
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1991

A Parallel Algorithm for Computing Invariants of Petri Net Models A Parallel Algorithm for Computing Invariants of Petri Net Models

Dan C. Marinescu

Mike Beaven

Ryan Stansifer

Report Number:
91-024

Marinescu, Dan C.; Beaven, Mike; and Stansifer, Ryan, "A Parallel Algorithm for Computing Invariants of
Petri Net Models" (1991). Department of Computer Science Technical Reports. Paper 873.
https://docs.lib.purdue.edu/cstech/873

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951705?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A PARALLEL ALGORImM FOR COMPUTING
INVARIANTS OF PETRI NET MODELS

Dan C. Marinescu
Mike Beaven

Ryan Slansifer

CSD-TR-91-024
March 1991

(Revised September 1991)

To appear in the Proceedings of Petri Nets and Performance Models,
PNPM91, Melbourne, Australia, December, 1991, IEEE Press.

A Parallel Algorithm for Computing Invariants of Petri Net Models'

Dan C. Marinescu

Dept of Computer Sciences
Purdue University

W Lafayette, IN 47907

Mike Beaven

Dept of Computer Sciences
Purdue University

W Lafayette, IN 47907

Ryan Stansifer t

Dept of Computer Sciences
Purdue University

W Lafayette, IN 47907

Abstract
Parallel algorithms for the analysis of Petri net

models are discussed in this paper. It is argued that
the application of Petri nels in areas like Performance
Modeling and Software Engineering lead to complex
nets whose analysis can only be performed by exploit
ing the explicit parallelism in existing methods of anal
ysis and by developing parallel analysis algorithms.
The focus of this paper is the structural net analy
sis. A parallel algorithm for computing net invariants
using a distributed memory multiprocessor system is
presented. We discuss its implementation, and give
preliminary performance measurements.

1 Introduction
Petri nets are used as graphic languages for descrip

tion and more recently for the analysis of complex sys
tems in various areas of Computer Science, of Electri
cal and Industrial Engineering and other fields.

There are challenging issues in the representation of
complex systems 8.'l net models. Different families of
net models were proposed for different application, for
example Stoch8.'ltic Petri nets for performance models,
Ada nets for analysis of concurrent programs written
in Ada [11] and so on. After constructing the net
model of a. complex system, the next stage of the mod
eling methodology is to apply the general methods of
the net theory for qualitative or quantitative analysis
of the net model. Finally, the results of the net analy
sis need to be remapped into the original domain and
the relevant properties of the system under investiga
tion have to be determined.

An application of Petri nets can only be successful
if this cycle is complete. The focus of this paper is the
second stage of this process, namely the net analysis.
The primary area of applications discussed is Software
Engineering. The main theme is that the complexity
of the systems studied and the level of modeling details

-This research WII.8 supported, in parl, by a grant from the
Software Engine<:lring Research Center at Purdue University, a
Nlltional Science Foundation Industry/University Cooperative
Re9earch Center (NSF Granl No. ECD-8913133), by the Strate
gic Defense Initiative through ARO grants DAAG03-86K·OI06
and DAAL03-9Q-Ol07, and by NATO grant 891107.

I The author's present address is Dept of Computer Sdence,
University of North TexlI.8, Denton, TX 76205

required to investigate certain aspects of the systems,
lead to extremely large and very complex net models.

There are three broad classes of methods for the
analysis of Petri nets. The first class of method is
based upon homomorphic transformations. A good
reference which outlines the principles behind trans
formation and decomposition of nets, is the paper of
Berthelot [3). It should be noted that in general J the
transformatIOns are aimed at reducing the complexity
of a net, while preserving some properties which are
relevant for the specified type of analysis being consid
ered. For example, aset of rewriting rules for Petri net
models of concurrent projections are discussed in [1].
These rules are tailored to preserve timing propertIes
required by a critical path analysis of a concurrent
program.

A second class of methods for net analysis are based
upon structural analysis. Structural analysis, or the
study of invariants, attempts to isolate from a set,
subnets with special properties. For example, a place
invariant ofa net is a subnet, which preserves the num
ber of tokens. Place invariants can be used for static
deadlock detection as pointed out by Murata [11].
There are also important applications of transition in
variants in modeling of logic programs [12] and Horn
clauses [7]. The same algorithm can be used to com
pute both place invariants and transition invariants.

A third class of net analysis methods are based
upon the reachabi/ity analysis. Detection of a dead
marking, for example, can be done through reachabil·
ity analysis. A dead marking corresponds to a dead
lock state, no transition can fire.

Consider for example the application of Petri nets
in Software Engineerin~Of Real-Time Systems. The
approach discussed in 2), is to translate concurrent
programs into colored etri nets and then to study
synchronization anomalies and timing properties of
the programs using structural analysis, as well as crit
ical path analysis of the net models.

The size of the programs of interest makes this
problem very challenging. For example the control
program running on a communication switch of Bell
Northern Research consists of about 5.106 lines of
code written in a high level real~time programming
language. Usinl5 a translation technique like the one
presented in [13J, the incidence matrix. and ultimately
the net model of the concurrent program can be ob·

tained. The complexity of the analysis depends upon
the objectives of the ana-lyoia. For example, when one
is interested in determinin~ the timing correctness of
an embedded system, a critical path analysis of the
net representation of the program needs to he per
formed [1]. But relatively accurate timing estimates
can only he provided at the machine instruction level,
hence it is conceivable that each machine instruction
has to be mapped into a different transition in the ini
tial program representations. Simple reduction rules
can be applied to reduce the numbers of transitions in
the net model or'the program, yet a net model of the
control program mentioned above could be expected
to have 10 7 to 109 transitions.

A distinction must be made between the size of a
net and the complexity of the analysis, because nets of
modest size may lead to a very complex analysis. For
example, consider the "exponential net" discussed in
Section 4, which consists of a transitions with b places
in the preset or the postset of every transition. The
total number of minimum Bupport place invariants for
the net is baH. Even for a small net with say a =
10 and b = 3 the number of minimum support P~

invadants is close to 60,000 and the time and memory
requirements to solve such a problem are substantial.

The Mfiops rates and the memory requirements for
the analysis of such nets, impose the use of parallel
systems. Distdbuted memory multiprocessor systems
provide the kind of computing resources required by
the analysis of large and complex net models. For ex
ample, the INTEL Touchstone Delta system provides
in excess of 10 GFlops as peak rate and 8 Gbytes of
memory, but parallel methods for neL analysis need to
be developed. Such methods have to exploit the ex
plicit and the implicit parallelism in net analysis. The
explicit parallelism can be determined by identifying
6ubnets which can be analyzed in parallel. For ex
ample, the critical path analysis of two subnets corre
sponding to two program modules which do not com~

municate, can be carried out in parallel. The implicit
parallelism can only be exploited by designing parallel
algorithms which take a net as a whole and distributes
in some fasbion, the data and the computations among
the processing elements of a distributed memory sys
tem.

The paper is organized as follows. A discussion
of structural analysis, of its applications and an al
gorithm to compute minimum support P-invariants,
are covered in Section 2. Section 3 presents a paral
lel algorithm to compute invariants for a distributed
memory system and discusses its communication com
plexitr.. The implementation of the algorithm on an
iPSC/i860 system and preliminary performance data
are covered in Section 4.

2 An algorithm to compute invariants
of Petri nets

A number of definitions and some of the notation
for Petri nets and related concepts are introduced in
this section. These will be used in the discussion of the
algorithm for computing P-invariants. P-invariants
and T-invariants are dual concepts. For this rea-

son only algorithms to compute P-invariants are pre
sented.

2.1 Definitions
A number of definitions and some of the notation

for Petri nets and related concepts are introduced in
this section. These will be used in the discusaion of
the algorithm for computing P-invariants.

Definition 1 The quadruple N = (S,T,F,W) is a
Petri net when the following conditions hold:

• S is the set of places,

• T is the set of transitions,

• SnT=0,

• F ~ (S x T) U (T x S) is the incidence relation,

• S#0andT#0

• W : F --+ N, is the arc weighting function.

For any matrix, M, let MI; be the k-th row of M
and m;j the element in the i-th row and j-th column
of M. For any vector J, we use the notation J(k) for
the k-tb element of J.

Definition 2 Given orderings of T = {tl, ... ,tm }
and S = {PI,.'" Pn} and defining two new func
tions W+(i,j) = W(tj,Pj) and W-(j,il = W(pj,t;),
then the matrix A, an n x m matrix o(integers with
Clij = W+(i,j) - W-(j, i), is the incidence matrix of
P.

Definition 3 The invariance matrix is a matrix with
11 columns. Initially, it is the identity matrix and at
the end of the computation will have one row per p~

invariant.

Definition 4 If J·A = 0, the n-vector J is called an
P-invaricmi of P.

Definition 5 PJ = {p E S I J(p) =f. O} is called the
support of J.

Definition 6 An P-invariant J of N, which is not
identical to 0, is non-negative if J(p) ~ 0 for allp E P.

Definition 7 The support PJ of an P-invariant J is
said to be minimal iffor any P-invariant Jf I PJI ~ PJ
implies that PJI = 0 or PJI = PJ.

Definition 8 Let MI and M 2 be ml x rn2 and mt x
rns matrices. The augmented matrix M = (M. 1M2)
is the ml x (mz + ms) matrix obtained by concate
nating MI and M 2 suCh that the first m. columns of
M are identical to the corresponding columns of M I
and the last mz columns of M are identical to the
corresponding columns of of M 2 .

,
i

2.2 A sequential algorithm to compute P
invariants

This algorithm for computing P-invariants, is based
upon an algorithm by Farkas [6] to solve 8. set of lin
ear equations over the ring of integers. This algorithm
may be looked upon as a graph rewriting algorithm in
which places are created and deleted, while preserving
the set of P-invarian~ortheoriginal graph. Each new
place accumulates the portion of the original graph
which it comprises by means of an invariance matrix
which augments the incidence matrix. For each step in
the algorithm, we take a transition with a nonempty
neigbbor set and delete all of these neighboring places
while adding a new place for each pairing of an incom
ing neighbor with an outgoing neighbor. This process
continues until all the transitions have empty neighbor
sets.

In the following description, for any 0 x m matrix,
M, and length m row vector, J, let M + J be the
(0+ 1) x m matrix formed by adding J as the (0 + 1)
at row. Similarly, M - i will represent the matrix
formed by removing the i-th row of M. Both of these
notations will be extended to sets of rows in the obvi
ous manner. These will be the mechanisms by which
we add or delete places which are represented by rows
of the incidence and invariance matrices.

The initial step of the algorithm is to create an aug
mented matrix, consisting of the initial incidence and
invariance matrices. This matrix is denoted dO) =
(BCO) I A(O) = (In I A), where B(O) is the initial
invariance matrix (equivalent to In, the n x n iden
tity matrix), and A(O) is the initial incidence matrix

(equivalent to A). A~i-l)(i) is the i-th element of the
row vector which is the j-th row of the incidence ma
trix A after iteration (i-I).

The following family of functions,

Ii:8 xS -+~+m

defined by

(·k).... JJ(n+;)1 1+ 11(n+i)1 J
" gcd(l(n+i),J(n+i» gcd(1(n+i),J(n+i»

where J = Cr,-I) and I = 0;-1), are used in the
statement of the algorithm. The function Ii combines
the rows of d i

- 1) associated with places Pi and PI<
to create the row representing the new place which is
the merger of the places in the pair. Now, for each
transition t, E {t1, ... ,tm } in turn, we compute the,,'"

S+ {p; E S I A\;->lU) > 0)

S_ = {p; E S I A\;->lU) < 0)

H = {J;(k,j) I (p"p;) E S+ x S_)

The i-tb step of the algorithm then reduces to

Cm = (BU) I AU)=CU-1)+H-(S+US_)

This algorithm is also described in a paper by
Martinez and Silva [10J. In this paper an estimate of

the rank of a matrix is used to eliminate non-minimal
support invariants. A proof is given that the test is
conect. Another test of eliminating non-minimal sup
port invariants is found in GreatSPN (4]. In this test,
each new row created at the i-th iteration of the algo
rithm is compared with existing rows and is deleted if
its support covers the support of an existing row. The
support of a place invariant J1 is said to cover that of
h iff all non-zero components of h are found in h.
J) may have some additional non-zero elements. This
test is critical for the efficiency of the algorithm. Only
in some pathological cases, like in the case of the expo
nential net discussed in Section 4, where all invariants
are minimum support invariants and the number of in
variants grows exponentially with the size of the net.

3 A Parallel Algorithm for Computing
Invariants

In this section a parallel algorithm to compute P
invariants using a distributed memory multiprocessor
system, is introduced. First an overview of distributed
memory multiprocessor systems and the message pass
ing programming paradigm is discussed. An outline of
the algorithm is then presented. Finally an analysis
of the communication complexity is given.

3.1 Distributed memory multiprocessor
systems

A distributed memory multiprocessor system con
sists of a set of nodes and an interconnection network.
A node consists of a processor, main memory and
possibly, a co-processor. Most of the commercially
available systems use either a mesh or a hypercube
interconnection network. For example, the iPSCji860
system at CSC (Concurrent Supercomputer Consor
tium) is a 64 node hypercube. Each numeric node uses
an i860 processor for numerical computations, has 16
Mbytes of memory and has a co-processor responsible
for message routing. The system is controlled by a
System Resource Manager running on a front-end or
host.

An application consists of a host program and one
or more node programs. The host program is responsi
ble for acquiring the necessary resources for the appli
cation, e.g., for obtaining asub-cube, for loading in the
nodes of the sub-cube the corresponding node program
and data, and for releasing the sub-cube upon comple-
tion. Node programs perform computation upon local
data and communicate with one another through mes.
sages, using communication primitives like send and
receive.

The main difficulty in designing algorithms for dis
tributed memory multiprocessors, is in partitioning
the data and the computations to

(a) minimize the communication between nodes,

(b) ensure a balanced load distribution among the
nodes.

Communication among nodes is rather expensive,
the time to send a short message (say 1 byte) between
two adjacent nodes is roughly the time to perform 103

to 104 floating point operations on a node, and this
justifies the requirement (a) above.

The algorithm in the next section is based upon
the SPMD (Same Program Multiple Data) paradigm.
All nodes execute the same program, but on different
data.
3.2 A parallel algorithm to compute P

invariants
The algorithm for computing P-invariants in par

allel follows closely the sequential algorithm described
in Section 2.2. Ownership of the incidence matrix A
and the invariants matrix B is distributed cyclically
among the N processors as shown in Figure 1. The i
th row of the invariants matrix is owned by processor
i mod N; the j-th column of the incidence matrix is
owned by processor j mod N.

1 2 ···N 1 2 .. ·

1
21----------1

then all synchronize and continue with the next tran
sition until all transitions have been examined.

The pseudo code describing the main computation
follows. Each processor executes the same code. The
variable iam holds the unique processor number, 0
through N - 1, of the node.

for (col=l ; col<=num_cols ; col++) {
it (iam == col%H) {

compute_transto~vector();

broadcast_transtorm_vector()i
} else {

receive_transtorm_vector();
}
update_incidence_matrix();
distribute_invariant_matrix_ro~s()i

receive_invariant_matrix_ro~s()i

combine_invariant_matrix_ro~s();

delete_old_invariant_matrix_ro~s();

gsych() i
}

Figure 1: The cyclic data distribution for computing
invariants with N processors.

N

1

2

The initial step is the same as in the sequential
algorithm with each processor storing the rows and
columns it is to own. The processor owning the next
column to be eliminated then broadcasts to each other
processor a vector consisting of the list of rows with
negative and positive elements in that column, S+ and
S_, respectively. Each processor then bundles the
rows it owns into groups based on which other pro
cessors need them to create the new rows they are to
own and sends the bundled rows to each processor the
proper grouping. It then receives from some (possibly
all) of the other the rows it needs to create the new
rows it is to own. After combining these rows and stor
ing the new row, it deletes the rows used it owns which
where in the original broadcast vector. The processors

with Mm(l~ and Mm,n the maximum, and respectively
the minimum number of columns of the incidence ma
trix assigned to a node.

In the initialization phase, one of the nodes (the
leader) reads the incidence matrix and broadcasts it to
all other nodes. Each node retains only the columns
of the incidence matrix it owns. In the termination
phase, the leader informs the host when all computa
tions have completed.

DurinoS the phase where new rows are created, each
new row IS subjected to the non-minimal support test
used in GreatSPN. This test, however, is only carried
out for those preexisting rows which are stored on the
local processor. This may allow some non-minimal
rows to remain, but reduces the communications com
plexity. The set of preexisting rows includes not only
the rows permanently stored on the local processor,
but those rows temporarily stored there for the cre
ation of the new rows during the current iteration of
the algorithm. In addition, the rows which are perma
nently stored on the local processor are tested against
the rows received from the other processors since tbis
adds very little extra computation and no extra com
munications.

3.3 On the Analysis of the Algorithm
Numerical problems involving manipulation of

sparse matrices pose challens:ing questions to the de
sign of a parallel algorithm 15J. It is extremely difficult
to achieve dynamic load ba ance for parallel solvers of
sparse linear systems. The strategy adopted in the
algorithm presented in this paper is to assign to each
node an approximately equal number of columns of
the incidence matrix and rows of the invariants ma
trix. If the number of transitions of the net m » P
with P the number of nodes in the sub-cube assigned
to the problem, then the data mapping strategy used
guarantees that

AB

N

1

2

Yet there is no guarantee of dynamic load balance.
Let OJ be the Dumber of new invariants generated when
processing column i of the incidence matrix A,

-._, .. -- ,,-._K·,. ,_.._.... ,._ .._,

100 traneitione -+-

400 tranBi.tione _ •.
700 traneitione ·d··

1000 traneitione

~---~
-----~-~------------..-- -. --------

-- - -..•.... _.- _ _. __ ..

....._... _.- .-... ,--.._-.-

1000

10000

nodes which execute it to wait until all other nodes in
the cube have called gsync.

The measurements are carried out using the mcloek
system call which provides the elapsed time since the
cube was booted with one millisecond accuracy. Each
measurement was repeated several times and the tim
ing results were within 5 percent of each other. Yet
no statistical analysis of the timing results was per
formed.
4.2 Performance of the parallel algorithm

The performance of the parallel algorithm for com
puting P-invariants was studied in two extreme cas~.

In the first case called linear Pdri net every transition
is connected to one input place and one output place.
The output place serves as the input place for the
next transition. Such a Petri net has exactly one P
invariant. The other extreme case called exponential
Petri net consists of t transitions and each transition
has p places in its preset and postset. The net has
pI+! invariants.

100000 r--~-----~--~-----.

E = O(N').

An event is informally defined as an interruption of the
flow of control in a thread for communication. Sim
ple arguments show that in this case the maximum
speedup and the optimal number of processors de
pend upon the total amount of computations required
by a sequential algorithm, called W(I) and the con
stant amount of computations associated with a single
event, O. If a = W~l) then the maximum speedup at
tainable is shown in Table 1.

where 15+1is the number of positive elements in col
umn i of A, and 15_1 is the number of negative ele
ments in column i of A. Clearly 0;. varies from node
to node, depending on the structure of column i and
the different nodes will have different computational
loads. Another major difficulty in designing efficient
algorithms for sparse equations solvers, is the require
ment for global synchronization [S]. In this particular
algorithm, a global synchronization is required at the
end of each of the m steps.

Following the arguments presented in fS] and [9] in
this type of algorithm, the relationship between the
number of events E and the total number of threads
of control N,

,Table 1. Maximum speedup and the optimal
number of threads of control function of a.

>0, L __~__~_~ -.J
,

This brief analysis suggests that the algorithm will
lead to significant speed up only for very large prob
lems (W(I) large) and for systems with efficient com
munication primitives and fast communication hard
ware (0 small).

4 Experimental Results
4.1 Implementation and methodology

The results reported in this paper were obtained
using two different iPSC/iS60 hypercubes, a 16 node
machine at Purdue and a 64 node machine at the Cal~

ifornia Institute of Technology. The available memory
is 16 Mbyte per node for both systems. Two Green
Hills C compilers are used. The i386/1.8.4 is used to
compile the host program and the i860/1.8.5b for the
node program.

The iPSC routines from the C system libraries used
in the implementation are esend, ereev, and gayne.
The library routine eaend causes the sending node to
wait until the message is sent, not until the message is
received by the target node. The library routine ereev
is a blocking receive which waits until a message of a
specified type is received, and gayne which causes all

Figure 2: A log-log plot of the timing data for linear
Petri nets with one P~invariant each.

The data shown in Figure 2 is for linear Petri nets
with different numbers of transitions. Along the x
axis, in logarithmic scale, are the number of proces
sors. The y-axis represents time, in milliseconds, also
in logarithmic scale. In Figure 3 the data for exponen
tial Petri nets is presented. Even though these nets
have few transitions, many new rows of the invari
ance matrix are created at each step of the algorithm.
In fact, for large n many processors are required to
even have enough available memory to run the pro
gram. Note that that any test for minimal support
P-invarianl.s would only add to the running time of
the algorithm. This is because the test will eliminate
no rows regardless of the algorithm, since all the p
invariants of the exponential net are minimal.

Yet a more realistic case is shown in Figure 4. The
data shown in Figure 4 is for a Petri net generated by
the VERT project [2] for the following simple 19 line
Ada program.

Figure 3: A log-log plot of the timing data for Petri
nets with 2" P-invariants each.

Figure 4: A log-log plot of the timing data for a Petri
net model of an Ada program.

procedure P is
task type TT:
type PtrTT is access TTi
X : PtrTI;
Y : PtrTI;
procedure S is

task T is
entry Z;

end T;
task body T is
begin

accept Z;
end T:

begin
T.Z:

end S;
task body TT is begin 51; S2; end TT;

begin
X := ne'll TT:
P.S;
S3;
Y := nev TT;
P.S;

end P;

This program is translated into the colored Petri net
shown in Figure 5. The Petri net model for the pro
gram has 18 places and 14 transitions. The algorithm
finds 392 P-invariants. The steeply decreasinfi slope
suggests that a parallel algorithm for computmg P
invariants may be more useful in the "typical" case
than in the two pathological cases presented above.

Ai; expected from the analysis in Section 3.3, the al
gorithm does not perform well for ''small'' cases. For
example, in the case of a linear Petri net (Figure 2)
the optimum number of processors for the 103 tran
sition case is probably 16. Yet the speedup does not
increase significantly when the number of processors
is increased to 16.

In the exponential case the parallel algorithm per
forms better. The optimum number of processors for
26 case is 8, it increases to 16 for the 27 case and to 32
for the 29 case. This shows clearly that the algorithm
is suited only for large nets. A comparison shows that
in most cases the parallel algorithms outperforms the
sequential algorithm for the same net only when the
number of processors allocated to the problem exceeds
P = 8. This indicates that further optimization of the
parallel algorithm is necessary. The test for minimal
support P-invariantB will provide additional informa
tion to determine the range of problem when the par
allel algorithm could prove its usefulness.

The analysis of the Petri net mode of an Ada pro
gram (Figure 4) shows a good performance of the par
allel algorithm, better than its performance on the two
pathological cases, the linear and the exponential nets.
A benchmarking methodology for testing the analysis
algorithms for Petri nets is necessary and much work
is needed in that area. In fact the Ada net shows bet
ter than linear speedup for the two processor cases. A
plausible explanation is that the node memory man·
agement is rather inefficient in performing "garbage
collection." When a single node is used, the repeated

,,"5
n ..7 ~_.

"..,

.........................
'"

".

....' .
'.

~~,"-"~."""."."""

............... ""-. ------- ---------.-----

'" L -'

1 2 4 0 16
proce88or8

'" .L_--:__~__:-_-::-_--:!.
1 2 4 B 15 32

processors

1000

1000

1e+05 r-----~--~-----___,

10000

10000

100000

100000 r---~---~---~--___,

BGNp

BGNs

ENDs

ENDp

Figure 5: Petri net model of procedure P.

AC,

storage allocation and deallocation lead to large over
head. When the computation is distributed over two
nodes, each node uses less storage and the overhead
for storage management decreases substantially. The
node operating systems are rather primitive a.nd mea
surements to confirm this explanation could not be
carried out at this stage.

The minimal support invariant test of the algorithm
introduced in this paper requires that each node per
forms the test locally upon the invariants it owns and
then broadcasts the information about which invari
ants are to be deleted so that all other nodes can
update the columns of incidence matrix they own.
The effectiveness of the test depends upon the net be
ing analyzed. In the extreme case of the exponential
net, all invariants are minimal support invariants and
therefore there is no pay off for the additional compu
tations and communication required by the test. This
is also the case of several other nets obtained by trans
lating Ada programs with few synchronization points.
For example, an Ada program with two tasks and four
entry points has a nearly tri-diagonal incidence matrix
and only few nonminimal support invariants are gen
erated. The execution time increases from 264 maec
(without the test) to 313 msec (with the test) on a
dimension 3 subcube (8 nodes) and from 438 maec
(without the test) to ~36 msec (with the test) on a
dimension 2 subcube (4 nodes). But in other cases,
the test is beneficial. For example, in the case of the
Ada program presented in this section, the execution
time decreased from 305 msec (without the test) to 47
maec (with the test) when running on a dimension 3
subcube. Further investigation of the effectiveness of
the test is underway.

5 Conclusions
A parallel algorithm for computing P invariants is

introduced in this paper. Its implementation on a dis
tributed memory machine is presented. The analy
sis of the communication complexity of the algorithm
shows that one could expect good performance for
very large cases. The experimental results confirm
this. A test case using a Petri net produced as a result
of translating an Ada program shows a higher speedup
than the two pathological cases, a linear and an expo
nential net.

References
[1] Beaven, M., Marinescu, D. C., and Stansifer R.,

"Critical path analysis of concurrent Ada pro
grams using colored Petri nets, in Proceedings of
24th IEEE International Symposium on Circuits
and Systems, IEEE Press, 1991, (in press).

[2) Beaven, M., Elmore, B., Marinescu, D. C., and
Stansifer R., "VERT-Verification of real-time
programs," in Proceedings of COMPSAC 91,
IEEE Press, 1991, (in press).

[3] Berthelot, G., ''Transformation and decomposi
tion of nets," in Lecture Notes in Computer Sci
ence, volume 254, Springer Verlag, 1987, pages
359-376.

[10]

[4] Chiola, G., "A Fjraphical Pe~ri net tool for per
formance analysIs," in Proc. of 3-rd Symp. on
Modeling Thchniques and Performance Evalua
tion, AFCET, Paris, 1987.

[51 Fox, G., Johnson, M., Lyzenga, G., Otto, S.,
Salmon, J. and Walter, D., Solving problems on
concurrent processors, Prentice Hall, 1988.

[6] Farkas, J", ''Theorie der einfachen Ungleichun
gen," JOUl'nal fUi reine und angewandte Math
ematik, volume 124, 1902, pages 1-17.

[7] Lin, C" Chandhury, A" Whinston, A. B. and
Marinescu, D. C., "Logical inference of Horn
clauses in Petri net models," CSD-TR-91-031,
Purdue University, 1991.

[8] Marinescu, D. C" and Rice, J. R., "Synchro
nization and load imbalance effects in distributed
memory multiprocessor systems" I in Concur
rency: Practice and Experience., Willy, 1991, (in
press).

[9] Marinescu, D. C. and Rice, J. R. "On single pa
rameter characterization of parallelism," in Proc.
Fronfiers 90 Gonf. on Massively Parallel Compu
tation, IEEE Press, 1990, pages 235-238.

Martinez, J. and Silva, M., "A simple and fast
algorithm to obtain all invariants of a general
ized Petri net," in Application and Theory of
Petri Nets, edited by W. Reisig and C. Girault,
Springer~Verlag, 1982, pages 301-310.

[11]

[12J

[13J

[14]

Murata, T., Shenker, B., and Shatz, S.M., "De
tection of Ada static deadlock using Petri net in
variants," IEEE 'fransactions on Software Engi
neering, volume 15, No 3,1989, pages 314-326.

Murata, T. and Zhang, D., "A predicate
transition net model for parallel interpretation of
logic pro~rams," IEEE 'fransactions on Software
Engineenng, volume 14, No 4, 1988, pages 481
497.

Stansifer, R. and Marinescu. D. C., "Petri net
models of concurrent Ada programs," in Micro
electronics and Reliability, Pergamon Press, Vol
ume 31, No 4, 1991 pages 577-594.

Stansifer, R. and Marinescu, D. C., "Colored
Petri net models ofconcurrent programs," in 33rd
Midwest Symposium on Circuits and Systems,
IEEE Press, New York, 1991, pages 766-770.

	A Parallel Algorithm for Computing Invariants of Petri Net Models
	Report Number:
	

	tmp.1307986960.pdf.LVq8c

