Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1991

Decompositions of Polyhedra in Three Dimensions (Ph.D. Thesis)
Tamal Krishna Dey

Report Number:
91-056

Dey, Tamal Krishna, "Decompositions of Polyhedra in Three Dimensions (Ph.D. Thesis)" (1991).
Department of Computer Science Technical Reports. Paper 896.
https://docs.lib.purdue.edu/cstech/896

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

DECOMPOSITIONS OF POLYHEDRA
IN THREE DIMENSIONS

Tamal Krishna Dey

CSD-TR-91-056
August 1991

DECOMPOSITIONS OF POLYHEDRA IN THREE DIMENSIONS

A Thesis
Submitted to the Faculty

of

Purdue University

by

Tamal Krishna Dey

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 1991

This thesis is dedicated to my parents without whose sacrifice this thesis would have

been an impossibility.

i

-

ACKNOWLEDGMENTS

Many people helped in this thesis work directly and indirectly through their in-
sights, patience, intuition and moral support. ,

My advisor Chanderjit Bajaj provided the necessary directions when I was only a
beginner in the area of this thesis work. He took time to listen patiently to my ideas
(not so well formed sometimes) and gave proper directions. At times when things
went wrong, it was his moral support and encouragements which put me again on
the run.

[must acknowledge the support I got from Kokichi Sugihara when he was visiting
Purdue. Discussions with him were enlightening and he was always there to listen to
my ideas even at odd hours.

I'am thankful to Mikhail Atallah and John Rice for giving their many valuable
comments to my questions and their unconditional support on many occasions.

On a personal level, many friends both in the office and at home made my stay
at Purdue enjoyable. Special thanks go to Sanjiva Weerawarana, Vinod Anupam,
Neelam Jasuja, Malcom Fields, Rajeev Chowdhary who provided their friendship
and help on many occasions. I leel really lucky to have friends like Amitava, Sanjib,
Subhajit, Saurabh, Soumya whose unconditional support and company made my life
lot more easy and enjoyable. Finally, I thank the Department of Computer Science

at Purdue University for providing an excellent working environment.

LIST OF FIGURES

TABLE OF CONTENTS

ABSTRACT

1.

o

INTRODUCTION

1.1

1.2
1.3

1.4
1.5
1.6
1.7

Convex Decompositions
LLU Applications
1.1.2° Polygon Nesting
CS8G decompositions
Trangulations
1.3.1 Good Triangulations

Results

Introduction
Preliminaries
2.2.1 Useful Lemmas

2.3.1 Updateata Vertex _
2.3.2 Detecting the Parent of a Polygon-.
2.3.3 Degenerate Cases
2.3.4 The Algorithm
Robustness under Finite Precision Arithmetic
2.4.1 Assumptions and Finite Precision Computations
242 Good Vertex.
2.43 Procedure ANSC

2.44 The Algorithm

iv

3.1 Introduction
3.2 Preliminaries . . .
3.2.1 Notches . .
3.2.2 Data Structure
3.2.3 Some Definitions
3.2.4 Useful Lemmas
3.3 The Algorithm with Exact Arithmetic
3.3.1
3.3.2
3.3.3 Worst Case Complexity Analysis
3.4 Robustness under Finite Precision Arithmetic
3.4.1 Intersection & Incidence Tests
3.43 The Algorithm with Heuristics
3.4.4 [Experimental Results
3.5 Conclusions

Elimination of Special Notches and its Analysis

4.1 Intreduction
42 CSG Decomposition
42.1 UpperBound |
422 LowerBound
4.3 Triangulation _
43.1 CompleteCuts
+.3.2 Analysis of Complete Cuts
44 Conclusions L L
GOOD TRIANGULATIONS
51 Intreduction
5.2 Preliminaries
5.2.1 Characterizing Bad Tetrahedra
5.22 2D Algorithm
5.2.3 Geometric Lemmas
53 3D Algorithmo
5.3.1 Lower Bounds on Distances
5.3.2 Qualities of Tetrahedra
5333 Complexityo o

Page
31
32

32
33
34
35
37
38
39
41
48
49
G h)
56
62
63
66
66

69

69
7l
71
T2
74
T4
75
78

79
80
80
S2
84
55
37
89
06

5.5

6. CONCLUSIONS AND FUTURE STUDIES

6.1
6.2

BIBLIOGRAPHY

5.3.4 Implementation Issues
Robust Delaunay Triangulations
3.4.1 Topological Triangulations
5.4.2 Orientations
5.4.3 Properties of Topological Triangulations
5.4.4 Incremental Robust Delaunay Triangulation
5.4.5 The Algorithm with Exact Arithmetic
9.4.6 The Algorithm under Finite Precision Computations
3.4.7 Degree-2 robustness of DT-Robust
Conclusions

Contributions
Future Work

vi

Page

97

97

99
100
102
103
103
105
108
113

114

114
115

118

123

LIST OF FIGURES

Figure

i.1

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

3.12

A Peterson-style CSG decomposition of a polyhedron.

A triangulation of a polygon with Steiner points.

Polygon mesting.

An example where manifold property is not preserved

Generating new and old edges.

Superimposing a cut on the arrangement of notch line segments

Merging polygons to create @, from @,
Case(ii) of facet-plane classification.

Convex decomposition.

Convex decomposition. L

vii

o

14

16

20

22

Figure Page
4.1 Chazelle’s solid with two sets of notches. 72
4.2 Edge e causes mismatchon fyand f. 75
4.3 The facets in F; are hatched with dotted lines: facets in £} are hatched

o
(S

ot
Yl
=

(=1
p—
p—

(o]]
—
Q]

T
p—
()

with solid lines; facets in B} are not hatched. 76
Category(i) tetrahedra. _ 81
Category(ii) tetrahedra. 81
Category(iii) tetrahedra. 82
Poles and circles on asphere. 85
Class A tetrahedron. 90
Class B tetrahedron. 91
Cases of Lemma 5.3.7. 92
Case(i) of Lemma 3.38. 93
Case(ii) of Lemma 53.8. 95
A tetrahedron with oriented faces. 100
Thestarofavertex. _ 101
Matching of twostars. 102
A hole and a “dip” in a star embedding. 109
Joining p; to the faces in B” with proper orientations. 111
Good triangulation of a convex polyhedron 112

1x

ABSTRACT

Dey, Tamal Krishna PhD., Purdue University, August 1991. Decompositions of Poly-
hedra in Three Dimensions. Major Professor: Chanderjit L. Bajaj.

This thesis deals with new theoretical and practical results on convex and CSG
decompositions, and triangulations of polyhedra in three dimensions. Convex and
CSG decompositions of polyhedra find applications in simpler algorithms in motion
planning, computer graphics, and solid modeling. Triangulations of polvhedra are
fundamental nontrivial steps in finite element simulations and CAD/CAM appli-
cations. To reduce ill conditioning as well as discretization error in finite element
simulations, near regular shaped elements are desired. This motivates triangulation
algorithms for polyhedra that produce well shaped tetrahedra.

We present efficient algorithms for convex and CSG decompositions of polyhedra
with arbitrary genus. A modification of this decomposition method gives an efficient
algorithm for triangulations of polyhedra. The efficiency of these algorithms is mainly
derived from the use of “zone” theorem on hyperplane arrangements, studied in com-
binatorial geometry. A triangulation algorithm that triangulates a convex polvhedron
and a three dimensional point set, in general, with guaranteed quality tetrahedra is
also presented. In particular, this algorithm guarantees that four out of five possible
bad tetrahedra are never generated.

Geometric algorithms, when implemented under finite precision arithmetic often
crash or fail to produce valid output because of numerical errors. We have investi-

gated this problem of output inconsistency under imprecise arithmetic computations

in order to provide topologically robust implementations of the decomposition al-
gorithms. Implementations are carried out as part of SHILP, a solid modeling and

display toolkit that runs on Unix workstations under the X Window System.

1. INTRODUCTION

The main purpose behind decomposing an object into simpler components is to
simplify a problem for complex objects into a number of subproblems dealing with
simpler objects. In particular, the problem of partitioning a polyhedron into simpler
components arises in mesh generation for finite element methods, CAD/CAM appli-
cations, computer graphics, motion planning, and solid modeling. By a polyhedron
we mean a 3-dimensional point set bounded by planar faces. Two dimensional coun-
terparts of polyhedra are polygons. The problem of decomposing polyhedra comes
with different flavors depending on the desired shape and size of the simpler compo-
nents, Although several decomposition problems have been widely researched in two
dimensions, very few results exist for their three dimensional counterparts. Two such

decompositions, namely, convex decompositions, and triangulations of polyhedra are

addressed in this thesis.

1.1 Convex Decompositions

Convex decompositions, in terms of a finite union of disjoint convex pieces are
useful and are always possible for polyhedral models [Cha80, Ede87]. In 2D, there
are efficient algorithms that decompose a polygon into convex pieces and optimize dif-
ferent metrics (number, length, area, angle) [Kei85, Cha80]. In 3D, however, we have
some negative results that restrict our hope to obtain efficient solutions for certain
decomposition problems. The problem of partitioning a non-convex polyhedron into
a minimum number of convex parts is known to be NP-hard [Lin82, ORSS3, DK91).
Further, it is not possible to decompose all polyhedra into convex pieces without in-
troducing extra points, called Steiner points [OR87]. However, all polygons can be

decomposed into convex pieces without Steiner points in 2D. Worse is the fact that

[S™]

the problem of determining whether a polyhedron can be partitioned into tetrahedra
(hence convex pieces) without Steiner points is NP-hard [RS89). Due to these re-
strictions, we consider the problem of convex decompositions of polyhedra that allows
Steiner points and achieves only a worst case optimality with respect to the number

of convex pieces.

1.1.1 Applications

Convex decompositions lead to efficient algorithms, for example, in geometric
point location and intersection detection; see [Ede87]. In motion planning, a disjoint
convex decomposition of polyhedra allows for more efficient algorithms in collision
detections. In computer graphics, rendering a convex object often comes as a part of
graphics library routines supported by specialized hardware and software. To render
a nonconvex polyhedron, convex decomposition of the input polyhedron can be used
as a first step to generate only convex pieces. Moreover, convex decompositions can
be used for efficient algorithms for ray tracing and hidden surface removal in computer

graphics.

1.1.2 Polygon Nesting

As a subproblem of our convex decomposition algorithm we encounter the problem
of polygon nesting. Given a set of simple polygons that do not intersect along their
boundaries, polygon nesting problem asks for detecting the nesting structure of the
input, i.e., for each polygon detecting the polygon that immediately contains it. This
problem also arises in computer graphics for rendering polygons with multiple holes,

and in feature classifications of pattern recognitions.

1.2 CSG decompositions

In solid modeling, a geometric object is often represented in terms of simpler
components with regularized boolean operations (intersection, union, difference, com-
plement) applied on them. This is called CSG (constructive solid geometry) repre-
sentation of solids. A polyhedron can be represented as a union of convex pieces
obtained through its convex decomposition. The simpler components along with
boolean operations used for CSG representation of a polyhedron give equivalently a
CSG decomposition of it. Computing a CSG decomposition that involves only union
and intersection of the halfspaces corresponding to the supporting planes of the poly-
hedral facets often arises in graphics and solid modeling [DGHS88]. This type of
decomposition was first considered by Peterson [Pet84].

Let N(p;) represent an e-neighborhood of a point pi inside the facet f; of a poly-
hedron S. The literal f¥ represents the halfspace adjacent to the facet f; that has
nontemnpty intersection with N(p;) N S. The literal fi" represents the other halfspace
adjacent to f;. Peterson considered the CSG decompositions that use only the halfs-
paces f's. Although it is possible to find such decompositions for polygons in 2D, it
is not possible to find such decompositions for polvhedra in 3D in general [DGHS88].
Hence, we allow both halfspaces f}’s and f{’s in the Peterson-style CSG decomposi-
Lions of polyhedra. This type of CSG decompositions is useful in computer graphics
for hidden surface removals [PY90]. A Peterson-style decomposition of a polyhedron
S is shown in Iigure 1.1. The disjoint convex decompositions of polyhedra can be

casily extended to give efficient Peterson-style CSG decompositions.

1.3 Triangulations

In triangulations, we seek for the simplicial decompositions of the given polyhe-
dra that produces a simplicial complex. In 3D, two tetrahedra in such a simplicial
decomposition meet only at a full facet, or an edge, or a vertex. A triangulation of a

polygonal domain in 2D is shown in Figure 1.2. In finite element mesh generation for

i eingnind)

Figure 1.1 A Peterson-style CSG decomposition of a polyhedron.

polyhedral domains, triangulation is a nontrivial step. In CAD/CAM, different phys-
ical properties of an object are studied through finite element analysis. Triangular
element mesh is used very {requently for this purpose.

In 3D, there are polyhedra that can not be triangulated without adding Steiner
points. Moreover, as shown by Rupert and Seidel [RS89), the general problem of
determining whether a polyhedron can be triangulated without Steiner points is NP-
hard. Due to these constraints and as allowed by finite element methods, we consider
the problem of triangulations with Steiner points for polyhedra in 3D. We show that
the convex decomposition algorithm leads to an efficient algorithm for triangulations

of polyhedra.

1.3.1 Good Triangulations

In finite element methods with triangular meshes, it is desired that the elements
do not have bad angles [BA76, Fri72, TWMS85|. This reduces ill-conditioning and dis-
cretization error. In this thesis we refer to such triangulations as good triangulations.
Considerable amount of research has been done in 2D to generate triangulations that
avoid bad angles. It is known that if Steiner points are not allowed, the Delaunay
triangulations maximize the minimum angle among all possible triangulations of a

point set in 2D [Sib78, LL86]. This property, however. does not extend through

Figure 1.2 A triangulation of a polygon with Steiner points.

higher dimensions [Ede89}. In [ETW90], Edelsbrunner, Tan and Waupotitsch give an
algorithm that triangulates a two dimensional point set which minimizes the maxi-
mum angle. Such optimum triangulations, however, can itself be bad with respect
to the angles. We can hope to improve these triangulations only by adding Steiner
points. The choice of Steiner points becomes a crucial factor in producing good trian-
gulations. The algorithms of [TWM85, BGRSS, Che89, BEGY0, BE91] give different
methods to choose these Steiner points.

In 3D, a number of algorithms exist to triangulate a point set or a polyhedron
[AES6, EPWS6, Joe89, CP90]. Few of them, however, address the problem of guaran-
teeing the shapes of the tetrahedra. We consider the problem of generating the good
triangulations of the convex hull of a point set in 3D. Good triangulations of convex
polyhedra are special cases of this problem. In particular, we show that a Delaunay
triangulation based algorithm produces an output where four out of five possible bad

tetrahedra are never generated.

1.4 Robustness under Finite Precision Arithmetic

Geometric algorithms, when implemented, often fail due to the degeneracies in in-
put data and numerical errors introduced by finite precision arithmetic computations.
In general, these algorithms deal with two types of data: numerical and topological.
Topological inferences such as face adjacencies, vertex adjacencies are derived from
the numerical data. Thus, inaccuracies in numerical computations may cause incon-
sistencies in topological data which in effect either produce invalid output or make the
program fail. The ability of the geometric algorithms to deal with the degeneracies
and the inaccuracies during various numerical computations is referred to as their
robustness.

Several frameworks for achieving robustness have been proposed by different re-
searchers. Edelsbrunner and Mucke [EM88], and Yap (Yap88| suggest using symbolic
perturbation techniques to handle geometric degeneracies. Sugihara and Iri [SI89b],
and Dobkin and Silver (DS88) describe an approach to achieve consistent computa-
tions in solid modeling by ensuring that computations are carried out with sufficiently
higher precision than that used for representing the numerical data. There are draw-
backs, however, as high precision routines are needed for all primitive numerical com-
putations making algorithms highly machine dependent. Furthermore, the required
precision for calculations is difficult to a priori estimate for complex problems.

Another approach is to live with the finite precision world and tune the arithmetic
computations to satisfy certain topological and combinatorial constraints to achieve
a consistent result. Certainly, the difficulty of achieving robustness in this approach
depends on what we mean by “consistent result”. Depending on this meaning of
“consistent result”, we classify robust algorithms into five categories, namely, type-1,

type-2, type-3, type-4 and type-5 robust algorithms.

Definition 1.4.1 The algorithms that satisfy the following properties are called type-1

robust.

|

1. The programs corresponding to the algorithms never fail with finite precision

arithmetics.
2. They produce exact outputs under infinite precision.
Definition 1.4.2 The algorithms that satisfy the following properties are called type-2
robust.

1. They are type-1 robust.

2. The output under finite precision satisfies certain (not necessarily all) essential

topological properties of the exact output corresponding to a perturbed input.

Definition 1.4.3 The algorithms that satisfy the following properties are called type-3

robust.

1. They are type-2 robust.

2. The output under finite precision satisfies all topological properties (topologi-

cally exact) of the exact output corresponding to a perturbed input.

Definition 1.4.4 The algorithms that satisfy the following properties are called type-4

robust.

1. They are type-2 robust.

2. The output under finite precision satisfies certain (not necessarily all) essential
topological properties of the exact output corresponding to a perturbed input,
and the perturbation is small. By small perturbation, we mean the size of the
perturbation is typically a polynomial function of the input size n, the input

precision ¢, and the maximum value of any coordinate B.

Definition 1.4.5 The algorithms that satisfy the following properties are called type-5

robust.

1. They are type-3 robust.

2. The perturbations required in the input to achieve the topological exactness as

stated in type-3 robustness must be small.

One way to achieve the “non-failing” property in type-1 robust algorithms is to
guarantee that the contradicting decisions about, topological inferences are never taken
during the computations. These algorithms have been termed as “parsimonious” by
Fortune [For89]. Hoffmann, Hopcroft and Karasick [HHK87], and Karasick [Kar88],
propose Lo use geometric reasoning to avoid contradicting topological inferences and
apply it to the problem of polyhedral intersections in an attempt to devise a type-1
robust algorithm.

In type-2 robust algorithms, we focus on certain essential topological properties of
the geometric structure of the problem. For example, while computing the Delaunay
triangulation of a point set in 2D, we can require that the output be always a planar
graph that has a straight line embedding in 2D which is a triangulation. In [SI89a,
Sugihara and Iri give a type-2 robust algorithm for constructing the Voronoi diagram
of a 2D point set. They ensure that the output produced by the algorithm is always
planar, and given infinite precision, it converges to the true solution.

In type-2 and type-3 robust algorithms, we do not quantify the distance between
the computed output and the true output geometrically. In type-4 and type-5 robust
algorithms, we quantify the distance between the computed output and the true out-
put both topologically and geometrically. In particular, we require that the computed
output satisfies topological properties of an output corresponding to some perturbed
input and the required perturbations be small. The algorithm proposed by Fortune
and Milenkovic in [FM91] for line arrangements is type-4 robust. It produces an
arrangement of pseudo lines that satisfy the certain ecssentjal properties of line ar-
tangements and the required perturbations are proved to be small. To devise type-4
and type-5 robust algorithms, we must assume 2 bound on the relative error in the
basic arithmetic computations: plus, minus, divide, multiply. Guibas, Salesin, and
Stolfi [GSS89] propose a [ramework of computations, called c-geometry, with which

they give Lype-5 robust algorithms for some 2D problems. So does Fortune For39]

who gives type-5 robust algorithms for the problem of computing the convex hull and
the triangulation of a planar point set. The algorithm proposed by Li and Milenkovic
in (LM90] for computing the convex hull are also type-5 robust.

In type-2 and type-3 robust algorithms, we may not require any bound on the
relative error in basic arithmetic computations to achieve only topological exactness.
Nevertheless, while designing type-2, type-3 robust algorithms, it is advisable to as-
sume such bounds and perform arithmetic computations with thresholds as described
in Section 3.4, and Section 5.4. It is our hope that, in many cases, type-2, type-3
robust algorithms become actually type-4, type-5 robust with such thresholded com-
putations. though we cannot prove it.

The difficulty of designing robust algorithms depends upon the problem itself. For
geometric operations (intersection, union, decomposition) on polyhedral models, it is
very difficult to design even type-1 robust algorithms. The only success achieved so
far in this respect is by Hopcroft and Kahn {HK89]. They have given a type-3 robust
algorithm for computing the intersection of a halfspace with a convex polyhedron
under certain minimum feature assumptions. On the other hand, for problems such
as intersections of two lines [GSS89), convex hull of a 2D point set [For89. LM90],
where topology is not very intricate, it is easier to design type-5 robust algorithms.

We give a type-5 robust algorithm for polygon nesting with a minimum feature
assumption. [t is type-5 robust since it computes the nesting structure correctly
under finite precision computations and thus require zero perturbations of the input
to satisly the computed output.

In our convex decomposition algorithm, we use sophisticated heuristics based on
geometric reasoning which make the algorithm more stable against numerical errors.
Although we cannot prove that the algorithm with these heuristics is type-1 robust,
our experimental results have been satisfactory.

In our effort to design a robust Delaunay triangulation algorithm in 3D, we first
identify certain essential topological properties of the underlying graph of the trian-

gulation of a 3D point set. This topological properties are used to achieve a type-2

10

robust algorithm for the Delaunay triangulations in 3D. This robust Delaunay tri-

angulation algorithm is used in a robust implementation of our good triangulation

algorithm in 3D.

1.5 Some Topological Aspects of Polyhedra

A surface is a 2-manifold if each point on it has an e-neighborhood that is home-
omorphic to an open 2D ball or half-ball [Arm79]. In this thesis, we will refer to
2-manifolds simply as manifolds. A manifold surface is called closed if it does not
have a boundary, i.e., all points on it has an e-neighborhood that is homeomorphic
to an open 2D ball. For example, the surface of a sphere is a closed manifold whereas
a rectangular patch on a plane is not. A manifold is called oriented if it has two
distinct sides. the surface of a sphere is oriented since it has two sides, “inside” and
“outside”. The surfaces of Mobius strips and Klein bottles are not oriented [Arn62).
Polyhedra, having closed oriented manifold surfaces are called manifold polyhedra.
Non-manifold polyhedra may have incidences as illustrated in Figure 3.1.

A polyhedron may have through holes which determine jts genus. It may also
have internal voids and thus have a disconnected boundary. Manifold polyhedra
with holes are homeomorphic to torii with one or more handles. Manilold polyhedra
with internal voids are homeomorphic to 3-dimensional annuli, i.e., spheres with
internal voids. A polyhedron can be represented with its boundary which consists of
three disjoint open point sets, called vertices (0-dimensional), edges(1-dimensional),
and facets(2-dimensional). A systematic enumeration of vertices, edges, and faces

with all relevant adjacency information gives a boundary representation (B-rep) of a

polyhedron.

11

1.6 Results

For a given polyhedron S with n edges of which r are reflex !, Chazelle [Cha80, Cha84]
established a worst case lower bound of O(r?) on the number of convex polyhedra
needed for complete convex decomposition of S. He gave an algorithm that produces
a worst case, optimal number (O(r?)) of convex polyhedra in O(nr?) time and O(nr?)
space. Recently, Chazelle and Palios [CP90] have gtven an O((n + r?) logr) time and
O(n +r?) space algorithm to tetrahedralize a subclass of non-convex polyhedra. This
algorithm, however, only allows polyhedra that are homeomorphic to a 2-sphere, i.e.,
have no holes(genus 0) and sheils (internal voids). Our algorithm, based on the split
and cut method of Chazelle [Cha80, Cha84], runs in O(nr? + r3logr) time and uses
O(nr + ra(r)) space. Here, « is the inverse Ackermann’s function which grows
extremely slowly. Thus, our algorithm improves upon the algorithm of Chazelle
[Cha80, Cha84] w.r.t. time and space complexities and that of [CP90] w.r.t. the
generality of the input. We also give an algorithm for convex decompositions that uses
geometric based heuristics to overcome the inaccuracies involved with finite precision
arithmetic computations. Although we cannot prove that these heuristics make the
algorithm type-1 robust, the experimental results are very satisfving. Tlicse results
appear in [BD91].

As a subproblem of our convex decomposition algorithm, we solve the problem
of polygon nesting efficiently. Our algorithm for this problem runs in O(n + (m +
r)log(m + r}) time, where n is the total number of vertices in m polygons with r
reflex vertices *. Note thal m and r are much less than n in practice. We also give a
type-3 robust algorithm for this problem with a minimum feature assumption on the
“thickness™ of the polygons. This algorithm runs in O(n(logn +m +r)) time. These
results appear in [BD90].

Simple extensions of our convex decomposition algorithm give efficient algorithms

for Peterson-style CSG decomposition and triangulation of polyhedra. An O(p*a(p))

'edges where the internal dihedrai angle is greater than 180°
vertices where the internai angle is greater than 180°

12
size Peterson-style CSG decomposition can be computed in O(p®log p) time through
our convex decomposition algorithm. This improves upon the algorithm of [PY90]
w.L.t. the generality of the input. Their algorithm computes an O(p?) size Peterson-
style C5G decompesition in O(p®) time for polyhedra with convex facets of O(1)
size. We also establish O(p?) lower bounds on certain types of Peterson-style CSG
decomposition of polyhedra. The best known algorithm for triangulating polyhedra
[CP90] runs in O((n + r?)logr) time which produces O(n + r?) tetrahedra. This
algorithm, however, has two drawbacks. Firstly, it allows only the simple polyhedra
that have no holes and shells. Secondly, it produces a simplicial decomposition that
is not a simplicial complex i.e., the generated tetrahedra do not meet at a full facet
or an edge. A simple extension of our convex decomposition algorithm gives an
O(nr? 4+ r?logr) time algorithm for triangulating more general polyhedra (with holes
and shells) which gencrates O(nr + r3) tetrahedra in a simplicial complex. Thus, our
algorithm improves upon the algorithm of [CP90] w.r.t. the generality of the input
and output. These results appear in [Dey91].

In 2D, there are number of algorithms for generating good triangulations. Chew in
[Che89], gives an algorithm based on the constrained Delaunay triangulations which
guarantees that all triangles have angles between 30° and 120°. In [Dey90], we im-
proved this algorithm with minor modifications to guarantee better angle bounds for
the boundary triangles. There is another approach, based on the Grid Qverlaying,
which was first used by Baker, Grosse, and Raferty in (BGR88| to produce a non-
obtuse triangulation of a polygon. In [Dey90], we proposed a simpler method based on
this grid approach to triangulate a polygon with good angles. Recently, in [BEGS0],
Bern, Eppstein, and Gilbert give algorithms for producing good triangulations which
uses a special type of a grid that simulates the planar subdivision with the quadtree.
Another approach, based on the medial azis trar.zsfonnation, is proposed by Sriniva-

son. Nackman, and Tang to produce an adaptive triangular mesh that eliminates bad

triangles [SNT90].

13

Although several good heuristics have been published, to date there is 1o known
algorithm that triangulates the convex hull of a three dimensional point set with
guaranteed quality tetrahedra. We present some results on the good triangulations
of the convex hull of a point set in 3D. Good triangulations of convex polyhedra are
a special case of this problem. Qur main results in good triangulations are: (i) a
3D triangulation algorithm based on the Delaunay triangulations, as used by Chew
[Che89] in 2D, to produce triangulations that do not have four out of five possible
types of bad tetrahedra, (ii) 2 bound on the number of additional points used to
achieve this guarantee, (iif) a type-2 robust algorithm for Delaunay triangulations
in 3D that is used to produce a robust implementation of the good triangulation

algorithm. These results appear in [DBS91].

1.7 Organization

We, first, describe the polygon nesting algorithm in Chapter 2 since it appears
as a subproblem in our convex decomposition algorithm. It also makes the readers
to be more familiar with the concepts of robustness. Chapter 3 describes the convex
decomposition algorithm and the heuristics used for its robust implementation. CSG
decompositions and triangulations of polyhedra with arbitrary genus and shells are
described in Chapter 4. Good triangulations of the convex hull of a point set in 3D
15 presented in Chapter 5. It also describes a robust, algorithm that is used in robust
implementation of the good triangulation algorithm in 3D. Finally, we conclude this
thesis in Chapter 6 which summarizes the contribution of this work and presents some

related open problems.

14

2. POLYGON NESTING

2.1 Introduction

This chapter describes an efficient algorithm for polygon nesting that arises as
a fundamental subproblem in our convex decomposition algorithm. Section 2.3 de-
scribes the algorithm under the assumption of exact arithmetic. Section 2.4 presents

a type-5, robust algorithm that assumes a minimum feature for the input.

Iigure 2.1 Polygon nesting.
Let be a set of m simple polygons Q;,7 = 1....m that do not intersect along !
their boundaries.

Definition 2.1.1 The ancestor of a polygon Q; is defined as the set of polygons con-

taining ¢); inside and is denoted as ancestor((Q;). i

Definition 2.1.2 The polygon Q; in ancestor(Q;) is called the parent of Qi if
ance.'stor(Q;,)=ancestor{Q.-) - Q. Notice that there may not exist any such @y since

ancestor(Q;) may be empty. In that case we say that the parent of Q; is null.

Definition 2.1.3 The polygons whose parent is Qx are called the children of Q and
are denoted as children(Qy).

In Figure 2.1, ancestor(Q;) = {Q1, @2}, parent(Q,) = {Q2}, children(Q,) =
{Q3,@Q4}, and parent(Q;) = children(Qs) = null. The nesting structure G of @ is an
acyclic directed graph (a forest of trees) in which there is a node ni, corresponding to
each polygon @; in p, and there is a directed edge from a node n; to n; if and only
if Q; is the parent of Q;. The polygon nesting problem is to compute the nesting
structure of a set of simple polygons that do not intersect along their boundaries.

Given a set of simple nonintersecting polygons with n vertices, Chazelle, in [Cha84],
gives an O(nlogn) algorithm to detect the outermost polygons and their children.
However, his algorithm does not compute the nesting structure of the given set of
polygons.

In Section 2.3. we give an algorithm which computes the polygon nesting structure
in O(n+(m+r) log(m+r)) time where n is the total number of vertices in m polygons
and r is the total number of reflex vertices. Since in practice m and r are much less
than 7, this algorithm runs faster than any O(rlogn) algorithm in practice. In

Section 2.4, we give a type-3 robust algorithm for the same problem restricted to a

class of polygons called fleshy polygons. Our robust algorithm has a worst-case time

bound of O(n(logn + m + r)).

2.2 Preliminaries

Let @ e a simple polygon with vertices vy, VU2, ..., Un in clockwise order. Between any
two consecutive reflex vertices vy, v; in the clockwise order, the sequence of vertices

(vi, Vig1y - 5} is called a conver polygonal-line.

16

X

Vyrr--:Vg ia a convex polygenal lina.
vl, s Vg im a convex chain.
PYRERTA is a subchain.

Figure 2.2 Convex chain and subchain.

Definition 2.2.1 A convez chain is a maximal piece of a convex polygonal-line with

the property that its vertices form a convex polygon.

Definition 2.2.2 A subchain is a maximal piece of a convex chain with the property

that the vertices of a subchain have z-coordinates in either strictly increasing or

decreasing order.

Each convex polygonal-line can be partitioned into convex-chains and each convex
chain can be partitioned into at most three subchains; see Figure 2.2.

A vertex or an edge is said to lie inside a polygon if it completely lies in the interior
of the polygonal region. A vertex or an edge is said to be contained in a polygon if it
lies on the boundary of the polygon.

Let L be a line drawn through a set of polygons. Let £ be the set of edges that
intersect L in the following two ways. An edge e in £ either properly intersects I,
(i.e.. two vertices of e lies on the opposite sides of L) or e intersects L at a vertex
and the other vertex of e lies to the right of £. The third possible case, where one
vertex of e lies on L and the other one to the left of L, is ignored as the information

related to that edge would already be recorded in a plane sweep of our algorithm.

17

The remaining case of degenerate intersection (e is collinear with L) is described in

section 2.3.

Definition 2.2.3 A vertex v; is said to lie above v if the y coordinate of v; is greater

than that of ;.

Definition 2.2.4 An edge e, is said to be above the edge e; in £ if the point L Ne, lies
above the point L Ne,. If e; and es have a common vertex through which £ passes,

e1 is above ey if the other vertex of e, lies above the other vertex of es.

The line L induces a total order R on the edges in £ with respect to the above
relation. If L passes through a vertex w;, above(v;) denotes the set of edges whose
point of intersection with L is above v;. The lowest edge in above(v;) is called the
neighbor of v;. Between v; and its neighbor there is no other edge intersecting L.
In Figure 2.4, e, is the neighbor of v since it is the lowest edge in above(v). Note
that there may not exist any neighbor of v; since above(v;) may be empty. Order R

naturally extends to another order O of subchains associated with the edges in R.

Definition 2.2.5 The subchain C, containing the edge ¢, is above the subchain Ch

containing the edge €, in O if and only if ¢, is ebove e; in A.

2.2.1 Useful Lemmas

In the [ollowing lemma, the line segments of a line that are interior to a polygon are

called chords.

Lemma 2.2.1 Let @ be a polygon {possibly with holes) with r reflex vertices. No line

can intersect ¢ in more than r + 1 chords.

Proof: The proof proceeds inductively. The case for r = 0 is trivial. In the general
step, consider a polygon @ with r = & > ! reflex vertices. Take an arbitrary reflex
vertex, and resolve it by a cut through it. The cut may separalc @ into two poly-

gons @ and Q3 ol ry and rs reflex veriices respectively, such Lhat r +ry < &= |,

18

Furthermo;-e, the number of chords of a line I in (J cannot exceed the sum of the
number of chords in @, and Q,. Therefore, using the induction hypothesis, one can
conclude that the line £ intersects @ in no more than r, + 1 + ro+1 < k41 chords.
If, however, the cut does not split @, one ends up with a polygon Q' of at most k— 1
reflex vertices. Since the line may intersect the cut, just performed, the number of

chords in Q is less than or equal to that in Q', which again implies that the former s

less than or equal tok-1+1<k+1. &

Lemma 2.2.2 Let Q be a simple polygon with r reflex vertices. The number of sub-

chains ¢ in @ is bounded as ¢ < 6(1 +r).
Proof: Follows from Theorem 3, page 22 of [(Cha80]. &

Lemma 2.2.3 Let L he any line through a vertex v of a polygon ;. Let the edge ¢ be

the neighbor of v. Parent of @, is either the polygon @; containing e or (2;'s parent

(possibly null).

Proof: If the neighbor edge e of v is an edge of Q; which is the parent of @, the
lemma holds trivially. Suppose the neighbor edge ¢ of v is an edge of @; which is
not the parent of Q;. We claim that » lies inside a polygon Q. if and only if e lies
inside it. Suppose e lies inside Q¢, and v does not. Then the region between v and
¢ on L contains a part which is outside Q¢ Hence, there must be an edge of Q,
between e and v intersecting L. But this is impossible since e is the neighbor edge of
v. Similarly, we can argue that if v lies inside a polygon @, so does e. Hence e lies
inside the same set of polygons, within which v ljes. Thus, Q4 is the parent of Q; if

and only if it is a parent of Q;.

Lemma 2.2.4 Let L be any line passing through v of ;. The vertex v is contained

in the polygon Qi «y: if and only if the number of edges of ;. which are in above(v)

is odd,

Proof: Since any edge of a polygon () demarks the regions “inside Q” and “outside

Q" on L. the above lemma is obvious. &

19

Lemma 2.2.5 Let L be any line passing through v of Q;. Let the edge e of the polygon
@k be the neighbor of v on L. If the number of edges of Q¢ in above(v) is odd and
k 3 1, then Q, is the parent of Q;. Otherwise, Qx’s parent{possibly null) is the parent
of Q.

Proof: Combine Lemma 2.2.3 and Lemma 2.2 .4. [

2.3 The Algorithm with Exact Arithmetic

Now, we describe the algorithm which is based on the plane sweep and uses exact
arithmetic for all numerical computations. Fach polygon Q; comsists of subchains
Cia,Ciz, ..., Cit. We sweep a line [, in the plane through all polygons, while maintain-
ing the ordering O of the subchains induced by L. To maintain this ordering, we stop
only at the endpoints of the subchains, while sweeping, say, from left to tight. We
break all the boundaries of the polygons into subchains in no more than O(n) time
and sort their endpoints on a line perpendicular to L. At each subchain endpoints

we update the ordering O.

2.3.1 Update at a Vertex

If » is such a vertex that both subchains C1 and C; connected to v have not yet
been encountered by the sweep line L, we insert C, and C, in the ordering O on L by
a simple binary search. For this search, we need to determine the position of v w.r.t.
the edge intersected by L on a subchain C;, already present in the ordering O.

This is done as follows. We keep the last visited edge associated with each subchain
Ci in O. Let the last edge kept associated with C; be e;. We visit the sequence of
edges ey, €;..., & of C; stopping at the first edge e; which intersects L. We determine
the position of v w.r.t. e and associate the edge e, with C',. Later, when we need
to classify any other vertex w.r.t. C;, we start from the edge e,. This is reminiscent
of the topological sweep of [EGS9]. In this sweep, the sweep line is actually a curved

line, called pseudo-line. See Figure 2.3. Obviously, the edges like eo,....ex_; are

20

pseudo line (befora updata) pseudo lina(after npdate)

(a)

(b)
Figure 2.3 Sweeping status before and after the update at v.

visited only once, while edges like e, and e, are visited more than once throughout
the sweep. For each vertex-edge classification, there will be at most two edges similar
to ey and e; of a subchain which will be visited more than once throughout the sweep.
Since in the binary search for determining the position of a vertex in the order O,
we encounter only O(log ¢) subchains (¢ is the total number of subchains), there will
be at most O(logc) edges, for each sweep line position, which will be visited more
than once. Let ¢; be the number of edges in subchain C: which are visited only once
throughout the sweep. As we observed, only O(logc} edges per update are visited
that are encountered more than once throughout the sweep. If v is a vertex such that
both subchains connected to v have been encountered, we delete both these subchains
from the ordering O. This takes at most O(logc) time. Hence, the total time taken
for all updates is O (7, &) + O(cloge). Certainly, Lz ti = O!n) where n is the

total number of vertices. Hence updates take O(n) + O(cloge) time,

2.3.2 Detecting the Parent of a Polygon

At the vertex v of @;, when we insert the subchains in the ordering O on I,
we determine the parent of Q; as follows. If the parent of Q; has not already been
determined, we find the neighbor edge e of v intersecting L (Actually, e is found
while inserting the subchains connected to v). Let @; be the polygon containing e
on the boundary. We determine &, the number of edges or equivalently the number
of subchains of the polygon @Q; which are in above(v). Maintaining the ordering of
subchains for each polygon separately, this number can be obta?ned in O{log ¢;) time
where ¢; is the number of subchains in that polygon. If & is odd and Q; # Q:, we
set (); as the parent of ;. Otherwise, we set the parent of ¢; Lo be Lhe parent of

@; (Lemma 2.2.3). Certainly, the parent determination at each update add up to at

most O(logc) time,

2.3.3 Degenerate Cases

Degeneracy occurs when the sweep line L passes through more than one vertex,
at any stop of L. In these cases, one or more than one edge may be collinear with L.
Let vy, va,.... vx be the ordered sequence (w.r.t. the above relation) of vertices through
which L passes at any stop.

We process each vertex v; in the ordered sequence one alter the other as {ollows.
Let v; be the vertex of polygon Q,. For v;, we insert or delete accordingly the subchain
that does not correspond to the edge collinear with £ from the ordering O. Since the
edge collinear with L does not demark any region on L as “inside Q;" or “outside
Q:", we should not insert that edge in the ordering O and in the ordering maintained
separately for cach polygon. Hence, a degenerate edge does not affect the number of

edges of @; which would be in above(v;) for any vertex v;. See also Figure 2.4.

2.3.4 The Algorithm

Algorithm Polnest-fract:

3]
-J

!-bov-(v)={nl.qz 19y 9 L

esis a dagenarata casa.

Figure 2.4 Degenerate cases.

Input: A set of m simple, nonintersecting polygons.

Quiput: A directed acyclic graph G, called the nesting structure, in which there
is a directed edge from a node n; corresponding to a polygon @; to the node n;
corresponding to the polygon Q; if and only if &; is the parent of Q;.

Step I: Detect the endpoints of subchains in all polygons.

Step 2 Sort the z-coordinates of these endpoints. If two points have same z-
coordinates, the one with higher y-coordinate is sorted before the other. Let this
sorted sequence IV be v, vy, ..., vy,

Step 3: Create a node [or each polygon in G. Initialize O by inserting the two polygon
edges as the representatives of the two subchains connected to the leftmost vertex in
W.

Step 4: Sweep a pseudo-line from left to right taking steps at each vertex v; of W as
follows. Let v; be on the boundary of the polygon Q;. If both subchains connected
to v; have already been visited, delete them from the ordering O and skip steps from
4{a) to 4(d).

Step {(a). Detect the position of v; w.r.t. the subchains intersected by the sweep

line. For this, carry out a binary search in the ordering O of these subchains. To

23

detect the position of v; w.r.t. a subchain ¢, during binary search, find the edge ¢
kept associated with C; in O. and then follow the linked sequence of edges ey, e, &1
until the edge €, is found which intersects L.

Step 4(b): Let the edge ¢’ of the polygon Q; be the neighbor of v; found in step
4(a). Determine the number of subchains k of Q; that are in above(v;). This is done
by a similar binary search, as in step 4(a), in the ordering of subchains maintained
separately for each polygon.

Step 4(c): Insert two subchains connected to vj in O and in the ordering of subchains
maintained for polygon Q;. In the degenerate case, insert or delete the subchain from
O that does not correspond to the edge, collinear with the sweep line.

Step {(d): 1f % is odd, create a directed edge in G from the node n; corresponding to
the polygon @Q: to the node n; corresponding to the polygon Q;. If £ is even. create
a directed edge from n; to the node ni(if any) to which n; is connected through a

7
directed edge.

Theorem 2.3.1 The problem of polygon nesting for polygons can be solved in O(n+
(m + r) log(m + r)) time where 7 is the total number of vertices, and r is the total

number of reflex vertices of all polygons.

Proof: Detecting the endpoints of the subchains takes O(n) time. Sorting these
endpoints requires O(clogc) time. Updating and determining the parent takes O(n +
clogc) time. Hence, computing the nesting structure for all polygons takes O(n +
cloge) time. By Lemma 2.2.2, ¢, the total number of subchains is bounded as ¢ <
6(m +r) where m is the total number of polygons, and r is the total number of reflex

vertices. Hence, the total time spent is O(n + (m 4 7)log(m +7)). &

2.4 Robustness under Finite Precision Arithmetic

[n the algorithm given in the previous section, we assumed exact arithmetic in all
our arithmetic computations. In this section. we give an algorithm for polygon nesting

problem which is tvpe-3 rohnst nnder finite precision arithmetic compurations. This

"

algorithm is type-5 robust since it never fails and gives always the correct output

under a minimum feature assumption.

2.4.1 Assumptions and Finite Precision Computations

We first assume that all coordinates have a maximum absolute value of B i.e.,
—B <z < Band —B < y < B. We model the inexact arithmetic computations by
e-arithmetic [For89, GSS89] where the arithmetic operations +, —, +, x are performed

with relative error of at most ¢.

Definition 2.4.1 A polygon Q is called fleshy if there is a point inside @ such that a
square with the center(intersection of square’s diagonals} at that point and with the

sides of length 64¢B lies inside Q. Here, ¢ is the machine preciston.

[n our implementation, we set B = 2!° ynits, ¢ = 2-32 ypits. Hence the area of

the square is 272, The polygons that are not fleshy are thus too skinny to occur in

most practical cases.

Definition 2.4.2 A binary predicate CONT takes two polygons ()4, Q, as arguments

and returns true if and only if Q, contains Q2. NOT(CONT(Q,,Q)) denotes the
negation of CONT(Q,, @,).

Definition 2.4.3 A point p, is said to be vertically visible from another point p2 if the
vertical line through p, also passes through p, and the vertical segment between p,
and p; does not intersect any other edge. Similarly, we define an edge to be vertically
visible from a point p, if the vertical line through p, intersects the edge and does not

intersect any other edge in between.

The numerical computations in our algorithm are carried out at two places.
1. Sorting the vertices:

Sorting can be carried out without any error as the comparison of two floating
point numbers is exact upto the machine precision. A similar model of compu-

tations where comparisous ol input data are [ree of error has also been assumed

25

by [Mil88, For89] (this fact is true on most of the machines available today).
Here we assume that the given input data (coordinates of polygon vertices) is
accurate, though our algorithm tolerates perturbations in the input that does

not destroy the simplicity and nonintersecting properties of the polygons.

o

Computing the points of intersections of a vertical sweep line with the edges:

In Lemma 2.4.1, we develop a bound on the maximum error that can occur

during this computation.

Lemma 2.4.1 Given an edge € between two vertices v = (21,51), v2 = (22, 32), and a
vertical line passing through a vertex vy = (2, Yo) intersecting the edge ¢ at a point
p, the absolute error ef,, in the computed position of p is bounded as el,, < 7¢B. The
absolute error e, in the computed distance of v, and p is bounded as e, < 8¢B.

Here ¢ is the machine precision and B is the largest value of any coordinate.

Proof: Consider a vertical line z = z, through vy = (zq,30) that intersects e at .
Obviously, the z-coordinate of p is zg. Let the actual and computed y-coordinate of

p be y3 and y.. By simple geometry,

=T Y2
To— T Ya—un
(y2 = yi)(zo — 1)
Yz = + ¥
Ig _ Il

With floating point arithmetics, the computed value Y. of y3 is given by

(y2 — y1)(wo — z1)(1 + &)

Ye = +31(1 + &)
) (z2 — z1)
where (L+e) = t1+:1Hl+szl((i:;:(1+:;)(1+:5] and |g;] < e. Let t = !W_“i%_{?:;ﬂn‘_ We

can write

Yo = boll4+€) + (1l + <)
Ye— Y3 = " + nés

loc™| + jinsi.

[

Neglecting higher order terms in &;, we get |¢*] < 6¢. Since {—:‘2’:—2: < 1, we have

ftol < lyo —m
lt] < B
€ < 6eB + eB

ehs < TzB.

The distance between vq and p is computed as |y. — yo| which introduces additional
error of at most |y — yo| < £B. Thus, the total error in the distance computation

of p from vy is bounded as ed,, < 7cB + ¢ 5 = 8cB. &

2.4.2 Good Vertex

We define a vertex v of a simple polygon @; to be a “good vertex” as follows.
Let L be a vertical line passing through v. The set of intersection points of the
edges of any polygon Q; with this vertical line can be partitioned into three sets
Ijbou(u), Ijrm{u)s Ifdm(u} based on the proximity of the intersection points to v. Iibwe{u}

is the set of all intersection points above v whose computed distance from v is greater

than or equal to 8¢B. ffdaw[u) is correspondingly defined for intersection points below

v. The rest of the intersection points are in the set Ig{m{u}.

Definition 2.4.4 For the polygon @Q; containing v, if all points in I,fdow(u) (respectively
[:’

|Iéboue{u)|) is odd then v is called a “good vertex” of Q; from below (respectively above).

Since the absolute error in the distance computations of the intersection points
[rom v is less than 8¢ B. the intersection points in Ij,-miul can lie at an actual distance
of at most 1668 either below or above v. On the other hand, the actual distance
between » and the points in Ltowuy (T€SPECtively I;bm(u)J must be greater than
16¢8. Hence. there must be a segment of L that lies between the points in !Lf.fo.se(l.r)
and If,,,. (respectively [cifosc{u) and Igbwc(u)). This segment lies inside Q; if |}

efow({v) |

{respectively | 1) is orld,

LTy

aboue(v)) 2T€ at a computed distance of at least 24¢ 3 from v, and il ug,,ow(u} |(respectively

27

Lemma 2.4.2 Given two simple, nonintersecting polygons @y, (Js, it can be correctly
determined if one of the predicates VOT(CONT(Q,,Q,)), NOT(CONT(Q2, Q1)) is
true by checking the leftmost vertices of Q, and Q,.

Proof: Let vi = (z\,y1), v2 = (T2,%) be two leftmost vertices of @, and @, re-
spectively. Certainly, 7, < z, implies NOT(CONT(Q,,Q1)), and z, > z, implies
NOT(CONT(Gh,Qz)). Furthermore, , = z; implies NOT(CONT(Q,,Q2)) and
NOT(CONT(Q,,@1)) since @, and @Q, are simple nonintersecting polygons. &

2.4.3 Procedure ANSC

The procedure ANSC, when called with the argument v. a good vertex of F;
reports some(may not be all) ancestors of Q; as follows. W.lo.g., assume v is
a “good vertex” of Lhe polygon Q; from below. The procedure ANSC constructs
Ij,m(”), Igdm(u),fibou{u} for all polygons {Q;}. Let {Q.} be the set of polygons for
which |Ife,ow(u}| is odd, and all points in Ifdow(u) lie at a computed distance of at least
24eB from v. The procedure ANSC reports those polygons in {Q,} as the ancestors

of); whose leftmost vertex has a smaller z-coordinate than that of Q;.

Lemma 2.4.3 Given a set of simple, nonintersecting polygons in the plane with a

“good vertex” v on the polygon @Q;, reported ancestors of the polygon Q; by ANSC(v)

are true ancestors of it.

Proof: Let L be a vertical line passing through a “good vertex” v of ;. As stated
earlier, a “good vertex” can easily be determined via distance computations of v from
the intersection points of edges with L. W.lo.g., assume v to be a “good vertex” of
Q: from below. Since v is a “good vertex” from below, Lhere is a segment L' of L
that lies between the points in IL‘__,D”(UJ and I;daw{u}. In ANSC(v) we consider the set
of polygons {Q4} that have odd number of points in Ig‘;,ow(u} which lie at a computed
distance of at least 248 from v. Certainly, a portion of the segment L’ also lies inside
these polygons. Hence, a polygon in the set {Q} either contains (J; or is contained in

(0s. Weuse Lennia 2012 to eliminate one of these Lwo possibilities and report those

28

polygons in {Qx} which contain Q;. Hence, the reported polygons truly contain Q;,
though all polygons containing Q; may not be reported. &

Case (11)

Figure 2.5 Cases of Lemma 2.4.4

Lemma 2.4.4 Given a set of simple, fleshy, nonintersecting polygons on a plane, there
s a “good vertex” v of each polygon Q; such that AN SC(v) reports all true ancestors

of Q.

Proof: Consider a simple. fleshy polygon Q;. By definition, there is a point ¢ inside
@: such that a square box abdc with sides of length 64¢ B lies inside ;. Let q be the
center of abdc. Consider two vertical lines L, L, coinciding with the two sides of the
square as shown in Figure 2.5.

Case(i): There is a vertex v of @; within the two vertical lines. W.lo.g., assume v

to he above ab. Consider a vertical line L passing through v. Let ¢’ be the orthogonal

29

projection of ¢ on L. Let s be the point of intersection of I with the edge of Q;
which is vertically visible from ¢’ and which is below cd. Any polygon containing Q;
cannot have an edge intersecting L in between v and s. Since the distance between v
and s must be greater than or equal to 64¢B, the computed distance between them
must be at least 368. Hence, s cannot be in IC",m(u], and all the intersection points
of (); that are in Ig;..ow(u) must be at a computed distance of at least 56¢B from v.
Certainly, I;e,ow(v) is odd. Hence, v is a “good vertex” of @; from below.

Case(ii): There is no vertex v which lies in between two vertical lines L, and L,.
In this case, only two edges of Qi will be vertically visible from q. Let these two
edges be e, e, as shown in Figure 2.5(b). Let v (respectively v') be the first vertex
that is hit by a vertical line L while sweeping it from the position of I, (respectively,
Ly) to right (respectively, left). Consider a vertical line through » that intersects ey
and e, at b’ and ¢ respectively. Similarly, consider the vertical line through v' that
intersects e; and e, at a’ and ¢’ respectively. The quadrilateral a’d'd’e’ lies inside Q.
Since ebde lies inside a’b'd’c’, one of the edges b'd’ and a'c’ must be greater than or
equal to 64cB. W.lo.g., assume b'd’ is that edge. Certainly, v is at a distance of
at least 32¢B either from & or 4. W.l.o.g., assume the distance between v and &' is
greater than equal to 32¢B. This implies that the computed distance between v and
d' is greater than 24eB. Tollowing the same argument as in Case (i), we can say that
v is a “good vertex” of @; from below.

Any polygon @; containing @, can not have an edge intersecting £ in between v
and s in Case(i) and in between v and & in Case(ii). Hence, for such polygon @,

J

all intersection points in Lietowtyy Must be at a computed distance of at least 2de B

from v and [f,fn.aw{u]] must be odd. This ensures that ANSC(v) reports all the true

ancestors of @;. &

2.4.4 The Algorithm

Algorithm Polnesi-Robust

[nput : A set of simple. nonintersecting, fleshv polvgons.

30

Outpui: An acyclic directed graph. called the nesting structure, in which each node
n; represents a polygon &Qi. There is a directed edge from =n; to n; if and only if Q;
is the parent of @Q;.

Step I' Sort the vertices of the polygons on the r axis.

Step 2: Sweep a vertical line from left to right taking the following steps at each
vertex v.

Step 2(a}. Let Q; be the polygon having v on the boundary and £ be the set of
edges that were intersected by I when the sweep line stopped at the previous ver-
tex. Compute the intersection points of L with edges in £. Construct the sets

r I

ubove(v)? ‘close{v)*

Igc,ow(v} for each polygon @Q;.

Step 2(b}: Test whether v is a “good vertex” of Q; or not. If it is, take step 2(c)
otherwise skip 2(c).

Step 2(c): Ml v is a “good vertex” of Q; from below (respectively above), for each

polygon @Q; intersected by L, check whether [Igziow[uﬂ {respectively |1§bow(u}|) is odd
or not and whether all points in I,fﬂ,w(u) (respectively Ijbm{u)) are at a distance of at
least 24eB from v or not. If both conditions are satisfied, check the leftmost vertices
of @; and Q; to determine whether NOT(CONT(Q;, @;)) is true or not. If it is true,
create a directed edge from the node corresponding to Q; to the node corresponding
to (}; in the nesting structure in case it is not already created. Note that this will
create a directed edge from n; to n; if and only if @; is an ancestor (not merely
parent) of @;. This nesting structure is refined in Step 3.

Step 2(d): 1f v is a vertex with both edges adjacent to it not in E, include them in
E. Il v is a vertex with both edges adjacent to it in E, delete them from E. If v is
a vertex with one of the edges in £, delete that edge from £ and include the other
edge in £.

Step 3: The nesting structure G* computed by Step 2(c) is the transitive closure of
the actual nesting structure G of the set of polygons. G can be recovered {rom G* in

O(e) time where e is the number of edges in G*. Find all leaves in G~ i.e., the nodes

that have an in-degree count equal to 0. These nodes are also leaves of (¢. Delete

31

all edges outgoing from these nodes. Find the new leaves in the modified G*. These
nodes are at a distance of one (w.r.t. the number of edges) from the leaves of G.
Repeating this process, all nodes at a distance of one, two, three, ... from the leaves
are found out and ' is recovered. This algorithm can be carried out in Of(e) time
where ¢ is the number of edges in G".

Time Analysis: Step ! takes O(nlogn) time. Since a vertical line intersects at most
O(m + r) edges (Lemma 2.2.1), Step 2 takes O(m + r) time for each stop while
sweeping. Hence, the total time spent for Step 2is O(n(m +r)). Step 3 takes O(m?)
time since there are O(m?) edges in *. Thus, the time complexity of Polnest-Robust

is O(nlogn +n(m +r) + m?) = O(n(logn + m + r)).

2.5 Conclusions

[n this chapter, we have given an elficient algorithm for polygon nesting problem,
where the polygons do not intersect along their boundaries. [t is interesting to con-
sider the case where polygons intersect along their boundaries. In that case, can we
find the nesting structure in O(nlogn) time or at least in O(rlogn + s) time, where
5 1s the tolal number of intersections between the polygons? This problem arises in
paliern recognition during feature classifications.

We have devised a type-3 robust algorithm with a minimum feature assumption.
[t seems that some sort of minimum feature assumption is necessary to produce exact
outputs under finite precision computations. There are applications, however, where
an output “close” to the exact one is acceptable. In those cases, a tvpe-5 robust

algorithm without any minimum feature assumption is desirable.

32

3. CONVEX DECOMPOSITIONS

3.1 Introduction

This chapter deals with the convex decompositions of polyhedra. Convex de-
compositions, in terms of a finite union of disjoint convex pieces, are useful and are
always possible for polyhedral models {Cha80, Ede87]. Convex decompositions lead
to efficient algorithms, for example, in geometric point location and intersection de-
lection; see {Ede87]. Specifically, a disjoint convex decomposition of simple polyhedra
allows for more efficient algorithms in motion planning, in computer graphics, in solid
modeling, and in the finite element solutions of partial differential equations.

The problem of partitioning a non-convex polyhedron S into a minimum number
of convex parts is known to be NP-hard [Lin82, ORS83}. Rupert and Seidel [RS89)
also show that the problem of determining whether a non-convex polyhedron can
be partitioned inlo tetrahedra without introducing Steiner points is NP-hard. For
a given polyhedron .5 with n edges of which r are refiex, Chazelle [Cha80, Cha84]
established a worst case, O(r?) lower bound on the number of convex polyhedra
neeced [or complete convex decomposition of S. He gave an algorithm that produces
a worst case, optimal number O(r?) convex polyhedra in O(nr®) time and Q(nr?)
space. Recently, Chazelle and Palios [CP90] have given an O((n 4 r?)logr) time and
O(n + r?) space algorithm to tetrahedralize a subclass of non-convex polyhedra. The
allowed polyhedra for their algorithm are all homeomorphic to a 2-sphere, i.e., have
no holes{genus 0) and shells (internal voids).

[n Section 3.3, we present an algorithm to compute a disjoint convex decomposi-
tion of a manilold polyhedron 5 which may liave an arbitrary number of lioles and
shells. Given such a polyhedron S with n edges of which r are reflex, the algorithm

produces a worst case optimal O(r*) number ol convex polyhedra S;, with Uisi=d

33

in O(nr? 4+ rPlogr) time and O(nr + r2a(r)) space. Here. « is the inverse Acker-
mann's function which grows extremely stowly. We extend this algorithm to work
[or non-manifold polyhedra which do not have abutting edges or facets but may have
incidences as illustrated in Figure 3.1. The algorithm presented in this chapter is
based on repeated cutting and splitting of polyhedra with planes that resolve reflex
edges. ("hazelle. in [Cha80], first used this method. We improve this method to obtain
better time and space bounds using a refined complexity analysis and the efficient
algorithms [or certain subproblems.

In Section 3.4, we describe the geometric based heuristics that are used to over-
come the inaccuracies involved with finite precision arithmetic computations. Al-
though we cannot prove that these heuristics make the algorithm type-1 robust,
the experimental results are very satislying. This algorithm runs in approximately

Q(nr? + nrlogn + ') lime and O(nr + r*a(r)) space.

isolated
edge
isolated
vartex Ezziaggééé
groups
of features

(a} (b) <)
Typs 1 notch Type 2 notch Typ. 3 noteh

Figure 3.1 Non-manifold incidences or special notches.

3.2 Preliminaries

Manifold polyhedra can e nonconvex only due to the presence of reflex edges.
Non-manifold polyhedra. however, can be nonconvex due to the [eatures other than
reflex edges. The [eatures. causing nonconvexity in polyhedra are called notches in

general.

34

3.2.1 Notches

Non-manifold polyhedra as considered in this thesis have the following four types

ol notches.

L. Type I notches: These notches are caused by isolated vertices and edges on a
facet. An isolated vertex or an isolated edge on a facet is not adjacent to any

other edge of the facet. See Figure 3.1(a).

2. Type 2 notches: These notches are caused by the edges along which more than
two facets meet as illustrated in the Figure 3.1(1). If there are 2k (k > 1) facets

incident on e;, we assume that they form 4 notches.

3. Type 3 nolches: These notches are caused by vertices where two or more groups
of features (lacets, edges) touch each other as illustrated in the Figure 3.1(c).
The [eatures within a group are reachable {rom one another while remaining
only on the surface of S and not crossing the vertex. Actually, type 1 notches
are a subclass of these notches. For convenience in the description, we exclude
t¥pe 1 notches from type 3 notches. The number of groups attached to the

vertex determines the number of type 3 notches associated with that vertex.

L. Type 4 nolches: These notches are caused by reflex edges. A manifold polyhe-

dron can have only this type of nolches.

The notches ol type 1. type 2, type 3 are called special notches as they are present
only in non-manifold polyhedra. In our algorithm, we first remove all special notches
from the input polyhedron S creating only manifold polyhedra. Subsequently, type
4 notches of the manifold polyhedra are removed by repeated cutting and splitting
them with planes resolving the notches. Let an edge g with fi, /; as its incident {acets
be a notch in a manilold polyhedron. A plane P, that passes through ¢ is called a
notch plane it both angles (f, P,) and (P, f2), as measured from the inner side of

£y and [, ave not reflex. In other words. a notch plane resolves the reflex angle of a

35

ancther notch

Figure 3.2 A nolch and its notch plane, cross sectional map, cut.

notch. Clearly. for each notch g, there exist infinite choices for F,. Note that £, may

intersect other notches, thereby producing subnotches; see Figure 3.2.

322 .Data. Structure

Let 5 be a polyhedron, possibly with holes and shells, and having s vertices :

{vioen, e, nedges @ {e),e,...,e,), and q [acets : {/1: fas s [} These lists of
vertices, edges and lacets of S are stored similar to the siar-edge representation of
polyhedra [IKar88].

Vertices: Bach vertex is a record with Lwo fields.
1. werter.coordinales: contains the three dimensional coordinates of the vertex.
2. verler.adjacencics: conlains pointers to the edges incident on the vertex.
Ldges: Each edge is a record with two fields.
1. edge.vertices: contains pointers to the incident vertices.

2. rdge.orientededges: contains pointers to the record called ortentededges which

represent different orientations of an edge on each facet incident on it. The

36
orientation of an edge on a facet f is such that a traversal of the oriented edge
has the facet f to its right.

Orientededges: each orientededge is a record with four fields.

L. orientededge.edge: contains pointer to the defining edge.,

I~

. orientededge.fecel: contains pointer to the facet on which the orientededge is

incident.

3. oricnlededge.orientaiion: contains information about the orientation of the edge

on the facet.

1. orientededge.nectorientededge: contains pointers (possibly more than one) to

the next orientededges on the oriented edge cycle on a facet. See facet cycles

helow.

AV A ALY Y

two oriented adges
on the same facet

Figure 3.3 A non simple lacet.

Facels: each facet is a record with two fields.
L. facel.equation: contains the equation of the plane supporting the facet.

2. [ncel.cycles: conlains pointers to a collection of oriented edge cycles bounding
the {acet.Each oriented edge cycle is a linked list of orientededges. The traver-

sal ol each oriented edge on the cycle has the facet to its right. I{ there is an

37

isolated vertex on the facet. (Figure 3.1(a)) a pointer to the vertex is included
in facet.cycles as a degenerate oriented edge cycle. An isolated edge is repre-
sented with the oriented edge cycle of Lwo orientededges. For a non-manifold
polyhedron, a facet may have configurations as shown in Figure 3.3, where a
vertex or an edge is considered more than once in an oriented edge cycle, though

an oriented edge is included only once.

3.2.3 Some Definitions

To deal with the non maniflold polyhedra, we define the term polygon slightly
differently in this chapter than the usual way. Let the polygonal boundary refer to an
oriented edge cycle embedded on a plane with no edge intersecting another except at
their end points. The traversal of a polygonal boundary may pass through an edge

or a vertex more than once.

Definition 3.2.1 A polygon is a connected region on a plane that is bounded by one

or more polvgonal houndaries.

A polygon corresponding to the facet [is shown in Figure 3.3. Let Q be a
polygon with vertices vy, vg, ..., in the clockwise order. The outer angle hetween
lwo conseculive oriented edges d;_, and d; is measured in the anticlockwise direction

[rom d; 1o o;_,.

Definition 3.2.2 A vertex is reflez in Q if the outer angle between the oriented edges
disy = {(vi_y,v;) and d; = (v5,vi41) is £ 180°. The vertices that are not reflex are

called normal vertices of Q.

Notice that, with this definition, vy, vs of the nonsimple facet in Figure 3.3 are

rellex vertices. though v is not.

Definition 3.2.3 A maximal piece of a polygonal boundary is called the monotone
chain if its vertices have z-coordinates (or y-coordinates) in either strictly increasing

or decreasing order, see Iigure 3.4.

38

cer v is a monotone chain.

ciey W

1 is a monotone chain.

Figure 3.4 Monotone chains in a polygon.

321 Useful Lemmas

[n the subsequent sections, we use the following lemmas.

Lemma 3.2.1 Let @ be a polygon with r reflex vertices. The number of monotone

chains ¢ in @ is bounded as ¢ < 6(1 + r).

Proof: Follows lrom Lemma 2.2.2. &

Lemma 3.2.2 Let @ be a polygon with s normal vertices. There are at most O(s)

monolone chains in ().

Prool: Let v be the vertex of @ with the minimum y-abscissa and let B be the
boundary obtained by removing the vertex v and an e-ba!! around v from the boundary
of . Add six more edges to B as shown in Figure 3.5 to construct a new polygon
Q. The polygon Q' is oppositely oriented with respect to Q. Note that each reflex
vertex ol (' corresponds to a normal vertex of (). Thus, Q' has no more than s reflex
vertices. According to Lemma 3.2.1. the boundary of Q' can be partitioned into O(s)

monotone chains. The polygon @ cannot have more monotone chains than ' which

inplies that € has O(+) monolone chains.&

39

Figure 3.5 Constructing a polygon of opposite orientation.

l.emma 3.2.3 Let © be a set of & polygons with r reflex vertices. No line can intersect

¢> in more than r + & chords.

Proof: Iollows immediately from Lemma 2.2.1.&

Lemma 3.2.4 The problem of polygon nesting for a set of nonintersecting polygons
can be solved i O(s + ¢log () time assuming exact arithmetic computations where s
is the total number of vertices, and ¢ is the total number of monotone chains present

in all input polygons.

Proofl: Although the algorithm given in section 2.3 uses a slightly different type of
monotone chains, called subchains, it also works for the monotone chains as defined
in this chapter. Further, this algorithm can be straightforwardly adapted to the input

sel ol polygons as defined in this chapter. &

3.3 The Algorithm with Exact Arithmetic

In Lhis section. we develop and analyze a convex decomposition algorithm which
assumes exact arithmetic computations. Given a polyhedron $, it is first split along

vertices and edges of special notches Lo produce mauilold polyhedra. Reflex edges

40

of a manilold polyhedron are removed by slicing it with notch planes. Notch planes

may possibly intersect other notches to create subnotches. In general. the notch

cutting

plane P
] non-manifold

pPolyhedron

ligure 3.6 An example where manifold property is not preserved

elimination process produces a number of subpolyhedra. At a generic step of the
algorithm. all subnotches of a notch, present in possibly different subpolyhedra, are
climinated with a single notch plane. Slicing a manifold polyhedron with a plane may
produce non-manifold subpolyhedra with special notches. See Figure 3.6. As before,
tliese non-manilold subpolyhedra are split along the special notches to produce only
manifold polyhedra. If the notch plane, however, does not pass through a vertex of the

polyhedron being cut, manifold property is preserved in the resulting subpolyhedra.

Algorithm ConvDecomp(S)

Step I: Remove all special notches from S. This produces manifold polyhedra.
Step 2: Assign a notch plane for each notch in the manifold polyhedra produced in Step 1.
Step J: repeat

Let g1,92, .., 9% be the subnotches of a notch g¢

present in Lhe polyhedra &),5,..., 5. Let £, be

41

the notch plane assigned to g. Remove g,4,,... gx

from 51,53, ..., 5k by the notch plane 7,.

Remove special notches produced by this slicing operation.
until all notches are eliminated.

end.

Step 1 of the algorithm is described in Section 3.3.2. Step 2 can be performed
Lrivially in O(r) time. The slicing step of the algorithm (Step 3) needs to be performed

carefully and is detailed below in Section 3.3.1.

3.3.1 Intersecting a Manifold Polyhedron with a Notch Plane

Let 5 be a manilold polyhedron with r nolches and » edges. By &, we denote
here any polyhedron §\,5,,...,.Sk that is encountered in step 3 of the above algorithm
ConvDecomp. The notch plane P,: az +by4cz+d = 0 defines two closed half spaces
P; rax+hytez+d 2 0and P)iaz+ by +cz+d <0. To cut a polyhedron S with

the plane F,. it is essential to compute

5t = c:’(inE(P;) Nt (S))

5" = cl(ini(F]) N int(S))
where ¢l{O) and 1:¢(Q) denote the closure and interior of the geometric object O.
Since polyhedra are represented with their boundaries. we need to compute the bound-

aries 65¢, 65" of 5% and S" respectively. To compute 65¢ and 657, it is essential to

compute the features of §S¢ and 657 lying on P,.

Definition 3.3.1 The intersection of £, with §5¢ and 65" are called the cross sectional

maps and are denoted as (P and P} respectively.

Note that for a poiyhedron S, and a plane P, the cross sectional maps GP; and
(r P} may be different. See for example, Figure 3.2. In general. GP; and G Py consist

of a set of isolated points. segments and polygons, possibly with holes.

42

Definition 3.3.2 The unique polygons Q;, Q5 on G'P_,f and GP; respectively, contain-

ing the notch g on their boundary are called cuts.

Note that, to remove a notch g, it is sufficient to slice S along only the cut instead
ol the entire cross sectional map.

Instead of computing Q;, (J; separately, we first compute the cut Qe = Q; ey
and then refine it to obtain Q; and Q. This calls for computing the cross sectional
map (P, = GP; U GF]. The polygon corresponding to the cut @y may have a
vertex or an edge appearing more than once wlile traversing its boundary. If an
edge appears more than once in traversing the boundary of Q; or (Jy, the edge must
make the corresponding subpolyhedron non-manifold: see Figure 3.6. It is interesting
to observe that there can be at most four facets incident upon that edge since the
original polyhedron being sliced was a manilold.

An additional fact is that a single slicing along the cut may not separate the
polyhedron S into two different pieces. See Figure 3.2. In this case, two facets cor-
responding to Q_,‘; and @) are created that may overlap geometrically and considered
distinct, so that the polyhedron is treated as manifold polyhedron.

The algorithm to cut a polyhedron § with a notch plane P, consists of two basic

sleps.

o Step {: Computing the cut @,: This calls for computing inner (holes) and outer

houndaries of the polygon Q.
e Step [f: Splitting the polyhedron §.

Step [is detailed below in Section 3.3.1.1 and step /1 in Section 3.3.1.2.

3.3.1.1 - Computation of the cut @,

Step A: First. all boundaries present in the cross sectional map G P, are computed.
To do that. all the [acets of § are visited in turn. If the notch plane intersects a facet

£all intersection points are compnied. Nofe 1ha S must be a simple facet {(no veriex

43

or edge is traversed twice along its boundaries) since S is a manifold polyhedron. Let
@i, @2,ax be the sorted sequence of intersection points along the line of intersection
Py f. We call an intersection point a new intersection vertez if it does not coincide
with any vertex of the facet f and call it an old intersection vertez, otherwise.
It is essential to decide consistently whether there should be an edge between two
consecutive intersection vertices a; and ;4 of this sorted sequence. This is done by
scanning the vertices in sorted order and deciding whether we are “inside” or “outside”
the facet as we leave a vertex to go to the next one. If g; is a new intersection vertex,
there can be an edge between ag; and a;;; only if there is no edge between a;_; and q;
and vice versa. On the other hand, il ¢; is an old intersection vertex, there can be an

edge between ¢; and a;4, irrespective of the presence of an edge between a;_, and g;.

Figure 3.7 Generating new and old edges.

Switching between “inside” and “outside” of the facet is carried out properly, even
with degeneracies. using a multiplicity code at eacl intersection vertex. During the
scan of the sorted sequence of intersection vertices, a counter is maintained. The
counter is initialized to zero and is incremented by Llie multiplicity code at each
vertex. Qur stalus toggles between “inside” and “outside” of the facey as the counter

toggles hetween the “odd” and “even” count. A new intersection vertex is assiened a
EE

44

multiplicity code of 1. An old intersection vertex has a multiplicity code of l if both
ol its incident oriented edges on the facet f do not lie in the same half-space of £,
and a multiplicity code of 2, otherwise. If there is an old edge (edge of f) between
two vertices @; and ey, multiplicity codes are assigned to them as follows. If other
two incident oriented edges on a;, a;4; on the facet f lie in the same open hall-space
of the notch plane, assign a multiplicity code of 1 to both of them. Otherwise, assign
multiplicity codes of 1 and 2 to @; and a;y, in any order. In Figure 3.7, there is an
old edge between ay,as. The status (“outside”) with which one enters the vertex a3
.15 same as the one with which one leaves the vertex a;. This is enforced by assigning
a multiplicity code of 1 on the two vertices that increments the counter by an “even”
amount and prevents it [rom toggling. In the same example, there is another old
edge between as and ag. The status (“outside™) with which one enters the vertex
us 1s different from the one with which one leaves the vertex ag. This is enforced
by assigning muitiplictty codes of 1 and 2 on the two vertices in any order which
increment the counter by an “odd” amount and make it toggle. A new edge from
vertex a; to a;; is created if the count is “odd” on leaving vertex a,. In case, there is
an old edge between ¢; and a;,, no new edge is created between them. This process is
repeated for all facets intersected by P, resulting eventuaily in creating the l-skeleton
or the underlying graph of G'F,. This underlying graph becomes a directed graph il
the oriented edges associated with the edges in (+P, are considered. Orientation of
each such edge is determined in constant time since the orientations of the [acets
intersecting the notch plane are known. A traversal in a depth-first manner in this

dlirected graph traces the boundaries of G'P,.

Timing Analysis: According to Lemma 2.2.1, the notch plane P, intersects a facet f
of 5 in at most 2r; + 2 points where r; is the number of reflex vertices in f. Thus.
sorting ol the intersection points on a facet takes at most O(w;logr;) time where ; is
the number of intersection points on the facet. Considering all such facets, we obtain

the sorted sequence of intersection vertices on the facets computed in O(p + u log)

15

time where u is the number of vertices in (¢ F7,. Generating the edeges between these
intersection vertices takes no more than O(p) time altogether. The time taken for
tracing the boundaries of G P, is linear in the number of edges in GF,. QOverall, the

computation of G F, takes O(p + ulogr) time.

Step B: Next, the inner and outer boundaries of Q, are determined from GPF,. It
15 trivial to determine the boundary B, containing the notch g. One can determine
whether B, is an inner or outer boundary of @, by checking the orientations of the

edges on the boundary.

Case(i): B, is an outer boundary of Q,: Let I; be the polygon corresponding to an
mner boundary (hole) of @,. The polygon /; has at least one vertex which is normal.
Since the boundary of I; constitute an inner boundary of (},, the normal vertices of
[; are rellex vertices of Q,. Definitely, reflex vertices of (J¢ lie on notches of S. This
implies that all inner boundaries of @, will have a vertex where P, intersects a notch
of 5. The set W of houndaries having at least one such vertex is determined. The
boundaries in the set WU B, are called interesting boundaries. The polygon nesting
algorithm applied on the polygons constituied by the interesting boundaries detects

Lhe children of B,. The boundaries of these children constitute the inner boundaries

ol Q.

Timing Analysis: The set W can be crealed in O(u) time where u is the number
of vertices presenl in the cross sectional map. Certainly, the number of interesting
boundaries is O(t) where ¢ is the number of notches intersected by the notch plane
P,. The interesting hboundaries. that are outer houndaries of some polvgon in the
cross sectional map, have O(¢) reflex vertices since these vertices are generated by the
intersection of a notch of S with the notch plane. On the other hand, the interesting
boundaries that are inner boundaries of somne polygon in the cross sectional map have
O(t) normal vertices. Thus, according to Lemma 3.2.1 and 3.2.2, there are at most

(1) monolone chains in the interesting bowdaries, If there are 1 vertices in the

46

interesting boundaries, the children of B, can be determined in O(u’ + tlogt) time
using the polygon nesting aigorithm (Lemma 3.2.4). Thus, in this case, the inner and
outer boundaries of @, can be detected in O(u + v’ + tlogt) = O(p + tlogt) time,
since u = O{v') = O(p).

Case(1i): B, is an inner boundary of Q,: The boundaries that completely contain the
boundary B, inside are determined. This can be done by checking the containment
of any point on B, with respect to all boundaries in the cross sectional map. These
boundaries. together with By, are the interesting boundaries. The polygon nesting
algorithm, applied on these interesting boundaries, detects the boundaries of the
parent polygon of B,. This boundary is the outer boundary of Qy- Note that @,
may have other inner boundaries different from B,. Once the outer boundary of Qg
is computed. all of its inner boundaries can be obtained applying the technique used

in case(i).

Timing Analysis: Detection of all boundaries containing B, takes O(u) time. The
set of interesting boundaries can be partitioned into two classes according to whether
they are inner or outer boundaries of some polygon. [t is not hard to see that there
can be at most one more outer houndary than inner boundaries in this set. Hence.
the number of interesting boundaries is of Lhe order of inner boundaries present in
the cross sectional map. As discussed in case(i), the number of inner boundaries must
be bounded above by the number of notches intersected by the notch plane. Thus,
there are O(!) interesting boundaries. Further, as explained belore, the number of
monotone chains present in these interesting boundaries can be at most O(t). Hence.
Lhe outer boundary of @, can be determined in O(p+¢ log t) time. Detection of other
inner boundaries that are different from B, takes another O(p + tlogt) time. Thus,

in Lhis case also all outer and inner boundaries of (), can be detected in O(p + tlogt)

lime.

47

Combining all these costs together, we see that the “cut computation” takes Op+

tlogt+ ulogr) time.

3.3.1.2 Splitting S

Separation of S along the cut @, is carried out by splitting facets that are in-
lersected by ¢);. Suppose f is such a facet which is to be split at ay,ds,....ak. Lhe
splitting of f consists of splitting the old intersection vertices and the edges on which
a new intersection vertex lies. For this splitting operation, the intersection vertices on
each facet f are visited, and for each such intersection vertex, constant time is spent
[or setting the relevant pointers. The facet f may be split into several subfacets. The
inner boundaries of f that are not intersected by P, remains as inner boundaries of
some of these sublacets. The polygon nesting algorithm determines the inclusions of
these inner boundaries into proper subfacets. The cut Q, is refined to yield Q¢ and
Q5. 1t is observed that the differences between Q¢ and @5 are caused by the edges of
5 that lie completely on F,. Hence, to refine J,, one needs to determine which of the
edges of 5 are to be transferred to Q) (Q7 respectively). This can be done using the
[ollowing simple rule. An old edge e must be transferred to Q; (@} respectively.) if
any [acet {or a part of it) that is adjacent to e and not coplanar with F, lies in P; (Py
respectively). A copy of @, is created, and one of the two Q,’s is designated for Q;
and another for 7. From a copy, all those edges that are not to be transferred to it
are deleted. Note that the transfer of edges lying on @, takes care of the facets lying
on J,. Two oppositely oriented facets at the same geometric location corresponding
to the cuts Q; and (7 are created. All modified incidences are adjusted properly. A
depth first traversal in the modified vertex list either completes the separation of S
by collecting all the pertinent features of each piece or reveals the fact that S is not
separated into two different pieces by the cut. In the latter case, either the number

of holes or the number of shells in § is reduced by one.

48

Timing Analysis: Adjustment of all incidences in the internal structure of S cannot
take more than O(p) time since each edge is visited only O(1) times. The polygon
nesting takes O(p + rlogr) time since there can be at most O(r) holes in the facets
of § containing O(r) monotone chains. Further, creation of Q; and @ from @, and
the depth first traversal in the modified vertex list cannot exceed O(p) time. Hence,

the “splitting operation” takes O(p + rlogr) time.

3.3.2 Elimination of Special Notches and its Analysis

For a non-manifold polyhedron S, nonconvexity results from four types of notches
as discussed in Section 3.2.1. Let S have n edges and r notches. The counting of
special notches is described in Section 3.2.1. A preprocessing is carried out as follows

to remove the notches of the first three types, called special notches.

Remoual of lype | nolches: As can be observed from Figure 3.1(a), the vertex or the
edge causing the nonconvexity is detached from the facet on which it is incident as an
isolated vertex or an isolated edge. Identilying these vertices and edges and detaching

them from the corresponding facets take at most O(n) time.

flemoval of lype 2 notches: Here, more than two facets are incident on an edge e;. Let
these {acets be fi, fa,..., f;. Let C be a cross section obtained as the intersection of
the {acets incident on e; with the plane P that is normal to the edge ¢;. C consists of
edges ¢; = (f; N P). The facets around e; are sorted circularly by a simple circular
sort of the edges e;'s around ¢; N P. The adjacent {acets that enclose a volume of
5 are paired. Let this pairing be (f;, f2), (fo: fa)y i (frimns). An edge between
each pair of facets is created, and the edge ¢; is deleted. All these edges are at the
same geometric location of e;. All incidences are adjusted properly. Sorting of the
facets around the edge e; takes O(r; log r;) time. [urther, for all type 2 notches, the
adjustrnent time of all incidences in the internal representation of S cannot exceed

O(n). Thus, removal of all type 2 notches takes at most (n + rlogr) time.

19

Remouval of type 3 nolches: Let v be a vertex that corresponds to a type 3 notch.
[n this case. we group together all features (edges and facets) that are incident on
v, and are reachable [rom one another while remaining always on the surface of S
and never crossing v. This gives a partition of the features incident on v into smalier
groups. I'or each such group, a vertex at the same geometric location of v is created
and all incidences are adjusted properly. This, in effect, removes the nonconvexity
caused by v. All such vertices causing type 3 notches in S can be identified in O(n)
time by edge-facet-edge traversal in the internal data structure of S. Removal of all
such notches takes at most O(n) time. This is due to the fact that each edge can be
adjacent to at most two Lype 3 notches and thus is visited only O(1) times. Thus, all
type 3 notches can be removed in O(n) time.

Finally, a mixture of cases may occur where an isolated vertex is also a type 3
notch or an isolated edge is also a type 2 notch. All these cases are handled by first
eliminating all type 1 notches and then eliminating type 3 notches followed by type

2 notches.

Removal of all the above notches generates at most O(rn) new edges and produces at

most k£ manifold polyhedra where £ is the number of special notches in §.

3.3.3 Worst Case Complexity Analysis

Combining the costs of the “cut computation” of Section 3.3.1.1 and the “splitting

operation” of Section 3.3.1.2 yields the lollowing lemma.

Lemma 3.3.1 A manifold polyhedron $ having p edges can be partitioned with a
notch plane P, of a notch g in O(p + tlogt + (u + r)logr) time and in O(p) space
where ¢ is the number of notches intersected by Py, and u is the number of vertices

i Gpg .

reaflex vertax

Figure 3.8 Superimposing a cut on the arrangement of notch line segments.

Let Sy, 5y, ... 8 be the polyhedra in the current decomposition where each S; contains
a subnotch g; of a notch g of a manifold polyhedron § with n edges and r notches.

Let m; and u; be the number of edges and vertices in Q,, respectively.

Lemma 3.3.2 The total number of edges and vertices in all cuts supported by the
subnotches of a notch g are given as m = ©5, m; = O(n+ ra(r)) and u =

i = O+ ra(r)).

Prool: Consider the cut), produced by the intersection of S with F,. The region in
)y is divided into smaller facets by notch line segments produced by the intersection
ol other notch planes with £,. We locus on the facets Qo1+ Wz -r Qo adjacent to
the subnotches gy, g,, ..., gx of the notch g¢.

Consider the set of notch line segments that divides ¢),. These lines and the line
L, corresponding to the notch g produce an arrangement of line segments on the
notch plane P;. The facets adjacent to the line L in this arrangement form the zone
Zyof Ly. Let the set of vertices and edges of Z, be denoted as V, and E, respectively.
[t is known that |V;| = O(la(l)) and |E,} = O(la({)) if there are { line segments

in the arrangement; see [EGP*88]. Overlaying @, on Z, produces Qg,,Qg;, ., Qgy

5l

see Figure 3.8(a). Let V] and £ denote the sets of vertices and edges respectively
it Qg+ Qyyy .- @y, The vertices in V] can be partitioned into three disjoint sets,
namely, T1, 73, T3. The set T} consists of vertices formed by the intersections of two
notch line segments; T; consists of vertices of Q,, and T3 consists of vertices formed
by the intersections of the notch line segmenis with the edges of Q,. Certainly,
[T\ < |V,| = O(la(l)) since overlaying (), on Z, cannot introduce more vertices in
T\. If Q, has u’ vertices, |T3] < u'.

‘To count the number of vertices in Tk, we first assume that (¢}, does not have
any hole. Consider an edge e in £, that contributes one or more edge segments to
L, as a result of intersections with ;. There must be at least one reflex vertex of
(J¢ present between two successive edge segments of e. Charge a unit cost to the
reflex vertex that lies Lo the left (or. right) of each segment and charge a unit cost
Lo e itsell for the leftmost (or, rightmost) segment. We claim that each reflex vertex
of ¢, is charged at most once by this method. Suppose, on the contrary, a reflex
vertex is charged twice by this procedure. That reflex vertex must appear between
two segments of two edges in £, as shown in Figure 3.8(b). As can be easily observed,
all four ecdge segments cannot be adjacent to the regions incident on the edge g of Q-
This contracicts the assumption that ali these four edge segments are present in .
[lence, the lotal charge incurred upon the reflex vertices of @, and the edges of E,
can be at most O(r, + lx(l)) where 7, is the number of reflex vertices present in Q-
This implies that as a result of intersections with @, at most O(r, + la({}) segments
of edges in £, are contributed to E]. Hence, |T5| = O(r, + la(1)).

Consider next the case where Q has holes. We refer to the polygon corresponding
to a hole in (J, as hole-polygon. Irom €}, create a polvgon @, that does not have
any hole merging all polygons into a single polvgon as follows. Let H; and H, be two
hole-polygons that have at least two visible vertices v, v; i.e., Lhe line segment joining
ry, v2 does not intersect any other edge. Split v; and v, and join them with the line
segments as shown in Figure 3.9 to merge H,, [{;. Repeat this process successively

aorall Gole polygons imti] they are merged into a single poiveon, Finally. connert the

52

boundary of this new polygon to the outer boundary of @, to create Q- Consider
superimposing (), on Z,. Let T; denote the set of vertices formed by the intersection
of edges of £, and those of ;. The distance between split vertices of Q, can be kept
arbitrarily small to preserve all intersections between the edges of @, and those of
Zg. This ensures that |T3| < |T3]. The polygon @ has at most O(u’) vertices since
the original polygon @, had v’ vertices, and at most O(u’) extra vertices are added
to form @ from ;. Furthermore, the polygon Q) can have at most O(u') reflex
vertices. Applying the previous argument on the superimposition of @, on Z, we get
T3] < |T3] = O + la(l}).

Putting all these together, we have |Vg’| = |T\|+{T2| + |T5| = O(ry + L) +).
Since there can be at most r notch planes, [< r. Certainly, re <rand v < n. This
givesu = |V!| = O(n + re(r)). Since @y, Qg - &y, form a planar graph, we have

m = |E| = O(V/]) = O(n + ra(r)).é

Figure 3.9 Merging polygons to creale Qg from @,

Lemma 3.3.3 The total number of edges in the final decomposition of a polvhedron

5 with r notches and n edges is O(nr + ria(r)).

53

Prool: Ldges in the final decomposition consist of newly generated edges by the cuts,
and the edges of S that are not intersected by any notch plane. By Lemma 3.3.2. the
total number of edges present in all cuts corresponding to the subnotches of a notcl: is
O(n + ra(r)). This implies that each notch plane generates O(n + ra(r)) new edges.
Thus, r notch planes generate O(nr + r2a(r)) new edges. Hence. the total number of

edges in the final decomposition 1s O(n + nr + r2a(r)) = O(nr + r2a(r)).&

Lemma 3.3.4 Let 5, Sa,..., 5% be the polyhedra in the current decomposition where
each .5; contains a subnotch ¢; of a notch g. Let u; be the total number of vertices in
Lhe cross sectional map in S;. Then we have u = Zf__:l wi = G{n+r?), where u is the

total number of vertices in the cross sectional maps in $7,5,, ey Ik

Prool: Consider the cross sectional map GP,. The lines of intersection between P,
and other notch planes. called Lthe notch lines. divide this map into smaller facets.
These facets are present in the cross sectional maps in 5y, S5, ..., S, i.e., in UL, GP,,.
The vertices in US_ G P,, can be partitioned into three sets, viz., Ty, T, and T3. The
set T consists of vertices that are created by the intersections two notch lines. The
set T, consists of vertices of G P, and the set Ty consists of vertices that are created
by the intersections of edges of G P, and notch lines . Since there are at most r
notch lines. [Ty = O(r*). Certainly, |T3] = O(n). By Lemma 3.2.3, each notch line
can intersect (/P in at most O(r) chords since G, can have at most r polygons

containing no more than r reflex vertices all together. This gives |T3| = O(r?). Thus.

k
i = Zu,- = IT[I + |Tz' + 'Tal
i=1

= On+r)d

As discussed in [Cha84], one can always produce a worst case optimal number (O(r?))

of convex polyhedra by carefully cheosing the notch planes.

Lemma 3.3.5 A manifold pelyhedron 5 with r notches can be decomposed into % +

51 1 convex pieces it all subnotches ol a notch are eliminated by a single notch plane.

54

Further. this convex decomposition is worst-case oplimal since there exists a class of

polyhedra Lhat cannot be decomposed into lewer than O(r?) convex pieces.

Proof: See [{Cha84].d

Theorem 3.3.1 A manifold polyhedron 5, possibly with holes and shells and having
r notches and n edges, can be decomposed into O(r?) convex polyhedra in Q(nr? +

r®logr) time and O(nr + r’a(r)) space.

Proof: Decomposition of a polyhedron consists of a sequence of cuts through the
notches of 5 as illustrated in the algorithm ConvDecomp. Step 1 assigns a notch
plane [or each notch in S in O(r) time. According to Lemma 3.3.5, ConvDecomp
produces worst case optimal O(r?) convex pieces at Lthe end since all subnotches of a
notch are removed by a single notch plane. Note that all holes and shells are removed
automatically by the notch elimination process.

At a generic instance of the algorithm, let Sy, S, ..., Sk be k distinct (nonconvex)
polyhedra in the current decomposition where each S; contains a subnotch g; of a

notch g Lhat is going to be removed. Let S; have m; edges of which r; are notches.

Let #; be the number of notches intersected by P, in 5; and t = ¥%_, t;, u; be the
number of vertices in GGFPy, ol S; and u = f‘=1 ;.

Applying Lemma 3.3.1, removal of a notch ¢ can be carried out in O(X%_ (m; +

1=1
tilog ti + (ui +7i) log r;)) time. Sincem = 5, m; = O(nr+ria(r)), S5, i = O(r?),

w = O(n+r?), and a notch plane can intersect at most r — 1 notches giving t = O(r)

we have O(Y5 (m; + {;log t; + (u; + ;) log r:)) = O(nr + rla(r) + r?logr).

3

As described helore, elimination of a notch may produce non-manifold polyhedra
having special notches. To remove them. the same method is used for eliminating
special notches as used for the original polyhedron. Note that the type 2 notches in
these non-manifold polyhedra can be adjacent to at most four facets. Hence, no loga-
rithmic [actor appears in the time complexily ol removing such notches. This implies

Lhat the elimination of special notches from the non-manifold polyhedra produced as

W
W]

a result of cutting manifold polyhedra with notch planes can be carried out in totally
O(m) = O(nr + r’a(r)) time.

Thus, each notch elimination step takes O(nr + r?logr) time and Step 3 of
ConvDecomp which eliminates r notches takes O(nr? + 2 logr) time. Combining
the complexities of Step 2 and Step 3, we obtain an O(nr? + 3 log r) time complexity
lor the convex decomposition of a manifold polyhedron. The space compiexity of

O(nr + 72a(r)) loliows from Lemma 3.3.3. &

Theorem 3.3.2 A non-manifold polyhedron 5, possibly with holes and shells and
having r notches and n edges, can be decomposed into O(r?) convex polyhedra in

O(nr? 4 r?logr) time and O(nr + ria(r)) space.

Prool: Removal of all special notches from 5 is carried out in O(n 4 r logr) time and
in Q(n) space as discussed before. Let 5,55, ..., 5 be the manifold polyhedra created
by this process. Let 5; have n; edges of which r; are reflex. Using Theorem 3.3.1 on
each of them, we conclude that S can be decomposed into O(r?) convex polyhedra
in (T4, nr? + P logry) = Ofnr? 4+ 0 log r) time and in O(Y_, nir; + ria(r;)) =
O(nr + r*a(r)) space.d

34 Robustness under Finite Precision Arithmetic

In this section, we describe the heuristics used in attempt to make the convex
decomposition algorithm type-1 robust. It is clear [rom the discussion of our algorithm
in Section 3.3 that numerical computations arise in various intersections and incidence
lests. Under the e-arithmetic model, the absolute error in the distance computations
of one polyhedral feature {rom another is bounded by a certain quantity § = keB
where B is the maximum value of any coordinate, and & is a constant; see for example
(Mil88]. When making decisions about the incidences of these polyhedral features
fvertices erlees Facni=) on The basis of {he comnuted distances(with signs). one can

rely on the sign of the computations only if the distances are greater than é. On the

56

other hand. if the computed distances are less than §. one also needs to consider the
topological constraints of the geometric configuration to decide on a reliable choice. In
particular, in regitons of uncertainity, i.e., within the é-ball, the choices are all equally
likely that the computed quantity is negative, zero, or positive. Such decision points
of uncertainity where several choices exist, are either “independent” or “dependent”.
At independent decision points, any choice may be made from the finite set of local
topological possibilities, while the choice at dependent decision points should ensure
that it does not contradict any previous topological decisions. We follow this paradigm
to make our convex decomposition algorithm to be type-1 robust. Unfortunately, we

cannot guarantee that it is possible to follow this paradigm throughout the algorithm.

3.1 Intersection & Incidence Tests

In what [ollows, we assume the input polyhedra to be manifold. Non-manifold
polyhedra can be handled as discussed in the earlier sections. We assume minimurmn
feature criteria for the input polyhedra wherein the distance between two distinct
vertices or between a vertex and an edge is at least . To decide whether an edge
1s intersected by a plane, one must decide the classification of its terminal vertices
with respect to the same plane. The same classification of a vertex is used to decide
the classification of all the leatures incident on that vertex. This. in effect, avoids
conflicting decisions about the polyhedral features. The decisions about different
types of intersections and incidence tests are carried out using three basic tools,
namely, (1) vertex-plane classifications, (ii) [acet-plane classifications, and (iii) edge-
plane classifications. The order of classifications is (i) followed by (ii) followed by (iii).
In what follows, we assume that the equation of any plane F; : a;z + by + ciz + d; is

normalized, i.e., a? + % + ¢ = 1.

34.1.l Vertex-Plane Classification

To classifv the incidence of a vertex v = (z;,y:, %) w.r.t. the plane P : az +

by + ¢z 4+ d = 0, Lhe normalized algebraic distance of v; from P is computed which

]
-1

is given by az; + byi + czi + d. The sign of this computation, viz., zero, negative, or
positive, classifies v; as “on” P (zero), “below” P (negative) or “above™ P (positive),
where “above” is the open half space containing the plane normal {a,b,¢). The
sign of the computation is accepted as correct if the above distance of v; from P
is larger than 6. Otherwise, geometric reasoning is applied, as detailed below, to
classily the vertex v; w.r.t. the plane P. In the following algorithmic version of
the vertex-plane classification, the intersection between an edge e; incident on v;
and Lhe plane P is computed as {ollows. Let ¢; be incident on planes P;, P;, where

P - aje+biy+ciz+d; = 0. The intersection point r of ¢; and the plane P is determined

a b ¢
by solving the linear system, Ar = d where A= | ¢, 4 ¢ | d=[-d.—d, —dg,]T.
(i 1) bg Co

‘The linear system is solved using Gaussian eliminalion with scaled partial pivoting

and iterative refinement to reduce the numerical errors.

Vertez-Plane-Classif (v;,P)
begin
Let »; = (i, i, =i) be a vertex incident on edges
ey = (v), ea = {vj,wa), ..., ep = (v;, wy).
Let Prar+by+cz+d=0.
Compute [= ax; + by; + cz; + d.
if [{| > & then (*Comment: unambiguously decide via the
sign of the distance computation*)
i1 >0 then
classify v; as “above”
else
classify v; as “below”
endif
else

toop

58

(* Comment: if the distance computation does not yield an unambiguous
classification for the vertex with respect to the plane, ensure that

the “above”. “below” classification is consistent with all edges

incident on that vertex. If such consistency cannot be ensured then

the vertex is classified as “maybeon” and left for the future facet — plane

classifications to decide its classification consistently.*)

Search for an edge e; incident on v; such that r =¢; N P is at a distance
greater than 6 from v; and w; = (z;,y,, z;).
Get the classification of w; i[it is already computed.
Otherwise. compute I' = az; + by; + cz;.
if [I'] > 6 then classify w; accordingly.
if Lhe classification of w; is “below” or “above” then
if v is in between v; and w; then
classify v; oppositely to that of w;
else
classily v; same as that of w;
endif
rudif
endif
endloop
tf no such edge €; is found then
classily v; as “maybeon”
(*Comment: To be classified later in the facet-plane classifications*)
endif |
endif

end.

59

3.4.1.2 [Facet-Plane Classification

Il a facet f; does not lie on a plane P, the points of intersection between them
should necessarily be (i) collinear with the line of intersection f; M P, and (ii) all
vertices of f; on one side of the intersection line should have the same classification
w.r.k. the plane P. Vertices that have been temporarily classified as “maybeon”
are classified in such a way that they satisfy the above two properties (i) and (ii)
as closely as possible. Note that this heuristic forces the classification of “maybeon”
vertices Lo he more consislent than the one obtained by classifying them arbitrarily.

An algorithmic version of the facet-plane classification is given below.

Facet-Plane-Classif (f;, P)
begin
case
{1) All vertices of f; have been classified as “maybeon”:
Classify f; as “on” the plane and change the classification

of all incident vertices to “on™.

(i1) At least one vertex v, of f; has been classified as “above”, or “below”,
but no edge of f; has its two vertices
classified with opposite signs(“below” and “above”):
tf there is only one “maybeon” vertex v; then
classify v; as “on” and consider v; as f; N P
else
take two “maybeon” vertices v;,v; and
classify 17 and v; as “on”.
Let L be the line joining v;, v;.
Consider L as f; N P,
foop

[or each “maybeon” vertex v on f; do
if v is at a distance greater than & from L then
if v and v, lie on opposite sides of L then
classify vx with the opposite classification of v,.
else

classify v, with the classification of v,,.
endif
endif
endloop
endif

The vertices which are still not classified

PRE .
i

PPN and - area maybeon vertices.
pz r l'ps P? r lqz Y
P,r---:P _geta the classification of p
7 10 6

pz ,p3 gete the classification of g

Figure 3.10 Case(ii) of facet-plane classification.

classify them as “on”
(“Comment: Lhese vertices are within a distance of §

from /. and hence will be collinear with [, by a perturbation of

at most 4. See Figure 3.10.%)

60

61

(iii) There is an edge e whose two vertices have opposite sign classifications:

if there is no other such edge then
let L be the line joining the intersection point of e and
P to any “maybeon” vertex v;.
classify v; as “on”,
consider L as f;N P.
apply methods of case (i) to classify other “mayheon” vertices.

else
let L be the line which fits in least square sense to all the points _
of intersections and apply the methods of case (ii) to classify the
remaining “maybeon” vertices.

endif

endcose

end.

3.4.1.3 Edge-Plane Classification

An edge can receive any of the three classifications which are “not-intersected”,
“intersected”. and “on”. The classifications of the vertices incident on an edge e; are

used to classify it. An algorithmic version of the edge-plane classification is given

below.

Edge-Plane-Classif (e;, P)
begin
Let e; = (v;, 25).
case .
(i) v; and v; are both classified as “on”: |

classify €; as “on”.

(it) Only one of v;,v;, say v; is classified as “on”:

classify e; as “intersected” and consider v; as ¢; N P.

(iii) v; and v; are classified with one as “above” and another as “below”:
classify e; as “intersected”.
compute 7 = ¢; N P il it has not been computed yet.
itf does not lie within ¢ then
choose a point at a distance of at least § from the vertex
which is nearest to the computed point and consider it

as the intersection point of ¢; and P.

endif

(iv) v and v; are of same classifications and they are not “on™:
classify €; as “not-intersected”.
endcase

end.
3.4.2 Nesting of Polygons with Finite Precision Arithmetic

Lemma 3.4.1 The problem of polygon nesting for & feshy polygons with s vertices
and ¢ monotone chains can be solved in O(k% + s(¢+ log s)) time under finite precision

arithmetic.

Proof: Since any vertical line (orthogonal to the z direction) can intersect at most ¢
edges of a set of polygons having ¢ monotone chains, the above time bound is obvious

from the time analysis of the algorithm under finite precision arithmetic as given in

Section 2.4.

63

3.4.3 The Algorithm with Heuristics

The same paradigm of cutting and splitting polyhedra along the cuts is followed
to produce the convex decomposition of a nonconvex, manifold polyhedron. One
of the two planes supporting the facets incident on a notch is chosen as a notch
plane. This ensures that no new plane other than facet-planes is introduced by the
algorithm. As we have seen earlier, computations of intersection vertices involve plane
equations incident on those vertices. Thus, using the original plane equations for
such computations reduces the error propagation. Furthermore, this also guarantees
that all input assumptions about the supporting planes of the facets remain valid
throughout the iterative process of cutting and splitting the polyhedron. We apply
heuristics at each numerical computation through geometric reasoning to make our
algorithm as parsimonious as possible.

In the construction of GP,, first all boundaries are computed. For this, one needs
to compute the intersection vertices on the facets of S. This is carried out by the
vertex-plane, edge-plane and facet-plane classifications as described before. Note
that these classifications use heuristics that make the numerical computations more
reliable. After computing all intersection vertices lying on a facet f, we sort them
along the line of intersection f N P,. Since the computed coordinates of these vertices
are not exact, sorting them on the basis of their coordinates is prone to error. We use
the minimum feature criteria and the orientations of the edges on a facet to obtain a
topologically correct sort.

Two intersection vertices can be closer than § if they lie on the edges which
meet at a vertex. Other possibilities do not occur because of the minimum feature
assumptions. Using the orientations of these two edges on the facet f containing them,
the exact ordering of the two new intersection vertices on f N P, can be determined.
Generation of edges between intersection vertices can be carried out exactly since it
does not involve any numerical computation.

The cut ¢, is selected [rom G P, using the method of Section 3.3.1.1. The polygon

nesting algorithm, used lor this purpose, is adapted 1o cope with the inexact numerical

64

computations as stated in Lemma 3.4.1. The polygon nesting algorithm with inexact
arithmetic computations requires all input polygons to be fleshy. Although in most
of the cases this is true, we do not know how to guarantee this property throughout
the decomposition process. Refinement of @, needs proper transferring of the edges
of 5 that are decided to be coplanar with P,. This is done using the following simple
heuristic. For an edge e computed to be “on” the plane P,, we check all its oriented
edges incident on facets computed to be “off” the notch plane P,. Suppose, f is such
a facet. Classily any vertex v of f w.r.t. the oriented edge of e on f. If it is on the
same side of e in which f lies, e is transferred to GP{ (GP] respectively) if v has been
classified to lie in P (P] respectively). It is trivial to decide the side of € in which f
lies. _

Splitting S about the cuts Q; and @} completes the cutting of § with the notch
plane £,. This step again does not involve any numerical computations.

Note that we assume the minimum feature property to be valid throughout the
iterative process of cutting and splitting of polyhedra. Although for the original
polyhedron it is valid, it may not be preserved throughout the entire cutting process.

The method described in [SS85] can be used to eliminate this problem.

3.4.3.1 Complexity Analysis

We use Lemma 2.2.1 and Lemma 3.3.4 in our analysis which are valid only under
the exact arithmetic model. Nonetheless, the analysis presented here gives a good
estimate of the complexity of the algorithm.

Consistent vertex-plane, edge-plane and facet-plane classification take overall Q(p)
time where p is the total number edges of the polyhedron S. The above bound
follows from the fact that each edge of S is visited only O(1) times to determine the
intersection points of S with the notch plane £,. The sorting of intersection vertices
on the facets adds O(ulogr) time where » is the total number of vertices in GP,.
Once the map G'F, is constructed, it is trivial to recognize the boundary B, containing

1 -1 b A | A '] "1 - L at -;-;l 1 1 1 . LI - .
LI LIvLL L 5' LR L LI PRV L I E- RN L By L L N R B O L e W 0 1 O R o B O R S T S S TR S S W IR TS R S RS TR L s

65

the interesting boundaries. As discussed earlier, there are O({) interesting boundaries
containing O(¢) monotone chains where ¢ is the number of notches intersected by P,.
Let »' be the number of vertices on the interesting boundaries. According to Lemma
3.4.1, the children and parent of B, can be determined exactly in Ot +u'(t+ logu))
time if the polygons corresponding to the interesting boundaries are fleshy. Detection
of children and parent of the polygon containing the notch g, in effect, determines the
inner and outer boundaries of @,. Obviously v’ = O(x). Combining the complexities
of computing G P, and detecting the inner and outer boundaries of g, we conclude
that Qg can be computed in O(p + {* + u(¢ + log u) + u logr) time.

At a generic instance of the algorithm, let S|, S,, ..., St be the & distinct (noncon-
vex) polyhedra in the current decomposition that contain the subnotches of a notch
g which is to be removed. Let p; be the number of edges in S; of which r; are reflex,
u; be the number of verlices in the cross sectional map in 5; and ¢; be the number
of notches intersected by the notch plane in S;. Let p=3S% pu= ZLI u; and
t = Y5, ti. Certainly, k = O(r) and ¢ = O(r) since a notch can have at most r — 1
subnotches and a notch plane can intersect at most r — 1 notches. The time to

remove the notch g is given by

T

k
O(Z(p; + f? + (¢ + logw;) + u; logr;))

= O(p+r®+ur+ulogu+ulogr).

By Lemma 3.3.4, u = O(n + r?). This gives,

S = O+ +(n+)r +(n+r*)logn)
= O(nr+nlogn+rlogn +r®)

= Olnr+nlogn +r®)

To climinate 7 notches, we need O(nr” + nrlogn +) time. Obviously, the space

camnlaaits e nfp\ — MMyr L 2ol ey If 515 3 nan-manifald nalvhedran a1l enacial
mninats) AL r

66

notches are removed from S to produce manifold polyhedra each of which is decom-

posed into convex pieces by the method as discussed before. The complexity remains

the same for this case. &

3.4.4 Experimental Results

We have implemented our polyhedral decomposition algorithm under floating
point arithmetic in Common Lisp on UNIX workstations. The numerical compu-
tations are all in C, callable from Lisp using interprocess communications. We used
6 = 27'7 in the 32 bit machine with precision 2-24. Simple examples are shown
in Figure 3.11 and in Figure 3.12. The experimental results have been very satisfy-
ing. Test polyhedra are created and results are displayed in the X-11 window based.
SHILP solid modeling and display system.

3.5 Conclusions

In this chapter we have given an O(nr? 4+ r3logr) time and O(nr + r2a(r)) space
algorithm for convex decompositions of polyhedra with arbitrary genus and shells.
Although a better algorithm for polyhedra with zero genus and no shell exists, this
is the best known algorithm for polyhedra with arbitrary genus and shells. The
analysis of the algorithm which uses a marvelous theorem (“zone theorem”) from
combinatorial geometry shows that the method of successive cutting and splitting
polyhedra with planes is not as costly as they were thought to be in [Cha84]. It is an
open question whether we can further reduce the complexities.

Minimum convex partition is known to be NP-hard for polyhedra with holes. It
remains an open question whether minimum convex partition is still NP-hard for
polyhedra without any hole.

Designing a robust algorithm of any type (preferably type-4 and type-3) for convex
decompositions is a crucial open problem. To have any success in this respect. we have
to understand the deep interactions between the underlying topology of polvhedra and

perturbations in Lheir features.

B Sar - towievnl NSy - -

fila heTawn
Talaag
Counta/Ldre
Ll £y
Flonk
Ivalemm MK Oow
2 I e
“ranatars
Ormr
AALARES
ar
L1 Loy L
SUTT

Nt} LLek
L] 2wl

IV L epalailem I

67

crud

irar Fopo

| IR

Blemlirs

Figure 3.11 Convex decomposition.

63

Figure 3.12 Convex decomposition.

69

4. CSG DECOMPOSITIONS AND TRIANGULATIONS

4,1 Introduction

In this chapter, we will see how the convex decompositions as discussed in the
previous chapter lead to a special type of CSG decompositions of polyhedra as well
as their triangulations.

A CSG decomposition, in terms of regularized boolean operations such as inter-
section, union, difference, complement on simpler components, is used for CSG tree
representation of polyhedra. The expression involving these boolean operations to-
gether with the literals corresponding to the simpler components is referred to as CSQ
formula. In [Pet84], Peterson considered CSG formulae that allow only intersection
and union of the halfspaces supporting the facets of polyhedra. We call such formulae
as Peterson-style CSG formulae, The problem of computing the Peterson-style CSG
formulae for polyhedra from their boundary representations often arises in solid mod-
eling and computer graphics [DGHS88). In 2D, Dobkin, Guibas, Hershberger, and
Snoeyink [DGIIS8S] give an O(n logn) time algorithm to compute the Peterson style
CSG lormulae of size O(r) for polygons with n vertices. They posed the question of
computing short Peterson-style CSG formulae for polyhedra in 3D. As they pointed
out, O(p®) size Peterson-style CSG formulae for polyhedra with p facets is trivial to
compute. In [PY90], Paterson and Yao give an O(p%) time algorithm to compute the
Peterson-style CSG formulae of size O(p?) for a restricted class of polyhedra. These
polyhedra, however, have only convex facets with O(1) edges. We consider more
general polyhedra that may have nonconvex facets with arbitrary number of edges.

Establishing a nontrivial lower bound on the size of Peterson-style formulae for
general polyhedra is an open question. We prove an O{p?) lower bound for the follow-

ing two types ol Peterson-siyle [ormuiae. Let (anonens...)ri{aaonass...)ra.. Qi ok ...

70

be a Peterson-style formula for a polyhedron where 0i;'s and r;’s denote the opera-
tors intersections (M) or unions (U), and ¢;;’s denote the literals corresponding to
the simpler components. In case where 0;j =Nand r; = U for all 7, §, we say that
the given Peterson-style formula is in disjunctive normal form (DNF). On the other
hand, if 0;; = U and r; = N for all ¢, j, we say that the given formula is in conjunc-
tive normal form (CNF). We refer to such formulae as CNF Peterson-style and DNF
Peterson-style formulae respectively.

In triangulations we seek for simplicial decompositions of the given polyhedron
that produce simplicial complex. This is a non trivial step in finite element mesh gen-
eration for polyhedral domains. In three dimensions, there are polyhedra that are not
triangulable without additional Steiner points. Moreover, as shown by Rupert and
Seidel [RS89], the general problem of determining whether a polyhedron is triangu-
lable without Steiner points or not is NP-hard. Due to these constraints, we consider
the problem of triangulation with Steiner points. Chazelle’s worst-case lower bound
on convex decomposition suggests an O{r?) worst case lower bound on the output size
of triangulations of polyhedra. Recently, in [CP90], Chazelle and Palios have given an
O((n + r?)logr) time algorithm that tetrahedralize simple polyhedra and produces
O(n +r?) tetrahedra. The allowed polyhedra are homeomorphic to spheres, l.e., they
cannot have holes (genus 0) and shells (internal voids) and are manifold. This algo-
rithm, however, does not produce a simplicial complex, i.e., the generated tetrahedra
may not meet at a full facet or an edge. Its analysis relies upon the fact that the
input polyhedra are homeomorphic to spheres. It is not clear how one can generalize
this algorithm for polyhedra with arbitrary genus and shells in acceptable time and
space bounds. In this chapter, we give an algorithm for triangulating (producing a
simplicial complex) manifold polyhedra with arbitrary genus and shells. To handle
non-manifold polyhedra that have special notches, a preprocessing as described in

Section 3.3.2 is carried out.

7l

The basis of our algorithms for triangulation and computation of the Peterson-
style CSG representation of polyhedra is the convex decomposition algorithm as dis-
cussed in Chapter 3.

In Section 4.2, we show that we can obtain a Peterson-style forrnula of size
O(p*a(p)) for any manifold polyhedron through our convex decomposition algorithm
in O(p®logp) time. Here p is the number of facets of the polyhedron. We establish
an O(p*) lower bound on CNF and DNF Peterson-style formulae for polyhedra.

In Section 4.3, using our convex decomposition algorithm, we give an O(nr? +
r’logr) time and O(nr + r3) space algorithm to triangulate 2 manifold polyhedron

with arbitrary genus and shells.

4.2 CSG Decomposition

The convex decomposition algorithm as described in the previous chapter gives
the Peterson-style CSG formulae for polyhedra when the notch planes are carefully
chosen. For each notch g in 3, if the plane supporting one of the facets adjacent
to g is choser as the notch plane for g, all facets of the convex pieces in the final
decomposition lie only on the supporting planes of the facets of S, Further, each
convex piece can be expressed as the intersection of half-spaces corresponding to the
supporting planes of its facets. Finally, S can be represented as the union of the
expressions obtained for each convex piece. This gives a Peterson-style CSG formula

for 5. The number of literals in this formula is equal to the number of facets present

in the convex pieces.

4.2.1 Upper Bound

Theorem 4.2.1 For any manifold polyhedron, a Peterson-style CSG formula of size

O(pl + Pa(l)) can be computed in O(pi® + log!) time where p is the number of

facets in S of which { are adjacent to notches.

=T
2

Proof: By Lemma 3.3.3, the total number of edges in the final decomposition is
O(nr + r?a(r)). Certainly, r = O(!) and since S is a manifold polyhedron n =
O(p). Thus, the total number of facets in the convex pieces of final decomposition is
O(pl+ La(l}). This determines the size of the Peterson style CSG formula of S. The
time complexity for this CSG computation is same as that of computing the convex

decomposttion of 5. Expressed in terms of p and I, this complexity is O(pl*+ 3 log{).&

An upper bound of O(p*x(p)) on the size of Peterson-style CSG formulae that can
be computed in O(p3log p) time follows from the fact that { = O(p).

4.2.2 Lower Bound

Lemma 4.2.1 There exists a class of polyhedra for which any CNF Peterson-style
C3G formula has a size of O(p?) where p is the number of facets of S.

Proof: Consider the polyhedron S as constructed by Chazelle in [Cha84] to prove
a lower bound on the number of convex pieces needed to decompose a non-convex
polyhedron. The notches of this polyhedron form two sets of line segments, each lying

on Lhe surface of a hyperbolic paraboloid which have a small distance of ¢ between

them; see Figure 4.1.

Figure 4.1 Chazelles solid with two sets of notches.

73

Let ¥ denote the region between these two hyperbolic paraboloid surfaces each
containing r notches. Assuming unit distances between consecutive notches, the
volume of I is O(er?). Chazelle showed that a single convex polyhedron whose volume
lies inside S can occupy only O(¢) volume in X, thus requiring O(r?) convex pieces
to cover X. Let C = C UCLU,...,UC be the CNF Peterson-style CSG formula for S
where each C; represents the maximal collection of literals along with only intersection
operators in between them. Each C; represents a closed convex polyhedron S;. The
polyhedron S; is convex since it is constructed by the intersection of finite number
of halfspaces and it is closed since its union with S is closed. The convex polyhedra
corresponding to C;, ¢ = 1,.... k cover the polyhedron S and hence . Thus k& must
be O(r*} giving an O(r?) lower bound on the size of . The worst-case lower bound

of O(p?) follows immediately from the fact that § can be made to have r = O(p).&

Lemma 4.2.2 There exists a class of polyhedra for which any DNTI Peterson-style

CSG formula has a size of O(p?) where p is the number of facets of S.

Proof: Consider a polyhedron Sy constructed as follows. Let 5, be the unbounded
polyhedron obtained by taking the closure of the complement of the Chazelle’s solid.
The unbounded polyhedron S, has an internal void whose boundary is exactly stmilar
to that of Chazelle’s solid. Let S, be a cube, large enough to contain the internal void
of 51 inside. Let Sp = ¢/(S1NS;). The polyhedron S, is a closed polyhedron. Its outer
boundary consists of six facets of the cube 51, and its inner boundary consists of the
boundary of Chazelle’s solid. Let C = CiNC3NC5...NCp, be a DNF Peterson-style CSG
formula for Sy where each C; represents the maximal collection of literals along with
only union operators. Let C;™ represent the complement of C; where the complement
of a closed halfspace H; is replaced by cl(H), another closed halfspace. The formula
C =C, UC; U...uT; isaCNF Peterson-style formula that represents two disjoint
polyhedra, the Chazelle’s solid and the unbounded polyhedron cl(S)) corresponding to
the complement of §;. Each C; represents a convex polyhedron that lies completely

cither mside the Chazelles soid or mside the unbounded polyhedron cl(S)). Since

T4

the portion denoted by I in the Chazelle’s solid is covered by convex polyhedra that
lie inside it, & must be O(r?). Making r = O(p), we have k = O(p?).

Theorem 4.2.2 There exists a class of polyhedra for which any DNF or CNF Peterson-
style C3G formula has a size of O(p®) where p is the number of facets of .

Proof: Consider a solid that is formed by gluing Chazelle’s solid to the solid §, as
described in Lemma 4.2.2. From the proof of Lemma 4.2.1 and Lemma, 4.2.2, it is

clear that any CNF or DNF Peterson style formula for this solid has O(p?) size.

4.3 Trangulation

We observe that the triangulation of each convex piece produced by ConvDecomp
of Section 3.3 does not yield a triangulation of the original polyhedron S since two
facets created corresponding to the cut s may be decomposed differently later by
other notch planes. Thus, the triangulation of the portions where these facets touch

each other may not match giving ar invalid triangulation of S; see Figure 4.2.

4.3.1 Complete Cuts

We can overcome the problem of mismatch of facet triangulations if we cut
through the entire polyhedron $ each time with a notch plane. In other words,
all sub polyhedra through which a notch plane passes are partitioned with that notch
plane. We call such slicings as complete cuts. With such slicings, all edges on a
facet will be present in other touching facet. For such decompositions, we cannot use
Lemma 3.3.2 since the new edges created by complete cuts are not restricted to the
regions adjacent to the notch g. In fact, in this case, we have to consider all edges
inside and on G P, in the arrangement of notch line segments with G P, superimposed
on it. The natural expectation is that the complete cuts are costly. In Lemma 4.3.1
and -1.3.2, we show that the time and space complexities do not change much due to

the complete cuts.

75

Figure 4.2 Edge ¢ causes mismatch on f; and f,.

4.3.2 Analysis of Complete Cuts

Lemma 4.3.1 If a polyhedron S is decomposed by complete cuts, the number of edges

in the final decomposition is O(nr + r3),

Proof: By Lemma 3.3.4, the number of edges on and inside G P, for each notch g is
only O{n + r?). This implies that one complete cut generate O(n + r%) new edges.

Thus, r complete cuts produce O(nr + r3) new edges.&

If we use the size of the final decomposition (Lemma 4.3.1) to estimate the number of
edges in the subpolyhedra through which a complete cut passes, we get O(5-5, m;) =
O(nr+r°) in Theorem 3.3.1. This gives a straightforward O(nr?+r*) time complexity
Ifor decompositions with complete cuts. However, Lhe lollowing lemma helps us to

show that the true complexity is lower than this.

Lemma 4.3.2 If a polyhedron § is decomposed by complete cuts, the total number of

edges in subpolyhedra through which a complete cut passes is only O(nr).

Proof: Consider the complete cut corresponding to the plane £,. let R be the set
of planes used before P, for other complete cuts. The planes in R U P, form an
arrangement A of planes in three dimensions. The cells adjacent to the plane P; in

-1 consiilule Lhe zone £, ol i%. By well known zoue Lucorem (Ededij, Lhe number

76

of edges in Z; is O(q?) if there are q planes in the arrangement. Let A’ be the new
arrangement obtained by superimposing the boundary facets of S on Z,. Consider
the cells adjacent to P, that constitute the zone Z, in A’. Subpolyhedra through
which P, passes consist of cells that are members of Z,. Thus, the number of edges
in Z, gives an upper bound on the number of edges of subpolyhedra through which
P; passes. To count the number of edges in Z,, we carefully analyze the effect of

superimposing p boundary facets of S on Z,,.

Figure 4.3 The facets in F; are hatched with dotted lines: facets in I} are hatched
with solid lines; facets in B! are not hatched.

Let fi be a facet of S that contributes to the boundaries of some cells in Z;.
Consider the lines of intersections between fi and the other facets of Z,. These lines
together with the line segments supporting the edges of fi form an arrangement of line
segments on the plane supporting f;. Let B; denote the facets in this arrangement
that are inside f;. Further, let B! denote the set of facets in B, that are adjacent to
line segments supporting the edges of f;; B” denote the rest of the facets in B;. Let

F; denote the set of facets in BY that do not have any edge formed by the intersection

77

of Py with fi; I} denote the rest of the facets in BY; see Figure 4.3. In the following,
by E(F) we denote the number of edges in a set F of facets.

The facets in F; are created by slicing the cells in Z, completely by f; such that
fi does not intersect P, inside those cells. The portions of these cells that remain
in Z, after this slicing are not intersected by any other facet of 5. Thus, a facet of
Zg contributes at most one edge in UZ_, F;. This implies that SR E(F;) is bounded
above by the number of facets in Z, giving "2, E(F;) = O(¢?). All other facets in
B{ (if any) are adjacent to the line of intersection of f; with Fy. Thus, the facets in F!
are members of the zone of this line in an arrangement of O(q) lines. Since there can
be at most p lines of intersection between the planes supporting the facets of § and
Py, we get 31| E(F]) = O(pq) by applying the zone theorem of line arrangement.
This gives T2y E(BY) = T2, B(F) + E(F!) = O(pq + ¢%).

To estimate the number of edges in the facets of Bi, consider the arrangement
of O(q) lines that represent the intersections between the supporting plane of f; and
the planes in R. The number of edges in the facets of B; adjacent to an edge e
of fi can be estimated by the number edges in the facets through which the line
supporting e passes in this arrangement. This number is O(q)- Since § has n edges,
we have 31| E(B}) = O(nq). Combining all these, we get that the number of new
edges contributed to Z, as a result of superimposing p facets of S on Z, is only
O(pg + ng + ¢*) = O(nr) since ¢ = O(r), p = O(n). This immediately implies that
Z, have at most O(r* + nr) = O(nr) edges. Thus, the total number of edges in

subpolyhedra through which the plane P, passes is at most O(nr). &

Theorem 4.3.1 A manifold polyhedron § with arbitrary genus and having n edges of

which r are reflex can be triangulated in O(rr? + 72 logr) time and O(nr + %) space.

Proof: We get Y5 m; = O(nr) in Theorem 3.3.1 using Lemma 4.3.2. This gives
an O(nr? + r3logr) time bound for convex decompositions through complete cuts.
Lemma 4.3.1 gives O(nr+r?) space complexity. Each convex piece can be triangulated

in a straightforward way by triangulating its lacets and Joining all triangles thus

78

produced to a point inside the convex piece. However. we need to ensure that all pairs
of facets that overlap completely on one another have same triangulation. Since the
facets in each such pair have same topological structure and have the same geometric
location, any deterministic algorithm that triangulates a facet can be made to produce
same triangulations for both facets. This triangulation phase does not increase the

time and space complexity.d

4.4 Conclusions

This chapter shows that how a simple algorithm for convex decomposition can
lead to efficient algorithms for triangulations and Peterson-style CSG decompositions
of polyhedra. The complexity analysis of the complete cuts exhibits again the power
of “zone theorem”. Lemma 4.3.2 has implications beyond its use in complete cuts.
Given an arrangement A of planes in three dimensions, Lemma 4.3.2 shows that
the zone complexity of each plane is O(nr +) if n planar facets intersecting only
at the boundaries are superimposed on A. We believe that this combinatorial fact
would be useful in analyzing other algorithms.

We have proved an O(p?) lower bound for CNF and DNF Peterson-style formulae
in case of polyhedra. Proving a non trivial lower bound for general Peterson-style

formulae for polyhedra remains open. We suspect that this bound is also O(p?).

5. GOOD TRIANGULATIONS

5.1 Introduction

In the previous chapter, we described an algorithm that triangulates polyhedra.
This triangulation method, however, does not guarantee anything about the shapes
of the tetrahedra. As a result, it is possible that very thin and flat tetrahedra are
generated. To reduce ill-conditioning as well as discretization error, finite element
methods require triangular meshes where the elements are well-shaped, i.e., they do
not have very small and very large angles [BA7S, Fri72]. These type of triangula-
tions where shapes of the triangular elements are guaranteed to be good are called
guaranteed quality triangulations or good triangulations.

In 2D, there are basically three approaches known so far to produce guaranteed
quality triangulations. The first approach based on the Constrained Delaunay Tri-
angulations was first suggested by Chew [Che89). He guarantees that all triangles
produced in the final triangulation have angles between 30° and 120°. In [Dey90], we
improved this algorithm with minor modifications to guarantee the boundary triangles
to have better angle bounds. There is another approach based on Grid Overlaying
which was first used by Baker, Grosse, and Raferty in [BGRS8) to produce a non-
obtuse triangulation of a polygon. In (Dey90], we proposed a simpler method based
on this grid approach to triangulate a polygon with good angles. Bern, Eppstein, in
a current paper [BE91}, give an improved method (w.r.t. the number of extra points
added by the algorithm) for nonobtuse triangulation of a polygon. In [BEG90], Bern,
Eppstein, and Gilbert give algorithms for producing good triangulations which uses
a special type of a grid that simulates the planar subdivision with the quadtree. An-
other approach proposed by [SNT90] is based on the medial azis transformation that

produces an adaptive triangular mesh and eliminates bad triangles.

S0

Although a number of algorithms exist for triangulating a point set or a poly-
hedron in 3D [AE86, CP90, EPWSS, Joe89], few of them address the problem of
guaranteeing the shape of the triangular elements. This chapter presents an algo-
rithm that triangulates the convex hull of a point set in 3D with guaranteed quality
tetrahedra. The problem allows one to introduce new points to generate good tetra-
hedra with the restriction that all points are added only inside or on the boundary
of the convex hull. Good triangulations of convex polyhedra are a special case of this
problem.

In Section 5.3, we present the 3D triangulation algorithm based on the Delaunay
triangulations as used by Chew [Che89] in 2D. We characterize the bad tetrahedra
in 3D and show that the algorithm does not produce four out of five possible types
of bad tetrahedra. We also give a bound on the number of additional points used to
achieve this guarantee. In Section 9.4, we present a type-2 robust algorithm for 3D
Delaunay triangulations. This algorithm is used in the robust implementation of our

good triangulation algorithm.

9.2 Preliminaries

3.2.1 Characterizing Bad Tetrahedra

In 3D, a tetrahedron can be degenerate or bad in three possible ways as described
in [Bak89]. The following two parameters w, & characterize badl tetrahedra as follows.
Let w = % and & = £ where R is the radius of the circumscribing sphere of a
tetrahedron, L and { are the lengths of its longest and shortest edges respectively.

Bad tetrahedra can be classified into three categories.
Category(i): w=0(1),x > 1.

Category(ii): w > 1.
Category(iii): w = O(1), x = O(1).

Definition 5.2.1 A sliver is a tetrahedron that is formed by four almost coplanar points

and whose solid angles are very close to zero.

S1

{a) (b)
Figure 5.1 Category(i) tetrahedra.

Category(i) corresponds to tetrahedra that have a very short edge relative to the
other edges and have circumscribing spheres that do not have an arbitrarily large
radius compared to the length of the longest edge. Specifically, category(i) consists
of type(i) and type(ii) tetrahedra. Type(i) tetrahedra are needle-like tetrahedra in
which one of the solid angles is highly acute and the face opposite to it has a negligible

area (Figure 5.1(a)). Type(ii) tetrahedra are slivers with a very short edge (Figure
5.1(b)).

A/@

(a) (b)

Figure 5.2 Category(ii) tetrahedra.

Category(il) corresponds to tetrahedra that have a circumscribing sphere with ar-

bitrarily large radius compared to the longest edge. Specifically, category(ii) consists

o

82

of tvpe(iii) and tvpe(iv) tetrahedra. Type(iii) tetrahedra are flat tetrabedra which
have one of the solid angles highly obtuse (Figure 5.2(a)). Type(iv) tetrahedra are
slivers which lie very close to the surface of their large circumscribing spheres (Figure
5.2(b)). Category(iii) consists of type(v) tetrahedra. Type(v) tetrahedra are slivers
whose edges have lengths within a constant factor of each other and which do not

have a close incidence with the surface of the circumscribing sphere (Figure 5.3). We

v

Figure 5.3 Category(iii) tetrahedra.

present an algorithm that triangulates the convex hull of a three dimensional point

set with the guarantee that type(i) through type(iv) tetrahedra are not generated.

2.2.2 2D Algorithm

The core of the algorithm presented in this paper consists of the Delaunay triangu-
lation which is the straight line dual of the Voronoi diagram. In 2D, the circumscribing
circle of a triangle in the Delaunay triangulation of a point set does not contain any
other point inside it. Similarly, in 3D, the circumnscribing sphere of a tetrahedron in
the Delaunay Lriangulation does not contain any other point inside it. This property
of the Delaunay triangulation is utilized by Chew in 2D to produce good triangula-
tions. He introduces the centers of those circumscribing circles that maintain a certain
minimum distance from the three vertices of the corresponding triangle. Of course,
the edges of the boundary have to satisfy certain length criteria. In his algorithm,
Chew uses edge lengths in between d and /3d where any pair of input points is at
least d units away from each other. In the modified algorithm of [Dey90], we require

edge lengihs in between d and 1.5d. This gives two distinct advantages.

33

l. It is easier to divide edges between d and 1.5d in practice.

2. The triangles that have circumcenters outside the boundary have better bounds

on their angles.

We present below this modified algorithm for good triangulations in 2D.
Algorithm 2D-Tri:
Input: Finite number of points in the plane within a polygonal boundary. The vertices

of the polygonal boundary are included in the input point set.

Input Conditions: There exists a quantity d, such that no two given points are closer

than d and no boundary edge is greater than 1.54 and less than d.

begin
Construct the Deleunay Iriangulation
of the given point set.
Hepeat
Add the circumcenter v of a
triangle g = Apip;py satisfying
the following property:
vy 15 at a distance of at least d from all
lhree points p;, p;, pe.
Updete the current triangulation by constructing
the Deleunay triangulation
of the cugmented point set.
Until there is no such triangle.

end

Original edges of the polygon are divided to satisfy the input conditions of 2D-Tri.
However, caution should be taken to ensure that the new points, thus generated on
the edges, are at least d units away from each other. For a simple polygonal boundary

WiLl a certain lower bound (39°) on the nummuum internal angles at the vertices. 1t

84

is always possible to divide the original edges so that the new points also satisfy the
input conditions. Algorithm 2D-Tri produces a planar triangulation 7" that has the

following properties.

Property I: All edges in T have lengths in between d and 2d, and, in particular, all
boundary edges have lengths in between d and 1.54.

Property 2: The circumscribing circle of all triangles in T has radius less than d.

3.2.3 Geometric Lemmas

We use the [ollowing geometric lemmas in the next section.

Lemma 5.2.1 Let T be the Delaunay triangulation of a point set in 2D. Let R be
the maximum radius of all circumscribing circles of the Delaunay triangles in 7. The

radius of any empty circle whose center lies inside 7" is less than or equal to R.

Proof: See Theorem 6.15 of [PS86]. &

Definition 5.2.2 Let ¢ be a circle drawn on the surface of a sphere s. Let yp; be the
axis which is perpendicular to the supporting plane of ¢ and which passes through
the center of e. This axis intersects s at 71 a2nd pa. The points py, p, are called the

poles corresponding to the circle c.

Lemma 5.2.2 Let ¢ be a circle with the radius less than r drawn on the surface of
a sphere s. Let the distance between ¢ and its nearest pole be greater than d. The

radius K of s must satisfy the condition R < T%dz-.

Proof: Consider the circle ¢ as shown in Figure 5.4 with the nearest pole p;. Let a, b
be the centers of s and ¢ respectively. Obviously, |ab| < (R — d). Consider the right
angled triangle Aabt where t is a point on the circle ¢. Since the radius of ¢ is less
than r. we have |bi] < r. Hence, [at’| = R? = [ab)2 + |52 < (R — d)? + r? giving
R<5EE &

8o

igure 5.4 Poles and circles on a sphere.

9.3 3D Algorithm

In this section, we describe the good triangulation algorithm for a three dimen-
sional point set. In what follows, by the convex hull of a point set, we mean its
interior along with its boundary. We refer to the boundary of the convex hull as the
boundary. A point is called an internal point if it is not on the boundary and is called
a boundary point otherwise. The facets of the boundary are referred to as boundary
facets and the edges on the boundary facets are called boundary edges.

Algorithm 3D-Tr::

Input: Finite number of points in three dimensional space.

begin
Let dy be the minimum of the distances
between two poinis.
Let dy be the minimum distance from an
internal point io a boundary facet.
Let dy be the minitmum distance between

lwo nonadjuceni boundary facets.

86

Let r = zmin{d,, d,, ds}.
Triangulate cach facet of the boundary using
algorithm 2D-Tri in such e way that
every edge has length in between r and 2r and
every boundary edge
has length in between r and 1.5r.
Let P be the current point set.
Construct a 3D Delaunay triangulation T(P)
of the point set P.
repeat
Add the cenler v of the circumscribing sphere
of a tetrahedron t; in T(P)
salisfying the following properties:
(1) all four vertices of ¢; are at e distance of
at least 2r from v,
(ii) the center v lies inside the boundary.
Set P=PUuwv.
Update the Delaunay triangulation T(P).
until there is no such tetrahedron.

end

With the above choice of r and with the assumption that all the face-angles of
the facets on the boundary satisfy the mirimum angle criterion, it is possible to
triangulate them by 2D-Tri maintaining the edge lengths as stated. In the following

Lemma, we prove that the above procedure terminates,
Lemma 5.3.1 Algorithm 2D-Tri terminates.

Prool: Algorithm 2D-Tri terminates since the points added by it are always at a
certain distance from all other points. There can be only finitely many such points

inside the given polygonal boundary. Extending this argument to Algorithm 3D-Tr,

87

we can observe that all circumcenters of tetrahedra that are added as new points are
at a distance of at least 2r from all other points. There can be only finitely many

such points inside the convex hull of the input points assuring the termination of the

Algorithm 3D-Tri. &

3.3.1 Lower Bounds on Distances

Lemma 5.3.2 Any point on a boundary facet that does not lie on a boundary edge

must be at a distance of at least %r from all edges of that facet.

Proof: Consider a point p on a facet f. Let e be any edge of f. Note that the edge
e is divided into smaller edges €, es, ..., e, through the triangulation of the boundary
[acets adjacent to e. Drop a perpendicular from p on the line supporting e. If the
perpendicular intersects the edge e, let ¢; be the edge of the triangulation on e which
1s intersected by it. According to property 1, all boundary edges of the triangulation
of f must have lengths in between r and 1.5r. Further, the point p is at least » units
away from the end points of ¢;. Thus, the minimum distance between p and ¢; is at
least J_Zlfr. In case the perpendicular dropped from p does not intersect e, it must
intersect some other edge e’ of f. In that case, the distance between p and e must be
greater than the distance between p and ¢’. We can estimate the minimum distance
between p and e by estimating. the same between p and ¢’. While estimating the
distance between p and €', if it occurs that the perpendicular dropped from p does
not intersect e’, we will have another edge to estimate the minimum distance between
p and €. Since there are finite number of edges, and since each time we go to a next
edge, its distance from p gets smaller than the previous one, there must be an edge
of f which is intersected by the perpendicular dropped from p. Let e be the first
such edge encountered in the above process. As argued above, the distance between

V7

pand €” is at least ¥

r. Hence, the distance between p and e is at least 41‘. Thus,
any point on a boundary [acet that does not lie on a boundary edge must be at a

distance of at least 5_1£r from all edges of that facet.d

88

Lemma 5.3.3 All edges in the triangulation produced by the algorithm 3D-Tri have
lengths greater than I, where Imin = min(r, 5;—"71- sin %ﬂ-) Here 8., is the minimum

dihedral angle between two adjacent boundary facets.

Proof: Initially, all internal points are at a distance of at least 67 units from every
other point. Two boundary points, lying on non adjacent facets, are at least 6r units
away from each other. These conditions are ensured by the particular choice of r. A
boundary point is at a distance of at least » from every other point on the same facet
which is ensured by the algorithm 2D-Tri. The pomnts added by the algorithm 3D- Tri
are always at a distance of at least 2r from every other point. Thus, all points except
the points on the adjacent facets are at a distance of at least = from each other. To
estimate the minimum distance between any two points on the adjacent boundary
facets, consider two points p;, p; lying on the adjacent facets f;, f; respectively. Let
e be the edge shared by f; and ‘fj. Drop a perpendicular from pi on e. Let it meet
e at pn. Consider the triangle Apip;pm- Let the minimum dihedral angle between
any two adjacent facets be 8. It is easy to prove that the angle between B;pyr and
PiPm in the triangle Ap;p;p,, must be at least #,,. From the above discussion, it
follows that |p7p.] > Jﬁ—?r and |7;9.| > lf:r. Thus, the distance between p; and P;
is at least -?r sin 9—5'1-. Hence, all edges in the final triangulation produced by the

algorithm 3D-Tri have lengths greater than I, = min(r, —‘é—?r sinfz). &

Lemma 3.3.4 Any point p present as a vertex in the triangulation produced by the
algorithm 2D-Tri is at a distance of at least -"i—?-r siné,, from any boundary facet on
which p does not lie. Here §,, is the measure of an angle such that all dihedral angles

of the input boundary are within 8,, and 180° —~ Ora.

Proof: If p is an inner point, we already know pis at least r units away from every
boundary facet. By the choice of r, any point on a boundary facet is at least r
units away from any other nonadjacent facet. We prove that if p lies on a boundary
facet but not on a boundary edge, it is at a distance of at least 4?'sin 8., from all

adjacent faccts. Let p lie on f; and let f;i be any facet adjacent to fi. In Lemma

89

5.3.2, we proved that the distance of p from any line supporting an edge of the facet
fi 1s at least lg—?r. Let I be the distance of p from the line where fi and f; meet.
The distance d of p from f; is given by d = [sin8® where § is the dihedral angle
between f; and f;. Putting the minimum value of { and & gives the lower bound on
d. Thus, the distance of a point from any facet that does not contain it is at least

dmin = min(r, 41‘ sind,,) = 41" sind,,. &

5.3.2 Qualities of Tetrahedra

Definition 5.3.1 A tetrahedron in the final triangulation is said to have a good cir-
cumcenter if the center of its circumscribing sphere lies inside or on the boundary
(convex hull boundary). Conversely, a tetrahedron is said to have a bad circumcenter

if the center of its circumscribing sphere lies outside the boundary.

We classify the tetrahedra with bad circumcenters into two classes, namely class

A and class B.

Definition 5.3.2 A tetrahedron { with a bad circumcenter is called a class A tetrahe-
dron if it satisfies the following property. There exists a facet f intersected by the
circumscribing sphere s of ¢ in such a way that the foot of the perpendicular dropped
from the center of s on the supporting plane of f lies inside f. Any other tetrahedron

with a bad circumncenter is called a class B tetrahedron. See figure 5.5 and figure 5.6.

Assuming lower and upper bounds on the dihedral angles between adjacent bound-
ary lacets, we can prove that all tetrahedra produced by 3D-Tri cannot be in cat-
egory(i) or category(ii). Although we cannot avoid category(iii) tetrahedra, occur-
rences of them in practice are rare [Bak89]. Finally, in most of the cases, these
tetrahedra can often be avoided by introducing a suitable point inside the circum-
scribing sphere; see [Bak89). In what follows, we assume that all dihedral angles

between adjacent boundary facets are greater than €,, and less than 180° — Bim.

Lemma 5.3.5 No tetrahedron with good circumcenter can be in category(i) or cate-

gory(i1).

90

Class A tatrahadron

boundary facat

Figure 5.5 Class A tetrahedron.

Proof: All tetrahedra in the final triangulation having good circumcenters must have
circumscribing spheres with radii less than 2r, because otherwise these circumcen-
ters would have been introduced as new points. Hence, all these tetrahedra have
edges of length less than 4. By Lemma 5.3.3, all edges have lengths greater than
min(r, 3251‘ sin Z2). Thus, & for these tetrahedra can be at most max(4, m) As-
suming a lower bound on the dihedral angles of the input boundary, we g;t & for
these tetrahedra to be of O(1) which violates the condition for category(i) tetrahe-
dra. Further, w for these tetrahedra can be at most max(2, =—i7—) = O(1) which

=1 \/.l:sin-Jzn-

prohibits them to be in category(ii). &
Lemma 5.3.6 No class A tetrahedron can be in category(i) or category(ii).

Proof: Let ¢ be a class A tetraliedron with the circumscribing sphere s. By the
definition of class A tetrahedron, there exists a boundary facet f such that the foot
of the perpendicular dropped from the center of s on the supporting plane of f lies
inside f. Let ¢ be the circle of intersection of § with the supporting plane of f.
By Lemma 5.3.4. a vertex p of ¢ that does not lie on f must be at a distance of
at least gr sinf,, [rom f where 8, is defined as before. The center of the circle ¢

lies inside f. Thus, the center must lie inside the triangulation I of f produced by

91

clasas B tetrahedron

houndary edge

Figure 5.6 Class B tetrahedron.

the algorithm 2D-Tri. Further, ¢ must be an empty circle since s does not include
any point of f inside it. See figure 5.5. By property 2, all triangles of T have
circumscribing circles of radii less than r. Hence, according to Lemma 5.2.1, ¢ must
have a radius less than or equal to r. The vertex p lying on s must be at a distance
of at least ‘/_r sinf,, from ¢. Further, the vertex p and the center of s lie on the
opposite sides ol ¢. This implies that c is at a distance of at least ‘/_7 sind,, from

its nearest pole. Thus, according to Lemma 3.2.2, s must have a radius less than or

cqual to kyr where &y = (‘/-"““9"1 + 7 sma)- Tlis puls an upper bound of 2k;r on the
lengths of the edges of ;. By Lemma 5.3.2, all edges of {; are greater than k,r where
ky = min(l, ﬂ'{!—?sirl ﬂ—;‘-). Hence, w, « for t; are O(1) assuming a lower bound on 8,
(A lower bound on 0., puts lower and upper bounds on the dihedral angles between

adjacent boundary facets). This prohibits it to be in category(i) or category(ii}. &

Lemma 5.3.7 Let ¢ be a class B tetrahedron with the circumscribing sphere s. There
must exist two boundary lacets f;, f; intersected by s with the following criterion:

Let ¢ be any circle drawn on s which is normal to the line where f;, f; meet. The
feet of the perpendiculars dropped from the center of ¢ on the supporting planes 2

L . N - TIPS PN PR T
anee £ _}L,'. unli fJ i uu'n..n\!L “u. ln.-.‘ o blu\.n‘l-:l O'-‘. |" Cﬂ L

92

nt,
cf:l.

I'.'l"lfj

Casa & Casa b

Figure 5.7 Cases of Lemma 5.3.7.

Proof: Consider a boundary facet f; that has the convex hull and the center of s on
opposite sides. Since ¢ has a bad circumcenter, such a lacet always exists. Consider
any other [acet [; sharing an edge with f; that has been intersected by s. Drop
perpendiculars from the center of s on the supporting planes of f; and fi. The feet
of Lthese perpendiculars lie outside f;, f; since ¢ is a class B tetrahedron. Consider the
greal circle ¢ of s whose supporting plane is normal to the edge shared by fi and f;.
The feet of the perpendiculars dropped [rom the center of s on the supporting planes
P and Pj of J; and f; cannot lie on the line segments ¢'N f; and d N f;. Two different
cases are shown in figure 5.7. This immediately implies that the condition stated in

Lemma 5.3.7 is true for any circle ¢ on s that has a supporting plane parallel to that

ol d.&
Lemma 5.3.8 No class B tetrahedron can be in category(i) or category(ii).

Proof: Let ¢ be a class B tetrahedron. Let the circumscribing sphere s of ¢ intersect
the boundary edge ¢ shared by the facets f; and f; which satisly the criterion as stated

i Temma K37 The endpoints of the odge segment ¢, on ¢ which is intersected by

93

s cannot be inside s. Let w, y be the points where s intersects e,,. Further, let ¢ and

1T denote the center and radius of s respectively.

(b)
Cane i{b)

{a)
Caswe i(a)

Figure 5.8 Case(i) of Lemma 5.3.8.

Casefi): The tetrahedron ¢ has a vertex p which lies neither on the f[acet Ji nor on
the facet f,. Consider the circle ¢ on s whose supporting plane is perpendicular to
¢, and which passes through p. Let &' be the radius of ¢. Join the center & of ¢ with
the point u where ¢ meets e,. Extend the line bu beyond u until it intersects the
boundary of ¢ at v as shown in figure 5.8. Let |bu| = z. Certainly, |zo| = R’ — .
Let d denote the minimum distance of p from the two facets f; and f;. There are two
subcases as shown in figure 5.8. In subcase i(a}, the center of ¢ lies in the sides of the
planes containing f;, f; which are opposite to those containing the convex hull. It is
not difficult to see that, in this subcase, d < j@| = ' — x. Since, R > R, we have
d < R—. To estimate a lower bound on r. drop a perpendicular @z [rom the center
a of s on e,. This perpendicular has the same length as bu. Consider the triangle
vra)-

Qawy. We observe that [@=] = 12 - = Since ¢, can have a length of at most

94

1.57, we have r = |az] > R? — %. Thus. d < B —+/R? — %. We already know
d > ¥Zrsinb,, (Lemma 5.3.4). Hence,

= f 2
\/Irsinﬂm < AR- Rz—%-,

R Tsin29m+9r
8/Tsinb,

Now. consider the subcase i(b). In this subcase, one of the supporting planes of f;
and f; has the center of ¢ and the convex hull on its opposite sides and the other one
has them on same side. Without loss of generality, assume that the supporting plane
of fi has them on same side as shown in figure 5.8(b). The line segments ¢ f; and
¢ f; make angles less than equal to 90° with @@. Otherwise, f;, f; do not satisfy
the criterion as stated in Lemma 5.3.7. In this subcase, we have d < B — z since the
distance of v from the supporting plane of f; is greater than that of p [rom the same

plane. Thus, in both subcases i(a) and i(b), we have,

-2

isin“d,+9
R — 217,
~ 8/Tsinb,,

Casefii): All vertices of the tetrahedron ¢ lie either on f; or on f;. This immediately
implies thal one ol the vertices of ¢ lies on f; but not on f; and another on f; but not
on f;. Consider the vertex p; lying on f; but not on f;. Let c be the circle passing
through p; with the supporting plane being perpendicular to e,. As in the previous
case, let b be the center of ¢, u be the foot of the perpendicular dropped from & to
en, and v be the point of intersection of the line bu and the circle ¢ such that u is
in between b and v. Again, we have two subcases as shown in figure 5.9. Consider
the subcase z(a). We have |prz| < % where 8; is the angle between 7w and w7.
We proved in Lemma 5.3.2 that the distance of any point on a boundary facet that

does not lie on any of its edges is at least 5451* away from any of its edges. Thus,

|l > ?1 lHence, Yir < B=x < R

17 S costr S coss Where x = [bu|. Similatly, considering the

venl v b; al { lvine an F, hut nnl an fl- we ran nrove that ‘/TT_r < R—_; where §. 12 the
) - K - . - e 5 1 J F

angle between f; N c and @v. The angle # = §; + 6; is the dihedral angle between f;

95

(a) (b)
Case ii{a) Casa ii(b)

Figure 5.9 Case(ii) of Lemma 5.3.8.

and f;. Since one of §;,8; is less than or equal to 90° and the cos function decreases

monotonically [rom 0° to 90°, we have {/—T_r < R—‘E—. By the same argument as in

I €0s 3
case(i}, we get * > \/R? — %12, Hence,
T R— /Rt — 22
VT < 16

r

- [
4 oS 5
9,2 4 7.2,..28
R < lG? +lG? cos 2
- VT /2
2FC052

Assuming an upper bound on 8 < (180° — 4,,) we have

‘28
R< 7sin _:?-:.gr.
8v/7 sin o
Now. consider the subcase ii(b). The angles between %o and the line segments ¢ N f;
and ¢ fj are fess than 90° since otherwise f;, f; violate the condition of Lemma
5.3.7. Without loss of generality assume that ; < ;. The distance between v and

¢ fj is greater than that between p; and cN fi- This implies d < R — z giving the

saie upper bound on i as we derived in case(i).

96

Thus. all class B tetrahedra have a circumscribing sphere of radius kir where
Ay = O(1) assuming lower and upper bounds on the dihedral angles between adjacent
boundary facets. This with the fact that edges of all tetrahedra have lengths greater
than &,r where &, = O(1) (recall Lemma 5.3.3), makes w and x of these tetrahedra
Lo be of O(1) and thus prohibits them to be in category(i) or category(ii). &

The following Theorem is immediated from Lemmas 5.3.5, 5.3.6, and 5.3.8.

Theorem 5.3.1 Algorithm 3D- Tri triangulates the convex hull of a three dimensional
point set with the guarantee that the tetrahedra of type(i) through type(iv) are never

generated assuming lower and upper bounds on the dihedral angles between adjacent

boundary facets of the convex hull.

"

1.3.3 Complexity

Algorithm 3D-Triproduces tetraledra whose edges are greater than [,;, as defined
in Lemma 5.3.3. The circumscribing sphere of each such tetrahedron must have a
volume of Q(8,,.). Let V be the volume of the convex hull of the given point set.
Let n and n, be the number of points present in the input and output respectively.

Certainly, n, = O(z~). Consider a triangulation T of the input point set where

min

T[= O(n). Such a triangulation always exists: see [EPW86]. Let L be the largest
edge length in T'. All tetrahedra in T have a volume less than L3 Thus, V = 0(nL®).
This gives an upper bound ofO(nE%) on n,. Putting A = ﬁ, we haven, = O(nA3).
The quantity A captures the notion of how badly distributed the input point set is.

The basis of 2D-Triis the incremental Delaunay triangulation algorithm. We use
Watson’s algorithm {Wat81] for this purpose. In this algorithm, all tetrahedra whose
circumscribing spheres contain the inserted point inside are removed. To produce
new letrahedra. the new point is connected to the triangles present on the boundary
of the union of all removed tetrahedra. In 30- Tri, we introduce the circumcenters
of tetrahedra that satis(y specific properties as new points. We maintain a queue

of all such tetrahedra throughout the algorithm. This queue supports deletion and

addition of an element in logarithmic time. Thus, we can pick a tetrahedron t; whose

97

circumcenter is to be added in O(logn,) Lime. We can determine all tetrahedra to
be removed and to be added in O(n,) time once we have chosen ¢;. This is due to
the fact that there are at most O(n,) tetrahedra to be removed and added for each
insertion and they form a connected component together. Updating the queue for
these removed and added tetrahedra takes O(n,logn,) time which dominates the
time complexity for a single insertion. Thus, inserting all valid circumcenters takes
O(nZlogn,) time. Algorithm 2D-Tri cannot take more than O(n?) time [Dey90].
Hence. 3D-Tri takes O(n2logn,) = O(n’A%logn log A) time and O(n,) = O(nA?)

space.

5.3.4 [mplementation Issues

We consider the problem of numerical errors under finite precision arithmetic while
implementing the algorithm 3D-Tri. For robust implementation of 3D-Ti, we need
a robust algorithm for computing the Delaunay triangulations in 3D. In the next
section, we present a type-2 robust algorithm for this problem. To triangulate the
facets robustly, we use the type-2 robust algorithm of [SI89a) for 2D voronoi diagram
and use its dual.

With numerical errors, the computed poinls on Lthe boundary facets may not be
exactly coplanar. and without proper care they may forin very thin tetrahedra. While
constructing the triangulation of the point set obtained by triangutating all boundary
facets, we take into account the topological constraint that the points generated
on a boundary facet are coplanar. We have implemented our good triangulation
algorithm on SUN workstations in AKCL. An exampie where a convex polyhedron is

triangulated is shown in Figure 5.15. For clarity, we show only the triangulations on

the facets.

54 Robust Delaunay Triangulations

We aive a (vpe-2 robust algorithm for three dimensional Delaunay trianeulations.

Recall that a type-2 robust algorithm must have the following properties. It must

98

not fail-the “non-failing” property; it shouid give true output under infinite precision
and the output should satisfy certain essential topological properties under finite
precision-the “convergence” property. Although in type-2 robust algorithms, it is not
essenttal to use thresholds in numeric computations as long as consistent topological
inferences can be drawn without them, we use such thresholds in attempt to produce
an output close to the true one. Actually, it is our hope that with these thresholds,
these algorithms can become type-4 robust, though we cannot prove it.

[n this approach a typical segment of a robust program looks as follows.

value=Numeric-computation.

Il absolute(value) > § then A else B

The quantity & acts as a threshold for safe computations and is proportional to the
precision as we have seen in Section 3.4. It becomes zero with infinite precision. Thus.
under infinite precision the action B is never taken and the output is guided by the
action A. Let A’ he the action that should be taken by the algorithm under infinite
precision. The action A is designed in such a way that it becomes equivalent to A’
w.r.t. the input-output refation under infinite precision. Further, the actions A4 and
B are designed in such a way that they guarantee the desired topological properties
of the computed data and never contradicts the previous decisions. This, in turn.
guarantees the “non-failing” property of the program.

Design of A and B is dependent on the desired topological properties of the output.
For triangulation of a point set, we use the conditions of the topological triangulations
as basis of our topological validity tests.

Let G = (V, E) be a connected graph with the vertex set V and the edge set [.
A face consists of a cycle of alternating vertices and edges. A 3-cell consists of a

collection of [aces where each edge is incident on two [aces.

Definition 5.4.1 A combinatorial augmentaiion ol (& is a tuple Cg = (V.E,F.T)
where [is a sel of faces and T is a set of 3-cells. [ach vertex and edge is incident on

al least one face. Kach face is incident on at least one 3-cell. A simplicial combinatorial

R

99

augmentation s a combinatorial augmentation in which each face consists of a cycle

of three vertices and edges and each 3-cell consists of four faces.

An embedding of a combinatorial augmentation is a mapping A : V — S where S
Is the point set in three dimensional space bounded by a closed oriented manifold.
The mapping extends to edges, faces, and 3-cells. If vy, v, are endpoints of an edge
e, then h(e) is an open curve segment joining k() and A{v;). If the image of a lace
cycle of [ace f is a simple closed curve, then &(f) is an open surface bounded by the
closed curve. If a 3-cell ¢ consists of faces fi, [, .., fi, then h(t} is the open three
dimensional region bounded by 4(f;), 2(f2), .vh(fx). An embedding is planar in 3D

if & is pairwise disjoint for vertices, edges, faces and 3-cells.

"

5.4.1 Topological Triangulations

Delinition 5.4.2 A 3D topological triangulation is a connected graph G that has a
planar embedding in a 3D space § C R® where S is bounded by a closed oriented
manifold and the embedding gives a simplicial decomposition (with simplicial com-
plex) of S. If the surface of S is homeomorphic to that of a sphere, G is called to be
a 3D genus zero topological triangulation. e tetrahedra produced by the simplicial

decomposition may have curved edges and curved [aces.

In the rest of this chapter, we refer to the 3D topological triangulations simply
as the Lopological triangulations and the simplicial decompositions with simplicial
complexes as Lhe simplicial decompositions. 17rom the definition of the topological
triangulations, it is clear that the underlying graph of any triangulation of a point set
in 3D} is a genus zero topological triangulation. This essentijal topological property of
3D triangulations is used to design a type-2 robust algorithm for 3D Delaunay trian-
gulations. The underlying graph of the output computed by the algorithm satisfies

certain essential properties of a genus zero topological triangulation.

100

5.4.2 Orientations

The orientation of a face f = (v|, v3,v3) can be specified by the cyclic order on
its vertices. There are only two such unique orders. An oriented face is a part of
a oriented manifold and thus has positive and negative sides. One particular order
on its vertices fixes its positive and negative sides. The side from which the order is

viewed as clockwise is designated as the negative side.

Definition 5.4.3 Two oriented faces match if the shared edges (if any) are directed in

opposite directions in them.

A tetrahedron has its [aces oriented in such a way that they match to each other.
In Figure 5.10. the faces f; and f, of a tetrahedron are oriented to match each

other. A particular orientation ol a face fixes the orientations of all other faces

Figure 5.10 A tetrahedron with oriented faces.

of a tetrahedron. Thus, a tetrahedron has two unique orientations. To orient a

tetrahedron unambiguously, we orient a face in such a way that the fourth vertex lies

on its positive side.

Definition 5.4.4 Let v be a vertex of a graph (7. Let V'’ be the set of vertices adjacent
lo r. Consider ¢ not to be included in ¥'. The subgraph G’ = (V*, £’) where £’ is
the sot of edees whose both endpoints are in ¥ is called the star of v and is denoted

as star(v).

101

Definition 54.5 A graph is called planer iriangular if and only if it has a planar
embedding with triangular faces except possibly the outer face. All faces including

the outerface must be simple.

In the rest of this chapter, all stars are meant to be planar triangular. The star

Figure 5.11 The star of a vertex.

ol a vertex v is shown in Figure 5.11. LEdges drawn with the solid lines are the
edges ol star(v). There are only two unique planar embeddings of such graphs w.r.t.
the orientalions ol the [aces. One is the mirror image of the other. A particular
orientation of & (ace fixes the orientations of all other faces. Thus, we can specify the

ortentation of a planar triangular star by the orientation of any of its faces.

Definition 5.4.6 A star with an orientation matches with the other if and only if the
shared faces have opposite orientations on them. With this defirition, two oriented

slars inalch vacuously if they do not share any face or edge.

Iu Figure 5.12. stars of v| and v, (consisting of f,, f;) match each other since the

shared faces have opposite orientations.

102

Figure 5.12 Matching of two stars.

H5.4.3 Properties ol Topological Triangulations

Lemma 54.1 A connected graph G is a topological triangulation only if the following

conditions are salished.

L. C1: For each vertex veV, star(v) is planar triangular.
2. C2: Any triangular face appears in the stars of at most two vertices,

3. C3: It is possible to orient the stars ofl all vertices simultaneously so that each

one matches with the other.

Proof: We show that the underlying graph of a simplicial decomposition of a 3D space
hounded by a closed oriented manifold satisfies conditions C1, C2 and C3.

Consider a vertex v; in the simplicial decomposition. The underlying graph con-
stituted by the bases of all tetrahedra with apex v; form the star of v;. This graph
with bases as triangular faces can be embedded on an oriented manifold that is home-
omorphic to a plane. Thus, it can be embedded on a plane with those triangular faces
except possibly one [ace (Cl). Each triangular face is incident on at most two tetra-
hedra and thus appears in at most two stars (("2). The stars with orientations of the
faces on corresponding tetrahedra must match each other since the faces with these

otientations malch each other in the simplicial decomposition (C3). &

103

Lemma 5.4.2 A topological triangulation G has zero genus only if the following con-

ditions are satisfied.
1. C4: The space S of its embedding has one connected surface.

2. C5: |V} = |E" 1+ |F'| = 2 where V', £, F' are the vertices. edges, {aces present

on the surface.

Proof: Bince & is a topological triangulation, it has an embedding in /2 that gives a
simplicial decomposition of a space S bounded by the closed oriented manifolds. To
he homeomorphic to a sphere, there must be one connected surface. Any space $ with
one connected oriented surface must he homeomorphic to torii with handles [GTS87].
Any simplicial decomposition of such a space must satisfy |V'| — |E/| + |F| =2 —¢
where g is number of handles and V', E’, F are the set of vertices, edges, faces on the
surface. For the surface of S to be homeomorphic to that of a sphere. [V'|,|E'), ||

must satisly the above equation with g = 0.

54.4 Incremental Robust Delaunay Triangulation

We observe that the underlying graph of a Delaunay triangulation (in fact any
triangulation) in 3D is a genus zero lopological triangulation. We use the conditions
(-1 through ('5 to design a type-2 robust algorithin for the Delaunay triangulation of
a point set in 3D.

This robust algorithm is obtained by modifying the well known incremental algo-
rithm of Watson [Wal81]. In this incremental approach, the Delaunay triangulation
of the current point set is modified locally to incorporate a new point. In this algo-
rithm, each {ace is maintained as two oriented faces with opposite orientations on its

cycle. The algorithm is given below.

54.5 The Algorithm with Exact Arithmetic

Vieorithm 1DYT-Fract

Input: A point set £ = {py,pa,...,ps} in three dimensions.

104

Step L. Construct the tetrahedron ¢, = (py, p2, p3, ps) and set T = {¢}.

Step 2. For each point p;, ¢ = 5,6, ..k, carry out the following steps.

Step 2.1. Find out the faces (if any) on the houndary of T that contain the point
pi on the side opposite to that containing T'. Let B be the boundary constituted by
these triangular faces.

Step 2.2. Find out the set W of tetrahedra whose circumscribing spheres contain the

point p; inside or on it. Let B’ = bd{W) where bd(W) denotes the boundary of the

union of the tetrahedra in W.
Step 2.3. Compute B" = (BU B') — (BN B).
Step 2.1. Delete tetrahedra in W from T. Add tetrahedra to T that are created by
taking the point p; as the apex and the triangular faces of B” as bases.

In the above algorithm, numerical computations are carried out at two places.
In Step 2.1. we need numerical computations to determine whether the point p;
is inside the circumscribing sphere of a tetrahedron or not. Let the tetrahedron

t = (p1,p2,p3, pa) have an oriented face f = (p, ps, p3). To determine the location of

pi w.r.t. the circumscribing sphere s of {, we compute the determinant

T oy o I+ yvi+zt | -‘
Ty Y2 Z2 Li+yi4zl |
Cltip)= |25 ya 23 +p2+ 21

Ty Y4 =4 I3+yi+z.‘«f L

T oy oz Trtyl4z? lj

Here x;, yi, =i are the coordinales of the point p;. The location of the point p; w.r.t. s
is determined by the sign of C(¢, p;). In Step 2.2, we need numerical computations to
determine the side of a face that contains the point p;. To classify the point p; w.r.t.

an oriented face f = (p, p2,p3), we compute

o5 |

Ty k2 =2 |

H{f,p) =

105

The location of the point p; w.r.t. the face f is determined by the sign of H(f, p;).
With numerical errors, we cannot rely on the signs of C(t, p;), H(f,p:) when p; is

very close to s and f respectively.

5.:4.6 The Algorithm under Finite Precision Computations

With erroneous numerical computations, the boundary B may have more than one
connected component due to numerical errors and BN B’ may be empty even though
D3 and B’ are not. In these cases, the boundary B” has more than one connected
component. This implies that star(p;) is disconnected which violates the condition
for topological triangulations. Further, the underlying graph of B’ may not be planar
triangular making star(p;) not to be planar triangular which violates a necessary
condition for topological triangulations.

Both these problems, however, go off if we carry out a careflul depth first search
for the faces in B and the tetrahedra in W. Let B; be the boundary constituted by
the faces that have been decided to be in B so far. We maintain a list (Blist) of faces
that are in B; and have at least one adjacent face that is not in B;. By adjacent faces
we mean only those faces that are adjacent by an edge. We expand B; by picking a
face from this list and testing the unexplored adjacent [aces for their inclusion in 5.
Blist and B; are updated accordingly. This guarantees that the final boundary B is
connected and planar triangular.

In the exact algorithm, it is possible that the boundary of W is disconnected.
In that case, each component of bd(W) must have a nonempty intersection with B
in such a way that the final boundary B” has only one component. With numerical
errors, we compute a connected component of W as follows and look for other possible
components. We collect tetrahedra in one connected component of W in a depth
first manner. Lel W; be the set of tetrahedra that have been decided to be in one
component of W so far. We maintain a list (Tlist) of tetrahedra that are in W; and
have at least one adjacent tetrahedron that is not in W;. By adjacent tetrahedra

we mean Lhose tetrahedra that are adjacent by a lace. Lo continue the search for

106

new tetrahedra in one component of W. we pick a tetrahedron from this list and test
whether the unexplored adjacent tetrahedra are member of W or not. We update
Tlist and W; accordingly. Computing W this way ensures that the boundary of one
component of W is never disconnected. Of course, care should be taken to ensure
that each component of bd(W) remains planar triangular.

Algorithm DT-Robust

Input: A point set P = {p;,p,,...,px} in three dimensions.

Step 1. Construct the tetrahedron {; = (p;, pz, pa3, p4) and set T = {t1}.

Step 2. For each point p; in P, carry out the following steps.

Step 2.1. Find out a face f (if any) on the boundary of T' such that H(f,p:) = 0.

[nitialize 8 = {f} and put / into Blist. Repeat steps 2.1.1 and 2.1.2 until no more
face can be added to B.

Step 2.1.1. Pick the face f from Blist that is adjacent to a face [satisfying the

following properties.

l. The {ace ' is not in B.

[

CH(f) 2 0.
3. Adding f* to B does not destroy its planar triangular property.

Step 2.1.2. Set B = BU f' and put f* into Blist. If all adjacent faces of f are in B,

delete it from Blist.

Step 2.2. If B is not empty, check for a tetrahedron ¢ adjacent to a face in B for
which C'(£,p;) 2 0. If such a tetrahedron ¢ is found, put ¢ into Tlist and set W = {t}.
[n case B is empty, check for any tetrahedron ¢ thal saiisfies C(¢, pi) 2 0. In case no
such tetrahedron is found. nick the tetrahedron ¢ for which the value of C(£. p;) is the

largest. Set W = {t} and put ¢ into Tlist. Repeat steps 2.2.1, 2.2.2 and 2.2.3 until

107

no more tetrahedron can be added to .

Step 2.2.1. Il at any point of iteration, Tlist is empty, check for a not yet visited
tetrahedron { adjacent to a face in B for which C(t,p;) > 0. If such a tetrahedron is
found, put ¢ into the Tlist and set W = W U 1.

Step 2.2.2. Pick a tetrahedron ¢ from Tlist that is adjacent to a tetrahedron #

satisfying the lollowing properties.

[. The tetrahedron ¢’ is not in W.

| 21

- O, pi) 2 0.

3. There is no vertex in {’ {or which all other incident tetrahedra have been decided

to be in W (lo prevent isolated vertices).

4. Adding i’ to W does not destroy the planar triangular property of bd(W).

o

. I[¢ has a face in B. then that face is adjacent to other faces in B that are also

decided to be in bd(W) (to prevent more than one non triangular faces in B").

Step 2.2.3. Set W = WU Y. Put ¢ into Tlist. If all adjacent tetrahedra of ¢ are in

IV, delete it [rom Tlist.

Step 2.3. Compute B” = (BU B') - (BN B).

Step 2.4. Delete tetrahedra in W {rom 7. Add tetrahedra to T that are created by

taking the point p; as the apex and the triangular faces of B” as bases.

108

5.4.7 Degree-2 robustness of DT-Robust

Let Ty denote Lhe triangulation which consists of the single tetrahedron ¢, =

(P1yP2;P3,pa} and T; (i = 2,..,k — 3) denote Lhe triangulation obtained by adding
Pa+i to iy at the zth stage.

Lemma 5.4.3 Let T be a triangulation constructed by the algorithm DT-Robust at

any stage. The underlying graph G of T satisfes C1 and C2.

Proof: We prove it by induction. Definitely, C1 and C2 are true for the first triangu-
tation T} which consists of a single tetrahedron. We assume that the triangulation T
satisfies C1 and C2 and prove that the triangulation T}y, satisfies them too.

Removing tetrahedra in W and the faces that are in BN B’ affects only the stars
of the vertices in B”. Note that an edge is removed only when all faces adjacent to
it arc removed. An internal face is removed when both tetrahedra incident on it are
removed. A face on the boundary is removed if it appears both on 8 and B’. Consider
any vertex v on 5”. Consider the planar embedding of star(v) that is matched with
other stars.

Consider the case when B’ is not empty. Since tetrahedra in one component of WV
are collected through face adjacency and BN’ is kept connected for each component.
removal of edges to create B, in effect, removes a connected subgraph from star(v).

This creates either a hole in the embedding of star(v) or a “dip” in its boundary.
Figure 5.13 shows a hole and a “dip” created by removing connected subgraphs from
the planar iriangular graphs of the triangulations shown in Figure 1.2. Joining p; to
the faces in B” has the following effects on the star(v). In case a hole is created, pi 1s
joined to the vertices of the hole. Otherwise, p; is connected to the consecutive edges
on the modified boundary of star(v). In both cases, star(v) remains to be planar
triangular.

Consider the other case when B’ is empty giving 5% = B. In this case. nothing

is deleted from star(v). The new vertex p; is connected to the consecutive vertices

109

Figure 5.13 A lhole and a “dip™ in a star embedding.

on the outer face of star(v). Thus, star(v) remains to be planar triangular. Finally,
since B is planar triangular star(p;) is planar triangular.
New [aces crealed by joining p; to the faces on B” appears in at most two tetra-

hedra and thus appears in the stars of at niost two vertices.

Lemma 544 Let T be the triangulation constructed by the algorithm DT-Robust at

any slage. The underlying graph G of T satislies (3.

Proof: We have lo prove that all stars match with respect to some orientations.
(Consider the set of tetrahedra incident on a vertex v of 7. The underlying graph of
the structure formed by the bases of the tetrahedra with apex v constitutes star(v).
Let the orientation of star(v) be specified by the orientations of these bases (faces)
on corresponding tetrahedra. We prove by induction that all stars in ¢ match with
these orientations.

Certainly, the hypothesis is true for the ficst trrangulation T; which consists of a
single tetrahedron. Let it be true for the triangulation 7} at the ith stage. Let f bea
(aee an B AWhile making the teteahedra with £ as the hase and n: as the apex. the

[ace f is given the orientation as follows. If f is incident on bd(W), it is oriented in

110

the same way as it is in the tetrahedron teW. If f is on the boundary of T} incident
on the tetrahedron t'eT;, the face f is given the orientation that is opposite to its
orientation in {’. With these orientations, the faces in B” match to each other and
any {ace in B" which appears on two tetrahedra gets opposite orientations. Thus.
star(p;) matches with other stars with the orientations of the faces of corresponding
letrahedra. [nsertion of p; affects the stars of the vertices on B”. New faces are
generated by joining p; to the edges on B”. Let f' be such a new face incident on a
tetrahedron ¢ with p; as the apex and f”e B as the base. Let f be adjacent to f”on
B" by the edge on which f’ is incident. The [ace f’ appears on another tetrahedron
{" that has p; as the apex and f" as the base. Since f” and f* match each other, f’
must get opposite orientations on the two tetrahedra ¢” and t”. Thus, all faces get

opposite orientations on adjacent tetrahedra implying the matching of all stars.

Lemma 5.4.5 Let T be the triangulation constructed by the algorithm DT-robust at
any stage. The underlying graph G satisfies C4 and C5.

Proofl: In Lemma 5.4.3 and 5.4.4, we considered the oriented faces of the tetrahedra
ol T in the embedding of . Thus, the faces on the boundary of T constitute the
surface of the embedding (S) of G. Since we maintain a single connected boundary
of T' Lhroughout the algorithm DT-Robust, S has a single connected surface (C4).
By induction, we can prove that the boundary of 7' is planar triangular with all
triangular faces. This type of graph can be embedded on the surface of a sphere and
thus satisfies C3. The initial triangulation T; salisfies it trivially. Let the boundary of
Ti be planar triangular with all triangular faces. In case B is empty in the algorithm
DT-Robust, the boundary remains to be the same in the next stage. In the other
case when 5 is not empty, Steps 2.1 and 2.2 remove a connected portion from the
boundary which in effect creates a hole in it. The new point p; is connected to the
vertices of the hole while creating new tetrahedra. This, in effect. keeps the boundary

to be planar triangular with all triangular faces and thus maintains the condition C5.

Theorem 5.4.1 The algorithm DT-Robust is type-2 robust.

111

Figure 5.14 Joining p; to the faces in B” with proper orientations.

Proof: We prove that DT-Robust has “non-failing™ and “convergence” properties.
Steps 2.1 through 2.3 always produce a nonempty boundary B” that is planar trian-
gular without [ailing since every possibility is taken care of while searching for faces
in 3 and B’. Step 2.4 can never fail since it does only symbolic computations of
deleting and adding tetrahedra. Thus, the algorithm DT-Robust can never fail.

The algorithm DT-Robust produces the same output as DT-Exact under infinite
precision. Under infinite precision Step 2.1 of both algorithms produces the same
boundary B. Similarly, Step 2.2 of both algorithms produces the same boundary
B’ under infinite precision. This ensures that Step 2 of the algorithm DT-Robust
hecomes equivalent to that of DT-Exact under infinite precision. Thus, given the
same input and infinite precision, the algorithm DT-Robust produces the same output
as DT-Exact. This implies that the output produced by the algorithm DT-Robust
converges to the true solution under infinite precision. By Lemma 5.4.3, 5.4.4,54.5, 1t
always produces satisfies the conditions C1 through C5, no matter what the precision

15.

112

x polvhedron

5.15 Good triangulation of a conve

Figure

113

5.5 Conclusions

The good triangulation algorithm of convex polyhedra together with the convex
decomposition algorithm through complete cuts gives a method for good triangula-
tions of nonconvex polyhedra as well. However, this method has the limitation that
the convex polyhedra produced by the convex decomposition algorithm may be very
bad in shape. An algorithm that achieves good triangulations directly for nonconvex
polyhedra is more practical.

Although in our algorithm we avoided type(i) through type{iv) tetrahedra, we
could not avoid some special type of slivers, i.e., type(v) tetrahedra. Qur immediate
goal is to find a new method or to modify this algorithm so that we can avoid these
slivers too. The difficulty with the avoidance of these slivers comes from the fact that
an upper bound on the radius of the circumscribing sphere and a lower bound on the
lengths of the edges of a tetrahedron do not prohibit it to be a type(v) tetrahedron.
A lower bound on the radius of the inscribing sphere together with an upper bound
on the radius of the circumscribing sphere of a tetrahedron avoids such tetrahedra.

We have devised a type-2 robust algorithm for the Delaunay triangulations in 3D.
We have used thresholded computations (with threshold equal to zero) in our attempt
to make it type-4 robust, though we could not prove it. Designing a provably type-
+ or type-5 robust algorithm for this problem is a crucial open question. Another
open question is: can this type-2 algorithm be generalized for higher dimensions? We
believe that the properties C1 through C5 of topological triangulations generalize in
higher dimensions and thus the type-2 robust algorithm can be generalized for higher

dimensions too.

114

6. CONCLUSIONS AND FUTURE STUDIES

6.1 Contributions

This thesis focuses on efficient algorithms for decompositions of polyhedra and
their robust implementations. Decompositions of polyhedra may have different flavors
depending on the desired shape and size of simpler components. We have concentrated
on two types of decompositions, namely convex decompositions and triangulations.

It is often the case that an efficient algorithm works on a restricted class of in-
put. There are efficient algorithms for convex decomposilions, triangulations and
Peterson-style CSG decompositions for restricted class of polyhedra. In practice,
however, polyhedra that do not belong to this restricted class are VEry cormmon.
Hence, there is a pressing need for devising efficient algorithms for more general class
of polyhedra. In this thesis, we have presented efficient algorithms for convex decom-
positions, triangulations and Peterson-style CSG decompositions for more general
class of polyhedra.

The convex decomposition algorithm is based on the cut and split paradigm of
Chazelle [Cha80]. This simple paradigm led to efficient triangulation and CSG de-
composition algorithms. With the help of a classic theorem on arrangements, we show
that the cut and split method can be efficient. We believe that the combinatorial facts
revealed through the analysis of the sequence of cuts and complete cuts in Sections
3.3.3, 4.3 will find their use in other related algorithms.

In some applications, it is desired that the simpler components are well shaped.
Finite element simulations with the triangular elements need a triangular mesh with
well shaped elements. There is no known algorithm for triangulating polvhedra with
guaranteed quality. We have showed that a Delaunay triangulation based 2D algo-

rithm can be extended in 3D to generate guaranteed quality tetrahedra for the convex

115

hull of a point set. This is the first algorithm for the problem of this kind in three
dimensions.

Geometric algorithms, when implemented, often fail due to numerical errors and
degenerate cases. One goal of this thesis is to devise algorithms that are imple-
mentable robustly. The definition of robustness depends on the desired output. In
some applications. outputs that are “close” to the true solution are acceptable, and in
others only exact solutions are acceptable. Producing an exact output even with im-
precise arithmetic computations. must need some assumptions on the input to buffer
the information lost through erroneous computations. For the problems that ask for
only combinatorial output, it is possible to produce exact output with certain mini-
mum feature assumptions on the input. We have shown such an algorithm in Section
2.4 for polygon nesting. On the other hand, for problems that have both geometric
and combinatorial parts in their solutions, it is almost impossible to produce exact
outputs with inaccurate computations. In those cases, we can only expect outputs
that are “close” to the true output. In three dimensions, however, it is often very
hard to devise type-4 or type-5 robust algorithms. However, it may be easier to devise
Lype-2 or type-3 robust algorithms for them. The algorithm in Section 5.4 supports
this assertion. It is our hope that type-2 and type-3 robust algorithms become ac-

lually type-4 and type-5 robust with thresholded computations. though proving this
fact is hard.

6.2 T[Future Work

This work has introduced some new ideas in designing, analyzing, and implement-
ing algorithms in decompositions of polyhedra. However, much remains to be done.
Below, we give some of the open problems in this area.

[t is an open question whether we can further reduce the complexities of convex
decomposition for polyhedra with holes and shells. We believe that using the concepts
of constructing arrangements of planes in three dimensions, it may be possible to

reduce the time complexity.

116

Minimum convex partition is known to be NP-hard for polyhedra with holes in
their facets. It remains an open question whether minimum convex partition is still
NP-hard for polyhedra without any hole in their facets.

Designing a type-4 or type-3 robust algorithm for convex decompositions is a very
important open problem. To have any success in this respect, we have to understand
the deep interactions between the underlying topology of polyhedra and perturbations
in their features.

We have proved non trivial lower bounds of O(p?) for CNF and DNF Peterson-style
formulae for polyhedra. Proving a non trivial lower bound for general Peterson-style
formulae in case of polyhedra remains open. We suspect that this lower bound is also
O(p?).

The good triangulation algorithm of convex polyhedra together with the convex
decomposition algorithm through complete cuts gives a method for good triangula-
tions of nonconvex polyhedra as well. However, this method has the limitation that
the convex polyhedra produced by the convex decomposition algorithm may be very
bad in shape. An algorithm that achieves good triangulations directly for nonconvex
polyhedra is more practical.

Although in our algorithm we avoided type(i) through type(iv) tetrahedra, we
could not avoid some special type of slivers, i.c., type(v) tetrahedra. The difficulty
with the avoidance of these slivers comes from the fact that an upper bound on the
radius of circumscribing sphere and a lower bound on the lengths of the edges of
a tetrahedron do not prohibit it to be a type(v) tetrahedron. A lower hound on
the radius of the inscribing sphere together with an upper bound on the radius of
the circumscribing sphere of a tetrahedron aveids such tetrahedra. Generating a
triangulation where all five types of bad tetrahedra are avoided remains as an open
problem.

In mesh generation, it is often desired that the mesh density vary wilh the changes

in the shape of the domain. Thus, at places where the shape changes rapidly, the

'71!14'_']1 (]ﬂ"(‘;'l' L'l!{"\‘l:(‘ ”\ﬂ Fﬂl:\f;"nl" I\:l’r'1 FT"'I';Q 'I'"‘\f" l"\r "l{l"lr\f‘;\'ﬂ mnch rrnnnr':lfinn ATICIITAS
R L R R 7L - B e R e G R R+ D !

117

a balance between accuracy and efficiency. Generating an adaptive as well as good
triangulation of a pt?;lyhedral domain is an important problem. We believe that the
Delaunay triangulation based algorithm can be modified to generate an adaptive and
good triangulation by tuning the parameter r properly in different regions.

Although a type-5 robust algorithm for 2D point set triangulations exist, there
is no such algorithm in 3D. In particular, the problem of generating type-5 robust
Delaunay triangulations is hard even in 2D.

It would be interesting to know how to decompose polyhedra into simpler com-
ponents other than convex pieces such as star polyhedra (there is an internal point
from which entire polyhedron is visible).

Decomposition of curved solids into convex pieces is another exci ting problem. Not
all curved surfaces are convex decomposable. So, we may seek a convex decomposition
of a curved solid in terms of finite union and differences of convex components. In
2D, any polygon with algebraic curves as boundaries admits such a decomposition
(BK88]. In 3D, this is possible only if the surface of the solid can be decomposed
into convex, concave and planar patches. The hyperbolic surface as described in
[HCV32] does not admit such decomposition. An algebraic surface of degree 2 can
be decomposed into canonical patches, elliptic (Gaussian curvature > 0), hyperbolic
(Gaussian curvature < 0), and parabolic {Gaussian curvature = 0). The problem
of computing a decomposition of a curved solid with algebraic surfaces of arbitrary
degree in terms of finite union and differences of components having only canonical

surfaces remains open.

BIBLIOGRAPHY

(AES6)

[Arm79]

[Arn62]

[BAT76]

[Bak89]

{BD90)

[BD91]

[BE91]

[BEGS0]

[BGRSS]

[BK8S)

118

BIBLIOGRAPHY

D. Avis and H. Elgindy. Triangulating simpliciai point sets in space.
In Second Ann. Symposium on Computational Geometry, pages 133-141,
1986.

M. A. Armstrong. Basic Topology. McGraw-Hill, Londoen, 1979,

B. H. Arnold. Intutive Concepts in Elementary Topology. Prentice-Hall,
N.J.. 1962.

Babuska and A. K. Aziz. On the angle condition in the finite element
method. SIAM J. on Numerical Analysis, 13:214-226, 1976.

T.J. Baker. Automatic mesh generation for complex three-dimensional re-
gions using a constrained delaunay triangulation. Engineering with Com-
pulers, 5:161-175, 1989,

C. Bajaj and T. Dey. Polygon nesting and robustness. Information Pro-
cessing Letiers, 33:23-32, 1990.

C. Bajaj and T. Dey. Convex decompositions of polyhedra and robustness.
SIAM J. on Compuling, to appear, 1991,

M. Bern and D. Eppstein. Polynomial-size nonobtuse triangulation of
polygons. In Seventh Ann. Symposium on Computational Geometry
(ACM), pages 342-350, 1991.

M. Bern, D. Eppstein, and J. Gilbert. Provably good mesh generation.
In 3ist Annval [EEE Symposium on Foundations of Computer Science,
pages 231-241, 1990.

B. S. Baker, E. Grosse, and C. S. Rafferty. Nonobtuse triangulation of
polygons. Discrete and Computational Geometry, 3:147-168, 1988.

C. Bajaj and M. Kim. Algorithms for planar geometric models. In Pro-
ceedings of 15 th. Intl. Colog. on Automala, Languages, and Programming,
Lecture Notes in Computer Science, Springer Verlag 317, pages 67-81,
1988.

[Cha80]
[Chasd]
[Che89]
[CP90]

[DBS91]

[Dey90]

[Dey91]

[DGHS88]

(DK91]

[DSSS]

[Ede87]

[Ede89]

[EG89]

[EGP+88)

119

B. Chazelle. Computational Geometry and Convezity. PhD thesis, Dept.
of Computer Science, Carnegie-Mellon University, 1980.

B. Chazelle. Convex partitions of polyhedra: A lower bound and worst-
case optimal algorithm. SIAM J. on Computing, 13:488-507, 1984.

L. P. Chew. Guaranteed-quality triangular meshes. Technical Report TR-
89-983, Cornell University, 1989.

B. Chazelle and L. Palios. Triangulating a non-convex polytope. Discrete
and Computational Geometry, 9:505-526, 1990.

T. K. Dey, C. Bajaj, and K. Sugihara. On good triangulations in three di-
mensions. In Symposium on Solid Modeling Foundations and CAD/CAM
Apllications (ACM/SIGGRAPH), pages 431-441, Austin, Texas, 1991.

T. K. Dey. Good triangulations in plane. In Proc Second Canadian Con-
ference in Computational Geometry, pages 102-106, 1990,

T. K. Dey. Triangulation and CSQ representation of polyhedra with arbi-

trary genus. In Seventh Annual Symposium on Computational Geometry
(ACM), pages 364-372, 1991.

D. Dobkin, L. Guibas, J. Hershberger, and J. Snoeyink. An efficient algo-
rithm for finding the CSG representation of a simple polygon. Computer
Graphics, 22:31-40, 1988.

V. J. Dielissen and A. Kaldewaij. Rectangular partition is polynomial
in two dimensions but, NP-Complete in three. [Information Processing
Letters, 38:1-6, 1991.

D. Dobkin and D. Silver. Recipes for geometry and numerical analysis.
In Fourth Annual Symposium on Computational Geometry (ACM), pages
93-105, Urbana, Illinois, 1988.

H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Ver-
lag, Berlin Heidelberg, 1987,

H. Edelsbrunner. Spa:tial triangulations with dihedral angle conditions. In
Proc Intl. Workshop on Discrele Algorithms and Complezity, pages 83-89,
Fukuoka, Japan, 1989.

H. Edelsbrunner and L. Guibas. Topologically sweeping an arrangement.
J. of Computer System Science, 38:165-194, 1989.

H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Seidel, and M. Sharir.
Arrangements of arcs in the plane: Topology, combinatorics, and algo-
rithms. Tn /5th Int. Colloa. on Automata. Lanauanes and Programming

(EATCS), pages 214-229, 1988.

[EMSS]

[EP W86

[ETW90]

[FM91]

{For89]

[Fri72]

[GSS89]

[GT87]

[HCV32]

[HHK87]

[HKS9)

[JoeB9]

[Kar88]

120

H. Edelsbrunner and P. Mucke. Simulation of simplicity: A technique
to cope with degenerate cases in geometric algorithms. In Fourth ACM
Symposium on Computational Geometry, pages 118-133, Urbana, Illinois,
1988.

H. Edelsbrunner, F. P. Preparata, and D. B. West. Tetrahedrizing point
sets in three dimensions. Technical Report UIUCDCS-R-86-1310, Univer-
sity of Illinois at Urbana-Champaign, 1986.

H. Edelsbrunner, T. S. Tan, and R. Waupotitsch. An o(nlogn) time algo-
rithm for the minmax angle triangulation. In Sizth Annual Symposium on
Computational Geometry (ACM), pages 44-32, Berkeley, California, 1990.

S. Fortune and V. Milenkovic. Numerical stability of algorithms for line
arrangements. In Seventh Annuel Symposium on Computational Geometry

(ACM), pages 93-105, North Conway, New Hampshire, 1991.

S. Fortune. Stable maintenance of point-set triangulations in two dimen-
sions. In 30th. IEEE Symposium on the Foundations of Computer Science,
pages 494-499, 1989.

[. Fried. Condition of finite element matrices generated from nonuniform
meshes. ATAA Journal, 10:219-221, 1972.

L. Guibas, D. Salesin, and J. Stolfi. Building robust algorithms from
imprecise computations. In Fifth Annual Symposium on Computational
Geometry (ACM), pages 208-217, Saarbruchen, West Germany, 1989.

J.L. Gross and T.W. Tucker. Topologicel Graph Theory. John Wiley and
Sons, 1987.

D. Hilbert and S. Cohn-Vossen. Geometry and Imagination. Chelsea, New
York, 1932.

C. Hoffmann, J. Hopcroft, and M. Karasick. Robust set operations on
polyhedral solids. Technical Report TR-87-875, Dept. of Computer Sci-
ence, Cornell University, 1987.

J. Hopcroft and P. Kahn. A paradigm for robust geometric algorithms.
Technical Report TR 89-1044, Computer Science, Cornell University,
[thaca, NY, 1989.

B. Joe. Three-dimensional triangulations from local transformations.
SIAM J. on Sci. Stat. Comput., 10:718-741. 1989.

M. Karasick. On the Representation and Manipulation of Rigid Solids.

PhD chesis, Depr. of Compuier Science, Megiil Universiwy, 1988.

[Kei85]

[Lin82]

[LL36]

[LM90]

[Mil88]

[OR87]

[ORS83)

[Pet84]

[PS86]

[PY90]

[RS89]

[SI89a]

[SIS9b)

[Sih78]

121

J.M. Keil. Decomposing a polygon into simpler components. SIAM J. on
Computing, 14:799-817, 1985.

A. Lingas. The power of non-rectilinear holes. In 9th. Intl. Collog. on
Automata, Languages and Programming (EATCS), pages 369-383, 1982.

D. T. Lee and A. K. Lin. Generalized delaunay triangulation for planar
graphs. Discrete and Computational Geometry, 1:201-207, 1986.

Z. Li and V. Milenkovic. Constructing strongly convex hulls using exact
or rounded arithmetic. In Sizth Annual Symposium on Computational
Geometry (ACM), pages 235-242, Berkeley, California, 1990.

V. Milenkovic. Verifiable Implementations of Geometric Algorithms Us-
ing Finite Precision Arithmetic. PhD thesis, Dept. of Computer Science,
Carnegie-Mellon University, 1988.

J. O’ Rourke. Art Gallery Theorems and Algorithms. Oxford University
Press, 1987.

J. O' Rourke and K, Supowit. Some NP-hard polygon decomposition
problems. /EEE Transaction on Information Theory, 29:181-190, 1983.

D. Peterson. Halfspaces representation of extrusions, solids of revolutions,

and pyramids. SANDIA Report SANDS§4-0572, Sandia National Labora-
tories, 1984.

F. P. Preparata and M. 1. Shamos. Computational Geometry, An Intro-
duction. Springer-Verlag, 1986.

M. S. Paterson and F. F. Yao. Efficient binary space partitions for hidden
surface removal and solid madeling. Discrete and Computational Geome-
try, 5:485-503, 1990.

J. Rupert and R. Seidel. On the difficulty of tetrahedralizing three dimen-
sional nonconvex polyhedra. In 5tk Annual Symposium on Computational
Geometry (ACM), pages 380-392, 1989.

K. Sugihara and M. Iri. Construction of the voronoi diagram for one
million generators in single precision arithmetic. In First Canadien Con-
ference on Computational Geometry, Montreal, Canada, 1989.

K. Sugihara and M. Iri. A solid modeling system free from topological
inconsistency. Research Memorandum RMI 89-3, Dept. of Mathematical
Engineering and Instrumentation Physics, Tokyo University, 1989.

R. Sibson. Locallv equiangular triangulations. Computer Journal, 21:243—
203, 1978.

[SNT90]
[SS85]

tTWM85]
[Wat81]

[Yap88]

122

V. Srinivasan. L. R. Nackman, and J. M. Tang. Automatic mesh gen-

eratlon using the symmetric axis transformation of polygonal domains.
Research Report, RC 16132, IBM, 1990.

M. Segal and C. Sequin. Consistent calculations for solid modeling. In
Ist Annual Symposium on Computational Geometry (ACM), pages 29-38,
1985.

J.F. Thompson, Z. U. A. Warsi, and C. W. Mastin. Numerical Grid Gen-
eration. Elsevier Science Publishers, 1985.

D. F. Watson. Computing the n-dimensional tesselation with applications
voronot polytopes. The Computer Journal, 24:167-172, 1981.

C. Yap. A geometric consistency theorem for a symbolic perturbation the-
orem. In Fourth Annual Symposium on Computational Geometry (ACM),
pages 134-142, Urbana, Illinois, 1988.

123

VITA

Tamal Krishna Dey was born on July 26, 1963 in West Bengal, India. He received
his Bachelor of Engineering degree in July, 1985 from Jadavpur University, Calcutta,
[ndia. He received his Master of Engineering degree from Indian Institute of Science,
Bangalore in computer science in December, 1987. He worked in the Research and
Development center of CMC Ltd., India from February, 1987 to May, 1988. He joined
the computer science department of Purdue University in August, 1988 and cornpleted
his PhD. in computer science in August, 1991. He was also awarded a David Ross

Fellowship from Purdue.

	Decompositions of Polyhedra in Three Dimensions (Ph.D. Thesis)
	Report Number:
	

	tmp.1307986960.pdf.tsnsy

