1} x_{k_{1}}}{\left\|x_{-} x_{1} x_{i}\right\|}(q)$, where $x_{u}=\frac{\theta_{k}}{\partial_{u}}$ and $x_{v}=\frac{\theta x}{\partial u}$. The map $N: S \longrightarrow S^{3}$, taking its values in the unit sphere, is called the Gauss map of S, where S^{2} is a unit sphere Then the Gauss map is differentiable, and its differential $d N_{p}$ of N al p is a linear map from $T_{p}(S)$ to $T_{p}(S)$. It mensure the rate of the normal vector N in a neighborhood of p.

The following lemma provides a condition which must be satisfied when the unit normal vectors of a surface S change in the neighborhood of regulir points. Its prool is found in Chapter 3, pp. 140 of (18).

Lemma 4.1 The diferential $d N_{p}: T_{p}(S) \longrightarrow T_{p}(S)$ of the Gauss map is a self-adjoint linear map, that is, $\left(d N_{p}\left(w_{1}\right), w_{2}\right)=\left(w_{1}, d N_{p}\left(w_{1}\right)\right)$ where w_{1} and w_{2} are iwo independent tangent vectors at a regular point p, and $(, \cdot)$ is the inner product of two vectors.

4.2.2 Interpolation of Two Pararnetric Curves

The symmetry of the linear map $d N_{p}$, implied by Lemma 4,1 , entails a necessary condition that must be salisfied between tangent vectors and the rates of changes in normal vectors at a regular point. It implies that, given two regular curves passing through a reguiar point on a aurface, the unit normal vector must change along each curve satisfying the equality in Lemma 4.1.

Consider the problem of Hermile interpolation of two parametric apace curves with normal directions, meeting at a point. Lel $C_{1}(u)$ and $C_{2}(v)$ be the two parametric curves with paramelrically represented normal directions $N_{1}(u)$ and $N_{2}(v)$ such that $C_{1}(0)=C_{3}(0)=p$, and $N_{1}(0)$ and $N_{2}(0)$ are proportional, that is, the two curves
meet at p and they share the same normal direction at p. We look for a surface S which smoothly interpolates the curves, that is,

- S must contain $C_{1}(u)$ and $C_{2}(v)$,
- the normals of tangent planes of S along the curves must coincide with the normals of the curves, and
- S is regular at p.

A straightforward application of Lemma 4.1 yields the following theorem which presents a necessary regularity condition on the curves and normal directions.

Theorem 4.1 Let $C_{1}(u)$ and $C_{3}(v)$ be two parametric curves with parametric normal directions $N_{1}(4)$ and $N_{2}(\nu)$ such that $C_{1}(0)=C_{2}(0)=p_{1}$ and that $N_{1}(0)$ and $N_{2}(0)$ are proportional. Then, any surface S, which interpolates the eurves with langent

Proof: Suppose that S is a surface which smoothly interpolates the curves, and is regular at p. Then, we have a local parametrization $x: U \rightarrow V \cap S$ of an open set U in $R^{\text {a }}$ onto $V \cap S \subset R^{3}$ for a neighborhood V of p such that

- $x(0,0)=p_{1}$
- $x_{u}=\frac{\partial x}{\partial_{u}}(0,0)=C_{1}^{\prime}(0)$ and $x_{v}=\frac{\partial x}{\partial_{v}}(0,0)=C_{2}^{\prime}(0)$, and
- the Gauss map N of S is such that $N\left(C_{2}(u)\right)=\frac{N_{1}(u)}{\left\|N_{1}[u)\right\|}$ and $N\left(C_{2}(u)\right)=\frac{N_{2}(v)}{\left\|N_{2}(v)\right\|}$

Then, by Lemma 1.1 , for S to be regular at p, it sloould be that

$$
\begin{equation*}
\left(d N_{\mathrm{p}}\left(\mathrm{x}_{\mathrm{u}}\right\}_{1} \mathrm{x}_{\mathrm{v}}\right)=\left(\mathrm{x}_{\mathrm{u}}, d N_{\mathrm{p}}\left(\mathrm{x}_{\mathrm{v}}\right)\right) . \tag{4.1}
\end{equation*}
$$

By the definition of the diferential,

$$
\begin{aligned}
d N_{p}\left(x_{u}\right) & =\left.\frac{d N\left(C_{1}(u)\right)}{d u}\right|_{u=0} \\
& =\left.\frac{d\left(\frac{N_{1}(u)}{\left.\mathbb{N}_{1}(u)\right]}\right)}{d u}\right|_{u=0}
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\frac{N_{1}^{\prime}(u)\left\|N_{1}(u)\right\|-N_{1}(u)\left\|N_{1}(u)\right\|^{\prime}}{\left\|N_{1}^{\prime}(u)\right\|^{2}}\right|_{u=0} \\
& =\frac{N_{1}^{\prime}(0)\left\|N_{1}(0)\right\|-N_{1}(0)\left\|N_{1}(u)\right\|_{u=0}^{\prime}}{\left\|N_{1}(0)\right\|^{2}} .
\end{aligned}
$$

$$
\frac{\left(N_{1}^{\prime}(0)_{1} C_{7}^{\prime}(0)\right)}{\left\|N_{1}(0)\right\|}=\frac{\left(C_{1}^{\prime}(0), N_{1}^{\prime}(0)\right)}{\left\|N_{7}(0)\right\|} .
$$

The above theorem implies that enforcing two curve to have the same normal vectors at an intersection point does not guarantee the regularity of an interpolating aurface at the point. The equation in the theorem is a neecssary condition for regularity, indicating that, if the given curves and their normals do not satisly the equation, any smoothly interpolating surface must be singular at p-

This issue has been also addressed in the literature of parametric surface fitting. Peters [56] showed that nol every mesh of paranietric curves with well-defined langent planea at the mesh points can be interpolated by smooth regularly parametrized surfaces with one surface patch per a mesh face. In [55], he used singularly parametrized surfaces to enclose a mesh point when mesh curves emanating from the point do not satisfy a constraint, called the vertex enclosure constraint.

4.3 Smoothing a Convex Polyhedron

In Section 4,1, we deseribed how to compute a quintic triangular algebraic surface patch from a given augmented triangle. A convex polyhedron is smoothed by replacing its faes with the triangular patchea meeting each other with tangent plane continuity. For augmented triangles $T=\left(p_{1}, p_{1}, p_{2}, n_{0}, n_{1}, n_{2}, n p l_{01}, n p_{12}, n p l_{70}\right)$ of faces of a polytedron, the normal data, i.c., three vertex normals and three edge normals, muit be provided as well as the given three vertices. In some applicalions, the normal data may come with a solid, but only vertices and their facial information are usually provided. The vertex normal n_{i} al each vertex p_{i} can be computed by av. eraging the normals of the faces incident to the vertex. Also, we average the normals
of the faces incident to each edge (p_{n}, p_{j}), and take its cross product with the vector $p_{j}-p_{i}$ to get the edge normal vector $n p l_{i j}$. After the normal data are computed, quadric wires are generated for a ρ malue which is interactively selected by a user.

Example 4.i Construction of Quadric Wire Frames
Figure 4.4 and 4.5 show two quadric wirc framea for the same convex polyhedrons with the ρ values 0.4 and 0.75 , respectively. a

Example 4.2 Smoothed Polyhedra with Quiatic Algebraic Suriace Patches
Each of the 32 faces of the polyliedron in Example 4.1 is replaced by a quintic implicit algebraic surface which smoothly flembes its quadric triangle. The result is the piecewise tangent plane continuous quidtic algebraic surface mesh that smoolls the given polyhedron. Figures 4.6, 4.7, and 4.8 illustrate the mesh for $\rho=0.4,0.5$, and 0.75 , reapectively. As mentioned before, ellipses, parabolas, and hyperbolas are used as quadric wires for $\rho=0.4,0.5$, and 0.75 , respectively. a

1.4 Towards Smoothing an Arbitrary Polyhedron

In the forcgoing seetion, we showed thet algebraic surfaces of degree five, moderately low, can be effectively used in smoothing convex polyhedra. It is natural that we continue to work on smoolhing an arbitrary polyhedron, not necessarily convex. In this section, we consider an epproach to this open problem which is bised on face subdivision.

-1.4.1 A Claracterization of Existence of Conic Curves

The convex polyhedron smoothing scheme presented in the previous sections consists of two steps. The first step is to construct a quadric wirc frame of a given polyhedron, and then each quadric triangle is flested by a quintic algebraic surface. As will be seen, edges of a convex polyhedron can be always replaced by quadric wires
${ }^{3}$ Thir polyhedron in a gyroelongated triangular bicupoln mith its rectangular farea Iriangulated.
without crealing cusp-like connections. However, in cise of a nonconvex polyhedron, conic curves, that do not have inflection points, are not flexible enough to model nonconvex shapes.

- In CAGD, piecewise polynomial cubic curves have been useful in filling arbitrary shapes due to their desirable properties such as itheir capability of laving C^{2} continuity between curves, and zero curvalure at inflection points [58]. On the other hand, conic splines have been found adequate in representing arbitrary shapes $[53,58]$. Conics in rational polynomial form have the advaniages, over culics, of low computational cost and a rich body of mathematical reqults. In particular, adhering to conies allows us to continue to explore the clias of quintic algebraic surfaces as geometric modeling tools.

In this subsection, we derive a criterion which determines if a quadric wire $W(t)=(C(t), N(t))$ can interpolate given two point and unit normal vector pairs (p_{0}, n_{0}), $\left(p_{1}, n_{1}\right)$ in 3D space. Here, by interpolation of normal vectorg, we mean strict interpolation where $W(0)$ and $W(1)$ have the same directions as n_{0} and n_{1}, respectively. This restriction guarantees construction of quadric wire frames which are free of cusp-like connections.

We first consider the planar case, and derive a criterion which telis if there exists a conic curve that interpolates two given point and unit normal vector pairs $P_{0}=$ (p_{0}, n_{0}) and $P_{1}=\left(p_{1}, n_{1}\right)$ where $p_{0}=\left(p_{0_{1}}, p_{0_{y}}\right)$ and $p_{1}=\left(p_{15}, p_{1 y}\right)$ are two points on a plane with associated unit normal vectors $n_{0}=\left(n_{0_{1}}, n_{0_{k}}\right)$ and $n_{1}=\left(n_{1_{x}}, n_{1 v}\right)$. To be more precise, we give the following definition:

Definition 4.4 Let $P_{0}=\left(p_{0}, n_{0}\right)$ and $P_{1}=\left(p_{1}, n_{1}\right)$ be two given pairs. A conic segment $S\left(P_{0}, P_{1}\right)$ is said to smoothly interpolate P_{0} and P_{1} if there exists a nondegenerate conic curve $f(x, y)=a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c$ such that

- $S\left(P_{0_{1}} P_{1}\right)$ is a continuous segment of $f(x, y\rangle=0$,
- p_{0} and p_{1} are the end points of $S\left(P_{0}, P_{1}\right)$, and
- the gradients of $f(x, y)=0$ at p_{0} and p_{1} lave the same directions as n_{0} and n_{1},

Given a pair $P=\left(\left(p_{x}, p_{y}\right),\left(n_{x}, n_{v}\right)\right)$, we can define $T_{P}(x, y)=n_{x}\left(x-p_{r}\right)+n_{v}(y-$ $\left.p_{v}\right)=0$ which is the equation of the tangent line that passes through (p_{x}, p_{v}) and has a normal direction (n_{r}, n_{y}). Note that the normal of the sangent line $T_{p}(x, y)=0$ has
 $\left.\mathbf{R}^{2} \mid T_{P}(x, y)>0\right\}$, and a negntive hallspace $\left\{(x, y) \in \mathbf{R}^{2} \mid T_{p}(x, y)<0\right\}$.

Lemma 4.2 Let p_{0} and p_{1} be on a nondegenerate conic $f(x, y)=a x^{2}+2 h x y+b y^{2}+$ $2 g x+2 f y+c=0$. Then, $T_{\left(p_{0}, \nabla f\left(p_{0}\right)\right)}\left(p_{1}\right) \cdot T_{\left(p_{1}, \nabla /\left(p_{1}\right)\right)}\left(p_{0}\right)>0$.

Proof: Without loss of generality, we assume that $p_{0}=(0,0)$, and $p_{1}=(1,0)$. Since $\nabla f(x, y)=(2 a x+2 h y+2 g, 2 h x+2 b y+2 f), \nabla f(0,0)=\{2 g, 2 f)$ and $\nabla f(1,0\}=$ $\left(2 a+2 g_{1} 2 h+2 f\right)$. Hence, $T_{\left(p_{0}, V /\left(p_{0}\right)\right)}(x, y)=2 g x+2 f y$, and $T_{\left(p_{1}, v f\left(p_{1}\right)\right)}(x, y)=$ $(2 a+2 g)(x-1)+(2 h+2 f) y$. From the containment conditions of the two points, $f(0,0)=c=0$, and $\int(1,0)=a+2 g+c=0$. Then, $T_{\left(p_{0}, \nabla /\left(p_{0}\right)\right)}\left(p_{1}\right) \cdot T_{\left[p_{1}, \nabla /(m)\right)}\left(p_{0}\right)=$ $2 g(-2 a-2 g)=2 g(-2(-2 g)-2 g)=1 g^{2} \geq 0$. If $g=0$, it follows that $a=c=$ $g=0$ in which case $f(x, y)$ reduces into two lines. Since we assume that $f(x, y)$ is nondegenerate, $g \neq 0$, and we have proven the lemma.

The geometric interpretation of the inequality $T_{\left(p_{0}, \nabla /\left(p_{0}\right)\right)}\left\{p_{1}\right) \cdot T_{\left(p_{1}, \nabla /\left(p_{1}\right)\right)}\left(p_{0}\right)>0$ is that p_{0} is on the positive (negative) hallspace of T_{R} if and only if p_{1} is on the positive (negative) halfspace of T_{fb}. The following theorem shows that this condition is, in fact, a sufficient and necessary condition.

Theorem 4.2 There exists a conic segment $S\left(P_{0}, P_{1}\right)$ that smoothly interpolates two pairs $P_{0}=\left(p_{0}, n_{0}\right)$ and $P_{1}=\left(p_{1}, n_{1}\right)$ if and only if $T_{p_{3}}\left(p_{1}\right) \cdot T_{p_{1}}^{\prime}\left(p_{0}\right)>0$.

Proof: (\Rightarrow) Let $f(x, y)=0$ be the conic that contains $S\left(P_{0}, P_{1}\right)$. From our definition of smooth interpolation, it follows that $T_{A_{0}}\left(p_{1}\right) \cdot T_{R_{1}}\left(p_{0}\right)=T_{\left[p_{0}, \bar{V} /\left(p_{0}\right)\right\}}\left(p_{i}\right)$. $T_{\left(p_{1}, \nabla_{/\left(p_{1}\right)}\left(p_{0}\right)\right.}$ which is positive according to Lemma -1.2.
(\Leftrightarrow) If $T_{P_{0}}\left(p_{1}\right) \cdot T_{H}\left(p_{0}\right)>0$, then the canic segment on $q(x, y)=L(x, y)^{2}-\kappa$.
$T_{\beta}(x, y) \cdot T_{R}(x, y)=0$ or $-q(x, y)=0$ will sinoothly intergolate the two pairs where $L(x, y)=0$ is the line conneeting p_{0} and p_{1}, and κ is a constane [6.1]. ${ }^{6}$ a

Now, back to the original problern of computing a quadric wire that smoothly interpolates two given point and unit normal vector pairs $P_{0}=\left(p_{0}, n_{0}\right)$ and $P_{1}=$ (p_{1}, n_{1}) in R^{3}. The concept of the tangent line in a plane is naturally extended to an oriented tangent plane $T_{p}\left(x_{1} y_{1} z\right)=n_{x}\left(x-p_{x}\right)+n_{v}\left(y-p_{y}\right)+n_{s}\left(z-p_{r}\right)=0$ given a pair $P=\left(\left(p_{x}, p_{v}, p_{s}\right),\left(n_{x}, n_{v}, n_{2}\right)\right)$ in 3 D space, and this tangent plane divides 3 D space into two lialfspaces. In fact, we see that the inequality $T_{P_{0}}\left(p_{1}\right) \cdot T_{R}\left(p_{0}\right)>0$ is also a criterion which determine it a guadric wire can smoothly interpolate two given pairs of points and normal vectors.

Corollary 4.1 Given two point and unit normal vector pairs $P_{0}=\left(p_{0}, n_{0}\right)$ and $\mu_{1}=$ (p_{1}, n_{1}) in 3D space, there exists a quadric wire $W^{W}(t)=\left(C(t), N^{\prime}(t)\right)$, contained in a plane determined by a given plane normal vector $n \mu l_{01}$, that smoothly interpolates the pairs if and only if $T_{\mathrm{Pb}_{\mathrm{b}}}\left(p_{\mathrm{l}}\right) \cdot T_{\mathrm{A}}\left(p_{0}\right)>0$.

Proof: Consider the two pairs P_{0} and P_{1}, their two tangent planes $T_{P_{0}}$ and T_{A}, and the plase H which is defined by μp_{01}. Then, the intersection lines of H and $T_{B_{B}}, T_{R_{1}}$ become the tangent lines in $/ /$ to which a conic curve must be tangent. That is, the normal vectors of the tangent lines are the projections of the normal veetors of the tangent planes. Nole that the positiveness and negativeness of halfspaces are inherited from 3D space to the plane H. Hence, we see that the inequality $T_{P_{0}}\left(p_{1}\right) \cdot T_{P_{1}}\left(p_{0}\right)>0$ holds in 3D space if and only if its 2D version holds in H.

If there exists a conic curve in H, we can find a quadric surface which smoothly interpolates the given pairs, as explained before, and take II' (t) from this quadric surface that has the same graciont directions as the givent two normal vectors. 0
t t is not dificult to imagine that when the averaging technique is used to compute vertex and edge normals of a convex polyliedron, the inequality criterion is always true for each edge, hence, a quadric wire frame can be easily computed.

[^8]
4.4.2 Iterative Subdivision of Faces

In this subsection, we consider a procedure that tries to produce a quadric wire frame for a given polyhedron with arbitrary shape. This procedure checks if the inequality criterion holds for each edge, and if it does, the edge is replaced by a quadric wire, as before. If the criterion does not hold, it is inevitable that a curve with an inflection point must be used. In this procedure, we break the edge, and use two quadric wire meeting with C^{1} continuity rather than using a cubic curve which would requite a higher degree algebraic surface for IIermite interpolation. When an edge is broken, the triangular face incident to the edge is subdivided into a few subiaces depending on how many edges of the face are broken.

The following procedure subdivides each face of a given polyhedron iteratively until the criterion is met lor all the edges.

Procedure 1.1 (Iterative Face Subdivision)

compute the vertex nommals and edge normats,

do
/" beginning of a new phase ${ }^{\circ} /$
for each faec of the current polyhedron do
if the face must be subdivided then subdivide the face;
endif
endfor
update the polyhedron;
until no face is subdivided in the current phase
In each phase of the iteration, an edge is broken into two subedges when necessary, and a proper normal vector is associated with the new vertex. As of now, we do not know which way of associaling normal vectors with the new vertices is the best. however, it must be such that the resulting new edges and their poim and normal
vector pairs satisfy the inequality criterion as much as possible without harming the aesthetics of a quadric wire frame to be computed. Once a quadric wite frame is constructed, we can apply the same technique to llesh each quadric triangle of the wire frame.

Much work remains in converting the above experimental procedure into a robust face subdivision algorithm. First, there are many degrees of freedom in replacing each edge with two quadric wires when necessary. The inflection point where two wires meet with each other and a normal veetor at the point must be specified. Also, the two quadric wires need not be on the same planes but can be on different planes as long as the normal condition is satisfied at the inflection point. Also, there are iwo degrees of freedom in selecting the ρ values of the two quadric wires, although they can be used to achieve C^{2} continuity at the infection vertex [58]. Secondly, as the face subdivision process proceds, some laces with bad shapes may be generated. The aspeel ratio of a face or a triangle is defined as the ratio of the radius of the circhmseribed circle to the radius of the inscribed circle. Triangles with large aspect ratiog tend to produce more numerical errors in computation [78] as well as being inappropriate [or display lechniques such as Gouraud shading [33]. In our polyhedron smoothing scheme, it appears to be more difficult to remove self-intersections inside quadric trianglea when the aspect ratios of facea are large. Hence, it is imporlant to maintain aspect ratios of faces in a reasonable range by adaptively aubdividing thern.

Figure 4.9 shows a nonconvex polyhedron, and Figure 4.10 illustrates a curved object obtained as a result of smoothing the polyhtelron, We observe wave-like oscitlations between the surface patehes of the subdivided faces, while the surface patehes of the convex region produce pleasing curved approximations,

4.5 Summary

In this chapter, we explored the class of quintic algebraic stafaces to smooth a given convex polyhedron with triangular faces. In the presented scheme, a wire frame made of quadric curves and quadric normals was constructed first, and then the triple
of quadric curves corresponding to each face was fleshed with a quintic algebraic surface through IIermite interpolation and contour level least squares approximation. We observed that the minimum degree of algebraic surfaces for this polyliedron smoothing scheme is at least quintie, and also discussed how a triangular algebraic surface gateh, whose vertices may be singular, is polygonized. The problem of smoothing a polyhedron with an arbitrary shape with quintic algebraie surfaces is still open. We need to devise an algorithm for constructing good quadric wire frames for noncolivex polyhedra.

There are some more open problens that need to be mentioned. First, a more robust method of gencrating the points and contour levels for least squares approximation is desirable. White the heuristic for least square approximation usually works well, sometimes we may have to change the value of α in S_{1} and S_{-1} manually. Seeondly, although the singularition at the vertices of triangular patches do not harm geometric continuily between them, it will be intereating, at least theoretically, to lry to produce triangular patches which are regular at their vertices. This might be possible via subdivision techniques ued in paramelric surface fitling

Our ultimate goal is to construcl curved solids with quintic algebraie surface patchea, and then to manipulate then through geometric operations such as boolean sel operations. This ability will provide a geometric modeling syatem with a complex way of crealing and manipulating models of physical objects with various geometries. Also, this research can be fully applied to visualization of three dimensional imaging data obtained from computed lomography (CT) and magnetic resonance imaging (MRI) lechniques in medical imaging.

Figure 1.3 A Polygonization and Points Gencrated

Figure 1.4 A Convex Polyhedron with Quadric Wires : $\rho=0.4$

Figure 4.5 A Convex Polyhedron with Quadric Wires : $p=0.75$

Figure 4.6 A Quintic Algebraic Surface Mesh : $\rho=0.4$

Figure 4.7 A Quintic Algebraic Surface Mesh : $\rho=0.5$

Figure 4.8 A Quintic Algebraic Surface Mesh : $\rho=0.75$

Figure 4.9 A Nonconvex Polyhedran afler Faces Suldivided

Figure 4.10 A Quinlic Algebraic Surface Mcsil : $\rho=0.5$

5. PIECEWISE LINEAR APPROXIMATION OF SPACE CURVES

Finding piecowise linear approximation of a digitized or densely sampled curve is an important problem in image processing, pattern recognition, geometric modeling, and computer graphics. Digitized curves occur as boundaries of regions or objects. Such curves, usually represented as sequences of points, may be measured by devices such as scanning digitizers or may be gencrated by evaluating parametric equations of space curves, or by tracing intersection curve given by implicit surface equations. They ean also be obtained from experiments, For efficient manipulation of digitized curves, they are typically represented in the form of sequences of line segments. While the original curves are made of large sequences of points, their approximations are represented by a small number of tine segments that are visually aceeplable.

The piecewise linear approximation problem thas received much attention, and there exist many approximation algorithms for this problem. The literature in related areas contains many heuristic methods that are direct and efficient even though, in general, they do not find an optimal approximation $[22,24,52,54,60,62,61,70,71$, 77]. This problem was also treated more theoretically in the area of computational geometry. Imai et al. [38] presented an $O\left(n^{3}\right)$ time algorithm for approximating a polygonal chain of length n with is minimal number of line segments within a given tolerance. The time complexity is reduced to $O\left(n^{2} \log n\right)$ in [14, 72]. However, most of theas works consider only planar curves as their input data, and littie work has addressed space curve approximation. In many applications, a three dimensional (3D) object is designed with a set of boundary curves in 3D space which are represented as a sel of equations or as a sequence of points. Hence, having a good approximation method for digitized space curves is essential. In \{39], which is one of few works on 3D space curve approximation, a quintic B-spline is constructed for noisy data, and the
length of the Darboux vector, also known as total curvature, is used as the criterion for segmentation of 3D curves. This method requires construction of quintic D-splines, explicit computation of curvature and Lorsion, and polynomial root isolation.

In this chapter, we consider how to quickly produce a good piecewise linear ap proximation of a digitized space curve with a smaller number of line segnents. Doth speed and quality are very important in moat applications, and in particular, the heuristic algorithm preaented in this chapter is used to polygonize implicit eriangular algebraic surface paiches computed in Chapter 4.

Our algorithm is based on the notions or curve length and spherical image, which are fundamental concepts in differential geometry [18, 41, 49]. In Seetion 5.], we first define some terminology and give a mathernatical formulation of the specific problem we are dealing with. This approximation problem is naturally reduced to a combinatorial minimax problem which ean be stated as "Given n points, choose a smaller number m of points such that the maximum error of approximation is minimized. ${ }^{n}$ In Section 5.2, optimal approximation is found by an algorithm that runs in $O\left(n^{3} \log m\right)$ time and $O\left(n^{2} \log m\right)$ space. We deacribe, in Section 5.3, a last heuristic iterative algorithm which requires $O\left(N_{\text {itar } r}\right)$ time and $O(n)$ epace, where $N_{\text {iter }}$ is a number of iterations carried out. Also, the performance of the heuristic algorithm on some Leal cases is analyzed. In Section 2.5, we itlustrate applications of this fast heuristic algorithm in which space curves and implicil surfaces are adaptively linearized. We alao apply the heuristic approximation algorithm to construction of adaptive binary space partitioning (BSP) trees for a class of objects made by revolution, where the linear approximation of a curve is naturatly extended to linearly approximate the class of three dimensional curved objects, made by revolution, will liSP trees that are well-balanced.

5.I Preliminaries

Definition 5.1 Let C be a space curve in \mathbf{R}^{3}. A space curve segment $C(a, b)$ is a conneeted portion of a curve C with end points $a, b \in \mathbf{R}^{\mathbf{J}}$.

In order to define a curve segment without ambiguity, a tangent vector at a may be required, But we assurne this vector is implicitly given.

Definition 5.2 A digitized space eurve segment $\bar{C}(a, b, n)$ of order n is an oricered sequence $\left\{a=p_{0} p_{1}, p_{1}, \cdots, p_{n}=\delta\right\}$ of points $p_{1} \in R^{J}, i=0,1, \cdots n$, which approximales $C(a, b)$.

Approximation of a digitized space curve with a small number of line segmenta inevitably reaults in an approximation error. The quality of approximation is measured in terms of a given etror norm that can be defined in many ways. Some commonly used ones are

1. maximum norm :

$$
L_{\infty}=m a x c_{1}
$$

2. 2-norm :

$$
L_{3}=\left(\sum e_{i}^{j}\right)^{\xi}
$$

3. aren norm : $L_{\text {arra }}=$ absolute ares between curve segment and approximating line aegment.

In this chapter, we use L_{∞} as an error norm to measure a goodness of an approximation, although our algorithms in the later sections are also compatible with L_{2}.

Definition 5.3 A piecewise linear approximalion $L A(\mathbb{C}, a, b, m)$ of order m to $\underline{C}(a, b, n)$ is an increasing sequence $\left\{0=q_{0}, q_{1}, q_{2}, \cdots, q_{m}=n\right\}$ of indices to points in C. An error $E(L A(C, a, b, m))$ of a piecowise linear approximation LA is defined as $\max _{0 \leq i \leq m-1} E_{\text {ocf }}(i)$ where the i-th segment error $E_{\text {rep }}(i)$ is $\max _{q, \leq j \leq q_{1,1}} \operatorname{dist}\left(p_{n}, \operatorname{line}\left(p_{q_{1},} p_{q_{1,1}}\right)\right)$, and dist $\left(x, \operatorname{line}\left(y_{1},-\right)\right)$ is the Euclidean listance from a point x to a line, determined by two points y and $z 1$
${ }^{2}$ For any point $x \in \mathrm{n}^{3}$, and twa other points $y_{1}: \in \mathrm{R}^{3},(y \neq z\rangle$, disis $\left(x\right.$, line $\left(y_{i}=i\right)$ can be compactly expreswed as $\left\|v=z+\frac{(a-x, 1-N}{i-v_{1}}(s-v)\right\|_{z}$ where $(1, \cdot)$ is the dot product of two vectors and $|\mid-\|$ is the lenglit of a vector.

As pointed out in Pavlidis et al. [51], the problem of linding a piecewise linear approximation $L A$ can be expressed in two ways:

1. find a $L A(\bar{C}, a, b, m)$ such that $E(L A)<c$ for a given bound c and m is minimized.
2. find a $L A(\bar{C}, a, b, m)$ that minimizes $E(L A)$ for a given m.

We focus mainly on the sccond type of problem. However, we will also discuss briefly the first type of problem in Section 5.3.3.5.

Definition 5.4 The oplimal piecewise linear approximation $L A^{-}\left(\tilde{C}_{, a}, b_{1} m\right)$ of order m. given $\bar{C}(a, b, n)$ and an integer m ($n \geq m$), is a piecewise linear approximation, not necessarily unique, such that $E\left(L A^{*}\right) \leq E(L A)$ for any piecewise linear approximation $L A$ of order m.

Given these defnitions, the probien can be stated as :
Problem 5.1 Given $\bar{C}(a, b, n)$ and m, find $L f^{\circ}\left(C^{\prime}, a, b, m\right)$,
5.2 An Optimal Solution
5.2.1 An Algorithm

A naive algorithm for Problem 5.1 would be as following :
Algorithm 5.1 (NAIVE)

temp $=\infty$;

for all the possible $\binom{n-1}{m-1} L A(\bar{C}, a, b, m)$ do
campute $E(L C)$;
if $E(L A)<$ temp then $L A^{*}=L A_{;}$temp $=E(L A)$;
endior

Note that this problem lias a recursive nature, that is, it con be naturally subdivided into two subproblens of the same type. Dynamic programming, which is a general problem solvilg technique widely used in many disciplines [2], can be applied to this problem to produce a rather straightforward algorithm. We first give an algorithm which works in case m is a power of 2. Then the algorithon is slighty modified for an arbitrary m.

Define $E_{i j}^{\prime}$ to be the error of $\operatorname{LA}^{-}\left(\bar{C}, p_{n}, p_{y}, l\right)$, that is, the srallest error of all piectevise linear approximations with $/\left(=2^{d}\right)$ seginents to the portion of \dot{C} from p_{1} to p_{j}. Then $E_{i j}^{\mathrm{j}}$ can be expressed in terms of $E_{i t}^{\dagger}$ and $E_{k j}^{\frac{1}{2}}$ as following :

$$
\begin{equation*}
E_{i j}^{2 d}=\min _{\lll j} \max \left\{E_{i k}^{2 d-1}, E_{k j}^{d^{d-1}}\right\} \quad \text { for } 0 \leq i<j \leq n \text { and } d>0 \tag{5.1}
\end{equation*}
$$

where $E_{1 i}^{2 d}=0$ if $j-i \leq 2^{d}$.
The recursive relation gives rise to the following dynamic programming algorithm which compules the minimum crror $E_{0_{n}}^{m_{n}}$ and ite corresponding $L A^{\prime}$:

Algorithm 5.2 (DYNAMIC)

```
/* basis step */
for \(i=0\) to \(n-1\) do
    for \(j=i+1\) to \(n\) do
        compute \(E_{i j}^{\prime}\);
    endfor
endior
/*induclive step */
for \(d=1\) 10 \(\log m\) do
    for \(i=0\) to \(\pi-2^{d}-i\) do
    for \(j=i+2^{d}+1\) to \(n\) do
```



```
    \(K_{i j}^{d}=k^{\prime}\);
    endfor
```

$$
\begin{aligned}
& \text { endfor } \\
& \text { endfor } \\
& \text { construct } L A^{-} \text {from } K_{i, ~}^{\text {d }}
\end{aligned}
$$

In the basis step, $E_{i j}$ is computed by calculating the distances from the points P_{k}, $i<k<j$ to the line passing through p_{1} and p_{j}, and taking their maximum. $K_{i, j}^{\prime d}$ is needed to recursively construct the optimal piecewise linear approximation once $E_{\text {on }}^{m}$ is computed. Note the recursive relation $L A^{*}\left(\bar{C}^{\prime}, p_{i}, p_{3}, 2^{d}\right)=L^{-}\left(\dot{C}, p_{1}, p_{K_{i-1}^{\prime}}, 2^{d-1}\right) U$ $L A^{-}\left(\bar{C}, p_{K^{\prime},}, p_{j}, 2^{d-1}\right)$.

5.2.2 Time and Space Complexily

Since $E_{i j}^{\prime}$ is computed in $O(j-i)$ time, the basis step requires $O\left(\sum_{m 0}^{n-1} \sum_{j=i+1}^{n}(j-\right.$ i) $)=O\left(n^{3}\right)$ time. Similarly, $E_{i j}^{\alpha^{4}}$ can be computed in $O(j-i)$ time. So, the inductive step needs $O\left(n^{3} \log m\right)$ time. Also, $L A^{*}$ can be constructed in $O(m)$ time. These three time bounds are combined into $O\left(n^{J} \log m\right)$.

The algorithm needs $O\left(n^{2}\right)$ space (or storing a table for $E_{i j}^{2 d}$. Also, $O\left(n^{2} \log m\right)$ space is required to save $K_{i, 1}^{d} d=1,2, \cdots, i \log m$. Hence, the space complexity is $O\left(n^{2} \log m\right)$.
5.2.3 An Agorithan for Arbitrary m

In the algorithm $D Y N A M / C, I$ in E_{i}^{\prime}, is doubled in each step. We can imagine a computation tree for this recursive computation where its root has value m, and cach node with value x has two cliildren with values $\frac{E}{3}$. The nodes of any path from a leaf to a rool have values, $1,2,2^{3}, 2^{3}, \cdots, m$, and we can view $D Y N A M / S C$ as traversal of the path from a leaf to a rool computing, by merging iwo children, $E_{\text {, }}^{t}$, where l is a value of a node.

When m is not a power of 2 , we can also think of an imaginary computation tree which is constructed as collowing. First, m is a root of the tree. The root has two clitdren with values, m^{\prime} and $m-m^{\prime}$ where m^{\prime} is the largest power of 2 less than m.

Then, a complete subtree for m^{\prime} is built as when m^{\prime} is a power of 2 , and $m-m^{\prime}$ is divided in the same way as m was. In this tree, there are two different types of paths from a leaf to a root. Оne is a power path of nodes whose valises are powers of 2 , and the other is a nonpower path of nodes whose values are not the powers of 2 . In this rase, those two paths should be traversed in parailel. By synchronizing the order of traversal of each path, and using two tables, one for eacli path, we can compute $E_{\mathrm{j}}^{\mathrm{m}}$.

For example, let $m=27$. The power path is $1 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow 16$, and the nonpower path is $1 \rightarrow 3 \rightarrow 11 \rightarrow 27$. First, E_{1}, is copied into each table. Then, E_{1}^{2}, in the power path is computed and is stored in its table. Since $E_{i j}^{2}$ and E_{i}^{3}, are availible, E_{i}^{3} in the nonpower path can be computed and is stored in its table. Then, $E_{i j}^{1}$ and $E_{i j}^{a}$ are computed in the power table. $E_{i s}^{y}$ and $E_{1 j}^{3}$ are used to compute $E_{1,}^{11}$ in the nonpower table. In this way, the tree is traversed to compute $E_{i,}^{27}$. It is not dificult to see that this modification only increasts boll time and space complexitics by constant factors.

5.3 A Heuristic Solution

Even though the algorithm $D Y N A M / C$ finds an optimal approximation, the lime and space requirement is excessive. As stated in Scelion 5.3.3.4, the algorithm is extremely slow even for modest n, for example, $n=400$. In many applications, it is more desirable to generate guickly a good, but not necessarily optimal, approximation. In this section, we dieseribe a heuristic algorithm which consists of two parts, computation of an initial approximation and iterative refinement of the approximation, Our heuristic algorithm is based upon the observation that the error of a segment is a function of the length of the curve seg. nient, and the total absolute change of the angles of tangent vectors along the eurve segment. The longer curve segment tends to have the larger segment error. Nso, the total angle change is a measure of low much a curve segment is bent. Ilowever, it is
illustrated in the next two subsections that neither measure alone is a good heuristic. Our heuristic in Section 5.3.3 is a weighted surn of theie two meavures, and this simple combined measure yiclds a good initial guess.

5.3.1 Curve length Subelivision

Assume we have a parametric representation $C(t)$ of a curve C. The first heuristic is to divide a curve segment into subsegments with the same curve length where the curve length is defined to be $\int_{a}^{b}\left\|\frac{d C(1)}{d r}\right\| d t$. This quantity is usually approxinnated by the chord length as following.

Given a digitized curve $\bar{C}(a, b, n)=\left\{a=p_{n}, p_{1}, \cdots, p_{n}=b\right\}$, consider a parametric curve $C(l)$ wlicre $C(0)=p_{0}$ and $C(l)=p_{n}$. Then,

$$
\begin{aligned}
\int_{0}^{1}\left\|\frac{d C(t)}{d t}\right\| d t & \approx \sum_{i=0}^{n-1}\left\|\frac{p_{1+1}-p_{i}}{d\left(p_{i}, p_{i+1}\right)}\right\| d\left(p_{1}, p_{1+1}\right) \\
& =\sum_{i=0}^{n-1}\left\|p_{i+1}-p_{1}\right\| \\
& =\sum_{i=0}^{n-1} d\left(p_{1}, p_{1+1}\right)
\end{aligned}
$$

where $d\left(p_{1}, p_{i+1}\right)$ is the Euclidean distance between two points p_{1} and p_{i+1} in $\mathbf{R}^{\mathbf{3}}$.
Algoritlim 5.3 (LENGTH)

$$
\begin{aligned}
& /^{\circ} \text { let } L_{1 c p}(i, j) \text { be } \sum_{k=i}^{\prime-1} d\left(p_{k}, p_{k+1}\right)^{*} / \\
& \text { compute total }=\sum_{k=0}^{n-1} d\left(p_{k}, p_{k+1}\right) ; \\
& \text { seglength }=\text { ceil }(\text { total } / m)_{;} \\
& 7_{0}=0 ; i=0 ; \\
& \text { while } i<m-I \text { do } \\
& \text { find the largest } j \text { such that } L_{\text {cep }}\left(f_{i}, j\right)<\text { seglength; } \\
& q_{i+1}=j ; i=i+i ; \\
& \text { endwhile } \\
& q_{m}=n ;
\end{aligned}
$$

Figure 5.2 (upper left) indicates that this algorithm produces a $L A$ which approximates \bar{C} quite well in flat regions of a curve, and poorly in bighly eurved fegions.

5.3.2 Spherieal Image Subdivision

Consider a curve $C(s)$ with an are lengili paranteter s [41, 19]. When all unit tangent veelors $T(s)$ of $C(s)$ are moved to the origin, their end points will describe a curve on the unit sphere. This curve is called the splecrical image or splerical indicatrix of $C(s)$. Given a curve segment, the length of the corresponding spherical image implies how much the unit tangent vector changea its direetion along the curve segnient. Hence, it provides tis with a measure of the degree to which a curve segment is bent. It is casily shown that the curvature $\mathrm{s}(\mathrm{s})$ is equal to the ratio of the are lenglt of the spherical image, and the are iength of $C(s)$. So, the length of the spherical image corresponding to a curve segment $C(s):\left[0, \eta\right.$ is $\int_{0}^{1} \kappa(s) d s, \int_{0}^{1} \kappa(s) d s$ is sometimes called the total curvalure [49], while il also can mean the length of the Darboux vector [41], In practiec, this quantity must be approximated.

Given a digitized curve $\bar{C}(a, b, n)=\left\{a=p_{0}, p_{1}, \cdots, p_{n}=b\right\}$, consider all imaginary parametric curve $C(s)$ of arc length parameter s where $C(0)=p_{0}$ and $C(l)=p_{n-}$ At a point $p_{i 1} s \approx c l\left(p_{0}, p_{i}\right)$ such that $C(s)=p_{i}$ wherc $c l\left(p_{0}, p_{i}\right)=\sum_{j=0}^{i-1} d\left(p_{2,} p_{j+1}\right)$. Then, the curvature is approximated as follows :

$$
\begin{align*}
\kappa(s) & =\left\|\lim _{\delta,-0} \frac{T(s+\delta s)-T(s)}{\delta_{s}}\right\| \\
& \approx\left\|\frac{t_{i+1}-t_{i}}{d\left(p_{i,} P_{c+1}\right)}\right\| \tag{1}
\end{align*}
$$

where t_{i} is an approximated unit langent vector. (We will discuss how to get $t_{\text {, }}$ shorlly.) Then,

$$
\begin{aligned}
\int_{0}^{t} x(s) d s & \approx \sum_{i=0}^{n-1}\left\|\frac{t_{i+1}-t_{1}}{d\left(p_{i}, p_{i+1}\right)}\right\| d\left(p_{i}, p_{i+1}\right) \\
& =\sum_{i=0}^{n-1}\left\|t_{i+1}-t_{1}\right\| \\
& =\sum_{i=0}^{n-1} d\left(t_{i}, t_{1+1}\right)
\end{aligned}
$$

The simple foruand-differcnce approximation (1) to $\kappa(s)$ can be replaced by the
 approximation when the points are elose together. Integration can be also replaced by a betier ipproximation formula. See [19] for more numerical teelaniques.

In this second heuristic method, $\bar{C}(a, b, n)$ is subdivideal into $L f(\bar{C}, a, b, m)=$ $\left\{0=q_{0}, q_{1}, q_{2}, \cdots, q_{m}=n\right\}$ such that each subsegment has the same length of the splerical ittriage.

Algorithm 5.4 (IMAGE)

$$
\begin{aligned}
& \text { compute total }=\sum_{k=0}^{n-1} d\left(t_{k}, t_{k+1}\right) \text {; } \\
& \text { segind }=\text { ceil(tolal/m); } \\
& q_{0}=0 ; i=0 ; \\
& \text { while } i<m-1 \text { do } \\
& \text { find the laryest } j \text { such that } I_{\text {sep }}\left(q_{i}, j\right)<\text { segind; } \\
& \sigma_{i+1}=j ; i=i+1 ; \\
& \eta_{\mathrm{m}}=\mathrm{n}_{\mathrm{i}}
\end{aligned}
$$

The quantity $l_{\text {seg }}\left(q_{i}, q_{j}\right)$ is an approximating measure of the lengll of the spherical image of the segment from $p_{q_{1}}$ to $p_{\sigma_{i+1}}$, that is, $I_{\text {orp }}\left(q_{11} q_{j}\right)$ is the total absolute clange in the angles of the tangent vectors. Hence, this algorithm is sensitive to ligh curvalure. In Figure 5.2 (upper right), we can see $/ M A G E$ returns a $L A$ whicli approximates \bar{C} poorly in lial portions of a curve, and very well in highly curved portions.

In the above algorithm, tangent vector information is used to subdivide a curve. If the digitized space curve has been generated from equations, say a parametric equation or two implicit equations, the tangent vector at caclt sample point can be computed directly from thern. When instead a digitizel curve hias been given in terntis of a sequence of points, or direct compulation of tangent vectors from given equations is expensive, the langent vector t_{k} to a curve C at p_{k} still can be approxinuand by
averaging the directions of the neighboring lines of p_{k} in \bar{C}. In our implenkentation the tangent vector is approximated by 5 successive points as follows [57]:

$$
t_{x}=\left(1-\frac{\alpha}{\alpha+\beta}\right) \cdot v_{1}+\frac{a}{\alpha+j} \cdot v_{1+1}
$$

where $a=\left\|v_{i-1} \times v_{i}\right\|_{1} \rho=\left\|v_{i+1} \times v_{i+2}\right\|, v_{i}=p_{1} \sim p_{i-1}$, and \times means a cross product of two vectors. In case the digitized curve is open, the Blssel conditions are applied for the tangents at the end points as [ollows [21]:

$$
\begin{aligned}
v_{0} & =2 v_{1}-v_{2}, & v_{-1} & =2 v_{0}-v_{1} \\
v_{n+1} & =2 v_{n}-v_{n-1}, & v_{n+2} & =2 v_{n+1}-v_{n} .
\end{aligned}
$$

5.3.3 Heuristic Subdivision

Now, we give a heuristic algorithm which eombines the two teeliniques. It consists of two sleps: generation of alt initial piecewise linear approximation $L-l_{0}$, and iterative refinement of the piecewise lincar approximation $L A_{k}$ to produce $L A_{k+1}$.

5.3.3.1 Computation of an Injtial Approximation: $L A_{0}$

An initial $L A_{0}$ is computed by an algorithm which is a combination of $L E N G T I$ and /MAGE,

The weight, α is a parameter which eontrols the relative emphasis between curve length and spherical innage, and is empirically chosen.

Algorithm 5.5 (INIT)

```
select some value of o \((0 \leq a \leq i) ;\)
compute total \(=\sum_{k=0}^{n-1}\left(a \cdot d\left(p_{k}, p_{k+1}\right)+(1-a) \cdot n\left(t_{k}, t_{k+1}\right)\right)\);
segsum \(=\) ceiI(folal/m);
\(q_{0}=0 ; i=0\);
while \(\mathrm{i}<\mathrm{m}-\mathrm{l}\) do
    find the largest \(;\) such that \(a \cdot L_{\text {seg }}\left(g_{i}, j\right)+(1-\alpha) \cdot I_{\text {seg }}\left(f_{i}, j\right)<\) segsum;
```

$$
q_{i+1}=j ; i=i+1 ;
$$

endwhile

$q_{m}=n ;$

See Figure 5.2 (bothom lert).

5.3.3.2 Tlerative Refinement of Approximations: $L A_{k}$

The hybrid algorithm /NIT generally produces a good piecewise linear approximation. The next step is to diffuse errors iteratively in order to refine the initial approximation. Note that each segment is made of a sequence of consentive points of a digitized curve, and it is approximated by a line connecting its end points. Usu. ally, the error of a segment decreases is either of its end points is assigned to its neighboring segment. Hence, the basic idea in the following iterative algorithm is to move one of the end points of a segment with larger error to its neighboring segnaent with less error, expecting a decrease of the total errar of the new $L \mathcal{L}$. In the $k i h$ step of the following algorithm $I T E R$, each segment of $L A_{\mathbf{k}}$ is examined, diflusing, if possible, its error to one of its neighbors. $L A_{\boldsymbol{k}}$ tends to quickly converge to a minimal $L A$ which is a local minimum. See Figure 5.2 (bottom right) and Figure 5.3.

Algorithm 5.6 (ITER)
compule $L A_{0}$ from INIT;
$k=0 ;$
do until (salisfied)
compute errors of segments in $L, A_{k i}$
aurmax $=E\left(L A_{k}(\vec{C}, a, b, m)\right.$;
for $i=0$ to $m-1$ do
if the error of $i-$ th segment is larger than that of either of its neighboring segments
then move the i-th segment's end points to the neightor

only if this change does not resull in segment errors

larger than curmar:
endif
endfor
$L A_{k+1}=L A_{i}$
enddo

5.3.3.3 Time and Space Complexity

First, $O(n)$ time is needed to approximate the tangent vector at each point. The aigorithm $/ N I T$ needs to scan the points and tangent vectors 10 compute $L_{\text {ieg }}$ and $I_{\text {seg }}$ first, and then $L_{\text {aeg }}$ and $I_{r e g}$ are scanned to divide the digitized cirve. Hence, it tiakes $O(n)$ time. Now, cousider the algorithm /TER. First, the segment errors of $L A_{k}$ are compuled in $O(n)$ time. In the for loop, eacli segment and its two neighbors are examined; hence, each segment is examined twice. Since the segment error must be computed for each segment, the for loop requirea $O(n)$ compulation. Therefore, ITER takes $O\left(N_{\text {iter }} n\right)$ time where $N_{\text {iter }}$ is the number of iterations. So, the time complexity of the heuristic algorithm is $O\left(N_{\text {iter }} n\right)$, and it is easy to see $O(n)$ space is sufficient for storing inpul data and intermediate data.

5.3.3.4 Performanice

We have implemented both the optimal and heuristic algorithms on a Sun it workstation and a Personal Iris workstation, experimented with lest data. ${ }^{a}$

1. Figure 5.2 : Folium of Decartes
(s) quation : $C(t)=\left(\frac{y^{1}}{1+r^{2}}, \frac{3 y^{4}}{y^{2}+T^{2}}, 0\right)$ or $\left(f(x, y, z)=x^{3}-3 x v+y^{3}, g(x, y, z)=z\right)$
(b) $n=109, m=20$
2. Figure 5.3 : a lluman Profile and a Goblet
(a) Pointa were gencrated from 12 rational Dezier curves in [57], ond then alighty tioturbed.
(b) (profile) $n=169, m=20$
(c) (goblct) $n=237, m=20$

Tables 5.1, 5.2, 5.3, and 5.4 show their performance for selected test data The integer in parentheses is the number of iterations needed to arrive at the local minimum. The botlon row ($L A_{k} / L A^{-}$) of each table indicates the performance of our heuristic algorithrn, and it is observed that the optimal solution is approximaterl reasonably well. The program lor the heuristie algorithm compules the approximate solution quickly (imnediately or in a [ew seconds depending on how many iterntions are needed.) On the other hand, it takes about 45 minutes to compute the optimal solution for the $(n=404, m=64)$ exarnple of Table 5.3.

5.3.3.5 The Center of Curvature

We now briefly consider the following variant of the piceewise linear approximation problem : "find i $L A(C, a, b, m)$ such that $E(L A)<6$ for a given bound c and m is minnimized." Even though our heuristic algorithm was invented for an arbitrary number of subsegments, we can use it for dividing a segment into 2 subsegments. One simple algorithm would be to reeursively divide a curve segnent until the errer in each subsegment is less than e.

If a curve segment is to be divided into only two subsegments, the notion of the center ofecurvalise can be npplied. As before, assume we have a parametric representation $C(s)$ of a curve C, where s is an are length parameter, and $\kappa(s)$ is its curvature. Consider a curve segment defined by an interval [0,1]. Then the 3. Figure 5.4 : A Four Lenved Rose
(a) equation : $\left(f(x, y, z)=x^{4}+3 x^{4} y^{2}-4 x^{2} y^{2}+3 x^{2} y^{4}+y^{6}, g(x, y, i)=\Rightarrow\right)$
(b) $n=400, m=0.1$
4. Figure 5.5 : A Nonplanat Quarlic Curve
(b) equation : $\left(f(x, y, z)=30 z^{2}+81 y^{2}+9 z^{2}-324, g(x, y, y)=x^{2}+y^{2}-3.81\right)$
(b) $n=404, m=32$
5. Figure 5.6 : A Nonplanar Sextic Curve
(n) equation: $\left(f(x, y, z)=y^{3}-x^{2}-x^{3}, g(z, p, r)=z-x^{2}+x-2\right)$
(b) $n=234, m=20$
santor ofcuryalure, defined by $c_{n}=\int_{0}^{1} s \kappa(s) d s / \int_{0}^{t} \kappa(s) d s$, can le used as a heuristic that dividrs a curve segment $C(s):\left[0, \eta\right.$ into two subsegenents $C(s):\left[0, c_{n}\right]$ and $C(s):\left\{c_{n}, 1\right]$.

Again, c_{n} heeds to be approximated. For a digitized curve $\bar{C}(a, b, \pi)=\{a=$ $\left.\mu_{0}, p_{1}, \cdots, p_{n}=b\right\}$, consider an imaginary paranactric curve $C(s)$ of are lengli, paraneter s where $C(0)=p_{0}$ and $C(1)=p_{n}$. Then, at a point $p_{1}, s \approx c l\left(p_{0}, p_{i}\right)$ such that $C(s)=p_{i}$, where $e l\left(p_{0}, p_{i}\right)=\sum_{j=0}^{i \sim 1} d\left(p_{j}, p_{j+1}\right)$. Together with the approximation of the denominator given before, the following expression results in an approximation of c_{n} :

$$
\begin{aligned}
\int_{0}^{1} s \kappa(s) d s & \approx \sum_{i=0}^{n-1} c l\left(p_{0}, p_{1}\right)\left\|\frac{t_{1+1}-t_{1}}{d\left(p_{n}, p_{i+1}\right)}\right\| d\left(p_{i}, p_{1+1}\right) \\
& =\sum_{i=0}^{n-1} c l\left(p_{0}, p_{i}\right)\left\|t_{i+1}-t_{i}\right\| \\
& =\sum_{i=0}^{n-1} c l\left(p_{0,} p_{i}\right) d\left(t_{1}, t_{1+1}\right)
\end{aligned}
$$

5.-1 Applications

5.1.1 Adaptive Display of Space Curve Scgments

Our heuristic algorithm is well suited to producing a piecewise linear approximation of a space curve segment given in paramelric or implicit form. First, the curve segment is densely sampled, and then the linear approximation algorithm filters the sampled points, producing a good approximation to the curve segment. Points on a parametric curve are easily generaled. A curve represented by two implicit surfaces or an implicit surface and a parametric surface, ean be traced using a surface intersection algorithm [7]. The space curve tracing algorithm is fist when the degrees of curves are in a reasonable range and there are no singular points along the eurve segment. As seen clearly in the examples, a small number of line segments, adaptively filtered, can approximate a curve segment well, resulting in fast display. Figure 5.2 and 5.1 are two examples of planar elirves, and Figure 5.5 and 5.6 are examples of nonplanar space eurves.

5.4.2 Adaptive Display of Implicil Surface Patches

In Section 4.l.5, we showed how our heuristic algorithan conld be used to generate adaptive polygonizations of implicit triangular quintic patches in the lopep of placing more triangles in the highly eurved portions. Figure 5.7 is another example of the adaptive polygonizations of a triangular patch of a quartic algebraic surface $\int(x, y, z)=0.01853292 z^{4}-1.14809166 y^{2} z^{1}-1.14809166 x^{2} z^{2}+0.99982830 z^{2}-$ $1.16662458 y^{4}-1.14809166 x^{2} y^{2}+2.1849858 y^{2}+0.01853202 x^{4}+0.99982830 x^{2}-$ 0.72183450 .

5.4.3 Construction o! Binary Space Partitioning Trees

The Binary Space Parlitioning (BSP) tree has been shown to provide an eltec. tive representation of polyhedra through the use of spatial subdivision, and is an allernative to the lopologically based B-reps. It represents a recursive, bierarchical partitioning, or subdivision, of d dimensional space. It is most casily understood as a process which takea a subspace and partitions it by any hyperplane that intersects the subspace's interior. This produces two new subspaees that can be partitioned further.

An example of a BSP tree in 2D can be formed by using lines to recursively partition the plane. Figure 5.1(a) shows a BSP tree induced partitioning of the plane and (b) shows the corresponding binary tree. The rool node represents the entire plane. A binary partitioning of the plane is formed by the line labeled u, resulting in a negative halispace and a positive halfopace. These two liailspaces are represented by the lefl and right chiddren of the root, respectively. A binary partitianing of each halispace may then be performed, is in the ligure, and so on recursively. When subdivision terminates, the lenf node will correspond to an unpartitioned region. called a cell.

The priniary use of BSP trees to date has been to represent polytoper. This is accomplished by simply associating with each cell of the reee a single boolean atribute in or phlt. If, in Figure 5.1, we choose cells I and 5 to be ill cells, and the rest to be

Figure 5.1 Partitioning of the Plane (a), and its BSP Tree (b)
out cells, we will have delermined a concave polygon o! six sides. This method, while coneeptually very simple, is capable of repreaenting the entire domain of polytopes, including unbounded and nommanifold varieties. Moreover, the algorithms that use the BSP tree representation of space are simple and uniform over the entire domain. This is becauge the algorithms only operate on the tree one node at a time and so are insensitive to the complexity of the tree.

A number of BSP tree algorithons are known, including affine transformations, set operations, and rendering [48]. The computational complexity of these algorithms depends upon the shape and size of each tree. For example, consider point classification. The tree is simply iraversed, and at euch node the location of the point with respeet to the node's lyperplane delermines whether to lake the left or riglt branch; this continues until a leal is reached. The cost of this is the length of the path taken. Now, if this point is chosen from a uniform distribution of points over some sample space of volume v, then for any cell c with volume v_{c} at tree depth d_{s}, the probability p_{c} of reaching c is simply $\frac{v_{c}}{v}$ and the cost is d_{c}. So an optirnal expected case BSP tree for point chassification would be a trec for which the sum of $p_{c} d_{c}$ over all c is minimized. If the emberiding space is one dimensional, then this is the classic problem of constructing an optimal binary search tree; a problem solved by dynamic programming.

The essential idea here is that the largest eells should have the shertest pathe and smallest celis the longest. For exampie, satisfying this objective function globally gencrate bounding volumes as a by-product: if a polytope's volurne is somewhat smaller than the sample space's volume, construeling a bounding volume with the first hyperplanes of the tree reautis in large oll eclis with very' small depths. Now, in the general case in which the query object q has extent, i.e. is not a point, then q will lie in more than one cell, and a subgraph of the tree will be visited. Tluts the cost of the query is the number of nodes in this subgraph. This leads to a more complicated objective function, which we do not intend to examine here, but the intuition taken from point classificalion remains valid.

We use these ideas in conjunction with the linear approximation inethorls, described before, to build good expected ease trees for solids defined as surfaces of revolution (that is, we expect these trees to be good). First, we ortlogonally project the eurve to be revolved onto the axis of rotation, which is taten to be the vertical -axis. We then partition space with horizonlal planes where each plane contains one of the linearly approximated eurve points. The BSP tree representing this is a nearly balanced tree, and each cell will contain the surface resulting from the revolution of a single curve segment.

Now the revalution of the curve need nol be along a circle, but can be anty convex path for which we have construeted a linear approximation. Thus each face of the solid will be a quadrilateral in which the upper and lower edges lie in consecutive horizontal partitioning planes, are parailel, and are instances of a single path edge at some distance from the axis of revolution that is determined by the revolved curve, Now the BSP subtree for the surface between horizontal planes is oblained by recursively partitioning the path of revolution to form a nearly balanced tree

The method we use is one that in 2D generates for any n-sided convex polygon a corresponding nearly balanced BSP trec of size $O(n)$ and height $O(\log n)$. The path curve is firsi divided into four sub-curves, one for cach quadrant, and a hyperplatie containing the first and last points is constructed. Dy convexity; a sub-curve lics
entirely in one halispace of its corresponding hyperplane, and we call that halfspace the oulside halfspace and the opposite halfspace the inside halispace. The intersection of the four inside halfopaces is entirely inside the polygon, and so forms an in cell of the BSP tree. We then construet independently a tree for each silbeurve, recursively.

We first choose the median segrnent of the subeurve and partition by the plane of the corresponding face. Since the path curve is convex, all of the faces will be in the inside hallspace of this plane and an out cell can lec created in its outside lanlspace. Now each nonhorizonal edge of the median face is used to define a partitioning plane which also contains the first/last points of the subcurve. All of the faces corresponding to this subcurves' edges are in the outside thalispace, and so an in cell can be created in its inside halfspace. We have now bisected the subcurve by these planes which contain no faces and ean recurse on them. The recursion continues until only a small number of faces/segments remain, say 6 , at which point only face planes are user for partitioning, since the cost of the non-face partitioning planes out-weights their contribution to balancing the tree. The result for a paith curve of in edges is a nearly balanced tree of size $<J_{n}$ and height $O(\log n)$.

In some sense, we have constructed a tree that is the cross produet of the path curve and the revolved curve: we build a tree of horizontal planes that partitions the revolved curve, and then we form alices of the object by constructing a tree for each segment of the path curve. If the revolved curve lias m segments, then the number of faces is $n m$ and the BSP tree is of size $O(n m)$ and height $O(\log n m)$ $=O(\log n+\log m)$.

The object in Figure 5.8 was made by rolating the curve in Figure 5.3 around an ellipse. Its BSP tree is fairly well-balanced. The goblet in Figure 5.9 and 5.10 were made by eonstructing two ohjects using the curve in Figure 5.3, and then applying a difference operation to carve a hole in the goblet. The BSP trees in Figure 5.9 were obtained after applying the diference operation, and then a union operation with the ball. It is observed that set operations on well-balaneed BSP trees resuit in
weil-balancel trees. The aet operation and display were done in SCUI, Pr [[17], which is an interactive modeling system baset on BSP trees.

5.5 Sumniar

In this chapter, we discussed the problem of piecewise linear approximation of a densely sumpled digitized 3D curve- Two algorithms were presented. The algorithm $D Y N A M I C$ finds the optimal linear npproximation at the ligh experise of $O\left(n^{3} \log m\right)$ time and $O\left(n^{2} \log m\right)$ space. It would be interesting to see if these time and space bounds can be redueed. The algorithm, made of INIT and ITER, computes a heuristic linear approximation, based on the fundamental notions of curve length and spherical image or a space curve. This heuristic algorithm finds a good linear approximation quickly. We also showed that our heuristic algorithm can be applied to display of space curves and implieit surfaces, and to adaptive construction of well-balaneed binary space partitioning trees of objects created by revolution.

Figure 5.2 Folium of Descartes

Figure 5.3 A Human Profile and a Goblet

Figure 5.4 A Four Leaved Rose

Figure 5.5 A Nonplanar Quarlic Curve

Figure 5.6 A Nouplanar Sextic Curve

Figure 5.7 A Quartic Surface Patels

Figure 5.8 A Human Profile Rotated

Figure 5.9 A Goblet in BSPT

Figure 5.10 Anoller Goblet in BSP'T

Table 5.1 Folium of Descartes

π	109				
m	1	8	16	32	0.1
$L A_{0}$	5.256190-1	2.21325 -1	$8.09768 \mathrm{c} \cdot 2$	$2.66073 \mathrm{c}-2$	8.98677e. 3
$L A_{4}$	$4.02838 \mathrm{c}-1$	1.12507e-1	3,08774c-2	1.23695-2	3.76137c-3
(k)	(5)	(9)	(17)	(16)	(14)
$L A^{-}$	$4.02838 \mathrm{e}-1$	1.12507e-1	$3.04525 \mathrm{c}-2$	8.94592c-3	$2.76188 \mathrm{e}-3$
$L A_{\text {k }} / L A^{*}$	1.000	1.000	1.014	1,393	1.363

Table 5.2 The Goblet Gurve

n	237				
m	8	16	32	64	
$L A_{\mathrm{D}}$	$1.03375 \mathrm{e}-1$	$6.11455 \mathrm{e}-2$	$2.95784 \mathrm{e}-2$	$8.24535 \mathrm{c}-3$	
$L A_{k}$	$6.077 .99 \mathrm{c}-2$	$2.90067 \mathrm{e}-2$	$7.76577 \mathrm{e}-3$	$5.63440 \mathrm{e}-3$	
$(\mathrm{~K})$	(12)	(17)	(20)	(5)	
$L A^{-}$	$5.87190 \mathrm{e}-2$	$2.06813 \mathrm{e}-2$	$5.12219 \mathrm{e} \cdot 3$	$1.75973 \mathrm{e}-3$	
$L A_{k} / L A^{-}$	1.035	1.403	1.516	3.202	

Table 5.3 The Nonplanar Quartic Curve

n		404				
m	4	8	16	32	64	
$L A_{0}$	$2.01399 \mathrm{c}-0$	$3.63921 \mathrm{e}-1$	$9.664-14 \mathrm{e}-2$	$2.67485 \mathrm{c}-2$	$8.39998 \mathrm{c}-3$	
$L A_{k}$	$1.86220 \mathrm{c}-0$	$2.26435 \mathrm{c}-1$	$7.78874 \mathrm{e}-2$	$2.24510 \mathrm{c}-2$	$6.95709 \mathrm{c}-3$	
(k)	(4)	(32)	(16)	(10)	(8)	
$L A^{-}$	$1.85530 \mathrm{c}-0$	$2.26135 \mathrm{c}-1$	$7.60669 \mathrm{e}-2$	$2.05613 \mathrm{c}-2$	$5.6963 \mathrm{c}-3$	
$L A_{k} / L A^{*}$	1.004	1.000	1.024	1.092	1.227	

Table 5.4 The Nonplanar Sextic Curve

n	234				
m	4	8	16	32	64
$L A_{0}$	7.2421/4e-1	$1.72242 \mathrm{e}-1$	5.32029e-2	1.64083c.2	1.6016Se-2
$L A_{4}$	$4.81844 \mathrm{c}-1$	1.34728e-1	$3.69400 \mathrm{c} \cdot 2$	$1.53000 \mathrm{e}-2$	3.80315c-3
(k)	(15)	(15)	(13)	(2)	(11)
$L A^{-}$	$4.818 .44 \mathrm{c}-1$	$1.34728 \mathrm{c}-1$	3.65433e-2	1.05332c-2	3.1627 sc -3
$L A_{4} / L A^{*}$	1.000	1.000	1.011	1.453	1.262

6. CONCLUSION

In this thesis, we lave investigated the possibilities of implicitily defined algebraie surfaces as tools of CAGD. In particular, the work focused to the classes of algebraic surfaces having moderately low degrees. In Chapter 2, we presented an algorithmic characterization, called Ilermite interpolation for algebraic surfaces, that finds a class or family of algebraic surfaces of a fixed degree which satisfy given geometric specifications. This algorithm, computing algebraic surfaces meeting with tangent plane comsinuity, provided a primary tool with the remaining work.

In Chapter 3, the well known least squarea approximation nethod was applied to help select an instance surface from a family coniputed by our Ifermite interpolation algorithm. With flermite interpolation and least squares npproximation, combined with a proper normalization, the geometric problem of finding algebraic surfacea was translated into a constrained minimization problern which can be solved efficiently. We also discussed how geometric information, related to coefficients of a polynomiai in barycentric coordinates, can be utilized in interactively controlling the shape of algebraie surfaces in a compuled furnily with geometric intuition.

The ciass of quintic algebraic surfaces wis explored to smooth a convex polyhedron with triangular faces in Chapter 4. In our scheme, the edges of a given polyhedron were replaced by conic curves with associaled normal vectors such that the eurves and normal vectors agree with the verlex and normal conditions of the polyhedron. Then, the three conics for each face were 気eshed by a quintic surface. The degrees of freedom in ehoosing conics were used to control the shape of the wire frame, and hence the Hermite interpolating aigebraie surface patches. Then, we considered the open problem of smoolling all arbitrary polyhedron with quintic algebraic starface
patches. One possibility was to subdivide a fhee of a polyliedron iteratively until some condition on normal vectors is met.

In Chapter 5, we disetssed the problem of piecewise linear approximation of a densely sampled space curve. Two algorithons were presented. One finds an optimal linear approximation at a high expense. The other computes a lieuristic linear approximation, based on the fundamental notions of curve iength and spherical image of a space curve. The heuristic algorithm turned out to find it good linear approximation quickly. The heuristic algorithm was used in polygonizing the triangular algelaraic surface patclies computed in Chapter it.

Our algebraic surface fitting algorithms have been implemented, and ineluded in the geometric modeling system GANITII. GANITII [I2] is an X Window Sy'stem based algebraic geometry toolkil that manipulates algebraic equations. It has heen developed to solve systems of algebraic equations and visualize their multiple solutions. Applications of this toolkit include curve and surface display; eurve-curse inlersections, surface-surface intersections, curve-surlace intersections, and etc. For surface fitting, GANITH takes as input the degree of a filting surface and a coliection of data points and space curves with or withoul associated normal directions. Then, an algebraic surface that fits the given data is compuled througlt the previously described computational model, and when such a surface exists, it is interactively rendered in a display bufter. (See Figure 6.1.) For convex polyhedron smoollīng, GANITH takes as input a polyhedron and a ρ value, and computes quadric wires, and then algebraic surfaces that smooll the polyhedron. Then, polygonized triangular patehes are rendered interactively in a display buffer. The capabilities of graphics hardwares such as Hewlett-Packard 9000/370 SRX and SGI IRIS workstations can be used through our XS library which interfaces between the X programs and the IIP Starbase and SGI GLe graplics libraries.

We have seen that implieitly represented algebraic surfaces are very natural for interpolation and approximation. However, there are some difficult problents to be solved before algebraic surfaces can be used effectively for geomelric modeling. First.
it is not always easy to make sure that input goints and curves lic on one real component of an algebraic surface. One licuristic, which can be used, is to include auxiliary points and curves to bridge the gap between separate surface components. Arother approach is proposed in [\{l $]$ where a dislance fit is used to guarantee a single sheet of a surface inside a letraliedran for densely seatseredi point data. Ilmwever, the duestion remains open for proslucing conditions on the coefficients of the fitting surfaces, which would ensure that all given points and curves lic on the same continuous real surface component.

Another unfavorable fact of algebraic surfaces is singularity. Singularities of al gebraic surfaces oceur in the forms of sharp points, sharp edges, or self-intersections, and tangent planes to surfaces are not defined at singular points. While, in gencral, singularities mus: be avoided in surface modeling, they can be useful in some situation. For instance, the quartic algebraic surface (the dark patch) in Figure 2,7 is singular at the four points where the four cylinders meet pairwise while the surface is regular inside the patch. In fact, singularities are necessary in this case because no regular patcli can smoollily join the cylinders. In Section 1.2 . singularities were also useful in Hermite interpolating three artifieially constructed conic curves whose associated normals do not satisfy the compatibility condition at the three intersection points. However, it is highly desirable to be able to control singularities locally on a pecific portion of an algebraic surface, although we do not know how yet-

In this work, we have proposed a direction of exploration of moderitely low degree algebraic surfaces as tools in geometric modeling systems, but this is the only first step toward construction of a practical algebraic CAGD system with a complex way of creating and manipulating geometric models of plysical objects with wrious gcometries. Much work should now be undertaken.

Figure 6. 1 The Algebraic Geonctry Toolkil GANITl

bibliograpiy

[1] S.S. Abhyankar. Algebraic Space Curves. Univ, of Montreal, 1970. Montreal Lecture Notes.
[2] A.V. Aho, J.E. Hopcrofl, and J.D. UJlman, The Design and Analysys of Computer Algorithms. Addison-Wesley, Readings, Mass.. 1974.
[3] A. albano. Representation of digitized contours in terms of conic arcs and straight line segments. Computer Graphics and Image Processing, 3:23-33, 1974.
[1] E.L. Allgower and S. Gnutzmann. Polygonal meshes for implicilly defined surfaces. Manuscripl, Nov, 1989.
[5] D. Arnon, G. Collins, and S. McCallurn. Cylindrical aigebraic decomposition l: The basic algorithm. Siam J. Computing, 13(-1):865-889, 1984.
[6] C. Bajaj. Geometric modeling with algebraic surfaces. In D. Handscomb, cditor, The Mathematics of Surfaces III, pages 3-48. Oxford Univ. Press, 1988.
[7] C. Bajaj, C. IIoffmann, J. Hoperoft, and R. Lynch. Tracing surface inletsections. Computer Aided Geometric Design, 5:285-307, 1988.
[8] C. Bajaj and I. lhm. Hermite interpolation using real algebraic surface. In Proceedings of the Fith Annual ACM Symposium on Computational Geometry, pages 94-103, Saarbbruchen, West Germany, I089.
[9] C. Bajaj and I. Thm, Algebraic surface design with Fermite interpolation. Technieal Reporl CSD-TR.939, Computer Sci., Purdue Univ., Jan. 1990 . Revised in Dec. 1990. (To appear in ACM Transactions on Graphics).
[10] C. Bajaj and I. lhm. C^{1} smoothing of polyhedra with implicil surface patches. Manuscript, 1991.
[11] C. Bajaj, I. lhm. and J. Warren. Higher order interpolation and least squares approximation using implicit algebraic surfaces. Technical Reporı 91-035, Computer Sci., Purdue Univ., April 1991.
[12] C. Bajaj and A. Royappa. The GANITH algebraic geometry toolkit. In DISCO '90, Capri, Italy, 1990. (Extended Abstracl).
[13] R. Barnhill. Surfaces in connputer aided geometric design: A survey will new results. Computer Aided Geomelrie Dcsign, 2:1-17, 1985.
[14] W. Böhm, G. Farin, and J. Kahmann. A survey of curve and surface methods in CAGD. Computer Aided Geometric Design, $1: 1$-60, 198s.
[15] R. Biggerstaff. Three variations in dental arcil form estimated by a quadratic equation. Journal of Dental Rescarch, $51: 1509,19 \bar{T}$?
[16] J. Bloomenthal. Polygonization of implicit surfiaces. Computer Aided Cicometric Design, 5:341-355, 1985.
[17] F.L. Bookstein. Filling conic sections to seatlered dati. Computer Graphies and /mage Processing, 9:56-71, 1979.
[18] M. P. Do Carmo. Differential Geometry of Curves and Surfaces. Englewood Clifs, New Jersey, 1970.
[19] S.D. Conte and C. JeBoor. Elementary Numerical Analysis: in Agarithmic Appronch. MeGraw-itill, New Y'ork, third edition, 1980.
[20] W. Dahnen, Srooth piecewise gualratic surfaces. In T. Lycle and E. Schumaker, editors, Mathematical Methods in Computer dided Geometric Design. pages IS1-193. Academic Press, Boston, 1989.
[2]] C. deBoor. A Practical Guide to Splines. Springer-Verlag, New York, 1978.
[22] 3.G. Dunham. Optimum uniform piecewise linear approxination of planar curves. IEEE Transanctions on Patlern Anolysis and Minchine Intelligence, 8:6775, Jan. 1985.
[23] S. Mann et al. A survey of parametric scatered data fiting. Manuseript, 1991.
[24] C. Fahn, J. Wang, and J. Lee. An athptive reduction procedure for the piccewise linear approximation of digitizel curves. IEEE Transanctions on Paltern Analysis and Machine Intelligence, 11(0):967-973, Sep. 1980.
[25] G. Farin. Triangular Bernstein-bézier patches. Computer Alded (icometric DCsign, 3: $\mathbf{3} 3-127,1986$.
[20] T. Garrity and J. Warren. Geomelric continuily: Computer didel Geometric Design, 8:51-65, 1991.
[27] R. Gmanadesikin. Methods for Sintisfical Data Amilysis of Multirariate Observations. John Wiley \& Sons. 197̄.
[2s] R. N. Goldman. The role of surfiaces in solid modeling, In G. Parim, elitor, Geo. metric Modeling: Algarilhms and New Trends, pages 69-I0. SLiMM. Philaclelphia. 1987.
[29] G. Golub. Some modificd matrix eigenvalue problems. SIAM Revietr, 15(2):318334, 1973.
[30] G. Golub and R. Underwood. Stationary valiees of the ratio of quadratic forms aubject to linear eonstraints. Z. Agnew. Mfath. Phys., 21:318-326, 1970.
[31] G.E. Golub and C.F. Van Loan. Matrix Computation. The Johns Hopkins Univ. Pres, Baltimore, MD, 1983.
[32] B. Guo. Surface generation using implicit cubica, In N.M. Patrikalakis, editor, Seientific Visualization of Physical Phenomena, pages 485-503. Springer-Verlag, Tokyo, 1991.
(33) M. Hall and J. Warren. Adaptive polygonalization of implicilly defined surfaces. IEEE Computer Graphies ard Applications, page 33-42, November 1990.
[34] P. Hanrahan. Ray tracing algebraic aurfaces. Camputer Graphics, 17(3):83-90,
1983.
[35] C. HolTmann and J. Hoperoft. Quadratic blending surfaces. Computer Aided Design, 18(6):301-306, 1986.
[36] C. Holfmann and J. Hoperoft. The potential method for blending surfaces and comers. In G. Farin, editor, Geomelric Modeling : Algorithms and New Treads, pages 347-366. SIAM, Philadelpbia, 1987.

37] I. Thm and B. Naylor. Piecewise linear approximations of digitized apace curves with applications. In N.M. Patrikalakis, editor, Seientijic Visualization of Physical Phenomena, pages 545-569. Spriager.Verlag, Tokyo, 1991.
(38) If. Imai and M. Iri. Computational geometric methods for polygonal approximations of a cur ve. Computer Vision, Graphics and Image Processing, 36:31-41, 1986.
[39] N. Kehtarnavaz and R.J.P. deFigueiredo. A 3-D contour segmentation scheme based on curvalure and torsion. IEEE Transanctions on Paltern Analysis and Mfachine Intelligence, 10(5):707-713, Sep. 1988.
[40] M.T. Kosters. High-order implicit blending surfaces of low degree. Technical Report No. CS 9005, Depi. Math. Computer Sci., Groningen Univ., April 1990.
[41] E. Kreyszig. Differential Geometry. University of Toronto Press, 1950.
[42] E.T.Y. Lee. The rational Dézier representation for conics. In G. Farin, editor, Geomelric Modeling : Algorithms and Neto Trends, pages 3-19. SIAM, Plitadelphia, 1987.
[43] R. Lynch. Private communication.
[44] A. A. Mclkman and J. O'Rourke. On polygonal chain approximation. In G. T Toussaint, editor, Computational Mforphology, pages 87-95. North-llolland, i988.
[45] A. Middleditch and K. Sears. Blend surfacea for set theoretic volume modeling syatern. Computer Graphics, 19(3):161-170, 1985.
[1G] D. Moore and J. Warren, Approximation of dense seateered data using algebraic surfaces. Manuseript, 1991.
[47] B. Naylor. SCULPT : An interactive solid modeling tool. In Proc, of Graphics Interface, ITalifax, Nova Scotia, May 1990. Graphics Interface '90.
[48] B. Naylor, J. Amanatides, and W. Thibault. Merging bsp trees yields polyhedral sel operalions. Computer Graphics, 24(4), Aug. 1990.
[49] B. O'Neill. Elemeniary Differential Geometry. Academic Press, 1066,
[50] J.C. Owen and A.P. Rockwood. Blending surfaces in solid modeling. In G. Farin, editor, Geometric Mfodeling : Algorithms and New Trends, pages JG7-383. SIAM,
Philadelphia, 1997.

51] K. Paton. Conic sections in chromosone amalysis, Pattern Recognition, 3:39-51, 1970.

52] T. Pavlidis. Algorithms for Graphics and Image Processing, pages 281-297. Computer Sciences, New York, 1982.
[53] T. Pavlidis. Curve fitling with conic splines. ACMf Transactions an Graphics, 2(1):1-31, 1983.
[54] T. Pavlidis and S.L. Horowitz. Segmentation of plane curves. IEEE Transactions on Computers, c-23(8):860-870, Aug. 1974.
[55] Jörg Peters. Parametrizing singularly to enelose data points by a smooth para metric surince. To be presented in Graphics Interface 'gl, Calgary, Canada, June, 1991.
[56] Jorg Peters. Smooth interpolation of a mesh of curves. Constructive Appraximation, 7:221-246, 1991.
[57] L. Piegl. Interactive data interpolation by rational Bézier curves. IEEE Com puter Graphies and Applicotions, pages 45-58, July 1987.
[58] V. Pratl, Techniques for conic apline. Computer Graphics, 19(3):151-159, 1985
[59] V. Pratt. Dircet least squares fitling of algebraic surfaces. Computer Graphics 21(3):145-152, 1987.
[60] U. Ramer. An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing, 1:24i-256, 1972.
[61] Kı. Reumann and A.P.M. Wikern, Optimizing curve segmentation in computer graphics. In A. Gunther, B. Levrat, and II. Lipps, editors, Anternational Com. puier Symposium, pages 467-472. American Elsevier, New York, 1974.
[62] J. Roberge. A data reduction algorithm for planar curves. Computer lision, Graphics and Image Processing, 29:168-195, 1985.
[G3] A.D. De Rose. Geometrie Continuily : A Parametrization Independent Measure of Continuity for Compuler Aided Geometric Design. PhD thesis, Computer Seience, Univ. of California, Berkeley, 1985.
[64] G. Salmon. A Treatise on Conic Sections. Longmans, Green, and Co., London, third edition, 1896.
[65] P.D. Sampson. Fitting conie sections to very scattered data : An iterative refinement of the bookstein algorithm. Computer Graphics and Image Processing, 18:97-108, 1992.
[66] T.W. Sederberg. Piecewise algebraie surface patches. Compufer Aided Geometric Design, 2(1-3):53-59, 1985.
[67| T.W. Sederberg. Techniques for cubic algebraie surfaces. IEEE Computer Graphics and Applications, IO(5):12-21, Scpt. 1990.
[68] T.W. Sederberg. Techniques for cubic algebraic surfaces. IEEE Computer Graphics and Applications, 10(4):14-25, July 1990.
[69] T.W. Sederberg and A.K. Zundel. Scan line display of algebraic surfaces. Cornpuier Graphics, 23(3):147-156, 1989.
[70] J. Sklansky and V. Gonzalez. Fast polygonal approximation of digitized curvea, Pattern Recognition, 12:327-331, 1980.
[71] G. Strang. Linear Algebra and its Applications. Harcourt Brace Jovanovich, San Diego, third edition, 1989.
[72] G. T. Toussaint. On the complexity of approximating polygonal curves in the plane. In Proceedings of the IASTED International Symposium on Roboties and Automation, pagea 59-62, Lugano, Switzerland, 1985.
[73] R. Walker. Ngebrvic Curves. Springer Verlag, New York, 1978.
[74] K. Wail and P.E. Danielsson. A fast sequentia] method for polygonal approximation of digitized curves. Computer Vision, Graphics and /mage Processing.
28:220-227, 1984.
[75] J. Warren. On Algebraic Surfaces Afecting With Geometric Continuity. PhD thesis, Cornell University, 1986.
[76| J. Warren. Dlending algebraic surfaces. ACM/ Transactions on Graphics,
8(4):263-278, 1989. 8(4):263-278, 1989.
[77] C.M. Williams. An efficient algorithm for the piecewise linear approxination of planar curves. Computer Gruphies and Jmage Processing, 8:286-293, 1978.
[78] O. C. Zienkiewicz. The Finite Element Method. McGraw-1ill, New York, 1978.

VITA

Born in Seoul, Korea, on May 3, 1962, Insung Ilmenentered Seoul National University, Korea, in 1981. In 1985, he graduated Magna Cum Laude with a Dachelor of Science Degree in both Computer Science and Statistics. He studied Computer Science at Rutgers Uoiversily in New Brunswick, New Jersey, from 1985 to 1987, and reecived bis Master's Degree in Computer Science. In the fall of 1987, he became a Ph.D. atudent in the Department of Computer Sciences at Purdue University in West Lafayette, Iodiana, to pursue his doctorai study. During the summer of 1990 , he worked for ATET Bell Laboratoriea in Murray Hill, New Jersey, as a summer intern. He is a recipient of the Dong Shio Fellowship from Scoul National University (1983-1985), and llie David Ross Fellowship from Purdue University (1988-1989). His reararch inlerests include Computer Graphics and Computer Aided Geometric Deign.

[^0]: ${ }^{2}$ From the equation (2.6) we nee that $a(s, y, z$) must not be identically zero along C, for orherwise, $\nabla f=(0,0,0)$ far points slong C and would eontradict the fact that we chose n nontrivisl solution for the surface $S: f=0$ where ∇f is not identically sero.

[^1]: they were intended to benefit. These problems atise whin the given pointe ot curvea are mocothity intespolated, dut, lie on reparate real componente of the asme nonsingular, irredueible algebraic aurface.

[^2]:

[^3]: ${ }^{2}$ The geometric diatancea were conleulated by solving a $4 . b y-4$ aystem of nontincar equations derived using the Lagtange multiplier method.

[^4]: ${ }^{1}$ By \equiv, we mesn the points are the same, and the nommin vectore ate proportional.

[^5]: ${ }^{\mathbf{3}}$ This dependency geis more evident when conaideting the Idermite interpolation algorithm. In the algorithm in Subsection 2.J.2.L, if we always choose the intersection points for lie list L_{r} of each conic. three equationa are generated twice.

[^6]: Jgain, for each curve, we can choase point-normal pairs at the two end points. The resulting two linear equationa ihould be linearly dependent on the equations from the containment requirement.

[^7]: ${ }^{\text {An mentioned before, in most cases, the rank } r \text { of } M_{I} \text { is } 51 \text {. Hlowever, we use the variable } r ~}$ for the rank because it is posaible that there are more dependencies between boundnty curves and
 normal veetora, although the clinnecs are rare.

[^8]: ${ }^{\circ}$ Thenke to Jia Xun Yu for poiming me to this.

