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ABSTRACT

Dey, Tarnal Krishna PhD., Purdue University, August 1991. Decompositions of Poly
hedra in Three Dimensions. Major Professor: Chanderjit L. Bajaj.

This thesis deals with new theoretical and practical results on convex and eSG

decompositions, and triangulations of polyhedra in three dimensions. Convex and

eSG decompositions of polyhedra find applications in simpler algorithms in motion

planning, computer graphics, and solid modeling. Triangulations of potyhedra are

fundamental nontrivial steps in finite element simulations and CAD/CAM appli

cations. To reduce ill conditioning as well as discretization error in finite element

simulations, near regular shaped elements are desired. This motivates triangulation

algorithms for polyhedra that produce well shaped tetrahedra.

We present efficient algorithms for convex and CSG decompositions of polyhedra

with arbitrary genus. A modification of this decomposition method gives an efficient

algorithm for triangulations of polyhedra. The efficiency of these algorithms is mainly

derived from the use of "zone" theorem on hyperplane arrangements. studied in com

binatorial geometry. A triangulation algorithm that triangulates a convex polyhedron

and a three dimensional point set, in general, with guaranteed quality tetrahedra is

also presented. In particular, this algorithm guarantees that four out of five possible

bad tetrahedra are never generated.

Geometric algorithms, when implemented under finite precision arithmetic often

crash or rail to produce valid output because of numerical errors. We have investi

gated this problem of output inconsistency under imprecise arithmetic computations
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In order to provide topologically robust implementations of the decomposition al

gorithms. Implementations are carried out as part of SHILP, a solid modeling and

display toolkit that runs on Unix workstations under the X 'Window System.
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1. INTRODUCTION

The main purpose behind decomposing an object into simpler components is to

simplify a problem for complex objects into a number of subproblems dealing with

simpler objects. In particular, the problem of partitioning a polyhedron into simpler

components arises in mesh generation for finite element methods, CAD/CAM appli

cations, computer graphics, motion planning, and solid modeling. By a polyhedron

we mean a 3-dimensional point set bounded by planar faces. Two dimensional coun

terparts of polyhedra are polygons. The problem of decomposing polyhedra comes

with different flavors depending on the desired shape and size of the simpler compo

nents. Although several decomposition problems have been widely researched in two

dimensions, very few results exist for their three dimensional counterparts. Two such

decompositions, namely, convex decompositions, and triangulations of polyhedra are

addressed in this thesis.

1.1 Convex Decompositions

Convex decompositions, in terms of a finite union of disjoint convex pieces are

useful and are always possible for polyhedral models [Cha80, Ede87]. In 2D, there

are efficient algorithms that decompose a polygon into convex pieces and optimize dif

ferent metrics (number, length, area, angle) [Kei85, ChaBO]. In 3D, however, we have

some negative results that restrict our hope to obtain efficient solutions for certain

decomposition problems. The problem of partitioning a non·convex polyhedron into

a minimum number of convex parts is known to be NP-hard [Lin82, ORS83, DK91].

Further, it is not possible to decompose all polyhedra into convex pieces without in

troducing extra points, called Steiner points [OIl87]. However, all polygons can be

decomposed into convex rieces without Steiner points in 2D. Worse is the fact that
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the problem of determining whether a polyhedron can be partitioned into tetrahedra

(hence convex pieces) without Steiner points is NP-hard [RSS9). Due to these re

strictions, we consider the problem of convex decompositions of polyhedra that allows

Steiner points and achieves only a worst case optimality with respect to the number

of convex pieces.

1.1.1 Applications

Convex decompositions lead to efficient algorithms, for example, in geometric

point location and intersection detection; see [Ede87J. In motion planning, a disjoint

convex decomposition of polyhedra allows for more efficient algorithms in collision

detections. In computer graphics, rendering a convex object often comes as a part of

graphics library routines supported by specialized hardware and software. To render

a nonconvex polyhedron, convex decomposition of the input polyhedron can be used

as a first step to generate only convex pieces. Moreover, convex decompositions can

be used for efficient algorithms for ray tracing and hidden surface removal in computer

graphics.

1.1.2 Polygon Nesting

As a subproblem of our convex decomposition algorithm we encounter the problem

of polygon nesting. Given a set of simple polygons that do not intersect along their

boundaries, polygon nesting problem asks for detecting the nesting structure of the

input, i.e., for each polygon detecting the polygon that immediately contains it. This

problem also arises in computer graphics for rendering polygons with multiple holes,

and in feature classifications of pattern recognitions.
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1.2 CSG decompositions

In solid modeling, a geometric object is often represented in terms of simpler

components with regularized boolean operations (intersection, union, difference, com

plement) applied on them. This is called eSG (constructive solid geometry) repre

sentation of solids. A polyhedron can be represented as a union of convex pieces

obtained through its convex decomposition. The simpler components along with

boolean operations used for eSG representation of a polyhedron give equivalently a

eSG decomposition of it. Computing a eSG decomposition that involves only union

and intersection of the halfspaces corresponding to the supporting planes of the poly

hedral facets often arises in graphics and solid modeling [DGHS88j. This type of

decomposition was first considered by Peterson [Pet84].

Let N(Pi) represent an f-neighborhood of a point Pi inside the facet /; of a poly

hedron S. The literal It represents the halfspace adjacent to the facet ii that has

nonempty intersection with N(p;) n S. The literal ii- represents the other halfspace

adjacent to ii. Peterson considered the eSG decompositions that use only the halfs

paces It's. Although it is possible to find such decompositions for polygons in 2D, it

is not possible to find such decompositions for polyhedra in 3D in general [DGHS88].

Hence, we allow both halfspaces It's and i,~'s in the Peterson-style eSG decomposi

Lions of polyhedra. This type of esc decompositions is useful in computer graphics

for hidden surface removals [pY90]. A Peterson-style decomposition of a polyhedron

S is shown in Pigure 1.1. The disjoint convex decompositions of polyhedra can be

easily extended to give efficient Peterson-style esc decompositions.

1.3 Triangulations

In triangulations, we seek for the simplicial decompositions of the given polyhe

dra that produces a simplicial complex. In 3D, two tetrahedra in such a simplicial

decomposition meet only at a full facet, or an edge, or a vertex. A triangulation of a

polygonal domain in 2D is shown in Figure 1.2. In finite element mesh generation for
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Figure 1.1 A Peterson~style eSG decomposition of a polyhedron.

polyhedral domains, triangulation is a nontrivial step. In CAD/CAM, different phys

ical properties of an object are studied through finite element analysis. Triangular

element mesh is used very frequently for this purpose.

In 3D, there are polyhedra that can not be triangulated without adding Steiner

points. Moreover, as shown by Rupert and Seidel [RS89J, the general problem of

determining whether a polyhedron can be triangulated without Steiner points is NP

hard. Due to these constraints and as allowed by finite element methods, we consider

the problem of triangulations with Steiner points for polyhedra in 3D. 'rVe show that

the convex decomposition algorithm leads to an efficient algorithm for triangulations

of polyhedra.

1.3.1 Good Triangulations

In finite element methods with triangular meshes, it is desired that the elements

do not have bad angles [BA76. Fri72, TWM85]. This reduces ill-conditioning and dis

cretization error. In this thesis we refer to such triangulations as good triangulations.

Considerable amount of research has been done in 2D to generate triangulations that

avoid bad angles. It is known that if Steiner points are not allowed, the Delaunay

triangulations maximize the minimum angle among all possible triangulations of a

[Joint set in 2D [Sib78. LL861. This property, however. does not extend through
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Figure 1.2 A triangulation of a polygon with Steiner points.

higher dimensions [Ede89J. In [ETW90], Edelsbrunner, Tan and Waupotitsch give an

algorithm that triangulates a two dimensional point set which minimizes the maxi

mum angle. Such optimum triangulations, however, can itself be bad with respect

to the angles. \Ve can hope to improve these triangulations only by adding Steiner

points. The choice of Steiner points becomes a crucial factor in producing good trian

gulations. The algorithms of [TWM85, BGR88, Che89, BEG90, BE9l) give different

methods to choose these Steiner points.

In 3D, a number of algorithms exist to triangulate a point set or a polyhedron

[AE86, EPW86, JoeS9, epgO]. Few of them, however, address the problem of guaran

teeing the shapes of the tetrahedra. We consider the problem of generating the good

triangulations o[ the convex hull of a point set in 3D. Good triangulations of convex

polyhedra are special cases of this problem. In particular, we show that a Delaunay

triangulation based algorithm produces an output where four out of five possible bad

tetrahedra are never generated.
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1.4 Robustness under Finite Precision Arithmetic

Geometric algorithms, when implemented, often fail due to the degeneracies in in

put data and numerical errors introduced by finite precision arithmetic computations.

In general, these algorithms deal with two types of data: numerical and topological.

Topological inferences such as face adjacencies, vertex adjacencies are derived from

the numerical data. Thus, inaccuracies in numerical computations may cause incon

sistencies in topological data which in effect either produce invalid output or make the

program fail. The ability of the geometric algorithms to deal with the degeneracies

and the inaccuracies during various numerical computations is referred to as their

robustness.

Several frameworks for achieving robustness have been proposed by different re

searchers. Edelsbrunner and Mucke [EM88], and Yap [Yap88] suggest using symbolic

perturbation techniques to handle geometric degeneracies. Sugihara and Iri [SI89b],

and Dobkin and Silver (DS88J describe an approach to achieve consistent computa

tions in solid modeling by ensuring that computations are carried out with sufficiently

higher precision than that used for representing the numerical data. There are draw

backs, however, as high precision routines are needed for all primitive numerical com

putations making algorithms highly machine dependent. Furthermore, the required

precision for calculations is difficult to a priori estimate for complex problems.

Another approach is to live with the finite precision world and tune the arithmetic

computations to satisfy certain topological and combinatorial constraints to achieve

a consistent result. Certainly, the difficulty of achieving robustness in this approach

depends on what we mean by "consistent result". Depending on this meaning of

"consistent result", \ve classify robust algorithms into five categories, namely, type-I,

type-2, type-3, type-4 and type-5 robust algorithms.

Definition 1.'1.1 The algorithms that satisfy the following properties are called type-l

robust.
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1. The programs corresponding to the algorithms never fail with finite precision

arithmetics.

2. They produce exact outputs under infinite precision.

Definition 1.4.2 The algorithms that satisfy the following properties are called type-2

robust.

1. They are type-l robust.

2. The output under finite precision satisfies certain (not necessarily all) essential

topological properties of the exact output corresponding to a perturbed input.

Definition 1.4.3 The algorithms that satisfy the following properties are called type-3

robust.

1. They are type-2 robust.

2. The output under finite precision satisfies all topological properties (topologi

cally exact) of the exact output corresponding to a perturbed input.

Definition 1.4.4 The algorithms that satisfy the following properties are called type-4

robust.

1. They are type-2 robust.

2. The output under finite precision satisfies certain (not necessarily all) essential

topological properties of the exact output corresponding to a perturbed input,

and the perturbation is small. By small perturbation, we mean the size of the

perturbation is typically a polynomial function of the input size n, the input

precision €, and the maximum value of any coordinate B.

Definition 1.4.5 The algorithms that satisfy the following properties are called type-5

robust.

1. They are type-3 robust.
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2. The perturbations required in the input to achieve the topological exactness as

stated in type-3 robustness must be small.

One way to achieve the "non-failing:l property in type-l robust algorithms is to

guarantee that the contradicting decisions about topological inferences are never taken

during the computations. These algorithms have been termed as "parsimonious" by

Fortune [For89]. HolTmann, Hopcroft and Kara.sick [HHK87], and Kara.sick [Kar88J,

propose to use geometric reasoning to avoid contradicting topological inferences and

apply it to the problem of polyhedral intersections in an attempt to devise a type-l

robust algorithm.

In type-2 robust algorithms1 we focus on certain essential topological properties of

the geometric structure of the problem. For example, while computing the Delaunay

triangulation of a point set in 2D, we can require that the output be always a planar

graph that has a straight line embedding in 2D which is a triangulation. In [SI89a],

Sugihara and Iri give a type-2 robust algorithm for constructing the Voronoi diagram

of a 2D point set. They ensure that the output produced by the algorithm is always

planar, and given infinite precision, it converges to the true solution.

In type·2 and type·3 robust algorithms, we do not quantify the distance between

the computed output and the true output geometrically. In type·4 and type-5 robust

algorithms, we quantify the distance between the computed output and the true out

put both topologically and geometrically. In particular, we require that the computed

output satisfies topological properties of an output corresponding to some perturbed

input and the required perturbations be small. The algorithm proposed by Fortune

and Milenkovic in [FM91j for line arrangements is type-4 robust. It produces an

arrangement of pseudo lines that satisfy the certain essential properties of line ar

rangements and the required perturbations are proved to be small. To devise type.4

and type-5 robust algorithms, we must assume a bound on the relative error in the

basic arithmetic computations: plus, minus, divide, multiply. Guibas, Salesin, and

Stolfi [GSS89J propose a framework of computations, called c-geometry, with which

Liley gi\"c Lypc-.""j robusL algorithms for some 2D proulcrlls. So docs ForLune [ForS9j
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who gives type-5 robust algorithms for the problem of computing the convex hull and

the triangulation of a planar point set. The algorithm proposed by Li and Milenkovic

in [LM90] for computing the convex hull are also type-5 robust.

In type-2 and type-3 robust algorithms, we may not require any bound on the

relative error in basic arithmetic computations to achieve only topological exactness.

Nevertheless, while designing type-2, type-3 robust algorithms, it is advisable to as

sume such bounds and perform arithmetic computations with thresholds as described

in Section 3.4, and Section 5.4. It is OUf hope that, in many cases, type·2, type-3

robust algorithms become actually type-4, type-5 robust with such thresholded com

putations. though we cannot prove it.

The difficulty of designing robust algorithms depends upon the problem itself. For

geometric operations (intersection, union, decomposition) on polyhedral models, it is

very difficult to design even type·l robust algorithms. The only success achieved. so

far in this respect is by Hopcroft and Kahn {HKS9j. They have given a type-5 robust

algorithm for computing the intersection of a halfspace with a convex polyhedron

under certain minimum feature assumptions. On the other hand, for problems such

as intersections of two lines [GSSS9J, convex hull of a 2D point set [ForS9. LM90j.

where topology is not very intricate, it is easier to design type-.j robust algorithms.

'We give a type-5 robust algorithm for polygon nesting with a minimum feature

assumption. It is type-5 robust since it computes the nesting structure correctly

under finite precision computations and thus require zero perturbations of the input

to satisfy the computed output.

In our convex decomposition algorithm, we use sophisticated heuristics based on

geometric reasoning which make the algorithm more stable against numerical errors.

Although we cannot prove that the algorithm with these heuristics is type-l robust,

our experimental results have been satisfactory.

In our effort to design a robust Delaunay triangulation algorithm in 3D, we first

identify certain essential topological properties of the underlying graph of the trian

gulation of a 3D point set. This topological properties are used to achieve a type-2
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robust algorithm for the Delaunay triangulations in 3D. This robust Delaunay tri

angulation algorithm is used in a robust implementation of OUf good triangulation

algorithm in 3D.

1.5 Some Topological Aspects of Polyhedra

A surface is a 2-manifold if each point on it has an E·neighborhood that is home

omorphic to an open 2D ball or half-ball [Arm79]. In this thesis, we will refer to

2-manifolds simply as manifolds. A manifold surface is called closed if it does not

have a boundary, i.e., all points on it has an {-neighborhood that is homeomorphic

to an open 2D ball. For example, the surface of a sphere is a closed manifold whereas

a rectangular patch on a plane is not. A manifold is called oriented if it has two

distinct sides. the surface of a sphere is oriented since it has two sides, "inside" and

"outside
n

. The surfaces of Mobius strips and Klein bottles are not oriented [Arn62].

Polyhedra, having closed oriented manifold surfaces are called manifold polyhedra.

Non-manifold polyhedra may have incidences as illustrated in Figure 3.1.

A polyhedron may have through holes which determine its genus. It may also

have internal voids and thus have a disconnected boundary. Manifold polyhedra

with holes are homeomorphic to toni with one or more handles. Manifold polyhedra

with internal voids are homeomorphic to 3·dimensional annuli, i.e., spheres with

internal voids. A polyhedron can be represented with its boundary which consists of

three disjoint open point sets, called vertices (O-dimensional), edges(l-dimensional),

and facets(2-dimensional}. A systematic enumeration of vertices. edges, and faces

with all relevant adjacency information gives a boundary representation (B-rep) of a

polyhedron.
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1.6 Results

For a given polyhedron S with n edges of which r are reflex 1, Chazelle [Cha80, Cha84]

established a worst case lower bound of O(r2 ) on the number of convex polyhedra

needed for complete convex decomposition of S. He gave an algorithm that produces

a worst case, optimal number (O(r:.?)) of convex polyhedra in O(nr3) time and G(nr2)

space. Recently, Chazelle and Palios [epgO] have given an Oren + r 2 ) logr) time and

O(n + r
2

) space algorithm to tetrahedralize a subclass of non-convex polyhedra. This

algorithm, however, only allows polyhedra that are homeomorphic to a 2-sphere, i.e.,

have no holes(genus 0) and shells (internal voids). Our algorithm, based on the split

and cut method of Chazelle [Cha80, Cha84]. runs in G(nT2+ r 3 logr) time and uses

O(nr + r
2
a:(r)) space. Here, a: is the inverse Ackermann's function which grows

extremely slowly. Thus, our algorithm improves upon the algorithm of Chazelle

[ChaBO, ChaB4] w.r.t. time and space complexities and that of [epgo] w.r.t. the

generality of the input. We also give an algorithm for convex decompositions that uses

geometric based heuristics to overcome the inaccuracies involved with finite precision

arithmetic computations. Although we cannot prove that these heuristics make the

algorithm type-l robust. the experimental results arc very satisfying. These results

appear in [BD91].

As a subproblem of our convex decomposition algorithm, we solve the problem

of polygon nesting efficiently. Our algorithm for this problem runs in O(n + (m +
r) log(m + r)) time, where n is the total number of vertices in m polygons with r

rellex vertices 2. Note that m and r are much less than n in practice. \Ve also give a

type-5 robust algorithm for this problem with a minimum feature assumption on the

"thickness
1

' of the polygons. This algorithm runs in O(n(logn + m + r)) time. These

results appear in [BD901.

Simple extensions of our convex decomposition algorithm give efficient algorithms

for Peterson-style CSC decomposition and triangulation of polyhedra. An O(p'!o:(p))

ledges where the internal dihedral angle is greater than 180~
'!vprtices where the internal ane;le is ,e;reater than 180~
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size Peterson.style eSG decomposition can be computed in O(p3 1ogp) time through

our convex decomposition algorithm. This improves upon the algorithm of [pY90j

w.r.t. the generality of the input. Their algorithm computes an O(p2) size Peterson

style eSG decomposition in O(p3) time for polyhedra with convex facets of 0(1)

size. \Ve also establish O(p2) lower bounds on certain types of Peterson·style eSG

decomposition of polyhedra. The best known algorithm for triangulating polyhedra

[epgO) runs in O((n + r2
) logr) time which produces O(n + r2 ) tetrahedra. This

algorithm, however, has two drawbacks. Firstly, it allows only the simple polyhedra

that have no holes and shells. Secondly, it produces a simplicial decomposition that

is not a simplicial complex i.e., the generated tetrahedra do not meet at a full facet

or an edge. A simple extension of our convex decomposition algorithm gives an

O(nr
2 +r

J
log r) time algorithm for triangulating more general polyhedra (with holes

and shells) which generates O(nr + r J
) tetrahedra in a simplicial complex. Thus, our

algorithm improves upon the algorithm of [CP90j w.r.t. the generality of the input

and output. These results appear in [Dey91J.
In 2D, there are number of algorithms for generating good triangulations. Chew in

[Che89], gives an algorithm based on the constrained. Delaunay triangulations which

guarantees that all triangles have angles between 30° and 120°. In [Dey90], we im

proved this algorithm with minor modifications to guarantee better angle bounds for

the boundary triangles. There is another approach, based on the Grid Overlaying,

which was first used by Baker, Grosse, and Raferty in [BGRBB] to produce a non

obtuse triangulation of a polygon. In [Dey90J, we proposed a simpler method based on

this grid approach to triangulate a polygon with good angles. Recently, in [BEG90],

Bern, Eppstein, and Gilbert give algorithms for producing good triangulations which

uses a special type of a grid that simulates the planar subdivision with the quad tree.

Another approach, based on the medial axis transformation, is proposed by Sriniva

san. Nackman, and Tang to produce an adaptive triangular mesh that eliminates bad

triangles [SNT90].
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Although several good heuristics have been published, to date there is no known

algorithm that triangulates the convex hull of a three dimensional point set with

guaranteed quality tetrahedra. We present some results on the good triangulations

of the convex hull of a point set in 3D. Good triangulations of convex polyhedra are

a special case of this problem. OUf main results in good triangulations are: (i) a

3D triangulation algorithm based on the Delaunay triangulations, as used by Chew

[Che89] in 2D, to produce triangulations that do not have four out of five possible

types of bad tetrahedral (ii) a bound on the number of additional points used to

achieve this guarantee, (iii) a type-2 robust algorithm for Delaunay triangulations

in 3D that is used to produce a robust implementation of the good triangulation

algorithm. These results appear in [DBS91].

1. 7 Organization

\Ve, first, describe the polygon nesting algorithm in Chapter 2 since it appears

as a subproblem in our convex decomposition algorithm. It also makes the readers

to be more familiar with the concepts of robustness. Chapter 3 describes the convex

decomposition algorithm and the heuristics used for its robust implementation. CSG

decompositions and triangulations of polyhedra with arbitrary genus and shells are

described in Chapter '1. Good triangulations of the convex hull of a point set in 3D

is presented in Chapter 5. It also describes a robust algorithm that is used in robust

implementation of the good triangulation algorithm in 3D. Finally, we conclude this

thesis in Chapter 6 which summarizes the contribution of this work and presents some

related open problems.
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2. POLYGON NESTING

2.1 Introduction

This chapter describes an efficient algorithm for polygon nesting that arises as

a fundamental subproblem in OUf convex decomposition algorithm. Section 2.3 de

scribes the algorithm under the assumption of exact arithmetic. Section 2.4 presents

a type-5. robust algorithm that assumes a minimum feature for the input.

figure 2.1 Polygon nesting.

Let p be a set of m simple polygons Qj, i _ 1.. .. m that do not intersect along

their boundaries.

Definition 2.1.1 The ancestor of a polygon Q. is defined as the set of polygons con

taining Qi inside and is denoted as ancestor(Q;).



15

Definition 2.1.2 The polygon Qk in ancestor(Qd is called the parent of Qi if

ancestor(QkJ=ancestor(Qi) - Qk. Notice that there may not exist any such Qk since

ancestor(Qi) may be empty. In that case we say that the parent of Qi is null.

Definition 2.1.3 The polygons whose parent is Qk are called the children of Qk and

are denoted as children(Qk).

In Figure 2.1, ancestor(Q3) = {Q" Q,}, parent(Q3) = {Q,}' children(Q,) =

{Q3. Q4}, and parent(Qs) = children(Qs) = nuil. The nesting structure G of p is an

acyclic directed graph (a forest of trees) in which there is a node ni, corresponding to

each polygon Qi in P, and there is a directed edge from a node ni to nj if and only

if Qj is the parent of Qj. The polygon nesting problem is to compute the nesting

structure of a.set of simple polygons that do not intersect along their boundaries.

Gi ven a set of simple nonintersecting polygons with n vertices, Chazelle, in [Cha84],

gives an O(n logn) algorithm to detect the outermost polygons and their children.

However, his algorithm does not compute the nesting structure of the given set of

polygons.

In Section 2.3. we give an algorithm which computes the polygon nesting structure

in O(n+(m+r) log(m+7')) time where n is the total number of vertices in m polygons

and r is the total number of reflex vertices. Since in practice m and r are much less

than n, this algorithm runs faster than any O(n logn) algorithm in practice. In

Section 2.4, we give a type-5 robust algorithm for the same problem restricted to a

class of polygons called fleshy polygons. Our robust algorithm has a worst-case time

bound of O(n(logn + m + r)).

2.2 Preliminaries

Let Q be a simple polygon with vertices VI, V2, ... , Un in clockwise order. Between any

two consecutive reflex yertices Vi, Vj in the clockwise order, the sequence of vertices

(lli, Ui+l' ... , Vj) is called a convex polygonal-line.
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figure 2.2 Convex chain and subchain.

Definition 2.2.1 A convex chain is a maximal piece of a convex polygonal-line with

the property that its vertices form a convex polygon.

Definition 2.2.2 A subchain is a maximal piece of a convex chain with the property

that the vertices of a subchain have x-coordinates in either strictly increasing or

decreasing order.

Each convex polygonal-line can be partitioned into convex-chains and each convex

chain can be partitioned into at most three subchains; see Figure 2.2.

A vertex or an edge is said to lie inside a polygon if it completely lies in the interior

of the polygonal region. A vertex or an edge is said to be contained in a polygon if it

lies on the boundary of the polygon.

Let L be a tine drawn through a set of polygons. Let E be the set of edges that

intersect L in the following two ways. An edge e in E either properly intersects L

(i.e.. two vertices of e lies on the opposite sides of L) or e intersects L at a vertex

and the other vertex of e lies to the right of L. The third possible case, where one

vertex of e lies on L and the other one to the left of L, is ignored as the information

related to that edge would already be recorded in a plane sweep of our algorithm.
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The remaining case of degenerate intersection (e is collinear with L) is described in

section 2.3.

Definition 2.2.3 A vertex Vi is said to lie above Vj if the y coordinate of Vi is greater

than that of v j'

Definition 2.2.4 An edge el is said to be above the edge e2 in E if the point L net lies

above the point L n e2· If el and e2 have a common vertex through which L passes,

el is above C2 if the other vertex of el lies above the other vertex of e'2'

The line L induces a total order R on the edges in E with respect to the above

relation. If L passes through a vertex Vi, above{v;} denotes the set of edges whose

point of intersection with L is above v;:. The lowest edge in above(vd is called the

neighbor of Vi· Between Vi and its neighbor there is no other edge intersecting L.

In Figure 2.4, e4 is the neighbor of v since it is the lowest edge in above(v). Note

that there may not exist any neighbor of Vi since above(Vi) may be empty. Order R

naturally extends to another order a of subchains associated with the edges in R.

Definition 2.2.5 The subchain C1 containing the edge el is above the subchain C
2

containing the edge e2 in 0 if and only if el is above e2 in R.

2.2.1 Useful Lemmas

In the following lenuna, the line segments of a line that are interior to a polygon are

called chords.

Lemma 2.2.1 Let Q be a polygon (possibly with holes) with r reflex vertices. No line

can intersect Q in more than r + 1 chords.

Proof: The proof proceeds inductively. The case for r = 0 is trivial. In the general

5tep, consider a polygon Q with r = k ~ 1 reflex vertices. T.dke an arbitrary reflex

vertex, and resolve it by a cut through it. The cut may separat~ Q into two poly

g,OW:i QI ilUJ Q1 ul' 1"] iWJ 1"1 reOex venice; re::;pecLively, :such Uli1L 1"1 T 1'2 ::::; k - i.
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Furthermore, the number of chords of a line L in Q cannot exceed the sum of the

number of chords in Qt and Q2. Therefore, using the induction hypothesis, one can

conclude that the line L intersects Q in no more than TI + 1 + T2 + 1 ::; k +1 chords.

If, however, the cut does not split Q, one ends up with a polygon Q' of at most k-1

reflex vertices. Since the line L may intersect the cut, just performed, the number of

chords in Q is less than or equal to that in Q', which again implies that the former is

less than or equal to k - 1 + 1 :$ k + 1...

Lemma 2.2.2 Let Q be a simple polygon with r reflex vertices. The number of sub

chains c in Q is bounded as c:$ 6(1 + r).

Proof: Follows from Theorem 3, page 22 of [ChaSO]. '"

Lem~a 2.2.3 Let L be any line through a vertex v of a polygon Qi. Let the edge e be

the neighbor of v. Parent of Qi is either the polygon Qj containing e or Qj's parent

(possibly null).

Proof: If the neighbor edge e of v is an edge of Qj which is the parent of Qil the

lemma holds trivially. Suppose the neighbor edge e of v is an edge of Qj which is

not the parent of Qj. \Ve claim that v lies inside a polygon Qt if and only if e lies

inside it. Suppose e lies inside Qt, and v does not. Then the region between v and

e on L contains a part which is outside Qt. Hence, there must be an edge of Qt

between e and v intersecting L. But this is impossible since e is the neighbor edge of

u. Similarly, we can argue that if v lies inside a polygon Qt, so does e. Hence e lies

inside the same set of polygons, within which v lies. Thus, Qk is the parent of Qi if

and only if it is a parent of Qj. "

Lemma 2.2.4 Let L be any line passing through v of Qi. The vertex v is contained

in the polygon Qk,kf-i if and only if the number of edges of QJ; which are in above(v)

is odd.

Proof: Since any edge of a polygon Q demarks the regions "inside Q" and "outside

(t' on L. t he abo",' lemma is ol)\·ious...
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Lemma 2.2.5 Let L he any line passing through v of Qi. Let the edge e of the polygon

Qk be the neighbor of von L. If the number of edges of Qk in above(v) is odd and

k =f:. i, then Qk is the parent of Q,. Otherwise, Qk'S parent(possibly nuLl) is the parent

of Q;.

Proof: Combine Lemma 2.2.3 and Lemma 2.2.4...

2.3 The Algorithm with Exact Arithmetic

Now, we describe the algorithm which is based on the plane sweep and uses exact

arithmetic for all numerical computations. Each polygon Q; consists of suhchains

Cil , C i2 , ... , Gik • \Ve sweep a line L in the plane through all polygons, while maintain

ing the ordering 0 of the subchains induced by L. To maintain this ordering, we stop

only at the endpoints of the subchains, while sweeping, say, [rom left to right. We

break all the boundaries of the polygons into subchains in no more than O(n) time

and sort their endpoints on a line perpendicular to L. At each subchain endpoints

we update the ordering O.

2.3.1 L;pdate at a Vertex

If v is such a vertex that both subchains G1 and G2 connected to v have not yet

been encountered by the sweep line L, we insert G1 and G2 in the ordering; 0 on L by

a simple binary search. For this search, we need to determine the position of v w.r.t.

the edge intersected by L on a subchain Gi , already present in the ordering O.

This is done as follows. We keep the last visited edge associated with each subchain

G; in O. Let the last edge kept associated with G j be el' Vve visit the sequence of

edges ell e2···, ek of Gi stopping at the first edge ek which intersects L. We determine

t,he position of v w.r.t. ek and associate the edge ek with C,. Later. when we need

to classify any other vertex w.r.t. Gj , we start from the edge e/;. This is reminiscent

of the topological sweep of [EG89l. In this sweep, the sweep line is actually a curved

line. called pseudo-line. See Figure 2.3. Obviously, the edges like e2, .... ek_l are
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Figure 2.3 Sweeping status before and after the update at v.

visited only once, while edges like el and ek are visited more than once throughout

the sweep. For each vertex-edge classification, there will be at most two edges similar

to el and ek of a subchain which will be visited more than once throughout the sweep.

Since in the binary search for determining the position of a vertex in the order 0,

we encounter only O(log c) subchains (c is the total number of subchains), there will

be at most G(loge) edges, for each sweep line position, which will be visited more

than once. Let t i be the number of edges in subchain C j which are visited only once

throughout the sweep. As we observed~ only G(loge) edges per update are visited

that are encountered more than once throughout the sweep. If v is a vertex such that

both subchains connected to v have been encountered, we delete both these subchains

from the ordering G. This takes at most O(log c) time. Hence, the total time taken

for all updates is OO::::~=1 t,) + O(clogc). Certainly, L:~=L t; = O:l1) where n is the

total number of vertices. Hence updates take O(n) + O(e log c) Lime.
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2.3.2 Detecting the Parent of a Polygon

At the vertex v of Qi. when we insert the subchains in the ordering 0 on L,

we determine the parent of Qi as follows. If the parent of Qi has not already been

determined, we find the neighbor edge e of v intersecting L (Actually, e is found

while inserting the subchains connected to v). Let Qj be the polygon containing e

on the boundary. \Ve determine k, the number of edges or equivalently the number

of subchains of the polygon Qj which are in above{v). Maintaining the ordering of

subchains for each polygon separately, this number can be obtained in O(log Ci) time

where c; is the number of subchains in that polygon. If k is odd and Qj =f:. Qi. we

set Qj as the parent of Qi. Otherwise, we set the parent of Qj to be the parent of

Qi (Lemma 2.2.5). Certainly, the parent determination at each update add up to at

most o (log c) time.

2.3.3 Degenerate Cases

Degeneracy occurs when the sweep line L passes through more than one vertex,

at any stop of L. In these cases, one or more than one edge may be collinear with L.

Let Vt, V2, ...• Vk be the ordered sequence (w.r.t. the above relation) of vertices through

which L passes at any stop.

We process each vertex Vi in the ordered sequence one after the other as follows.

Let Vi be the vertex of polygon Qi. For Vi, we insert or delete accordingly the subchain

that does not correspond to the edge collinear with L from the ordering O. Since the

edge collinear with L does not demark any region on L as ;'inside Qi" or "outside

Qt, we should not insert that edge in the ordering 0 and in the ordering maintained

separately for C'ach polygon. Hence, a degenerate edge does not affect the number of

edges of Qi which would be in above(v;) for any vertex Vi. See also Figure 2.4.

2.3.4 The Algorithm

Algorlthm Polnesl-Exacl:
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Figure 2.4 Degenerate cases.

Input: A set of m simple, non intersecting polygons.

Output: A directed acyclic graph G, called the nesting structure, III which there

is a directed edge from a node nj corresponding to a polygon Qi to the node ni

corresponding to the polygon Qj if and only if Qi is the parent of Qj.

Step I: Detect the endpoints of subchains in all polygons.

Step 2: Sort the x-coordinates of these endpoints. If two points have same x

coordinates, the one with higher y-coordinate is sorted before the other. Let this

sorted sequence IY be VI, V2, ... , V w '

Step .'3: Create a node [or each polygon in G. Initialize 0 by inserting the two polygon

edges as the representatives of the two subchains connected to the leftmost vertex in

w.
Step 4: Sweep a pseudo-line from left to right taking steps at each vertex vi of W as

follows. Let vi be on the boundary of the polygon Qj. If both subchains connected

to vi have already been visited, delete them from the ordering 0 and skip steps from

4(a) to 4(d).

Step 4(a): Detect the position of Vi \V.r.t. the subchains intersected by the sweep

line. For this, carry out a binary search in the ordering 0 of these subchains. To
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detect the position of vi \V.r.t. a subchain C i during binary search, find the edge et

kept associated with C i in O. and then follow the linked sequence of edges et, e2, "', ek

until the edge ek is found which intersects L.

Step 4 (b): Let the edge e' of the polygon Qj be the n~ighbor of Vj found in step

4(a). Determine the number of subchains k of Qj that are in above(vj). This is done

by a similar binary search, as in step 4(a), in the ordering of subchains maintained

separately for each polygon.

Step 4(e): Insert two subchains connected to Vj in 0 and in the ordering of subchains

maintained for polygon Q;. In the degenerate case, insert or delete the subchain from

o that does not correspond to the edge, collinear with the sweep line.

Step 4(d): If k is odd, create a directed edge in G from the node ni corresponding to

the polygon Qi to the node nj corresponding to the polygon Qj. If k is even. create

a directed edge [rom n, to the node nk(if any) to which nj is connected through a

direc ted edge.

Theorem 2.3.1 The problem of polygon nesting for m polygons can be solved in O(n+

(m + r) tog(m + r)) time where n is the total number of vertices, and r is the total

number of reflex vertices of all polygons.

Proof: Detecting the endpoints of the subchains takes O(n) time. Sorting these

endpoints requires O(c1ogc) time. Updating and determining the parent takes O(n+

clog c) time. Hence, computing the nesting structure for all polygons takes O(n +
c log c) time. By Lemma 2.2.2, C, the total number of subchains is bounded as C :::;

6(m + r) where m is the total number of polygons, and r is the total number of reflex

vertices. Hence, the total time spent is O(n + (m + r) log(m + r)) ...

2.4 Robustness under Finite Precision Arithmetic

In the algorithm given in the previous section, we assumed exact arithmetic in all

our arithmetic computations. In this section. we give an algorithm for polygon nesting

prohlpm which i!' lypp-.=1 rohnst. nurler finitp prpcision 'lrirhmdic complltations. This
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algorithm IS type-5 robust since it never fails and gives always the correct output

under a minimum feature assumption.

2.4.1 Assumptions and Finite Precision Computations

We first assume that all coordinates have a maximum absolute value of B i.e.,

-B < x < Band -B < y < B. 'We model the inexact arithmetic computations by

e-arithmetic [Far8g, GSS89J where the arithmetic operations +, -, +, x are performed

with relative error of at most E.

Definition 2.4.1 A polygon Q is called fleshy if there is a point inside Q such that a

square with the center(intersection of square's diagonals) at that point and with the

sides of length 64eB lies inside Q. Here, £: is the machine precision.

In our implementation, we set B = 210 units, e: = 2- 32 units. Hence the area of

the square is 2- 32
. The polygons that are not fleshy are thus too skinny to occur in

most practical cases.

Definition 2.4.2 A binary predicate CONT takes two polygons QIl Q2 as arguments

and returns true if and only if Q1 contains Q2. NOT(CONT(QII Q2)) denotes the

negation of CONT(Q"Q,).

Definition '2.'1.3 A point PI is said to be vertically visible from another point P2 if the

vertical line through P2 also passes through PI and the vertical segment between PI

and P2 does not intersect any other edge. Similarly, we define an edge to be vertically

visible from a point PI if the vertical line through PI intersects the edge and does not

intersect any other edge in between.

The numerical computations in our algorithm are carried out at two places.

1. Sorting the vertices;

Sorting can be carried out without any error as the comparison of two floating

point numbers is exact upta the machine precision. A similar model of compu

laliollS where cumparisons ur input data are free uf error has also been assumed
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by [MiI8S, FarSg] (this fact is true on most of the machines available today).

Here we assume that the given input data (coordinates of polygon vertices) is

accurate, though our algorithm tolerates perturbations in the input that does

not destroy the simplicity and nonintersecting properties of the polygons.

2. Computing the points of intersections of a vertical sweep line with the edges:

In Lemma 2A.l, we develop a bound on the maximum error that can Occur

during this computation.

Lemma 2.4.1 Given an edge e between two vertices VI = (Xt,yd, V'2 = (X2. Y2), and a

vertical line passing through a vertex Va = (xa. Yo) intersecting the edge e at a point

p, the absolute error e~b~ in the computed position of p is bounded as e~b.. < hE. The

absolute error e:b~ in the computed distance of Vo and p is bounded as e~b.. < ScB.

Here c is the machine precision and B is the largest value or any coordinate.

Proof: Consider a vertical line x == Xo through Vo = (xo, Yo) that intersects e at p.

Obviously, the x-coordinate of p is Xo. Let the actual and computed y-coordinate of

p be Y3 and Yr::. By simple geometry,

Xz -XI Yz - VI
Xo x, Y3 - YI

(yz - vd(xo - xll
+YI·Y3 -

Xz - XI

With floating point arithmetics, the computed value Yr:: of Y3 is given by

_ (Y2 - YIl("o - x,)(1 + ,0) + (1 + )
Y, - () y, t.

Xz XI

h (1 + -) (I+~d(I+~2l(1+ ..~)(I+"~)(I+"6) and Ic.1 ::; c. Let to = (!n-yd(xo-·q) Wewere c:: == (1+"J) X2 ;tOl

can write
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Neglecting higher order terms in Ci, we get Ie·' ::; 6€". Since 1"'0-;&'11 < 1 we have
1"2-x 1l '

Itol < IY, - yII

Itol < B
,

< 6eB + eBe"b~

,
< hB.eBb"

The distance between Va and p is computed as lYe - yol which introduces additional

error of at most elyc - yol :::; e:E. Thus, the total efror in the distance computation

of p from Va is bounded as e~b.. < 7e:B + e:B = 8gB. ..

2.4.2 Good Vertex

\Ve define a vertex v of a simple polygon Qi to be a agood vertex'l as follows.

Let L be a vertical line passing through v. The set of intersection points of the

edges of any polygon Qj with this vertical line can be partitioned into three sets

I~bov,,(v) I I!/o",,(u) 1 I!dow(v) based on the proximity of the intersection points to v. I~bov,,(v)

is the set of all intersection points above v whose computed distance from v is greater

than or equal to SeB. ItdoUJ(v) is correspondingly defined for intersection points below

v. The rest of the intersection points are in the set 11io~e(v)'

Definition 2.'1.4 For the polygon Qi containing v, if all points in IieloUJ(v) (respectively

I~bove(vJ) are at a computed distanceof at least 24eB from v, and if IIieioUJ(v)l(respectively

II~bove{v)l) is odd then v is called a "good vertex" of Qi from below (respectively above).

Since the absolute error in the distance computations of the intersection points

from v is less than SeB. the intersection points in Itlo~e(v) can lie at an actual distance

of at most 16eB either below or above v. On the other hand, the actual distance

between v and the points in Ibe/oUJ(v) (respectively I~bove(tI)) must be greater than

l6eB. Hence. there must be a segment of L that lies between the points in Itlose(l1)

ilnd ItdoUJ(v) (respectively Iilo~e(l1) and I~bove(I1))· This segment lies inside Qi if IIteloUJ(v) I

(rpsrl"'di\'ply I[i. I) i<; ollel.
'. . ''''''t'll''''
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Lemma 2.4.2 Given two simple, nonintersecting polygons Q1, Q2. it can be correctly

determined if one of the predicates NOT(CONT(Q" Q,)), NOT(CONT(Q" Q,)) is

true by checking the leftmost vertices of Q1 and Q2'

Proof: Let VI = (XI> Yd, V2 = (X2. Y2) be two leftmost vertices of Ql and Q2 re.

spectively. Certainly, XI < X2 implies NOT(CONT(Q2. Qd), and XI > X2 implies

NOT(CONT(Q" Q,)). Furthermore, X, = X, implies NOT(CONT(Q" Q,)) and

NOT(CONT(Q2, Qd) since QI and Q2 are simple nonintersecting polygons...

2.4.3 Procedure ANSC

The procedure ANSe, when called with the argument v. a good vertex of Pi,

reports some(may not be all) ancestors of Q. as follows. W.I.o.g., assume v is

a ;'good vertex" of Lhe polygon Qi from below. The procedure ANSC constructs

111,m(v)lltdow(v)tI~bov~(v) for all polygons {Qj}. Let {Qd be the set of polygons for

which Il:elow(u)I is odd, and all points in l:elow(lJ) lie at a computed distance of at least

24E:B from v, The procedure ANSC reports those polygons in {Qd as the ancestors

of Qi whose leftmost vertex has a smaller x-coordinate than that of Qi'

Lemma 2.4.3 Given a set of simple, nonintersecting polygons in the plane with a

"good vertex" von the polygon Qi, reported ancestors of the polygon Q,- by ANSC(v)

are true ancestors of it.

Proof: Let L be a vertical line passing through a "good vertex" v of Qj. As stated

earlier, a "good vertex" can easily be determined via distance computations of v from

the intersection points of edges with L. vV.I.o.g., assume v to be a "good vertex" of

Qi from below. Since v is a "good vertex" from below, there is a segment LI of L

that lies between the points in l;lo~e(u) and lie/ow(u) , In ANSC(v) we consider the set

of polygons {Qd that have odd number of points in Ite'ow(lJ) which lie at a computed

distance of at least 24r::B from v. Certainly, a portion of the segment L' also lies inside

these polygons. Hence, a polygon in the set {Qk} either contains Qi or is contained in

q,. \\'c lI~C Lt_'lllllli:L ~.-1.2 to dimiui:Ltc olle of tlle:;c two pu~~jbjlitil:::; i:LuJ report those
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polygons in {Qd which contain Qi. Hence, the reported polygons truly contain Q,-,

though all polygons containing Q. may not be reported...

Figure 2.5 Cases of Lemma 2.4.4

Lemma 2.4.4 Given a set of simple, fleshy, nonintersectillg polygons on a plane, there

is a "good vertex" v of each polygon Qi such that ANSC(v) reports all true ancestors

ofQ,.

Proof: Consider a simple. fleshy polygon Qj. By definition, there is a point q inside

Qi such that a square box abdc with sides of length 64eB lies inside Qj. Let q be the

center of abdc. Consider two vertical lines L" L 2 coinciding with the two sides of the

square as shown in Figure 2.5.

Case (i): There is a vertex u of Qi within the two vertical lines. W.l.o.g., assume v

to be abo\"(' (lb. Consider a \"(~rtirallinc L passing through t', Let (/ he the orthogonal
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projection of q on L. Let s be the point of intersection of L with the edge of Qi

which is vertically visible from q' and which is below cd. Any polygon containing Q;

cannot have an edge intersecting L in between v and s. Since the distance between v

and s must be greater than or equal to 64eB, the computed distance between them

must be at least 56eB. Hence, s cannot be in I~IO!,,(v)l and all the intersection points

of Qi that are in Ile/ow(vj must be at a computed distance of at least 56e:B from v.

Certainly, Iielow(v) is odd. Hence, v is a "good vertex" of Q, from below.

Case (ii): There is no vertex v which lies in between two vertical lines L, and L
2

•

In this case, only two edges of Qi will be vertically visible from q. Let these two

edges be el, e2 as shown in Figure 2.5(b). Let v ( respectively Vi) be the first vertex

that is hit by a vertical line L while sweeping it from the position of £2 (respectively,

£1) to right (respectively, left). Consider a vertical line through v that intersects 101

and 10'2 at b
l

and d' respectively. SimilarlYl consider the vertical line through Vi that

intersects 10, and €'2 at a' and c' respectively. The quadrilateral a'b'd'el lies inside Qi.

Since abde lies inside a'b'd'e', one of the edges b'd' and aiel must be greater than or

equal to 64£E. W.l.o.g., assume bid' is that edge. CertainlYl v is at a distance of

at least 32£B either from b
l

or d'. 'V.l.o.g., assume the distance between v and d' is

greater than equal to :32eB. This implies that the computed distance between v and

d' is greater than 2'1E:B. rollowing the same argument as in Case (i), we can say that

v is a ';good vertex"' of Qi from below.

r\ny polygon Qi containing Qi can not have an edge intersecting L in between v

and oS in Case(i) and in between v and d' in Case(ii). Hence, for such polygon Qj,

all intersection points ill lie/ow(ul must be at a computed distance of at least 24eB

from v and Ilidow/vll must be odd. This ensures that ANSC(v) reports all the true

ances tors of Qi. 4

2.4.4 The Algorithm

Algorilhm Polnesl-Robusl

Inpul: A set of simple. nonintersectin,e;. fleshy poly,e;ons.
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Output: An acyclic directed graph, called the nesting structure, in which each node

ni represents a polygon Qj. There is a directed edge from ni to nj if and only if Qj

is the parent of Qj.

Step 1: Sort the vertices of the polygons on the x axis.

Step 2: Sweep a vertical line from left to right taking the following steps at each

vertex v.

Step 2(a): Let Qi be the polygon having v on the boundary and E be the set of

edges that were intersected by L when the sweep line stopped at the previous ver.

tex. Compute the intersection points of L with edges in E. Construct the sets

l~botle(v)' J~lo~e(,,)l Itclow(v) for each polygon Qj.

Step 2(b): Test whether v is a "good vertex" of Qi or not. If it is, take step 2(c)

otherwise skip 2(c).

Step 2(c): If v is a "good vertex" of Q; from below (respectively above), for each

polygon Qj intersected by L, check whether IIt~low(u)1 (respectively 11!bov~(u)1) is odd

or not and whether all points in ItelOw(v) (respectively I!bov~(u)) are at a distance of at

least 24cB from v or not. If both conditions are satisfied, check the leftmost vertices

of Qj and Qj to determine whether NOT(CONT(Qi, Qj)) is true or not. If it is true,

create a directed edge from the node corresponding to Qj to the node corresponding

to Qj in the nesting structure in case it is not already created. Note that this will

create a directed edge from nj to nj if and only if Qj is an ancestor (not merely

parent) of Qj. This nesting structure is refined in Step 3.

Step 2(d): If v is a vertex with both edges adjacent to it not in E, include them in

E. If v is a vertex with both edges adjacent to it in E, delete them from E. If v is

a vertex with one of the edges in E, delete that edge from E and include the other

edge in E.

Step .'1: The nesting structure C- computed by Step 2(c) is the transitive closure of

the actual nesting structure G of the set of polygons. G can be recovered from C- in

G(e) time where e is the number of edges in G-. Find all leaves in C- i.e., the nodes

that have an in· degree count equal to O. These nodes are also leaves of G. Delete
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all edges outgoing from these nodes. Find the new leaves in the modified C". These

nodes are at a distance of one (w.r.t. t.he number of edges) from the leaves of G.

Repeating this process, all nodes at a distance of one, two, three, ... from the leaves

are found Qut and G is recovered. This algorithm can be carried out in G(e) time

where e is the number of edges in C-.

Time Allalysi.s: Step 1 takes O(n logn) time. Since a vertical line intersects at most

O(m + r) edges (Lemma 2.2.1), Step 2 takes O(m + r) time for each stop while

sweeping. Hence, the total time spent for Step 2 is O(n(m +I)). Step 3 takes O(m2 )

time since there are O(m2
) edges in C-. Thus, the time complexity of Potnest-Robust

is O(nlogn + n(m + "j +m') = O(n(logn + m + r)).

2.,5 Conclusions

[n this chapter, we have given an elJicient algorithm for polygon nesting problem,

where the polygons do not intersect along their boundaries. It is interesting to con

sider the case where polygons intersect along their boundaries. In that case, can we

find the nesting structure in O(n log n) time or at least in O(n log n + s) time, where

.~ is the total Humber of imcrsections between the polygons'? This problem arises in

pattern recognition during feature classifications.

We' have devised a type-5 robust, algorithm with a minimum feature assumption.

It seems that some sort of minimum feature iL'isumption is necessary to produce exact

outputs under finite precision computations. There are applications, however, where

an output "close·' 1.0 the exact one is acceptable. In those cases, a type-,S robust

algorithm without any minimum feature assumption is desirable.



3. CONVEX DECOMPOSITIONS

:U fntroduction

This chapter deals with the convex decompositions of polyhedra. Convex de

compositions. in terms of a finite union of disjoint convex pieces, are useful and are

always possible for polyhedral models (Cha80, Ede87]. Convex decompositions lead

to efficient algorit.hms, for example, in geometric point location and intersection de

t.ection; see {Ede871_ Specifically, a disjoint convex decomposition of simple polyhedra

allows for more ef6cient algorithms in motion planning, in computer graphics, in solid

modeling, and in the finite element solutions of partial differential equations.

The problem of partitioning a non-convex polyhedron S into a minimum number

of convex parts is known to be NP-hard [Lin82, ORS83). Rupert and Seidel [RS89)

also show that the problem of determining whether a non-convex polyhedron can

be partitioned into tetrahedra without introducing Steiner points is NP-harrl. for

a given polyhedron S with n edges of which r are reflex, Chazelle [ChaBO, Cha84]

established a worst case, 0(,2) lower bound 011 the number of convex polyhedra

Il['('ded [or complete convex decomposition of S. He gave an algorithm that produces

a worst case, optimal number 0(r2 ) convex polyhedra in O(nr3 ) time and O(nr2 )

space. Hecently, ChazeJle and Palios [epgO] have given an O((n + ,2) log r) time and

O(n + ,2) space algorithm to tetrahedralize a subclass of non-convex polyhedra. The

allowed polyhedra for their algorithm are all homeomorphic to a 2-sphere, i.e., have

no holes(genus 0) and shells (internal voids).

[n Section :3.:3. we present an algorithm to compute a disjoint convex decomposi

tion of a manifold polyhedron S which may llavc an arbitrary number of holes and

shells. Given sHch a polyhedron S with It edges of which r are reflex, the algorithm

produces a worst case optimal U(1"l) number of COllvex polyhedra S'i, with U Si = S
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in 0(11,.2 + r3 10g r) time and O(nr + ,.2 cr (r)) space. Here. a is the inverse Acker

mann's function which grows extremely slowly. We extend this algorithm to work

ror non-manifold polyhedra which do not have abutting edges or facets but may have

incidences as illustrated in Figure 3.1. The algorithm presented in this chapter is

based on repeated cutting and splitting of polyhedra with planes that resolve reflex

edges. Chazelle. in (Cha80], first used this method. 'liVe improve this method to obtain

better time and space bounds using a refined complexity analysis and the efficient

algorithms [or certain subproblems.

In Section :3.4, we describe the geometric based heuristics that are used to over

('orne the inaccuracies involved with finite precision arithmetic computations. Al

though we cannot prove that these heuristics make the algorithm type-l robust,

the experimental results are very satisfying. This algorithm runs in approximately

O{nr.! + 1l1']og 11 + 1"'1) time and O(m· + r:'!rr:(l')) space.

~oupa
of fest.u.res

,a)
Type 1 not.cb

(b)

Type 2 notcb
(0)

Type 3 not.cb

I"igllTr' :3.1 Non-manifold incidences or special notches.

:3.2 Preliminaries

?vlanifold polyhedra can be nonconvex only due t.o the presence of reflex edges.

Non-manifold polyhedra. however, can be nonconvex due to the features other than

reHex edges. The features. causing nonconvexity in polyhedra are called notches in

general.
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:L2.1 Notches

Non-manifold polyhedra as considered in this thesis have the following four types

of notches.

1. Type 1 notches: These notches are caused by isolated vertices and edges on a

facet. An isolated vertex or an isolated edge on a facet is not adjacent to any

other edge of the facet. See Figure :3.1(a).

2. Type 2 notches: These notches are caused by the edges along which more than

two facets meet as illustrated in the Figure :3.1(b). I[ there are 2k (k > 1) facets

incident on P.i, we assume that they form k notches.

1. Type;J lIo/ches: These notches are caused by vertices where two or more groups

of features (I'acets, edges) touch each other as illustrated in the Figure 3.1(c).

The features within a group are reachable from one another while remaining

only on the surface of 5 and not crossing the vertex. Actually, type 1 notches

are a subclass of these notches. For convenience in the description, we exclude

type 1 notches from type 3 notches. The number of groups attached to the

vertex determines the number of type 3 notches associated with that vertex .

.1. iype 4 /lo{ches: These notches are caused by reflex edges. A manifold polyhe

dron can llitv€ only this type of notches.

The notches of type 1. type 2, type 3 are called special notches as they are present

only in non-manifold polyhedra. In our algorithm, we first remove all special notches

from the input polyhedron 5 creating only manifold polyhedra. Subsequently, type

4: notches of the manifold polyhedra are removed by repeated cutting and splitting

them with planes resol ving the 1I0tches. Let an edge 9 with 111 h as its incident facets

be a notch in a manifold polyhedron. A plane Pg that passes through g is called a

notch plane if both angles (h,p!}) and (p!}lh), as measured from the inner side of

r, ;'Inri r~ ill'(' not. 1'C'lk·x. In ot.her words. i\ not.ch plane. resolves the renex angle of a
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another not.cb

1p.
.... _--- .

,e.:... I------, ;
J. r....

p.-+---v /, 1£
I; "\

r II/C==j'; not:chp. "

op 1
.--..." ./_7

/ 7/
opr•

Qr

•

Figure 3.2 A notch and its notch plane, cross sectional map, cut.

!lotch. ('(early. 1'01' each notch g, there exist infinite choices for Pg " Note that P
g

may

intersect other notches, thereby producing .mbnotches; see Figure 3.2.

:L2.2 Data Structure

Let S be a polyhedron, possibly with holes and shells, and having s vertices

{1'L,1.'2,""U.• }, It ('dges: {el,t:Z,""cn }, and q facets: {fIIJZ, ... ,!q}. These lists of

vertices, edges and facets of S are stored similar to the slar-edge representation of

polyhedra [l\ar881.

I'n"tices: Sitch vprtcx is a record with two fields.

I. m,l"fp.x.cool'dinales: contains the three dimensional coordinates of the vertex.

2. vertex. adjacencies: contains pointers to the edges incident on the vertex.

Edges: Each edge is a record with two fields.

1. edge. vertices: contains pointers to the incident vertices.

2. rdge.o7'ienfeded.ges: contains pointers to the record called orientededges which

I'er c<'fient different orientations of ill) f'dge on earh facet incident on it. The
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orientation of an edge on a facet f is such that a traversal of the oriented edge

has the facet f to its right.

01"ientededges: each orientededge is a record with four fields.

L. orientededge.edge: contains pointer to the defining edge.

:L O1'ientededge.facet: contains pointer to the facet on which the orientededge is

incident.

:3. oricntededge.Ol·ientation: contains information about the orientation of the edge

all the facet .

.1. orieniededge.nextorientededge: contains pointers (possibly more than one) to

I,he lH'xt orientededges on the oriented edge cycle on a facet. See facet cycles

below.

two orieated edg••
OD the BaDe facet

Figure :3.3 A nOli simple facet.

Facets: each facet is a record with two fields.

t. facet. equation: contains the equation of the plane supporting the facet.

2. jncet.cycles: contains pointers to a collection of oriented edge cycles bounding

t.he facet. Each oriented edge cycle is a linked list of orientededges. The traver

sal of each oriented edge on the cycle has the facet to its right. If there is an
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isolated vertex on the facet. (Figure :3.l(a)) a pointer to the vertex is included

in Jacet.cycles as a degenerate oriented edge cycle. An isolated edge is repre

sented with the oriented edge cycle of two orientededges. For a non-manifold

polyhedron, a facet may have configurations as shown in Figure 3.3, where a

vertex or an edge is considered more than once in an oriented edge cycle, though

<In oriented edge is included only once.

:3.2.3 Some Definitions

To deal with the non manifold polyhedra. we define the term polygon slightly

differently in this chapter than the usual way. Let the polygonal boundary refer to an

orientetl edge cycle embedded on a plane with no edge intersecting another except at

1.lieir Plld points. The traversal of a polygonal boundary may pass through an edge

or a Vf'rtex more than once.

Definition 3.2.1 A polygon is a connected region on a plane that is bounded by one

or more polygonal boundaries.

!\ polygon corresponding to the facet f is shown in Figure ,3.3. Let Q be a

polygon with vertices VI, Uz, ... , Uk in the clockwise order. The outer angle between

l.wo {'Ol\secutivp oriented edges d;:_1 and di ifl flwao;ured in the anticlockwise direction

from di 1.0 d,"_,.

Definition ;3.2.2 A vertex is reflex in Q if the outer angle between the oriented edges

11;_1 = (Ui_I,U;) and di = (u;,vi+d IS < 1800. The vertices that are not reflex are

called normal vertices of Q.

Notice that, with this definition, V4, V.s of the nonsimple facet in Figure 3.3 are

reHex Yf·rtices. though U3 is not.

Definition :.1.2.:3 A maximal piece of a polygonal boundary is called the monotone

chain if its vertices have x-coordinates (or !I-coordinates) in either strictly increasing

or decreasing order, ::;ee Figure ;JA.
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L.
f'igure .3.4 Monotone chains in a polygon.

:.L2..l lIspful Lemmas

In the subsequent sections, we use the following lemmas.

Lemma :1.2.1 Let Q be a polygon with 7' renex vertices. The number of monotone

chains c in Q is bounded as c $ 6(1 + r).

Proof: Follows from Lemma 2.2.2...

Lemma :3.2.2 Let Q be a polygon with s normal vertices_ There are at most O(s)

1II0110~One chains in Q.

Proof: Let t! be the vertex of Q with the ffilnJnlUlll y-abscissa and let B be the

boundary obtained by removing the vertex v and an (-ball around v from the boundary

of Q..\dd ~ix more edges to B ilS shown ill Figure :l}j to construct it. new polygon

Q', The polygon Q' is oppositely oriented with respect to Q. Note that each reflex

vertex of Q' corresponds to a normal vertex or Q. Thus, Q' has no more than s reflex

n"rticps. According to Lemma :3.2.1. the boundary of Q' can he partitioned into O(s)

IllOlloLone chains. The polygon Q cannot have more monotone chains than QI which

iJJJplil'~ lltill q lJa:; O(.~) lJlOliOLOllC clJaills.~
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•

Pigure :3.·5 Constructing a polygon of opposite orientation.

Lemma :3.2.3 Let p be a set of k polygons with r refiex vertices. No line can intersect

p ill more than l' + J.: chords.

Proof: Follows immediately from Lemma :2.2.1..

Lemma :3.2.4 The problem of polygon nesting for a set of nonintersecting polygons

ntll be solved ill 0(,-: + llog l) time assuming C'xact arithmetic computations where 5

is the lotaillumber of vertices, and t is the lotal number of monotone chains present

in all input polygons.

Proof: Although the algorithm given in section 2.:1 uses a slightly different type of

monotone chains. called subchains, it also \...·orks for the monotone chains as defined

in this chapter. Further, this algorithm can be straightforwardly adapted to the input

set of polygons it.<; defined in this chapter...

:L:J The Algorithm with Exact Arithmetic

In this sectioll. we develop and analyze a convex decomposition algorithm which

assumes exact arithmetic computations. Given a polyhedron S, it is first split along

\'ertices ami edges of special notches to produce manifold polyhedra. lletiex edges
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of a manifold polyhedron are removed by slicing it with notch planes. Notch planes

may possibly intersect other notches to create subnotches. In general. the notch

cut.t.ing

plan. ~P~:i--""':!lL---l

DOD-manifold
polyb.-droD

figure :3.6 An example where manifold property is not preserved

elimination process produces a number of subpolyhedra. At a generic step of the

algorithm. all subnotches of a notch, present in possibly different subpolyhedra, are

eliminated with a single notch plane. Slicing a manifold polyhedron with a plane may

produce non-manifold subpolyhedra with special notches. See Figure 3.6. As before,

these non-manifold subpolyhedra are split along the special notches to produce only

manifold polyhedra. If the notch plane, however, does not pass through a vertex of the

polyhedron being cut, manifold property is preserved in the resulting subpolyhedra.

Algorithm ConvDecomp(S)

Step 1: Remove all special notches from S. This produces manifold polyhedra.

Step 2: Assign a notch plane for each notch in the manifold polyhedra produced in Step 1.

Step J: repeat.

Let 91,92, ···,9k be the subnotches of a notch 9

present. in t.he polyhedra SJ,Sz,.,.,Sk. Let Pg be



the notch plane assigned to g. Remove 91 ,92, ... 9k

from 5'1,5'2, ... ,5'1; by the notch plane Pg •

Remove special notches produced by this slicing operation.

until all notches are eliminated.

end.

Step 1 of the algorithm is described in Section 3.3.2. Step 2 can be performed

trivially in O(r) time. The slicing step of the algorithm (Step 3) needs to be performed

carefully and is detailed below in Section 3.3.1.

:3.3.1 Intersecting a Manifold Polyhedron with a Notch Plane

Let S' be a manifold polyhedron with,. notches and ]J edges. By ....'. we denote

here any polyhedron 5[,S2 •... ,SI; that is encountered in step 3 of the above algorithm

ConvDecomp. The notch plane Pg : ax +by + cz +d = 0 defines two closed half spaces

P: : (u: + by + c:; + d 2: 0 and P; : ax + by + cz + d ::; O. To cut a polyhedron 5 with

the plane PJ • it is essential to compute

S' = cI(inl(?;) n inl(S))

S' = cI(in!(?;) n in/(S))

where cl(O) and int(O) denote the closure and interior of the geometric object O.

Since polyhedra are represented with their boundaries. we need to compute the bound

aries fJS I
, fJS r of st and sr respectively. To compute fJSt and fJS r , it is essential to

compute the features of fJS'l and fJSr lying on p'q.

Definition :3.:3.1 The intersection of Pg with fJBt and fJS r are called the cross sectional

I1HlpS and are denoted as GP: and GP; respectively.

~ote that for a polyhedron S, and a. plane P9' the cross sectional maps GP; and

(;P; may be different. See for example. Figure 3.2. In general. GP: and GP; consist

of a set of isolated points. segments and polygons, possibly with holes.
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Definition 3.3.2 The unique polygons Q;. Q; on GP!Jl and GP; respectively, contain

ing the notch 9 on their boundary are called cuts.

Note that, to remove a notch 9, it is sufficient to slice S along only the cut instead

of the entire cross sectional map.

Instead of computing Q;. Q; separately, we first compute the cut Qg = Q; U Q;
and then refine it to obtain Q; and Q;. This calls for computing the cross sectional

map GPtJ = GP; U GP;. The polygon corresponding to the cut Qg may have a

vertex or all edge appearing more than once while traversing its boundary. If an

edge appears more than once in traversing the boundary of Q; or Q;. the edge must

make the corresponding subpolyhedron non-manifold; see Figure 3.6. It is interesting

1.0 observe that there can be at most four facets incident upon that edge since the

original polyhedron being sliced was a manifold.

An additional fact is that a single slicing along the cut may not separate the

polyhedron S into two different pieces. See Figure 3.2. In this case, two facets cor

responding to Q~ and Q; are created that may overlap geometrically and considered

distinct, so that the polyhedron is treated as manifold polyhedron.

The algorithm to cut a polyhedron S with a notch plane Pg consists of two basic

steps .

• S'tep l: Computing the cut Qg: This calls for computing inner (holes) and outer

houndaries of the polygon Qg .

• St,p {[: Splitting the pnlyhedron S.

Step / is detailed below in Section 3.3.1.1 and step JI in Section 3.3.1.2.

:1.:3.1.1 Computation of the cut Qg

Step r1: First. all boundaries present in the cross sectional map GP9 are computed.

To do that. all the facets of S are visited in turn. If the notch plane intersects a facet

.r. ;t11 i III CI"S('C( iOll poi III s iHf' ('omp III ('I!. \'ot (' 1hII t .r ! tllIst hf' a sim pIe fClCf,t (no \'prl C'x
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or edge is traversed twice along its boundaries) since S is a manifold polyhedron. Let

u L1 a2, ...• Uk be the sorted sequence of intersection points along the line of intersection

Pg n f· 'rVe call an intersection point a new inter8ection vertex if it does not coincide

with any vertex of the facet f and call it an old intersection vertex, otherwise.

It is essential to decide consistently whether there should be an edge between two

consecutive intersection vertices Ui and aiH of this sorted sequence. This is done by

scanning the vertices in sorted order and deciding whether we are "insidell or "outside"

the facet as we leave a vertex to go to the next one. If Uj is a new intersection vertex,

there can be an edge between Uj and Ui+l only if there is no edge between Ui_1 and Ui

and vinO' versa. On the other hand, if ai is an old intersection vertex, there can be an

f'dge between Uj and ai+l irrespective of the presence of an edge between ai_l and ai •

.,
f

Figure 3.7 Generating new and old edges.

Switching between "inside" and "outside" of the facet is carried out properly, even

with degeneracies. llsing a multiplicity code at each intersection vertex. During the

scan of the sorted sequence of intersection vertices, a counter is maintained. The

counter is initialized to zero and is incremented by the multiplicity code at each

vertex. Our status toggles between "inside" and "outside" of the facet as the counter

toggles hetween the "odd" and "even"' count. A new intersection vertex is assigned a
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multiplicity code of 1. An old intersection vertex has a multiplicity code of 1 if both

of its incident oriented edges on the facet f do not lie in the same half-space of P
g

and a multiplicity code of 2, otherwise. If there is an old edge (edge of f) between

two vertices eli and aiH, multiplicity codes are assigned to them as follows. If other

two incident oriented edges on ai, aiH on the facet f lie in the same open half-space

of the notch plane, assign a multiplicity code of 1 to both of them. Otherwise, assign

multiplicity codes of 1 and 2 to ai and ai+1 in any order. In Figure 3.i, there is an

old edge between a3,a4' The status ("outside") with which one enters the vertex a3

is same as the one with which one leaves the vertex U4. This is enforced by assigning

a multiplicity code of 1 on the two vertices that increments the counter by an "even~'

amollnt and prevents it from toggling. In the same example, there is another old

I'dge between as and a6. The status ("outside") with which one enters the vertex

Its is different from the one with which one leaves the vertex U6' This is enforced

by assigning multiplicity codes o[ 1 and 2 on the two vertices in any order which

increment the counter by an "odd'l amount and make it toggle. A new edge from

vertex ai to ai+l is created if the count is "odd" on leaving vertex ai. In case, there is

an old edge between It; and Ui+l1 no new edge is created between them. This process is

repeatf'd [or all facets intersected by Pg resultinF; eventually in creating the I-skeleton

or the underlying graph of G P!J' This underlying graph becomes a directed graph if

tile oriented edges associated with the edges in GP!J are considered. Orientation of

each such edge is determined in constant time since the orientations of the facets

intersecting the notch plane are known. i\ traversal in a depth-first manner in this

directed graph traces the boundaries o[ GPg .

Timing Analysis: According to Lemma 2.2.1, the notch plane Pg intersects a facet f

of,) in at most 2rj + 2 points where r; is the Humber of reflex vertices in f. Thus.

sorting of the intersection points on a facet takes at most O(u; logr;) time where U; is

t.he number of intersection points on the facct. Considering all such facets, we obtain

t he sorted sequence of intersection vertices 011 the facets computed in 0 (p +u log T)
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t.ime where 'It is the number of vertices in GP!Jo Generating the edges between these

intersection vertices takes no more than O(p) time altogether. The time taken for

t.racing the boundaries of GPg is linear in the number of edges in GPg • Overall, the

computation of G p.'1 takes O(p + ulog r) time.

Step B: Next. the inner and outer boundaries of Qg are determined from CPg. It

is trivial to determine the boundary B9 containing the notch g. One can determine

whether B!J is an inner or outer boundary of Qg by checking the orientations of the

l'oges on the boundary.

Case(i): B9 is an outer boundary of Qg: Let Ii be the polygon corresponding to an

inner boundary (hole) of Qg. The polygon Ii has at least one vertex which is normal.

Since the boundary of Ii constitute an inner boundary of Q91 the normal vertices of

(i are relic=< vertices of Qg" Definitely, relle=< vertices of Qg lie on notches of S. This

implies that all inner boundaries of Qg will have a vertex where p!/ intersects a notch

of S. The set HI of boundaries having at least one such vertex is determined. The

boundaries in the set WU Bg are called interesting boundaries. The polygon nesting

algorithm applied on the polygons constituted by the interesting boundaries detects

the children of 8,. The boundaries of these children constitute the inner boundaries

of CJg.

Timing Analysis: The set W can be created in O(u) time where u is the number

of \,prtices present in t.he cross sectional map. Certainly, the number of interesting

boundaries is O( t) where t is the number of notches intersected by the notch plane

PI' The intf'restin~ boundaries. that are outer boundaries of some polygon in the

cross sectional map, have O(t) reflex vertices since these vertices are generated by the

intersect.ion of a notch of S with the notch r1ane. On the other hand, the interesting

boundaries that are inner boundaries of some polygon in the cross sectional map have

0(1) normal \'(~rtices. Thus, according to Lelllma :3.2.1 and 3.2.2, there are at most

n(fl 1l101l010llP ("haillS in 1he illtC'r{'stinp; hOlllldariC's. If there an" 11' \"C'rtires in till"
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interesting boundaries. the children of B~ can be determined in O(u' + tlagt) time

using the polygon nesting algorithm (Lemma 3.2.4). Thus, in this case, the inner and

outer boundariesofQg can be detected in O(u+u/+llogt) = O(p+tlogt) time.

since u = O(u') = O(p).

C'nse(ii): B[J is an inner boundary of Qg: The boundaries that completely contain the

boundary Bg inside are determined. This can be done by checking the containment

of any point on By with respect to all boundaries' in the cross sectional map. These

boundaries. together with Bg , are the interesting boundaries. The polygon nesting

algorithm, applied on these interesting boundaries, detects the boundaries of the

parent polygon of By. This boundary is the outer boundary of Qg. Note that Q
9

may have other inner boundaries different from Eg. Once the outer boundary of Qg

i~ computed. all of its inner boundaries can be obtained applying the technique used

in caseO).

Timing Analysis: Detection of all boundaries containing B
9

takes O(u) time. The

set of interesting boundaries can be partitioned into two classes according to whether

they are iTmer or outer boundaries of ~ome polygon. rt is not hard to see that there

can be at most one more outer boundary than inlier boundaries in this set. Hence.

the- number of interesting boundaries is of the order of inner boundaries present in

the cross sectional map. As discussed in case(i), the number of inner boundaries must

be bounded above by the number of notches intersected by the notch plane. Thus,

there are Ott) interesting boundaries. further, as explained berore, the number of

monotone chains present in these interesting boundaries can be at most O(t). Hence.

lhc outer boundary of Qg can be determined in O(p + t log t) time. Detection of other

inner boundaries that are different from B9 takes another O(p + t log t) time. Thus.

in this case also all outer and inner boundaries of Qg can be detected in O(p+ tlogt)

t illle.
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Combining all these costs together, we see that the "cut computation" takes O(p +
f.log t + u log r) time.

1.3.1.2 Splitting S

Separation of S along the cut Q9 is carried out by splitting facets that are in

tersected by Qg. Suppose f is such a facet which is to be split at aha2, .... ak. The

splitting of f consists of splitting the old intersection vertices and the edges on which

a new intersection vertex lies. For this splitting operation, the intersection vertices on

each facet f are visited, and for each such intersection vertex, constant time is spent

for setting the relevant pointers. The facet f may be split into several subfacets. The

inner boundaries of f that are not intersected by Fg remains as inner boundaries of

some of these subfacets. The polygon nesting algorithm determines the inclusions of

these inner boundaries into proper subfacets. The cut Qg is refined to yield Q~ and

Q;. It is observed that the differences between Q~ and Q; are caused by the edges of

S that lie completely on Pg. Hence, to refine Qg, one needs to determine which of the

edges of 5 are to be transferred to Q~ (Q; respectively). This can be done using the

rollowill,l!; simple nde. An old edge e must be transferred to Q; (Q; respectively.) if

any facet (or a part of it) that is adjacent to e and not coplanar with Pg lies in Pi (P;
respectively). A copy of Qg is created, and one of the two Qg'S is designated for Q~

and another for Q;. rrom it copy, all those edges that are not to be transferred to it

are deleted. Note that the transfer of edges lying on Qg takes care of the facets lying

on Qg. Two oppositely oriented facets at the same geometric location corresponding

to the cuts Q~ and Q; are created. All modified incidences are adjusted properly. A

depth nl'st traversal in the modified Vf'rtex list either completes the separation of S

by collecting all the pertinent features of each piece or reveals the fact that S is not

separated into two different pieces by the cut. In the latter case, either the number

of holes or the number of shells in S is reduced by one.
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Timing A nalysis: Adjustment of all incidences in the internal structure of S cannot

take more than O(p) time since each edge is visited only 0(1) times. The polygon

nesting takes O(p +dog r) time since there can be at most O(r) holes in the facets

of S containing O(r) monotone chains. Further, creation of Q~ and Q; from Q
9

and

the depth first traversal in the modified vertex list cannot exceed O(p) time. Hence,

the "splitting operation" takes O(p + 10 log r) time.

:3.3.2 Elimination of Special Notches and its Analysis

ror a non-manifold polyhedron S, nonconvexity results from fOUf types of notches

as discussed in Section 3.2.1. Let Shave 7l edges and r notches. The counting of

special notches is described in Section 3.2.1. A preprocessing is carried out as follows

to remove the notches of the first three types, called special notches.

Rem01JaI of type 1 notches: As can be observed from Figure 3.1(a), the vertex or the

edge causing the nonconvexity is detached from the facet on which it is incident as an

isolated vertex or an isolated edge. Identifying these vertices and edges and detaching

them from the corresponding facets take at most O(n) time.

Removal of lype 2 notches: Here, more than two facets are incident on an edge e,.. Let

these facets be fl' f2' '.', fr;. Let C be a cross section obtained as the intersection of

t.he facets incident on e; with the plane P that is normal to the edge ej. C consists of

edges Ej = (fj n Pl· The facets around ej are sorted circularly by a simple circular

sort of the edges ej's around E,. n P. The adjacent facets that enclose a volume of

5' are paired. Let this pairing be (/,,[,),(/,,[,), .... ,(/,;_,,[,,). An edge between

each pair of facets is created, and the edge Ei is deleted. All these edges are at the

same geometric location of Ej. All incidences are adjusted properly. Sorting of the

facets around the edge Ei takes O(ri1ogri) time. Further, for all type 2 notches, the

adjustment time of all incidences in the intefllal representation of S cannot exceed

O(n). Thus, removal of all type 2 notches takes at most (n + r logr) time.
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Removal of type 3 notches: Let v be a vertex that corresponds to a type 3 notch.

In this case. we group together all features (edges and facets) that are incident on

lJ, and are reachable from one another while remaining always on the surface of S

and never crossing v. This gives a partition of the features incident on v into smaller

groups. For each such group, a vertex at the same geometric location of v is created

and all incidences are adjusted properly. This, in effect, removes the nonconvexity

caused by v. All such vertices causing type 3 notches in S can be identified in O(n)

time by edge-Facet-edge traversal in the internal data structure of S. Removal of all

such notches takes at most O(n) time. This is due to the fact that each edge can be

n.djacent to at most two type 3 notches and thus is visited only 0(1) times. Thus, all

type :3 notches can be removed in O(n) time.

Finally, it mixture of cases may occur where an isolated vertex is also a type :3

notch or an isolated edge is also a type 2 notch. All these cases are handled by first

eliminating all type 1 notches and then eliminating type 3 notches followed by type

2 notches.

Removal of all the above notches generates at most O(n) new edges and produces at

most k manifold polyhedra where k is the number of special notches in S.

:3.3.:j Worst Case Complexity Analysis

Combining the costs of the "cut computation" of Section 3.3.1.1 and the "splitting

operation·' of Section 1.3.1.2 yields the following lemma.

Lemma :j.3.1 A manifold polyhedron 5' ha.ving ]J edges can be partitioned with a

notch plane Pfj of a notch 9 in 0 (p + t log t + (u + r) log r) time and in O(p) space

where t is the number of notches intersected by Pg1 and u is the number of vertices

in GPfj.
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I'igure :J.8 Superimposing a cut on the arrangement of notch line segments.

Let 5'1, 5'2, ...• Sk be the polyhedra in the current decomposition where each Sj contains

a subnotch .fJi of a notch 9 of a manifold polyhedron S with n edges and r notches.

Let m,- and llj be the number of edges and vertices in Qg; respectively.

Lemma 3.:1.2 The total number of edges and vertices in all cuts supported by the

subnotches of a notch 9 are given as m = L~=L Tnj O(n + ra(r)) and 1l ==

L:7=. It; = O(n + m(r)).

Proof: Consider tile cut (2g produced by the intersection of S with Pg. The region in

Qg is divided into smaller facets by notch line segments produced by the intersection

of other notch planes with Pg. We focus on the facets Q91,Q921 ... ,Qgl< adjacent to

the subnotches 9t,Y2 •... ,gk of the notch g.

Consider the set of notch line segments that divides Qg. These lines and the line

L:J corresponding to the notch 9 produce an arrangement of line segments on the

notch plane P!J' The facets adjacent to the line £g in this arrangement form the zone

l:J of Lf/' Let the set of vertices and edges of Zg be denoted as ~ and £g respectively.

It is known that IV,I = 0(1,,(1)) and IE,I = 0(1,,(1)) if there are 1 line segments

in the arrangement; see [EGP+S8j. Overlaying Qg on Zg produces Qg" Q92' "', Qgl< i
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see Figure 3.8(a). Let V; and E; denote the ~ets of vertices and edges respectively

in Q9l'Q92' .... Q9k. The vertices in V; can be partitioned into three disjoint sets,

namely, T"T2 ,TJ • The set T, consists of vertices formed by the intersections of two

notch line segments; T2 consists of vertices of Qg, and n consists of vertices formed

by the intersections of the notch line segments with the edges of Qg. Certainly,

lTd::; IV? I = O(la(l)) since overlaying Qg on Zg cannot introduce more vertices in

TI · If Qg has u' vertices, lTd ~ U'.

To count the number of vertices in T" we first assume that Q
9

does not have

any hole. Consider an edge e in £g that contributes one or more edge segments to

E~ as a. result of intersections with Qg. There must be at least one reflex vertex of

Cdg present between two successive edge segments of e. Charge a unit cost to the

reflex \"ertex that lies to the left (or, right) o[ pach segment and charge a unit cost

to e itself for the leftmost (or, rightmost) segment. We claim that each reflex vertex

of Qg is charged at most once by this method. Suppose, on the contrary, a reflex

....ertex is charged twice by this procedure. That reflex vertex must appear between

two segments or two edges in Eg as shown in Figure 3.8(b). As can be easily observed,

all [our E'dg;e se~m('nts cannot be adjacent to the l"Pl!,"ions incident 011 the edge 9 of Qg.

This contradicts the assumption that all these [ollr edge segments are present in E;.
(fence, I,he total charge incurred upon the reflex vertices or Qg and the edges of E!J

ran be at most O(r.? + 10:(1)) where Tg is the number o[ reflex venices present in Qg.

This implies that as a result of intersections with Qg, at most O(Tg+ 10(1)) segments

of edges ill E:J are contributed to E;. Hence, 17;1 == O(1"g + In(l)).

Consider next the case where Qg has holes. \Ve refer to the polygon corresponding

1.0 a holp in ct.? as hoh:-polygon. From q!J lrpat.p a polygon Q~ that does not have

any hole merging all polygons into a single polygon as follows. Let H t and H2 be two

hole-polygons that have at least two visible vertices VL, V2 i.e., the line segment joining

/'" j!2 does not intersect allY other edge. Split VI and V2 and join them with the line

segn1Pnts as shown in Figure :3.9 to merge HI, H2. Repeat this process successively
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boundary of this new polygon to the outer boundary of Qg to create Q~. Consider

superimposing Q~ on Zg. Let T~ denote the set of ....ertices formed by the intersection

of edges of Ea and those of Q~. The distance between split vertices of Q~ can be kept

arbitrarily small to preserve all intersections between the edges of Q
9

and those of

Za" This ensures that IT3 1 :$ IT~I. The polygon Q~ has at most O(u') vertices since

the original polygon Q9 had u' vertices, and at most O(u/) ex~ra vertices are added

to form Q~ from Qgo Furthermore, the polygon Q~ can have at most O(u') reflex

vertices. Applying the previous argument on the superimposition of Q~ on Zg we get

17\1:S IT;I = 0(,,' + /a(/)).

Putting all these together, we have IV;I = IT,I + IT, I+ IT,I =Orr, + /a(/) + "'j.

Since there can be at most r notch planes, I ::; r. Certainly,1'g ::; rand u' ::; n. This

gives lL = I\~:I = O(n + ro:(1')). Since Q91' Q92' ... , Q9" form a planar graph, we have

m = IE;I = O(!v~1l = O(n + m(r)) .•

Figure :3.9 Merging polygons to create Q~ from Q
9

Lemma :3.:3.1 The total number of edges in the final decomposition of a polyhedron

S with l" notches and n edges is 0(11.1' + ,.2o:(r)).
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Proof: Edges in the final decomposition consist of newly generated edges by the cuts.

and the edges of 5 that are not intersected by any notch plane. By Lemma 3.3.2. the

total number of edges present in all cuts corresponding to the subnotches of a notch is

O(n + ra(r)). This implies that each notch plane generates O(n + ra(r)) new edges.

Thus, r notch planes generate O(nr + r2a(r)) new edges. Hence. the total number of

edges in the final decomposition is O(n + nr + r 2 a:(r)) = O(nr + r2a(r)) .•

Lemma :3.:1.4 Let 51, 52, ... ,5k be the polyhedra in the current decomposition where

each Si contains a subnotch gi of a notch g. Let Ui be t.he total number of vertices in

the cross sectional map in 5" Then we have U = L:7""IILi = O(n + r 2 ), where U is the

total number of vertices in the cross sectional maps in 8 1 ,52 , ... ,8k.

Proal": Consider the cross sectional map GPg • The lines of intersection between P!J

and other notch planes. called the notch lines. divide this map into smaller facets.

These facets are present in the cross sectional maps in SI! 52, ... , Sk, i.e., in Uf=IGPgi'

The vertices in U7""lGPgi can be partitioned into three sets, viz., T1,T2 and T3 • The

set Tt consists of vertices that are created by the intersections two notch lines. The

~et T l consists of vertices of GPg and t.he set 7:1 consists of vertices that are created

by the intersections of edges of GPg and notch lines. Since there are at most l'

notch lines. IT,I = O(l·:'l Certainly, IT2 1 = O(n). l3y Lemma 3.2.3, each notch line

can intersect GP!J ill at most O(r) chords since GPg can have at most r polygons

containing- no more than r reflex vertices all together. This gives Ifll = O(r2). Thus.

k

It - L Iti
;=1

lTd + IT,I + IT,I

0(71 + ,.,) ....

.\s discllssed in [Cha84], aIle can always produce a worst case optimal number (0(,.2))

of convex polyhedra by carefully choosing the notch planes.

Lemma :1.:1.:) A manifold polyhedron S with r notches can be decomposed into r; +
j + 1 convex pieces if all subnotches of a notch are eliminated by a single notch plane.
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Further. this convex decomposition is worst-case optimal since there exists a class of

polyhedra that cannot be decomposed into fewer than O(r2 ) convex pieces.

Proof: See [ChaB4]."

Theorem :3.3.1 A manifold polyhedron 8, possibly with holes and shells and having

r notches and n edges, can be decomposed into O(r2 ) convex polyhedra in O(nr2 +
,.3 log r) time and O(nr +r 2a:(r)) space.

Proof: Decomposition of a polyhedron consists of a sequence of cuts through the

notches of S as illustrated in the algorithm ConvDecomp. Step 1 assigns a notch

plane ror each notch in S in Orr) Lime. According to Lemma 3.3.5, ConvDecomp

produces worst case optimal O(r2
) convex pieces at the end since all subnotches of a

notch are removed by a single notch plane. Note that all holes and shells are removed

automatically by the notch elimination process.

At a generic instance of the algorithm, let 51, 8 2 , ••• , Sk be k distinct (nonconvex)

polyhedra in the current decomposition where each Sj contains a 5ubnotch 9j of a

notch !J Lhat is going Lo be removed. Let 5 i have mi edges of which ri are notches.

Let t, be the Ilumber of notches intersected by Pg in 5i and t = L:~=I til Ui be the

number of vertices in GPg, of Si and u = L:7=I1ti.

Applying Lemma 3.:3.1. removal of a notch 9 can be carried out in O(L:7=I(mj +
',log t i + (Ui +1";) log r;)) time. Since m = L:7=1 mj = O(nr+r2u(r)), L:7=I1"i ;;; 0(r2 ),

It;;; O(n +r2
), and a notch plane can intersect at most r -1 notches giving t = 0(1"),

we have O(L?=I (In, + t;log t, + (u, + c,) log c;)) = Orne + e'a(e) + e'log e).

As described before, elimination of a notch may produce non-manifold polyhedra

hewing special notches. To remove them. the same method is used for eliminating

special notches as used for the original polyhedron. Note that the type 2 notches in

these non-manifold polyhedra can be adjacent to at most four facets. Hence, no loga

rithmic factor appears in the time complexity of !'f'l1lovine: such notches. This implies

that the elimination of special notches from the non-manifold polyhedra produced as
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it result of cutting manifold polyhedra with notch planes can be carried out in totally

O(m) = O(nr + "'o(r)) time.

Thus, each notch elimination step takes O(n1' + 1'2 log 1') time and Step 3 of

ConvDecomp which eliminates l' notches takes 0(nr2 + 1'J log 1') time. Combining

the complexities of Step 2 and Step 3, we obtain an 0(n1'2 +1'3 log r) time complexity

for the convex decomposition of a manifold polyhedron. The space complexity of

O(nr + '·'0('·)) follows from Lemma 3.3.3. ""

Theorem 3.3.2 A non-manifold polyhedron S, possibly with holes and shells and

having r notches and n edges, can be decomposed into 0(1'2) convex polyhedra in

O(m·:l + r J log 1') time and O(n1' + 1'2('((1')) space.

Prool": Removal of all special notches from S is carried out in O(n + l' logr) time and

in O(n) space as discussed before. Let 5'1,5'2, "', 5/ be the manifold polyhedra created

by this process. Let S; have nj edges of which rj are reflex. Using Theorem 3.3.1 on

each of them, we conclude that S can be decomposed into 0(1'2) convex polyhedra

in 0{2=~=1 nil"; + rtIog1';) = O(nr2 + r
J log 1') time and in 00=:=1 niri + r;a(1'd) =

O(n1' + 1.
2

0:(1')) space.•

:JA Robustness under Finite Precision Arithmetic

In this section. we describe the heuristics llsed III attempt to make the convex

decomposition algorithm type-l robust. It is clear from the discussion of our algorithm

in Section 3.3 that numerical computations arise in various intersections and incidence

tests. Under t.he {-arithmetic model, the absolute error in the distance computations

of one polyhedral fpature from another is bounded by a certain quantity 6 = kE:B

where B is the maximum value of any coordinate, and k is a constantj see for example

[:\·liI88j. When making decisions about the incidences of these polyhedral features

rely on the sign of the computations only if the distances are greater than o. On the



,56

other hand. if the computed distances are less than 6. one also needs to consider the

topological constraints of the geometric configuration to decide on a reliable choice. In

particular, in regions of uncertainity, i.e., within the a-ball, the choices are all equally

likely that the computed quantity is negative, zero, or positive. Such decision points

of uncertainity where several choices exist, are either "independent" or "dependent".

At independent decision points, any choice may be made from the finite set of local

topological possibilities, while the choice at dependent decision points should ensure

that it does not contradict any previous topological decisions. We follow this paradigm

to make our convex decomposition algorithm to be type-l robust. Unfortunately, we

cannot guarantee that it is possible to follow this paradigm throughout the algorithm.

:JA.l Intersection & Incidence Tests

In what follows, we assume the input polyhedra to be manifold. Non-manifold

polyhedra can be handled as discussed in the earlier sections. We assume minimum

feature criteria for the input polyhedra wherein the distance between two distinct

vertices or between a vertex and an edge is at least o. To decide whether an edge

is intersected hy a plane, one must decide the classification of its terminal vertices

with respect to the same plane. The same classification of a vertex is used to decide

the dassincation of all the features incident Otl that vertex. This. in eITect, avoids

conflicting decisions about the polyhedral features. The decisions about different

types of intersections and incidence tests are carried out using three basic tools,

namely, (i) vertex-plane classifications, (ii) facet-plane classifications, and (iii) edge·

plane classifications. The order of classifications is (i) followed by (ii) followed by (iii).

In what follows, we assume that the equation of any plane Pi : ajX + biy + CjZ +di is

\' d' 2 b2 2 - 1norma lze , I.e., aj + i + Ci - •

:3.4.1.1 Vertex- Plane Classification

To c1assif.v the incidence of a vertex Pi = (:ri,Yi,=i) \V.r.t. the plane P : ax +
by + c:; + d ::: U. lhe normalized algebraic distance of Vi from P is computed which
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is given by aXi + by, + cz, + d. The sign of this computation, viz., zero, negative, or

positive, classifies Vi as "on" P (zero), "below" P (negative) or "above" P (positive),

where "above" is the open half space containing the plane normal (a, b, c). The

sign of the computation is accepted as correct if the above distance of Vi from P

is larger than 6. Otherwise, geometric reasoning is applied, as detailed below, to

classify the vertex Vi W.Lt. the plane P. In the following algorithmic version of

t.he vertex-plane classification, the intersection between an edge ej incident on Vi

aua the plane P is computed as follows. Let ej be incident on planes PI, P2 , where

Pi : a,.:c+biJ/+c;=+d i = O. The intersection point r of ej and the plane P is determined

nbc

by solving the linear system. Ar = d where A = at bL Cl d = [-d. -d l , -d2 , f.
a2 b2 C2

The linear system is solved using Gaussian elimination with scaled partial pivoting

<Lnd iterative refinement to reduce the numerical errors.

Vertex-Plane-ClassiJ (Vi,P)

begin

Let I); = (Xi,Yi,=;) be a vertex incident on edges

('I = (ui.wl),e2 = (Vi,W2), ... ,Ck = (V,-,Wk).

Let P : fl.r. + by + cz + d = O.

Compute I = aXi + bYi + CZi + d.

if III > 0 fhen ('" Comment: unambiguously decide via the

sign of the distance computation*)

if I > 0 Ihen

classify Vi as "above"

else

classify Vi as "below"

endif

else

1(l°fJ



(* Comment: if the distance computation does not yield an unambiguous

classification for the vertex with respect to the plane, ensure that

the "above". "below" classification is consistent with all edges

incident on that vertex. If such consistency cannot be ensured then

the vertex is classified as "maybeon~' and left for the future facet - plane

classifications to decide its classification consistently.*)

Search for an edge ej incident on Vi such that r = ej n P is at a distance

greater than D from Vi and Wj = (Xj,Yj,Zj).

Get the classification of Wj if it is already computed.

Otherwise. compute [' = aXj + b~/j + CZj'

if WI> {j then classify Wi accordingly.

If the classification of Wj is "below" or "above" then

if r is in between Vi and Wj then

classify Vi oppositely to that of Wj

eise

classify Vi same as that of Wi

endif

rll(lij

endij

end/oop

I] no ~ll('h edge ej is found then

classify Vi as "maybeonll

(* Comment: To be classified later in the facet-plane classifications*)

endij

enchj

end.

.58
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:3..1-.1.2 fo'acet-Plane Classification

If a facet 1; does not lie on a plane P, the points of intersection between them

should necessarily be (i) collinear with the line of intersection Ii n P, and (ii) all

vertices of f; on one side of the intersection line should have the same classification

\V.r.t. the plane P. Vertices that have been temporarily classified as "maybeon"

are classified in sLlch a way that they satisfy the above two properties 0) and (ii)

as closely as possible. Note that this heuristic forces the classification of "maybeon"

\'ertices to he more consistent than the one obtained by classifying them arbitrarily.

An algorithmic version of the facet-plane classification is given below.

i"acet.JJ!ane-ClassiJ (Ji, P)

begin

case

(i) All vertices of Ii have been classified as "maybeon ll
:

Classify Ii as "on" the plane and change the classification

of all incident vertices to "on".

(ii) At least one vertex v" of Ii has been classified as "above", or "belowll
,

but no edge of /; has its two vertices

classified with opposite signs(Ubelow" and "above"):

If there is only one "maybeon"' vertex Vi then

classify Vi as "on" and consider Vi as Ji n P

else

take two "maybeon" vertices Vi,Vj and

classify l'r and Vj as "on".

Let L be the line joining Vi, Vj.

Consider L as Ii n P.

loop



for each "maybeon" vertex Vk on Ji do

if Vk is at a distance greater than fJ from L then

if Vic and V u lie on opposite sides of L then

classify Vic with the opposite classification of utl _

else

classify Vk with the classification of V u '

endiJ

endif

f'ndloop

r:ndiJ

The vertices which are still not classified
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Figure 3.10 Case(ii) of facet-plane classification.

classify them as "on'l

("" Comment: these vertices are within it distance of b

rrom (, ;mr! ]WIlCf' will he rol1inPill' with r hy " pprt,nrbation of

at most fl. See Figure 3.10.*)
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(iii) There is an edge e whose two vertices have opposite sign classifications:

if there is no other such edge then

let L be the line joining the intersection point of e and

P to any "maybeon" vertex Vi.

classify Vi as "on".

consider L as Ii n p.

apply methods of case (ii) to classify other "maybeon'l vertices.

else

let L be the line which fits in least square sense to all the points

of intersections and apply the methods of case (ii) to classify the

remaining "maybeon" vertices.

endif

endcase

end.

3.4.1.3 Edge-Plane Classification

An edge can receive any of the three classifications which are "not-intersected",

"intersected". and "on". The classifications of the vertices incident on an edge e,- are

used to classify it. An algorithmic version of the edge-plane classification is given

below.

Edge-Plane-Class;! (e;, P)

begin

Let ei = (Vi, Vj).

case

(i) Vi and Vj are both classified as "on":

classify e; as "on".
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(ii) Only one of Vi, Vi, say vi is classified as "on":

classify e; as ·'intersected" and consider Vi as e, n P.

(iii) Vi and Vj are classified with one as "above" and another as "below":

classify e, as "intersected".

compute r = ej n P if it has not been computed yet.

i! r does not lie within e then

choose a point at a distance of at least 0 from the vertex

which is nearest to the computed point and consider it

as the intersection point of ej and P.

endif

(iv) Vi and Vj are of same classifications and they are not "on":

classify e,. as "not-intersected".

endcase

end.

3.4.2 Nesting of Polygons with Finite Precision Arithmetic

Lemma 3.4.1 The problem of polygon nesting for k fleshy polygons with s vertices

and t monotone chains can be solved in O( k2 +s( t + log s)) time under finite precision

arithmetic.

Proof: Since any vertical line (orthogonal to the x direction) can intersect at most t

edges of a set of polygons having t monotone chains, the above time bound is obvious

from the time analysis of the algorithm under finite precision arithmetic as given in

Section 2.4."
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3.4.3 The Algorithm with Heuristics

The same paradigm of cutting and splitting polyhedra along the cuts is followed

to produce the convex decomposition of a nonconvex, manifold polyhedron. One

of the two planes supporting the facets incident on a notch is chosen as a notch

plane. This ensures that no new plane other than facet-planes is introduced by the

algorithm. As we have seen earlier, computations of intersection vertices involve plane

equations incident on those vertices. Thus, using the original plane equations for

such computations reduces the error propagation. Furthermore, this also guarantees

that all input assumptions about the supporting planes of the facets remain valid

throughout the iterative process of cutting and splitting the polyhedron. We apply

heuristics at each numerical computation through geometric reasoning to make our

algorithm as parsimonious as possible.

In the construction of GPY1 first all boundaries are computed. For this, one needs

to compute the intersection vertices on the facets of S. This is carried out by the

vertex-plane, edge-plane and facet-plane classifications as described before. Note

that these classifications use heuristics that make the numerical computations more

reliable. After computing all intersection vertices lying on a facet j, we sort them

along the line of intersection f n Py • Since the computed coordinates of these vertices

are not exact, sorting them on the basis of their coordinates is prone to error. We use

the minimum feature criteria and the orientations of the edges on a facet to obtain a

topologically correct sort.

Two intersection vertices can be closer than fJ if they lie on the edges which

meet at a vertex. Other possibilities do not occur because of the minimum feature

assumptions. Using the orientations of these two edges on the facet f containing them,

the exact ordering of the two new intersection vertices on f n Py can be determined.

Generation of edges between intersection vertices can be carried out exactly since it

does not involve any numerical computation.

The cut Q9 is selected from GP!1 using the method of Section 3.3.1.1. The polygon

nesting algorithm, u.seu lor this purpose, is adapted to cope with the inexact numerical
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computations as stated in Lemma 3.4.1. The polygon nesting algorithm with inexact

arithmetic computations requires all input polygons to be fleshy. Although in most

of the cases this is true, we do not know how to guarantee this property throughout

the decomposition process. Refinement of Q9 needs proper transferring of the edges

of S that are decided to be coplanar with Pg • This is done using the following simple

heuristic. For an edge e computed to be "on" the plane P!1' we check all its oriented

edges incident on facets computed to be "off" the notch plane Pg • Suppose, f is such

a facet. Classify any vertex v of f w.r.t. the oriented edge of eon f. If it is on the

same side of e in which flies, e is transferred to GPi (GP; respectively) if v has been

classified to lie in P: (P; respectively). It is trivial to decide the side of e in which f
lies.

Splitting 5 about the cuts Q~ and Q; completes the cutting of S with the notch

plane Pg . This step again does not involve any numerical computations.

Note that we assume the minimum feature property to be valid throughout the

iterative process of cutting and splitting of polyhedra. Although for the original

polyhedron it is valid, it may not be preserved throughout the entire cutting process.

The method described in [8S85] can be used to eliminate this problem.

3.4.3.1 Complexity Analysis

We use Lemma 2.2.1 and Lenuna 3.3.4 in our analysis which are valid only under

the exact arithmetic model. Nonetheless, the analysis presented here gives a good

estimate of the complexity of the algorithm.

Consistent vertex-plane, edge-plane and facet-plane classification take overall O(p)

time where p is the total number edges of the polyhedron S. The above bound

follows from the fact that each edge of S is visited only O(1) times to determine the

intersection points of 5 with the notch plane Pg • The sorting of intersection vertices

on the facets adds O(u logr) time where u is the total number of vertices in GPg •

Once the map GP9 is constructed, it is trivial to recognize the boundary B g containing

, . 1 'p, ," , ., I' " ." .) "J ' , , 1.",
'ilL' lIV~L ll,s. "" "" L 11\1<,,, "" UL'::'L, IIJL:Ll JU .J"", ',lUll .~., .,., 'dU 'J'. ",,' 'I '" "L'~';l JJIlIlL:
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the interesting boundaries. As discussed earlier, there are O(t) interesting boundaries

containing O(t) monotone chains where t is the number of notches intersected by P
g

•

Let u ' be the number of vertices on the interesting boundaries. According to Lemma

3.4.1, the children and parent of B g can be determined exactly in O(t2+ul(t+ logu'))

time if the polygons corresponding to the interesting boundaries are fleshy. Detection

of children and parent of the polygon containing the notch g, in effect, determines the

inner and outer boundaries of Qg" Obviously u' = O(u). Combining the complexities

of computing GPg and detecting the inner and outer boundaries of Qg, we conclude

that Q9 can be computed in O(p + t2 + u( t + log u) + u log r) time.

At a generic instance of the algorithm, let S" S2, ... , Sic be the k distinct (noncon.

vex) polyhedra in the current decomposition that contain the subnotches of a notch

9 which is to be removed. Let Pi be the number of edges in S, of which Ti are reflex,

Ui be the number of vertices in the cross sectional map in Si and t .. be the number

of notches intersected by the notch plane in Si. Let P = L7=1 Pi, U = L7=1 Ui and

t = L7=1 ti. Certainly, k = O(r) and t = O(r) since a notch can have at most r _ 1

subnotches and a notch plane can intersect at most r - 1 notches. The time s: to

remove the notch 9 is given by

k

Ci 0C~Jp, + ti +"i(ti + logu,) +u, logr,))
i""-l

O(p + r 3 +ur + "Iogu + ulogr).

I3y Lemma 3.3.4, u = O(n + r 2 ). This gives,

Ci O(p + r 3 + (n + r')r + (n + r') logn)

O(nr + n log n + r 2 log n + r 3
)

O(nr +n logn + r 3
)

To eliminate 1" notches, we need O(nr 2 + nrlogn + }"-I) l.ime. Obviously, the space
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notches are removed from S to produce manifold polyhedra each of which is decom

posed into convex pieces by the method as discussed before. The complexity remains

the same for this case...

3.4.4 Experimental Results

We have implemented our polyhedral decomposition algorithm under floating

point arithmetic in Common Lisp on UNIX workstations. The numerical compu

tations are all in C, callable from Lisp using interprocess communications. We used

{) = 2-17
in the 32 bit machine with precision 2- 24 . Simple examples are shown

in Figure 3.11 and in Figure 3.12. The experimental results have been very satisfy

ing. Test polyhedra are created and results are displayed in the X-ll window based.

SHILP solid modeling and display system.

3.5 Conclusions

In this chapter we have given an O(nr2 + r 3 log r) time and O(nr + r 2a(r)) space

algorithm for convex decompositions of polyhedra with arbitrary genus and shells.

Although a better algorithm for polyhedra with zero genus and no shell exists, this

is the best known algorithm for polyhedra with arbitrary genus and shells. The

analysis of lhe algorithm which uses a marvelous theorem ("zone theorem"') from

combinatorial geometry shows that the method of successive cutting and splitting

polyhedra with planes is not as costly as they were thought to be in [Cha84]. It is an

open question whether we can further reduce the complexities.

Minimum convex partition is known to be NP·hard for polyhedra with holes. It

remains an open question whether minimum convex partition is still NP-hard for

polyhedra without any hole.

Designing a robust algorithm of any type (preferably type-4 and type-5) for convex

decompositions is a crucial open problem. To have any success in this respect. we have

to understand the deep interactions between the underlying topology of polyhedra and

perturbations in their features.
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Figure :1.11 Convex decomposition.
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Figure 3.12 Convex decomposition.



69

4. CSG DECOMPOSITIONS AND TRIANGULATIONS

4.1 Introduction

In this chapter, we will see how the convex decompositions as discussed in the

previous chapter lead to a special type of eSG decompositions of polyhedra as well

as their triangulations.

A eSG decomposition, in terms of regularized boolean operations such as inter

section, union, difference, complement on simpler components, is used for eSG tree

repre:>entation of polyhedra. The expression involving these boolean operations to

gether with the literals corresponding to the simpler components is referred to as eSG

formula. In [Pet84]' Peterson considered eSG formulae that allow only intersection

and union of the halfspaces supporting the facets of polyhedra. We call such formulae

as Peterson-style eSG formulae. The problem of computing the Peterson-style eSG

formulae for polyhedra from their boundary representations often arises in solid mod

eling and computer graphics [DGHS88J. In 2D, Dobkin, Guibas, Hershberger, and

Snoeyink [DGTISSS] give an O(n logn) time algorithm to compute the Peterson style

eSG formulae of size O(n) for polygons with n vertices. They posed the question of

computing short Peterson-style eSG formulae for polyhedra in 3D. As they pointed

out, O(pJ) size Peterson-style eSG formulae for polyhedra with p facets is trivial to

compute. In [PY90l. Paterson and Yao give an O(pJ) time algorithm to compute the

Peterson-style eSG formulae of size O(p2) for a restricted class of polyhedra. These

polyhedra, however. have only convex facets with 0(1) edges. We consider more

general polyhedra that may have nonconvex facets with arbitrary number of edges.

Establishing a nontrivial lower bound on the size of Peterson-style formulae for

general polyhedra is an open question. 'We prove an O(p2) lower bound for the follow

ing two types of Peterson-style formulae. Let (0110I1QI2 ... )7'1 (0'21 °21°22 ••. )1"2 ... ( O'kIOkl ..• )
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be a Peterson-style formula for a polyhedron where Oi/5 and T,,'S denote the opera

tors intersections (n) or unions (U). and O'i/S denote the literals corresponding to

the simpler components. In case where 0ij = nand Tj = U for all i, j, we say that

the given Peterson-style formula is in disjunctive normal form (DNF). On the other

hand, if Oij = U and Ti = n for all i, j, we say that the given formula is in conjunc

tive normal form (CNF). 'We refer to such formulae as CNF Peterson-style and DNF

Peterson-style formulae respectively.

In triangulations we seek for simplicial decompositions of the given polyhedron

that produce simplicial complex. This is a non trivial step in finite element mesh gen

eration for polyhedral domains. In three dimensions, there are polyhedra that are not

triangulable without additional Steiner points. Moreover, as shown by Rupert and

Seidel [RS89], the general problem of determining whether a polyhedron is triangu

lable without Steiner points or not is NP-hard. Due to these constraints, we consider

the problem of triangulation with Steiner points. Chazelle's worst-case lower bound

on convex decomposition suggests an O(r2 ) worst case lower bound on the output size

of triangulations of polyhedra. Recently, in [CP901} Chazelle and Palios have given an

O«n + r2
) logT) time algorithm that tetrahedralize simple polyhedra and produces

O(n + r
2

) tetrahedra. The allowed polyhedra are homeomorphic to spheres, i.e., they

cannot have holes (genus 0) and shells (internal voids) and are manifold. This algo

rithm, however, does not produce a simplicial complex} i.e.} the generated tetrahedra

may not meet at a full facet or an edge. Its analysis relies upon the fact that the

input polyhedra are homeomorphic to spheres. It is not clear how one can generalize

this algorithm for polyhedra with arbitrary genus and shells in acceptable time and

space bounds. In this chapter, we give an algorithm for triangulating (producing a

simplicial complex) manifold polyhedra with arbitrary genus and shells. To handle

non-manifold polyhedra that have special notches, a preprocessing as described in

Section 3.3.2 is carried out.
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The basis of OUf algorithms for triangulation and computation of the Peterson

style eSG representation of polyhedra is the convex decomposition algorithm as dis

cussed in Chapter 3.

In Section 4.2, we show that we can obtain a Peterson-style formula of size

O(p2a (p)) for any manifold polyhedron through our convex decomposition algorithm

in O(p3 log p) time. Here p is the number of facets of the polyhedron. We establish

an O(p2) lower bound on CNF and DNF Peterson-style formulae for polyhedra.

In Section 4.3, using our convex decomposition algorithm, we give an O(nr2 +
r

J
logr) time and O(nr + r 3

) space algorithm to triangulate a manifold polyhedron

with arbitrary genus and shells.

4.2 eSG Decomposition

The convex decomposition algorithm as described in the previous chapter gives

the Peterson-style eSG formulae for polyhedra when the notch planes are carefully

chosen. For each notch 9 in S, if the plane supporting one of the facets adjacent

to 9 is chosen as the notch plane for g, all facets of the convex pieces in the final

decomposition lie only on the supporting planes of the facets of S. Further, each

convex piece can be expressed as the intersection of half-spaces corresponding to the

supporting planes of its facets. Finally, S can be represented as the union of the

expressions obtained for each convex piece. This gives a Peterson.style eSG formula

for S. The number of literals in this formula is equal to the number of facets present

in the convex pieces.

4.2.1 Upper Bound

Theorem 4.2.1 Por any manifold polyhedron, a Peterson-style esc formula of size

O(p[ + ['0(1)) can be computed in O(pl' + l' log I) time where p is the number of

facets in 5 of which I are adjacent to notches.



Proof: By Lenuna 3.3.3, the total number of edges in the final decomposition is

O(nr + r 2a:(r)). Certainly, r = 0(1) and since S is a manifold polyhedron n =

O(p). Thus, the total number of facets in the convex pieces of final decomposition is

O(pl + 1
20(1)). This determines the size of the Peterson style CSG formula of S. The

time complexity for this CSG computation is same as that of computing the convex

decomposition of S. Expressed in terms of p and 1, this complexity is O(pl2+P log 1).4

An upper bound of 0(p2a:(p)) on the size of Peterson-style CSG formulae that can

be computed in O(p'logp) time follows from the fact that 1= O(p).

4.2.2 Lower Bound

Lemma 4.2.1 There exists a class of polyhedra for which any CNF Peterson-style

CSG formula has a size of O(p2) where p is the number of facets of S.

Proof: Consider the polyhedron S as constructed by Chazelle in [Cha84] to prove

a lower bound on the number of convex pieces needed to decompose a non-convex

polyhedron. The notches of this polyhedron form two sets of line segments, each lying

on Lhe surface of a hyperbolic paraboloid which have a small distance of E between

them; see Figure 4.1.

........

.................~.~:>.:;.
... .

••_ ......uu ••••
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:::.:~~: ---
.
...............•

..................: ...................•...

Figure 4.1 Chazelle's solid \vith two sets of notches.
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Let I: denote the region between these two hyperbolic paraboloid surfaces each

containing r notches. Assuming unit distances between consecutive notches, the

volume of L: is O(f:r2
). Chazelle showed that a single convex polyhedron whose volume

lies inside S can occupy only 0(10) volume in E, thus requiring O(r2 ) convex pieces

to cover E. Let C = C1 UC2 U, "', uGk be the CNF Peterson-style CSG formula for 5

where each C; represents the maximal collection of literals along with only intersection

operators in between them. Each C; represents a closed convex polyhedron Si' The

polyhedron Si is convex since it is constructed by the intersection of finite number

of halfspaces and it is closed since its union with S is closed. The convex polyhedra

corresponding to G.., i = 1, ... , k cover the polyhedron 5 and hence.E. Thus k must

be O(r
2

) giving an O(r
2

) lower bound on the size of C. The worst-case lower bound

of O(p2) follows immediately from the fact that 5 can be made to have r = O(p)."

Lemma 4.2.2 There exists a class of polyhedra for which any DNF Peterson-style

CSG formula has a size of O(p2) where p is the number of facets of 5.

Proof: Consider a polyhedron 50 constructed as follows. Let 51 be the unbounded

polyhedron obtained by taking the closure of the complement of the Chazelle's solid.

The unbounded polyhedron 51 has an internal void whose boundary is exactly similar

to that of Chazelle's solid. Let 52 be a cube, large enough to contain the internal void

of 51 inside. Let 50 = cl(5I n52 ). The polyhedron 50 is a closed polyhedron. Its outer

boundary consists of six facets of the cube 51. and its inner boundary consists of the

boundary of Chazelle's solid. Let C = C1nC2nC3.•. nc/: be a DNF Peterson-style CSG

formula for So where each Gi represents the maximal collection of literals along with

only union operators. Let c: represent the complement of C. where the complement

of a closed halfspace Hi is replaced by cl(H;), another closed halfspace. The formula

c; = C, U(,''l U... UG'/: is a CNF Peterson-style formula that represents two disjoint

polyhedra, the Chazelle's solid and the unbounded polyhedron cl(S0 corresponding to

the complement of 51. Each C i represents a convex polyhedron that lies completely

cl~her llIslde Lhe ChazeJle s SOlid or lllside Ule unbounded polyhedron cl(Sd. Since
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the portion denoted by E in the Chazelle's solid is covered by convex polyhedra that

lie inside it, k must be O(r2
). Making r = O(p), we have k = O(p2).

Theorem 4.2.2 There exists a class of polyhedra for whkh any DNF or CNF Peterson

style CSG formula has a size of O(p2) where p is the number of facets of S.

Proof: Consider a solid that is formed by gluing Chazelle's solid to the solid So as

described in Lemma 4.2.2. From the proof of Lemma 4.2.1 and Lemma 4.2.2, it is

clear that any CNF or DNF Peterson style formula for this solid has O(p2) size.

4.3 Triangulation

We observe that the triangulation of each convex piece produced by ConvDecomp

of Section 3.3 does not yield a triangulation of the original polyhedron S since two

facets created corresponding to the cut Qg may be decomposed differently later by

other notch planes. Thus, the triangulation of the portions where these facets touch

each other may not match giving an invalid triangulation of Sj see Figure 4.2.

4.3.1 Complete Cuts

We can overcome the problem of mismatch of facet triangulations if we cut

through the entire polyhedron S each time with a notch plane. In other words,

all sub polyhedra through which a notch plane passes are partitioned with that notch

plane. We call such slicings as complete cuts. With such slicings, all edges on a

facet will be present in other touching facet. For such decompositions, we cannot use

Lemma 3.3.2 since the new edges created by complete cuts are not restricted to the

regions adjacent to the notch g. In fact, in this case, we have to consider all edges

inside and on GPg in the arrangement of notch line segments with GPg superimposed

on it. The natural expectation is that the complete cuts are costly. In Lemma 4.3.1

<l.nd ·1.3.2. we show that the time and space complexities do not change much due to

the complete cuts.
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Figure 4.2 Edge e causes mismatch on 11 and 12-

4.3.2 Analysis of Complete Cuts

Lemma 4.3.1 If a polyhedron 5 is decomposed by complete cuts, the number of edges

in the final decomposition is G(nT + r3).

Proof: By Lenuna 3.3.4, the number of edges on and inside GPg for each notch 9 is

only O(n + r2
). This implies that one complete cut generate O(n + r 2 ) new edges.

Thus, r complete cuts produce O(nr + r 3 ) new edges.•

If we use the size of the final decomposition (Lemma 4.3.1) to estimate the number of

edges in the subpolyhedra through which a complete cut passes, we get 0(2:7:1 m;) =

O(nr+r
J

) in Theorem 3.3.1. This gives a straightforward O(nr2 +r4) time complexity

for decompositions with complete cuts. However, the following lemma helps us to

show that the true complexity is lower than this.

Lemma 4.3.2 If a polyhedron S is decomposed by complete cuts, the total number of

edges in subpolyhedra through which a complete cut passes is only O(nr).

Proof: Consider the complete cut corresponding to the plane P
g

• let R be the set

of planes used before Pg for other complete cuts. The planes in R U P
fJ

form an

arrangement A of planes in three dimensions. The cells adjacent to the plane P
g

in

.1 t:omiLlLute Lile ;Wlle l~ ui F!J. By weii known ZOlle LllcOl'em ii.::cicb I j, lJle number
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of edges in Zg is O(q2) if there are q planes in the arrangement. Let A' he the new

arrangement obtained by superimposing the boundary facets of S on Zg. Consider

the cells adjacent to Pg that constitute the zone Z; in A'. Subpolyhedra through

which Pg passes consist of cells that are members of Z;. Thus, -the number of edges

in Z; gives an upper bound on the number of edges of subpolyhedra through which

Pg passes. To count the number of edges in Z;. we carefully analyze the effect of

superimposing p boundary facets of S on Z9.

figure 4.3 The facets in F i are hatched with dotted lines; facets In Fi are hatched
with solid lines; facets in Bi are not hatched.

Let Ii be a facet of S that contributes to the boundaries of some cells in Z;.
Consider the lines of intersections between Ii and the other facets of Z;. These lines

together with the line segments supporting the edges of Ii form an arrangement of line

segments on the plane supporting Ii. Let Bi denote the facets in this arrangement

that are inside 1;. Further, let Bi denote the set of facets in B j that are adjacent to

line segments supporting the edges of Ii; B? denote the rest of the facets in R i . Let

F i denote the set of facets in Bi' that do not have any edge formed by the intersection
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of Pg with Ii; Fi denote the rest of the facets in B~/; see Figure 4.3. In the following,

by E(F) we denote the number of edges in a set F of facets.

The facets in Fi are created by slicing the cells in Zg completely by Ii such that

f; does not intersect Pg inside those cells. The portions of these cells that remain

in Z; after this slicing are not intersected by any other facet of S. Thus, a facet of

Zg contributes at most one edge in Uf=IF,. This impHes that L:f=, E(Fd is bounded

above by the number of facets in Zg giving 2:f=l E(F;) = O(q2). All other facets in

Bi' (if any) are adjacent to the line of intersection of /; with Pg • Thus, the facets in F(

are members of the zone of this line in an arrangement of O(q) lines. Since there can

be at most p lines of intersection between the planes supporting the facets of Sand

Fg , we get Lf=l E(Ff) = O(pq) by applying the zone theorem of line arrangement.

This gives 2:;=, E(Ei') = 2:;=1 E(F;) + E(F!) = O(pq + q').

To estimate the number of edges in the facets of B~, consider the arrangement

of O(q) lines that represent the intersections between the supporting plane of Ii and

the planes in R. The number of edges in the facets of Bi adjacent to an edge e

of Ii can be estimated by the number edges in the facets through which the line

supporting e passes in this arrangement. This number is O(q). Since S has n edges,

we have Lf=l E(Bi) = O(nq). Combining all these, we get that the number of new

edges contributed to Z; as a result of superimposing p facets of S on Zg is only

O(pq + nq + q') = O(nr) since q = OCr), p = O(n). This immediately implies that

Z; have at most O(r2 + nr) = O(nr) edges. Thus, the total number of edges III

subpolyhedra through which the plane Pg passes is at most O(nr) . ..

Theorem 4.3.1 A manifold polyhedron S with arbitrary genus and having n edges of

which r are reflex can be triangulated in O(nr2 +r3 Iogr) time and O(nr+r3 ) space.

Proof: We get L~l mi = O(nr) in Theorem 3.3.1 using Lemma 4.3.2. This gives

an O(nr2 + r 3 1ogr) time bound for convex decompositions through complete cuts.

Lemma 4.3.1 gives O(nr+r3
) space complexity. Each convex piece can be triangulated

in a straightforward \\"ay by triangulating its facets and joining all triangles thus
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produced to a point inside the convex piece. However. we need to ensure that all pairs

of facets that overlap completely on one another have same triangulation. Since the

facets in each such pair have same topological structure and have the same geometric

location, any determinjstic algorithm that triangulates a facet can be made to produce

same triangulations for both facets. This triangulation phase does not increase the

time and space complexity.•

4.4 Conclusions

This chapter shows that how a simple algorithm for convex: decomposition can

lead to efficient algorithms for triangulations and Peterson-style CSG decompositions

of polyhedra. The complexity analysis of the complete cuts exhibits again the power

of "zone theorem". Lemma 4.3.2 has implications beyond its use in complete cuts.

Given an arrangement A of T planes in three dimensions, Lemma 4.3.2 shows that

the zone complexity of each plane is O(nr + r2) if n planar facets intersecting only

at the boundaries are superimposed on A. We believe that this combinatorial fact

would be useful in analyzing other algorithms.

"We have proved an O(p2) lower bound for CNF and DNF Peterson-style formulae

in case of polyhedra. Proving a non trivial lower bound for general Peterson-style

formulae for polyhedra remains open. \oVe suspect that this bound is also O(p2).
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5. GOOD TRIANGULATIONS

5.1 Introduction

In the previous chapter, we described an algorithm that triangulates polyhedra.

This triangulation method, however, does not guarantee anything about the shapes

of the tetrahedra. As a result, it is possible that very thin and flat tetrahedra are

generated. To reduce ill-conditioning as well as discretization error, finite element

methods require triangular meshes where the elements are well-shaped, i.e., they do

not have very small and very large angles [BA76, Fri72J. These type of triangula

tions where shapes of the triangular elements are guaranteed to be good are called

guaranteed quality triangulations or good triangulations.

In 2D, there are basically three approaches known so far to produce guaranteed

quality triangulations. The first approach based on the Constrained Delaunay Tri

angulations was first suggested by Chew [Che89]. He guarantees that aU triangles

prod uced in the final triangulation have angles between 300 and 1200 • In [Dey90], we

improved this algorithm with minor modifications to guarantee the boundary triangles

to have better angle bounds. There is another approach based on Grid Overlaying

which was first used by Baker, Grosse, and Raferty in [BGR88] to produce a non

obtuse triangulation of a polygon. In (Dey90], we proposed a simpler method based

on this grid approach to triangulate a polygon with good angles. Bern, Eppstein, in

a current paper [BE91], give an improved method (w.r.t. the number of extra points

added by the algorithm) for nonobtuse triangulation of a polygon. In [BEG90], Bern,

Eppstein, and Gilbert give algorithms for producing good triangulations which uses

a special type of a grid that simulates the planar subdivision with the quad tree. An

other approach proposed by (SNT90] is based on the medial axis transformation that

produces an adaptive triangular mesh and eliminates bad triangles.
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Although a number of algorithms exist for triangulating a point set or a poly

hedron in 3D [AES6, CP90, EPWS6, Joe89), few of them address the problem of

guaranteeing the shape of the triangular elements. This chapter presents an algo

rithm that triangulates the convex: hull of a point set in 3D with guaranteed quality

tetrahedra. The problem allows one to introduce new points to generate good tetra

hedra with the restriction that all points are added only inside or on the boundary

of the convex hull. Good triangulations of convex polyhedra are a special case of this

problem.

In Section 5.3, we present the 3D triangulation algorithm based on the Delaunay

triangulations as used by Chew [Che89J in 2D. We characterize the bad tetrahedra

in 3D and show that the algorithm does not produce four out of five possible types

of bad tetrahedra. \Ve also give a bound on the number of additional points used to

achieve this guarantee. In Section 5.4, we present a type-2 robust algorithm for 3D

Delaunay triangulations. This algorithm is used in the robust implementation of our

good triangulation algorithm.

5.2 Preliminaries

5.2.1 Characterizing Bad Tetrahedra

In 3D, a tetrahedron can be degenerate or bad in three possible ways as described

in [BakS9]. The following two parameters w, 1'C characterize bad tetrahedra as follows.

Let w == ¥ and Ii = t where R is the radius of the circumscribing sphere of a

tetrahedron, L and I are the lengths of its longest and shortest edges respectively.

Bad tetrahedra can be classified into three categories.

Category(i): w = 0(1), ~» 1.

Category(ii): w» 1.

Category(iii): w = 0(1), < = 0(1).

Definition 5.2.1 A sliver is a tetrahedron that is formed by four almost coplanar points

and whose solid angles are very close to zero.
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Figure 5.1 Category(i) tetrahedra.

Category(i) corresponds to tetrahedra that have a very short edge relative to the

other edges and have circumscribing spheres that do not have an arbitrarily large

radius compared to the length of the longest edge. Specifically, category( i) consists

of type(i) and type(ii) tetrahedra. Type(i) tetrahedra are needle-like tetrahedra in

which one of the solid angles is highly acute and the face opposite to it has a negligible

area (Figure 5.1(a)). Type(ii) tetrahedra are slivers with a very short edge (Figure

S.I(b)).

(0) (b)

Figure 5.2 Category(ii) tetrahedra.

Category(ii) corresponds to tetrahedra that have a circumscribing sphere with ar.

bitrarily large radius compared to the longest edge. Specifically, category(ii) consists
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of type(iii) and type(iv) tetrahedra. Type(iii) tetrahedra are flat tetrahedra which

have one of the solid angles highly obtuse (Figure 5.2(a)). Type(iv) tetrahedra are

slivers which lie very close to the surface of their large circumscribing spheres (Figure

,j.2(b)). Category(iii) consists of type{v) tetrahedra. Type(v) tetrahedra are slivers

whose edges have lengths within a constant factor of each other and which do not

have a close incidence with the surface of the circumscribing sphere (Figure 5.3). We

Figure 5.3 Category(iii) tetrahedra.

present an algorithm that triangulates the convex hull of a three dimensional point

set with the guarantee that type(i) through type(iv) tetrahedra are not generated.

.;.2.2 2D Algorithm

The core of the algorithm presented in this paper consists of the Delaunay triangu

lation which is the straight line dual of the Voronoi diagram. In 2D, the circumscribing

circle of a tl'iangle in the Delaunay triangulation of a point set does not contain any

other point inside it. Similarly, in 3D, the circumscribing sphere of a tetrahedron in

the Delaunay triangulation does not contain any other point inside it. This property

of the Delaunay triangulation is utilized by Chew in 2D to produce good triangula

tions. He introduces the centers of those circumscribing circles that maintain a certain

minimum distance from the three vertices of the corresponding triangle. Of course,

the edges of the boundary have to satisfy certain length criteria. In his algorithm,

Chew uses edge lengths in between d and V3d where any pair of input [:Ioints is at

least d units away from each other. In the modified algorithm of [Dey90], we require

edge lengths in between d and 1.5d. This gives two distinct advantages.
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1. It is easier to divide edges between d and 1.5d in practice.

2. The triangles that have circumcenters outside the boundary have better bounds

on their angles.

We present below this modified algorithm for good triangulations in 2D.

Algorithm 2D- Tri:

Input: Finite number of points in the plane within a polygonal boundary. The vertices

of the polygonal boundary are included in the input point set.

Input Conditions: There exists a quantity d, such that no two given points are closer

than d and no boundary edge is greater than 1.5d and less than d.

begin

Construct the DeJaunay triangulation

of the given point set.

Repeat

Add the circumcenter v of a

triangle 9 = 6PiPjPk satisfying

the following property:

VI is at a distance of at least d from all

three points Pil Pj, Pk.

Update the current triangulation by constructing

the Delaunay triangulation

of the augmented point set.

Until there £s no such triangle.

end

Original edges or the polygon are divided to satisfy the input conditions of 2D- Tri.

However, caution should be taken to ensure that the new points, thus generated on

the edges, are at least d units away from each other. For a simple polygonal boundary

\nLH i:l l:crLalH Iu\\,('r iJOIIOd (3!)c) on (.Jte 11l11ll1llUm IllLcrnal angles at the \"('TtICes. It
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is always possible to divide the original edges so that the new points also satisfy the

input conditions. Algorithm 2D-Tri produces a planar triangulation T that has the

following properties.

Properly 1: All edges in T have lengths in between d and 2d, and, in particular, all

boundary edges have lengths in between d and l.5d.

Property 2: The circumscribing circle of all triangles in T has radius less than d.

5.2.3 Geometric Lemmas

\Ve use the following geometric lemmas in the next section.

Lemma 5.2.1 Let T be the Delaunay triangulation of a point set in 2D. Let R be

the maximum radius of all circumscribing circles of the Delaunay triangles in T. The

radius of any empty circle whose center lies inside T is less than or equal to R.

Proof: See Theorem 6.15 of [PS86]. oTt

Definition 5.2.2 Let c be a circle drawn on the surface of a sphere s. Let Pl'P2 be the

axis which is perpendicular to the supporting plane of c and which passes through

the center of c. This axis intersects s at PI and P2' The points Ph P2 are called the

poles corresponding to the circle c.

Lemma 5.2.2 Let c be a circle with the radius less than r drawn on the surface of

a sphere s. Let the distance between c and its nearest pole be greater than d. The

radius R of s must satisfy the condition R < T~it.

Proof: Consider the circle c as shown in Figure 5.4 with the nearest pole PI- Let a, b

be the centers of sand c respectively. Obviously, labl < (R - d). Consider the right

angled triangle 6.abt where t is a point on the circle c. Since the radius of c is less

than r. we have Ibtl < r. Hence, lat'l = R' = labl' + Ibtl' < (R - d)' + r' giving

Jl < r-;t· tit
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figure 5.4 Poles and circles on a sphere.

5.3 3D Algorithm

In this section, we describe the good triangulation algorithm for a three dimen

sional point set. In what follows, by the convex hull of a point set, we mean its

interior along with its boundary. We refer to the boundary of the convex hull as the

boundary. A point is called an internal point if it is not on the boundary and is called

a boundary point otherwise. The facets of the boundary are referred to as boundary

facets and the edges on the boundary facets are called boundary edges.

Algorilhm 3D- Tri,

Input: Finite number of points in three dimensional space.

begin

Let d1 be the minimum of the distances

between two points.

Let d2 he ihe minimum distance from an

internal point to a boundary facet.

Let d3 be the minimum distance between

two nonadjacent boundary facets.
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Let r = ~min{dhd2,d3}.

Triangulate each facet of the boundary using

algorithm 2D- Tri in such a way that

every edge has length in between rand 2r and

even) boundary edge

has length in between T and 1.5r.

Let P be the current point set.

Construct a 3D Delaunay triangulation T(P)

of the point set P.

repeat

Add the center v of the circumscribing sphere

of a tetrahedron ti in T(P)

satisfying the following properties:

(i) all four vertices of tj are at a distance of

at least 2r from v,

(ii) the center v lies inside the boundary.

Set P = P U v.

Update the Delaunay triangulation T( P).

1mtil there 1"8 no such tetrahedron.

end

With the above choice of r and with the assumption that all the face-angles of

the facets on the boundary satisfy the minimum angle criterion, it is possible to

triangulate them by 2D-Tri maintaining the edge lengths as stated. In the following

Lemma, we prove that the above procedure terminates.

Lemma 5.3.1 Algorithm :JD-Tri terminates.

Proof: Algorithm 2D- Tri terminates since the points added hy it are always at a

certain distance from all other points. There can be only finitely many such points

inside the given polygonal boundary. Extending this argument to Algorithm ;JD-TTi,
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we can observe that all circumcenters of tetrahedra that are added as new points are

at a distance of at least 2r from all other points. There can be only finitely many

such points inside the convex hull of the input points assuring the termination of the

Algorithm 3D- Tri. '"

5.3.1 Lower Bounds on Distances

Lemma 5.3.2 Any point on a boundary facet that does not lie on a boundary edge

must be at a distance of at least v:r from all edges of that facet.

Proof: Consider a point p on a facet f. Let e be any edge of f. Note that the edge

e is divided into smaller ~dges el, C2, ... , en through the triangulation of the boundary

racets adjacent to e. Drop a perpendicular from p on the line supporting e. If the

perpendicular intersects the edge e, let e/ be the edge of the triangulation on e which

is intersected by it. According to property 1, all boundary edges of the triangulation

of f must have lengths in between rand 1.5r. Further, the point p is at least r units

away from the end points of e/. Thus, the minimum distance between p and e/ is at

least YJ-r. In case the perpendicular dropped from p does not intersect e, it must

intersect some other edge e' of f. In that case, the distance between p and e must be

greater than the distance between p and e'. We can estimate the minimum distance

between p and e by estimating. the same between p and e'. While estimating the

distance between p and e', if it occurs that the perpendicular dropped from p does

not intersect e', we will have another edge to estimate the minimum distance between

p and e'. Since there are finite number of edges, and since each time we go to a next

edge, its distance from p gets smaller than the previous one, there must be an edge

of f which is intersected by the perpendicular dropped from p. Let e" be the first

such edge encountered in the above process. As argued above, the distance between

p and e" is at least ..;;r. Hence, the distance between p and e is at least v: r. Thus,

any point on a boundary facet that does not lie on a boundary edge must he at a

distance of at least '4-r from all edges of that facet."
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Lemma 5.3.3 All edges in the triangulation produced by the algorithm 3D- Tri have

lengths greater than [min where lnUn = min(r, :lfrsin~). Here Om is the minimum

dihedral angle between two adjacent boundary facets.

Proof: Initially, all internal points are at a distance of at least 6r units from every

other point. Two boundary points, lying on non adjacent facets, are at least 6r units

away from each other. These conditions are ensured by the particular choice of r. A

boundary point is at a distance of at least r from every other point on the same facet

which is ensured by the algorithm 2D- Tri. The points added by the algorithm 3D- Tri

are always at a distance of at least 2r from every other point. Thus, all points except

the points on the adjacent facets are at a distance of at least r from each other. To

estimate the minimum distance between any two points on the adjacent boundary

facets, consider two points pi, Pi lying on the adjacent facets fi. Ij respectively. Let

e be the edge shared by 1; and fj. Drop a perpendicular from Pi on e. Let it meet

e at Pm· Consider the triangle .6.PiPiPm. Let the minimum dihedral angle between

any two adjacent facets be Om. It is easy to prove that the angle between PiPm and

PiPm in the triangle .6.PiPiPm must be at least Om. From the above discussion, it

follows that IPiPml > ¥r and IPiPml > 41'. Thus, the distance between Pi and Pi

is at least V; r sin~. Hence, all edges in the final triangulation produced by the

algorithm 3D-Tri have lengths greater than lmin = min(1', 1rsin~)...

Lemma 5.3.'1 Any point p present as a vertex in the triangulation produced by the

algorithm 3D- T17 is at a distance of at least 4r sin Om from any boundary facet on

which p does not lie. Here Om is the measure of an angle such that all dihedral angles

of the input boundary are within Om and 1800 - Om.

Proof: If p is an inner point1 we already know p is at least r units away from every

boundary facet. By the choice of r, any point on a boundary facet is at least r

units away from any other nonadjacent facet. We prove that if p lies on a boundary

facet but not on a boundary edge, it is at a distance of at least ~rsinOm from all

adjacent facets. Let p lie on Ii and let Ii be any facet adjacent to f;. In Lemma
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5.3.2, we proved that the distance of p from any line supporting an edge of the facet

It is at least :1fT. Let I be the distance of p [rom the line where Ii and f; meet.

The distance d of p from Ii is given by d = [sinO where f) is the dihedral angle

between /; and Ij. Putting the minimum value of I and () gives the lower bound on

d. Thus, the distance of a point from any facet that does not contain it is at least

d - O( o/'i "O)_o/'i"O ...min - mIn T'TTSIll m - Tl'Sln m" ...

5.3.2 Qualities of Tetrahedra

Definition 5.3.1 A tetrahedron in the final triangulation is said to have a good CiT

cumcenter if the center of its circumscribing sphere lies inside or on the boundary

(convex hull boundary). Conversely, a tetrahedron is said to have a bad circumcenter

if the center of its circumscribing sphere lies outside the boundary.

We classify the tetrahedra with bad circumcenters into two classes, namely class

A and class B.

Definition 5.3.2 A tetrahedron t with a bad circumcenter is called a class A tetrahe

dron if it satisfies the following property. There exists a facet f intersected by the

circumscribing sphere 5 of t in such a way that the foot of the perpendicular dropped

from the center of s on the supporting plane of f lies inside f. Any other tetrahedron

with a bad circumcenter is called a class B tetrahedron. See figure 5.5 and figure 5.6.

Assuming lower and upper bounds on the dihedral angles between adjacent bound

ary facets, we can prove that all tetrahedra produced by 3D-TTl cannot be in cat

egory(i) or category(ii). Although we cannot avoid category(iii) tetrahedra, occur

rences of them in practice are rare [BakS9]. Finally, in most of the cases, these

tetrahedra can often be avoided by introducing a suitable point inside the circum

scribing sphere; see [Bak89). In what follows, we assume that all dihedral angles

between adjacent boundary facets are greater than Om and less than 1800 - Om'

Lemma 5.3.5 No tetrahedron with good circumcenter can be in category(i) or cate-

gory(ii)o
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Figure 5.5 Class A tetrahedron.

Proof: All tetrahedra in the final triangulation having good circumcenters must have

circumscribing spheres with radii less than 2r, because otherwise these circumcen

ters would have been introduced as new points. Hence, all these tetrahedra have

edges of length less than 4r. By Lemma 5.3.3, all edges have lengths greater than

min(r, Yfr sin ~). Thus, Ii. for these tetrahedra can be at most max(4, .,j'f,~ l!m..). As-
,

suming a lower bound on the dihedral angles of the input boundary, we get K for

these tetrahedra to be of 0(1) which violates the condition for category(i) tetrahe

dra. Further, w for these tetrahedra can be at most max(2,,If ~ D ) =: 0(1) which
• SIn ::.r-

prohibits them to be in category(ii).•

Lemma 5.3.6 No class A tetrahedron can be in category(i) or category(ii).

Proof: Let t be a class A tetrahedron with the circumscribing sphere s. By the

definition of class A tetrahedron, there exists a boundary facet f such that the foot

of the perpendicular dropped from the center of s on the supporting plane of flies

inside f· Let c be the circle of intersection of S with the supporting plane of f.

Bv Lemma 5.3.4. a vertex p of t that does not lie on f must be at a distance of

at least "7r sin Om from f where Om is defined as before. The center of the circle c

lies inside f· Thus, the center must lie inside the triangulation r of f produced by
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Figure 5.6 Class B tetrahedron.

the algorithm 2D- Tri. Further, c must be a.n empty circle since s does not include

any point of J inside it. See figure 5..5. By property 2, all triangles of T have

circumscribing circles of radii less than r. Hence, according to Lemma 5.2.1, c must

have a radius less than or equal to r. The vertex p lying on s must be at a distance

of at least v:r sin Om from c. Further, the vertex p and the center of s lie on the

opposite .sides of c. This implies that c is at a distance of at least VI l' sin 8m [rom

its nearest pole. Thus, according to Lemma 5.2.2, s must have a radius less than or

equal to k\l" where k l = ('l7s~n/1m + ,j_ ~ /1 ). This puts an upper bound of 2k\r on the
'Sin m

lengths of the edges of Ii. By Lemma 5.3.2, all edges of Ii are greater than k2r where

1.:2 = min(l, ¥sin ~). Hence, w, K for ti are 0(1) assuming a lower bound on (Jm

(1\ lower bound all Om puts lower and upper bounds on the dihedral angles between

adjacent boundary facets). This prohibits it to be in category(i) or category(ii).•

Lemma 5.3.7 Let t be a class B tetrahedron with the circumscribing sphere s. There

llIllst exist two boundary facets ji, Ii intersected by s with the following criterion:

Let c be any circle drawn on s which is normal to the line where Ii, Ii meet. The

feet of the perpendiculars dropped from the center of c 011 the supporting planes Pi

"~ .' /- -, t' 1: ...•.,:.1..01 .• 1: -. 1.. , r n r,'"'1 'i"'.i. """.J ," ""'.""L ''''. ""'. ·"n""··""·c.··.',·C .J'
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Figure 5.7 Cases of Lemma 5.3.7.
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Proof: Consider a boundary facet Ji that has the convex hull and the center of s on

opposite sides. Since t has a bad circumcellter, such a facet always exists. Consider

any other facet Ii sharing an edge with f; that has been intersected by s. Drop

perpendiculars from the center of s on the supporting planes of /; and Ji. The feet

of these perpendiculars lie outside Ii I Ii since l is a class B tetrahedron. Consider the

great circle d of s whose supporting plane is normal to the edge shared by Ii and h.
The feet of the perpendiculars dropped from the center of s on the supporting planes

Pi and Pi of 1; and Ii cannot lie on the line segments c' nIi and c! n Ji. Two different

cases are shown in figure 5.7. This immediately implies that the condition stated in

Lemma 5.3.7 is true for any circle con 8 that has a supporting plane parallel to that

of d.•

Lemma 5.3.8 No class B tetrahedron can be in category(i) or category(ii).

Proof: Let t be a class B tetrahedron. Let the circumscribing sphere 8 of t intersect

the boundary edge e ~hared by the facets Ii and fj which satisfy the criterion as stated
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s cannot be inside s. Let w, y be the points where s intersects en' Further, let a and

R denote the center and radius of s respectively.

b

pv

e n f 'i---f-~__ /'.....--\-- c 1\ f j
--...-\..~

e
e

'a'
Cas. i(lI)

'b'
Calli. i{b)

Figure 5.8 Case(i} of Lenuna 5.3.8.

Case(i): The tetrahedron t has a vertex p which lies neither on the facet Ii nor on

the facet J). Consider the circle c on s whose Rupporting plane is perpendicular to

en and which passes through p. Let R' be the radius of c. Join the center b of c with

the point It where c meets en' Extend the line bu beyond u until it intersects the

boundary of c at u as shown in figure .5.8. Let Ibur = x. Certainly, luvl = R' - :t".

Let d denote the minimum distance of p from the two facets Ii and Ii. There are two

subcases as shown in figure 5.8. In subcase i(a), the center of c lies in the sides of the

planes containing ii, Ii which are opposite to those containing the convex hull. It is

not ditlicult to see that, in this subcase, d:S Imrl = Ii' - x. Since, R 2:: R' , we have

d ::; R -;L. To estimate a lower bound on x. drop a perpendicular az from the center

a of s on en' This perpendicular has the same length as bu. Consider the triangle

6awy. \Ve observe tll<tt la.:1 = VHI. - 1"';1-. Since en can have a length of at most
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1.5r, we have :1: = laz! ~ VR2 - 9~:. Thus. d :::; H. - JR2 _ 9\r;. We already know

d ~ ¥rsinOm (Lemma 5.3.4). Hence,

R <

..;7r .
-4- sm 8m < K '·'R- R'--

16 '
'; sin2 Om + 9

'" r.8v 7 sin 8m

Now. consider the subcas€ i(b). In this subcase, one of the supporting planes of Ii

and fj has the cenLer of c and the convex hull on its opposite sides and the other olle

has them on same side. Without loss of generality, assume that the supporting plane

of I; has them on same side as shown in figure 5.8(b). The line segments en Ii and

en Ii make angles less than equal to 90° with uv. Otherwise, Ii. Ii do not satisfy

the criterion as stated in Lemma 5.3.7. In this subcase, we have d $ R - x since the

distance of v from the supporting plane of Ii is greater than that of p from the same

plane. Thus, in both subcases i(a) and i(b), we have,

- . '0 +9
R I sin '"

<.j7 r.- 8 7sinOm

Case (ii): All vertices of the tetrahedron t lie either on j; or on Ji. This immediately

implies that one of the vertices of t lies on 1; but not on Ii and another on Ii but not

on Jj. Consider the vertex Pi lying on Ii but not on Ji. Let c be the circle pMsing

through Pi with the supporting plane being perpendicular to en' As in the previous

case, let b be the center of c, u be the foot of the perpendicular dropped from b to

en, and v be the point of intersection of the line bu and the circle c such that u is

in between band v. Again, we have two subcases as shown in figure 5.9. Consider

the subcase ii(a). We have IpiUI -::; c~u~vJ; where OJ is the angle between Pill and uv.

Wp proved in Lemma .1.:1.2 that the distance of any point on a boundary facet that

does not lie on any of its edges is at least '.iJ-r away from any of its edges. Thus,

1/",,1 > v'!r. lIenee, ,/7r < w-,J: < H-,r where:1: :::: Ibul. Similarly, considering the
-.. -l. -co~;-co~;

,·",·i",· LJ' "r L l";llfT nn r Il11t nnl nil
• .I .' . }

angle between Ii n c and uv. The angle 8 :::: 8, +OJ is the dihedral angle between Ii
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Figure 5.9 Case(ii) of Lemma .5.3.8.
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and Ij· Since one of OJ, OJ is less than or equal to 900 and the cos function decreases

monotonically from 00 to 900
, we have iir < 9. By the same argument as in

-I - cOS:r

case(i), we get :1; ;::: JR2 - J96r2, Hence,

,fi
-r <
4

R <

Assuming an UppC'f bound on () ::; (180° - Om) we have

7sin2 ~ + 9
R < 2 r.

- SV7sin ~

Now, cousider the subcase ii( b). The angles between U"V and the line segments en Ii

and en Ii are less than 900 since otherwise /;, Ii violate the condition of Lemma

0,:3.7. Without loss of generality assume that (Ji < OJ. The distance between v and

en h is greater than that between Pi and en Ii. This implies d :$ R - x giving the

:-iilillC upper buund 011 H as W(~ derived ill (·asptl).
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Thus. all class B tetrahedra have a circumscribing sphere of radius ktr where

k, = O( 1) assuming lower and upper bounds 011 the dihedral angles between adjacent

boundary facets. This with the fact that edges of all tetrahedra have lengths greater

than k2 r where k2 = 0(1) (recall Lemma 5.3.3), makes wand K of these tetrahedra

Lo be of 0(1) and thus prohibits them to be in category(i) or category(ii) . .,

The following Theorem is immediated from Lemmas 5.3.5, 5.3.6, and 5.3.8.

Theorem 5.3.1 Algorithm 3D- Tri triangulates the convex hull of a three dimensional

point set with the guarantee that the tetrahedra of type(i) through type(iv) are never

generated assuming lower and upper bounds all the dihedral angles between adjacent

boundary facets of the convex hull.

.'jJ.:J Complexity

Algorithm 3D~ 1'ri produces tetrahedra whose edges are greater than [min as defined

In Lemma .5.3.:3. The circumscribing sphere of each such tetrahedron must have a

mlume of n(l~in)' Let V be the volume of the convex hull of the given point set.

Let nand n" be the number of points present in the input and output respectively.

Certainly. 11." = 0(;-). Consider a triangulation T of the input point set where
"un

ITf = O(n). Such a triangulation always exists; see [EPW86]. Let L be the largest

edge length in T. All tetrahedra in T have a volume less than L 3 . Thus, V = O(nL:J).

This gives an upper bound ofO(nl
3

) on 71". Putting It = ~, we haven" = O(nA3).
,n,n "'m

The quantity A captures the notion of how badly distributed the input point set is.

The basis of SD~T,.i is the incremental Dclaullay triangulation algorithm. We use

Watson's algorithm [Wat81] for this purpose. In this algorithm, all tetrahedra whose

circumscribing spheres contain the inserted point inside are removed. To produce

new tetrahedra. the new point is connected to the triangles present on the boundary

of the union of all removed tetrahedra. In .')1J~ Tri, we introduce the circumcenters

of tetrahedra that satisfy specific propertiC's as llew points. \Ve maintain a queue

of il1l such l.ptrahedra t.hroughout t.he algorit.hm. This queue supports deletion and

addition of an element in logarithmic time. Thus, we can pick a tetrahedron tj whose
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circumcenter is to be added in O(log no) time. vVe can determine all tetrahedra to

be removed and to be added in O(no) time once we have chosen ii. This is due to

the fact that there are at most O(no ) tetrahedra to be removed and added for each

insertion and they form a connected component together. Updating the queue for

these removed and added tetrahedra takes O(nolog no) time which dominates the

t.ime complexity for a single insertion. Thus, inserting all valid circumcenters takes

O(n~logno) time. Algorithm 2D-Tri cannot take more than O(n~) time [Dey90].

Hence. .JD-T,.; takes O(n;logno ) ~ 0(n'A6 10gnlogA) time and O(n o ) ~ O(nA')

space.

5.:3.4 [mplementation Issues

We consider the problem of numerical errors under finite precision arithmetic while

implementing the algorithm 3D-Tri. For robust implementation of 3D-Tli, we need

a robust algorithm for computing the Delaunay triangulations in 3D. In the next

section, we present a type-2 robust algorithm for this problem. To triangulate the

facets robustly, we use the type-2 robust algorithm of (SI89aj for 2D voronoi diagram

and use its dual.

With numerical errors, the computed points on the boundary facets may not be

exactly coplanar. and without proper care they may form very thin tetrahedra. While

constructing the triangulation of the point set obtained by triangulating all boundary

facets, we take into account the topological constraint that the points generated

on a boundary facet are coplanar. We have implemented our good triangulation

algorithm on SUN workstations in AKCL. An example where a convex polyhedron is

triangulated is shown in Figure 5.15. For clarity, we show only the triangulations on

the facets.

5.4 Robust Delaunay Triangulations

\V(' "i\'p;] I\·[)p-1I'OhllSt. ille:orit.hm for thrp(' dilllf'llsional Df'lanna\· t,rianeulations.

Recall that a type-2 robust algorithm must have the following properties. It must
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not fail-the "non-failing"' property; it should give true output under infinite precision

and the output should satisfy certain essential topological properties under finite

precision-the "convergence1l property. Although in type-2 robust algorithms, it is not

essential to use thresholds in numeric computations as long as consistent topological

inferences can be drawn without them, we use such thresholds in attempt to produce

an output close to the true one. Actually, it is our hope that with these thresholds,

these algorithms can become type-4 robust, though we cannot prove it.

In this approach a typical segment of a robust program looks as follows.

value=Numeric-computation.

If absolute(value) ~ /j then A else B

The quantity {j ncts as a threshold for safe computations and is proportional to the

precision as we have seen in Section 3.4. It becomes zero with infinite precision. Thus.

under infinite precision the action B is never taken and the output is guided by the

action A. Let A' be the action that should be taken by the algorithm under infinite

precision. The action A is designed in such a way that it becomes equivalent to A'

w.r.t. the input-output relation under infinite precision. Further, the actions A and

[J are designed in such a way that they guarantee the desired topological properties

of the computed data and never contradicts the previous decisions. This, in turn.

guarantees the "non-failing" property of the program.

Design of A and B is dependent Oil the desired topological properties of the output.

For triangulation of a point set, we use the conditions of the topological triangulations

as basis of our topological validity tests.

Let G = (V, E) be a connected graph with the vertex set V and the edge set E.

A face consists of a cycle of alternating vertices and edges. A 3-cell consists of a

collection of faces where each edge is incident 011 two faces.

DefinitioIl5.4.1 A combinatorial augmentation of G is it tuple CG = (V.E,F.T)

where F is a Sf't of faces and T is a set of 3-C"plls. Bach vertex and edge is incident on

itt least one face. Each face is incident on at least one 3-ce11. A simplicial combinatol'ial

i,.
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augmentation is a combinatorial augmentation in which each face consists of a cycle

of three vertices and edges and each :J-cell consists of fouf faces.

An embedding of a combinatorial augmentation is a mapping h : V - S where 5

IS the point set in three dimensional space bounded by a closed oriented manifold.

The mapping extends to edges, faces, and 3-cells. If VI, Vz are endpoints of an edge

e, then h(e) is an open curve segment joining h(viJ and h(V2)' If the image of a face

cycle of face f is a simple closed curve, then h(J) is an open surface bounded by the

closed curve. If a 3-cell t consists of faces It. 12, ", I,,:> then h(t) is the open three

dimensional region bounded by kUd, h(h)' "', h(fk). An embedding is planar in 3D

if It is pairwise disjoint for vertices, edges, faces and 3-cells.

.').4.1 Topological Triangulations

Definition 5.4.2 A 3D topological triangulation is a connected graph G that has a

planar embedding in a 3D space 5 ~ R3 where 5 is bounded by a closed oriented

manifold and the embedding gives a simplicial decomposition (with simplicial com

plex) of S. If the surface of 5 is homeomorphic to that of a sphere, G is called to be

a :30 genus zero topological triangulation. The tetrahedra produced by the simplicial

decomposition may have curved edges and curved faces.

In the rest of this chapter, we refer to the 3D topological triangulations simply

as the topological triangulations and the simplicial decompositions with simplicial

complexes as the simplicial decompositions. From the definition of the topological

triangulations, it is clear that the underlying graph of any triangulation of a point set

in 3D is a genus zero topological triangulation. This essential topological property of

:lD triangulations is used to design a type-2 robust algorithm for 3D Delaunay trian

gulations. The underlying graph of the output computed by the algorithm satisfies

certain essential properties of a genus 7,ero topological triangulation.
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.5.:1.2 Orientations

The orientation of a face f = (Vl' V2, V3) can be specified by the cyclic order on

its vertices. There are only two such unique orders. An oriented face is a part of

a oriented manifold and thus has positive and negative sides. One particular order

on its vertices fixes its positive and negative sides. The side from which the order is

\'iewed as clockwise is designated as the negative side.

Definition 5.'1.:3 Two oriented faces match if the shared edges (if any) are directed in

opposite directions in them.

A telrahedron has its faces oriented in such a way that they match to each other.

In Pigure .5.10. the faces 11 and /2 of a tetrahedron are oriented to match each

other. A particular orientation of a face fixes the orientations of all other faces

figure 5.10 A tetrahedron with oriented faces.

of a tetrahedron. Thus, a tetrahedron has two unique orientations. To orient a

tetrahedron unambiguously, we orient a face in such a way that the fourth vertex lies

on its positive side.

Definition .5.4..1, Let v be a vertex of a graph G. Let V' be the set of vertices adjacent

10 I'. Consider (' not t.o be included in V'. The subgraph G' = (V',E') where £' is

t Ill" ~l't of f'dl!f's whose bot.h f'ndpoints <lff' in V' is called the stur of v <Iud is denoted

as star(v).
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Definition 5.4.5 A graph is called planar triangular if and only if it has a planar

embedding with triangular faces except possibly the outer face. All faces including

the outerface must be simple.

In the rest of this chapter, all stars are meant to be planar triangular. The star

... ....

......
....

Figure 5.11 The star of a vertex.

of a vertex (J is shown in Figure 5.11. Edges drawn with the solid lines are the

f'dges of star(v). There are only two unique planar embeddings of such graphs w.r.t.

the orientations of the faces. One is the mirror image of the other. A particular

orientation of a face fixes the orientations of all other faces. Thus, we can specify the

orientation of a planar t.riangular star by the orientation of any of its faces.

Definition 5.4.6 A star with an orientation matches with the other if and only if the

shared faces have opposite orientations on them. With this definition, two oriented

stars match vacuously if they do not share auy face or edge.

III Figllff' .i.12. !itars of VI and V2 (consisting of 11, h) match each other since the

shan'o f<tC"f's havf' opposite orientations.
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Figure 5.12 Matching of two stars.

.'".lA.a Properties of Topological Triangulations

Lemma 5.4.1 A connected graph G is a topological triangulation only if the following

conditions are satisfied.

1. Cl: For each vertex VEV , star(v) is planar triangular.

2. C2: Any triangular face appears in the stars of at most two vertices.

:L C3: [t is possible to orient the stars of all vertices simultaneously so that each

one matches with the other.

Proof: We show that the underlying graph of it simplicial decomposition of a 3D space

hounded by a closed oriented manifold satisfies conditions el, C2 and C3.

Consider a vertex Vi in the simplicial decomposition. The underlying graph con

stituted by the bases of all tetrahedra with apex Vi form the star of Vi. This graph

with bases as triangular faces can be embedded on an oriented manifold that is home~

omorphic to a plane. Thus, it can be embedded on a plane with those triangular faces

except possibly one [ace (el). Each triangular face is incident on at most two tetra

hedra and thus appears in at most two stars (C2). The stars with orientations of the

faces on corresponding tetrahedra must match each other since the faces with these

orientations match each other in the simplicial decomposition (C3) . ..
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Lemma ,5.4.2 A topological triangulation G has zero genus only if the following con

ditions are satisfied.

1. C4: The space S of its embedding has one connected surface.

2. C5: IWI -IE'I + 1F'1 = 2 where V',E', P are the vertices. edges, faces present

on the surface.

Proof: Since G is a topological triangulation, it has an embedding in R3 that gives a

simplicial decomposition of a space S bounded by the closed oriented manifolds. To

be homeomorphic to a sphere, there must be one connected surface. Any space S with

one connected oriented surface must be homeomorphic to torii with handles [GT87].

Any simplicial decomposition of such a space must satisfy 1V'I-jE'1 + IF/I = 2 _ 9

where 9 is number of handles and V', E', F' are the set of vertices, edges, faces on the

surface. For the surface of S to be homeomorphic to that of a sphere. [V'LIE'LIF']
must satisfy the above equation with 9 = O.

.5.4.4 Incremental Robust Delaunay Triangulation

We observe that the underlying graph of a Oelaunay triangulation (in fact any

triangulation) in :30 is a genus zero topological triangulation. We use the conditions

C I through C5 to design a type-:."! robust algorithm for the Delaunay triangulation of

it point set in 3D.

This robust algorithm is obtained by modifying the well known incremental algo

rithm of Watson [Wat81J. In this incremental approach, the Delaunay triangulation

of the current point set is modified locally to incorporate a new point. In this algo

rithm, each face is maintained as two oriented faces with opposite orientations on its

cycle. The algorithm is given below.

:'5.-1..5 The Algorithm with Exact Arithmetic

1fllm'ilhm nT·P:rnrf

Input: A point set P = {Pl,P2, ... ,pd in three dimensions.



104

Step 1. Construct the tetrahedron t l = (PI,P2,P3,P.J) and set T = {ttl.

Step 2. For each point pi, i = .5,6, ..k. carry out the following steps.

Step 2.1. Find out the faces (if any) on the boundary of T that contain the point

Pi on the side opposite to that containing T. Let B be the boundary constituted by

these triangular faces.

Step 2.2. Find out the set W of tetrahedra whose circumscribing spheres contain the

point Pi inside or on it. Let B' = bd(W) where bd(W) denotes the boundary of the

union of the tetrahedra in W.

Step 2.:3. Compute Bn = (B U B') - (B n B').

Step 2.·1. Delete tetrahedra in W from T. Add tetrahedra to T that are created by

laking the [Joint I); as the apex and the triangular faces of Ell as bases.

In the above algorithm, numerical compuLations are carried out at two places.

III Step 2.1. we need numerical computations to determine whether the point Pi

is inside the circumscribing sphere of a tetrahedron or not. Let the tetrahedron

t = {Pi> P'2, P3, p·d have an oriented face f = (PI, P'2, P3)' To determine the location of

Pi w.r.t. the circumscribing sphere s of t, we compute the determinant

2 2 '2 1X, y, -, .1;, +y\ +Zl

X, y, " J:~ + y~ + zi 1

C(I,I';) = 2 '2 '2 1;1;3 Y3 =3 .r;} + ,'13 + ZJ

'2 '2 '2 1x, y, =4 X 4 + Y4 + =,1

'2 '2 '2 1x· Yi ,. ·I;i +y, + =i, "

{-Iere :I;i,.l/i,=; are the coordinates of the point Pi. The location of the point Pi W.Lt. s

is determined by the sign of C{t,pd. In Step 2.2, we need numerical computations to

determine the side of a face that contains the point Pi. To classify the point Pi w.r.t.

an oriented face f = (PI,PZ,P3), we compute

x, Y, Zl

:IH(J,p;) =
,r, y, =1

x:\ .'h .:::\

l Xi Yi Zj 1 j
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The location of the point Pi w.r.t. the face f is determined by the sign of H(f,pd.

With numerical errors, we cannot rely on the signs of C(t, pd. H(J,p;) when Pi is

very close to 5 and f respectively.

-5.'1.6 The Algorithm under Finite Precision Computations

With erroneous numerical computations, the boundary B may have more than one

connected component due to numerical errors and B n B' may be empty even though

Band B' are not. In these cases, the boundary B/1 has more than one connected

component. This implies that star(pl) is disconnected which violates the condition

for topological triangulations. Further. the underlying graph of B' may not be planar

triangular making star(pi) not to be planar triangular which violates a necessary

condition for topological triangulations.

Both these problems, however, go off if we carry out a careful depth first search

for the faces in B and the tetrahedra in VV. Let B i be the boundary constituted by

the faces that have been decided to be in B so far. We maintain a list (Blist) of faces

that are in B i and have at least one adjacent face that is not in Bi . By adjacent faces

we mean only those faces that are adjacent by an pdge. We expand B i by picking a

face from this list and testing the unexplored adjacent faces for their inclusion in B.

mist aud Hi are updated accordingly. This guarantees that the final boundary B is

connected and planar triangular.

In the exact itlgorithm, it is possible that the boundary of VV is disconnected.

In that case, each component of bd(W) must have a nonempty intersection with B

in such a way that the final boundary B" has only one component. With numerical

errors, we compute a connected component of W as follows and look for other possible

components. We collect tetrahedra in one collnected component of W in a depth

first manner. Let Wi be the set of tetrahedra that have been decided to be in one

component of W so far. We maintain a list (Tlist) of tetrahedra that are in IV; and

have at least one adjacent tetrahedron that is not in vVi . By adjacent tetrahedra

we meau those tetrahedra that are itdjar.:ent by a face. To continue the search for
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new tetrahedra in one component of W. we pick a tetrahedron from this list and test

whether the unexplored adjacent tetrahedra are member of W or not. We update

Tlist and ~Vi accordingly. Computing W this way ensures that the boundary of one

component of VV is never disconnected. Of course, care should be taken to ensure

that each component of bd( W) remains planar triangular.

Algorithm DT-Robust

Input: A point set P = {PI,P21''''P,d in three dimensions.

Step 1. Construct the tetrahedron t l = (PhP21P3,P4) and set T = {tJl.

Step 2. Por each point Pi in P, carry out the following steps.

Step 1.1. Find out a face f (if any) on the boundary of T such that H(j,pd 2:: D.

Initialize B = {f} and put J into Blist. Repeat steps 2.1.1 and 2.1.2 until no more

face can be added to B.

Step 2.1.1. Pick the face J from Blist that IS adjacent to a face l' satisfying the

following properties.

1. The face f' is not in B.

2. IJ(J',p;) ~ O.

:J. Adding l' to B does not destroy its planar triangular property.

Step 2.1.2. Set B = B U f' and put l' into Blist. If all adjacent faces of f are in B,

delete it from Blist.

Step 2.2. [f B is not empty, check for a tetrahedron l adjacent to a face in B for

which C( l, Pi) 2. O. [f such a tetrahedron t is found, put t into Tlist and set W = {t}.

[II case H is empt.y, check for any tetrahedron l that satisfies C(t,pd 2. O. In case HO

"lIC]) jC'1-ndlf'dron is fOllnd. Dick j,llf' t,pt.rahf'dron f for whi<-h the value of C(t..p,.) is t.he

largest. Set W = it} and put t into Tlist. Repeat steps 2.2.1, 2.2.2 and 2.2.3 until
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no more tetrahedron can be added to ~v.

Step 2.2.1. If at any point of iteration, Tlist is empty, check for a not yet visited

tetrahedron l adjacent to a [ace in B for which C(t,pd ~ O. If such a tetrahedron is

found, put t into the Tlist and set VV = W U t.

Step 2.2.2. Pick a tetrahedron t from Tlist that IS adjacent to a tetrahedron t'

satisfying the foHowing properties.

l. The tetrahedron e is not in W.

2. C(t',p;) 2 o.

:3. There is no vertex in i' for which all other incident tetrahedra have been decided

to he in j·V (to prevent isolated vertices).

-1. Adding [' to VV does not destroy the planar triangular property of bd(vV) .

.'l. If [' has a face in B. then that face is adjacent to other faces in B that are also

decided to be in bd(W) (to prevent more than one non triangular faces in B").

Step 2.2.3. Set W = W U t/. Put t/ into Tlist. If all adjacent tetrahedra of t are in

IV. delete it [rom Tlist.

Step 2.3. Compute En ~ (E U E') - (E n E').

Step 2.4. Delete tetrahedra in ~v from T. Add tetrahedra to T that are created by

taking the point Pi as the apex and the triangular faces o[ B" as bases.
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-1.'1./ Degree-2 rohustness of DT-Robust

Let T1 denote the triangulation which consists of the single tetrahedron t, =

(PI,P2,P3,P4) and Ti (i = 2, .. ,k - :3) denote the triangulation obtained by adding

]JJ+i to Ti _ 1 at the il.h stage.

Lemma 5.4.3 Let T he a triangulation constructed by the algorithm DT-Robust at

any stage. The underlying graph G of T satisfies Cl and C2.

Proof: We prove it by induction. Definitely, Cl and C2 are true for the first triangu

lation T, which consists of a single tetrahedron. \Ne assume that the triangulation T;

satisfies Cl and C2 and prove that the triangulation Ti +1 satisfies them too.

Removing tetrahedra in tV and the faces that are in B n B' affects only the stars

of the vertices in B", Note that an edge is removed only when all faces adjacent to

it arc removed. An internal face is removed when both tetrahedra incident on it are

removed. A face on the boundary is removed if it appears both on Band B I • Consider

any vertex v on BII
• Consider the planar embedding of star(v) that is matched with

other stars.

Consider the case when BI is not empty. Since tetrahedra in one component of IV

are collected through face adjacency and BnBI is kept connected for each component.

removal of edges to create B", in effect, removes a connected subgraph from star(v).

This creates either a hole in the embedding of star(v) or a "dip" in its boundary.

Figure .5.13 shows a hole and a "dip" created by removing connected subgraphs from

the planar triangular graphs of the triangulations shown in Figure 1.2. Joining Pi to

the faces in B II has the following effects on the star(v). In case a hole is created, Pi is

joined to the vertices of the hole. Otherwise. Pi is connected to the consecutive edges

on the modified boundary of star(v). In both cases, star(v) remains to be planar

triangular.

Consider the other case whcn B' is empty p;iving B" ::::: B. In this case. nothing

is deleted from star(v). The new vertex Jli is connected to the consecutive vertices
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dip

Figure 5.13 A hole and a "dip" in a star embedding.

on the outer face of star(v). Thus, star(v) remains to be planar triangular. Finally,

since E" is planar triangular star(pi) is planar triangular.

New faces created by joining Pi to the faces on BII appears in at most two tetra

hedra and thus appears in the stars of at lIlost two vertices.

Lemma 5.4.·1 Let T be the triangulation constructed by the algorithm DT-Robust at

<toy sLage. The underlying graph G of T satislies C3.

Proof: 'We have 1.0 prove that all stars match with respect to some orientations.

Consider the set of tetrahedra incident on it. vertex v of T. The underlying graph of

the structure formed by the bases of the tetrahedra with apex v constitutes star(v).

Let the orientation of star(v) be specified by the orientations of these bases (faces)

on corresponding tetrahedra. We prove by induction that all stars in G match with

t.hese orientations.

Certainly, the hypothesis is true for the first triangulation T1 which consists of a

single tetrahedron. Let it be true for the triangulation T; at the ith stage. Let J be a

r;Jrr on nil. \Vhilf' m'lkin .. lh(' Iph'lhf'rlnl with f <I.e; t,hp h;'l~f' ;'Inrl!l';'Is thp rlf)Px. thp

face f is given the orientation as follows. If f is incident on bd(W), it is oriented in
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the same way as il is in the tetrahedron tdV. If f is on the boundary of Ii incident

on the tetrahedron t'ETi , the face f is given the orientation that is opposite to its

orientation in i'. \tVith these orientations, the faces in B/I match to each other and

any (ace in B" which appears on two tetrahedra gets opposite orientations. Thus.

star(Pi) matches with other stars with the orientations of the faces of corresponding

tetrahedra. Insertion of Pi affects the stars of the vertices on B". New faces are

generated by joining Pi to the edges on B". Let f' be such a new face incident on a

tetrahedron t" with Pi as the apex and ]//cBI/ as the base. Let fill be adjacent to Iff on

8" by the edge on which f' is incident. The [ace J' appears on another tetrahedron

till that has Pi as the apex and fill as the base. Since f" and fill match each other, J'

must get opposite orientations on the two tetrahedra tlf and t///. Thus, all faces get

opposite orientations on adjacent tetrahedra implying the matching of all stars.

Lemma ,5.4.5 Let T be the triangulation constructed by the algorithm DT-robust at

any stage. The underlying graph G satisfies C4 and C5.

Proof: In Lemma 5.4.3 and 5.4.4, we considered the oriented faces of the tetrahedra

of T in the embedding of G. Thus, the faces on the boundary of T constitute the

surface of the embedding (S) of G. Since we maintain a single connected boundary

of T throughout the algorithm DT-Robust, S has a single connected surface (C4).

By induction, we can prove that the boundary of T is planar triangular with all

triangular faces. This type of graph can be embedded on the surface of a sphere and

thus satisfies C5. The initial triangulation T1 satisfies it trivially. Let the boundary of

T; be planar triangular with all triangular faces. In case B is empty in the algorithm

DT-Robust, the boundary remains to be the same in the next stage. In the other

case when B is not empty, Steps 2.1 and 2.2 remove a connected portion from the

boundary which in elfect creates a hole in it. The new point Pi is coonected to the

\,prtices of the hole while creating new tetrahedra. This, in effect. keeps the boundary

to be planar triangular with all triangular faces and thus maintains the condition C.5.

Theorem .5.4.1 The algorithm DT-Robust is type-2 robust.

,

L
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Figure :3.14 Joining Pi to the faces in 81/ with proper orientations.

Proof: We prove that DT-Robust has "non-failing" and "convergence" properties.

Steps 2.1 through 2.3 always produce a nonempty boundary B" that is planar trian

gular without failing since every possibility is taken care of while searching for faces

in Band 8'. Step 2.4 can never fail since it does only symbolic computations of

deleting and adding tetrahedra. Thus. the algorithm DT-Robust can never fail.

The algorithm DT-Robust produces the same output as DT-Exact under infinite

preCiSIon. lJnder infinite precision Step 2.1 or hoth algorithms produces the same

boundary B. Similarly, Step 2.2 or both algorithms produces the same boundary

B' under infinite precision. This ensures that Step 2 of the algorithm DT-Robust

hecomes equivalent to that of DT-Exact under infinite precision. Thus, given the

same input and infinite precision, the algorithm DT-Robust produces the same output

as DT-Exact. This implies that the output produced by the algorithm DT-Robust

converges to the true solution under infinite precision. By Lemma 5.4.3,5.4.4,5.4.5. it

always produces satisfies the conditions Cl through C5, no matter what the precision

IS.
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·5.5 Conclusions

The good triangulation algorithm of convex polyhedra together with the convex

decomposition algorithm through complete cuts gives a method for good triangula

tions of nonconvex polyhedra as well. However, this method has the limitation that

the convex polyhedra produced by the convex decomposition algorithm may be very

bad in shape. An algorithm that achieves good triangulations directly for nonconvex

polyhedra is more practical.

Although in our algorithm we avoided type(i) through type(iv) tetrahedra, we

could not avoid some special type of slivers, i.e., type(v) tetrahedra. OUf immediate

goal is to find a new method or to modify this algorithm so that we can avoid the>e

slivers too. The difficulty with the avoidance of these slivers comes from the fact that

an upper bound on the radius of the circumscribing sphere and a lower bound on the

lengths of the edges of a tetrahedron do not prohibit it to be a type(v) tetrahedron.

A lower bound on the radius of the inscribing sphere together with an upper bound

on the radius of the circumscribing sphere of a tetrahedron avoids such tetrahedra.

We have devised a type-2 robust algorithm for the Delaunay triangulations in 3D.

\Ve have used thresholded computations (with threshold equal to zero) in our attempt

to make it type-4 robust, though we could not prove it. Designing a provably type

-l: or type-5 robust algorithm for this problem is a crucial open question. Another

open question is: can this type-2 algorithm be generalized for higher dimensions? Vve

believe that the properties Cl through C5 of topological triangulations generalize in

higher dimensions and thus the type-2 robust algorithm can be generalized for higher

dimensions too.
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6. CONCLUSIONS AND FUTURE STUDIES

6.1 Contributions

This thesis focuses on efficient algorithms for decompositions of polyhedra and

their robust implementations. Decompositions of polyhedra may have different flavors

depending on the desired shape and size of simpler components. We have concentrated

on two types of decompositions , namely convex decompositions and triangulations.

It is often the case that an efficient algorithm works on a restricted class of in

put. There are efficient algorithms for convex decompositions, triangulations and

Peterson-style eSG decompositions for restricted class of polyhedra. In practice,

however, polyhedra that do not belong to this restricted class are very common.

Hence, there is a pressing need for devising efficient algorithms for more general class

of polyhedra. In this thesis, we have presented efficient algorithms for convex decom

positions, triangulations and Peterson-style csa decompositions for more general

class of polyhedra.

The convex decomposition algorithm is based on the cut and split paradigm of

Chazelle [Cha80]. This simple paradigm led to efficient triangulation and csa de

composition algorithms. Vo/ith the help of a classic theorem on arrangements, weshow

that the cut and split method can be efficient. 'VVe believe that the combinatorial facts

revealed through the analysis of the sequence of cuts and complete cuts in Sections

3.3.3, 4.3 will find their use in other related algorithms.

In some applications. it is desired that the simpler components are well shaped.

Finite element simulations with the triangular elements need a triangular mesh with

well shaped elements. There is no known algorithm for triangulating polyhedra with

guaranteed quality. We have showed that a Delaunay triangulation based 2D algo

rithm can be cXLcnded in 3D to generate guaranteed quality tetrahedra for the convex
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hull of a point set. This is the first algorithm for the problem of this kind in three

dimensions.

Geometric algorithms, when implemented, often fail due to numerical errors and

degenerate cases. One goal of this thesis is to devise algorithms that are imple

mentable robustly. The definition of robustness depends on the desired output. In

some applications. outputs that are "close" to the true solution are acceptable, and in

others only exact solutions are acceptable. Producing an exact output even with im

precise arithmetic computations. must need some assumptions on the input to buffer

the information lost through erroneous computations. For the problems that ask for

only combinatorial output, it is possible to produce exact output with certain mini

mum feature assumptions on the input. 'We have shown such an algorithm in Section

2.4 for polygon nesting. On the other hand, for problems that have both geometric

and combinatorial parts in their solutions, it is almost impossible to produce exact

outputs with inaccurate computations. In those cases, we can only expect outputs

that are "close" to the true output. In three dimensions, however, it is often very

hard to devise type-4 or type-5 robust algorithms. However, it may be easier to devise

type-2 or type-3 robust algorithms for them. The algorithm in Section 5.4 supports

this assertion. It is our hope that type-2 and type-3 robust algorithms become ac

tually type-4 and type-5 robust with thresholded computations. though proving this

fact is hard.

6.2 Future 'Nork

This work has introduced some new ideas in designing, analyzing, and implement

ing algorithms in decompositions of polyhedra. However, much remains to be done.

Below, we give some of the open problems in this area.

It is an open question whether we can further reduce the complexities of convex

decomposition for polyhedra with holes and shells. \life believe that using the concepts

of constructing arrangements of planes in three dimensions, it may be possible to

reduce the time complexity.



116

Minimum convex partition is known to be NP-hard for polyhedra with holes in

their facets. It remains an open question whether minimum convex partition is still

NP-hard for polyhedra without any hole in their facets.

Designing a type·4 or type-5 robust algorithm for convex decompositions is a very

important open problem. To have any success in this respect, we have to understand

the deep interactions between the underlying topology of polyhedra and perturbations

in their features.

We have proved non trivial lower bounds of O(p2) for CNF and DNF Peterson-style

formulae for polyhedra. Proving a non trivial lower bound for general Peterson-style

formulae in case of polyhedra remains open. vVe suspect that this lower bound is also

O(p').

The good triangulation algorithm of convex polyhedra together with the convex

decomposition algorithm through complete cuts gives a method for good triangula

tions of nonconvex polyhedra as well. However, this method has the limitation that

the convex polyhedra produced by the convex decomposition algorithm may be very

bad in shape. An algorithm that achieves good triangulations directly for nonconvex

polyhedra is more practical.

Although in our algorithm we avoided type(i) through type(iv) tetrahedra, we

could not avoid some special type of slivers, i.e., type(v) tetrahedra. The difficulty

with the avoidance of these slivers comes from the fact that an upper bound on the

radius of circumscribing sphere and a lower bound on the lengths of the edges of

a tetrahedron do not prohibit it to be a type(v) tetrahedron. A lower bound on

the radius of the inscribing sphere together witb. an upper bound on the radius of

the circumscribing sphere of a tetrahedron avoids such tetrahedra. Generating a

triangulation where all five types of bad tetrahedra are avoided remains as an open

problem.

In mesh generation, it is often desired that the mesh density vary with the changes

III the shape of the domain. Thus, at places where the shape changes rapidly, the

.~""I, rl"ne-il,' .... I,,..,,,lrl h .... r"l"ti,·"l,. l,ifTh '1'1,;", t,·" .... ,..,f ... rl ... n~i,""" n-."e-h fTnnnr",ti",n ('ne-nr,....,

.••• " •• "_ •••.••.•.••••• ,,•••••••••••. '.' "' ..., •••••••• '.'J"' ····"···1····· _.. ""_ .
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a balance between accuracy and efficiency. Generating an adaptive as well as good

triangulation of a polyhedral domain is an important problem. \Ve believe that the

Delaunay triangulation based algorithm can be modified to generate an adaptive and

good triangulation by tuning the parameter r properly in different regions.

Although a type-5 robust algorithm for 2D point set triangulations exist, there

IS no such algorithm in 3D. In particular, the problem of generating type-5 robust

Delaunay triangulations is hard even in 2D.

It would he interesting to know how to decompose polyhedra into simpler com

ponents other than convex pieces such as star polyhedra (there is an internal point

from which entire polyhedron is visible).

Decomposition of curved solids into convex pieces is another exciting problem. Not

all curved surfaces are convex decomposable. So, we may seek a convex decomposition

of a curved solid in terms of finite union and differences of convex components. In

2D, any polygon with algebraic curves as boundaries admits such a decomposition

[BK88]. In 3D, this is possible only if the surface of the solid can be decomposed

into convex, concave and planar patches. The hyperbolic surface as described in

[HCV32] does not admit such decomposition. An algebraic surface of degree 2 can

be decomposed into canonical patches, elliptic (Gaussian curvature> 0), hyperbolic

(Gaussian curvature < 0), and parabolic (Gaussian curvature = 0). The problem

of computing a decomposition of a curved solid with algebraic surfaces of arbitrary

degree in terms of finite union and differences of components having only canonical

surfaces remains open.
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