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Abstract

A standard representation for strings is proposed, which has the
following properties.

(1) For any string x, putting z in such a standard representation
requires O(log|z]) CRCW-PRAM steps and O(|z|log|z|) total work
and space.

(2) Let W be a collection of strings individually given in stch
a standard representation. Let w be an arbitrarily chosen string
in W, w' an arbitrary substring of w, and {w, ws, .., W} an arbi-
trary set of substrings of strings in W. Then, a CRCW PRAM with
O(R = 34—, |@n| + |w']) processors will find all the occurrences of w’
in {w;, Wy, ..., W}, in constant time.
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1 Introduction

A number of sequential and parallel algorithms on strings [5] have been set
up to date. The current version of a bibliography compiled by I. Simon
[20] lists over 350 titles. In his recent survey of string searching algorithms
[1], A. Aho references 140 papers. Algorithms on strings acquire information
primarily by pairwise comparison of input characters. Typically, the number
of character comparisons performed in the worst case is also the leading
factor in the time and space complexity achieved by these algorithms. Most
algorithms on strings do not assume or exploit any order relation on the
input characters. In fact, alphabet order is quite often not even implied by
the statement of the problem. The corresponding algorithms only expect to
derive aresult in [=, #] from the comparison of any two symbols or strings. A
handful of algorithms on strings, however, need results in [<, =, >] from each
alphabetic or lexicographic comparisons, in order to function. This includes
of course all problems defined in terms of lezicographic orders. Among the
problems in this class, we find that of sorting a set of strings over some
ordered alphabet (e.g., in bucket sorting [2]), finding the lexicographically
least circular shift of a string (e.g., in checking polygon similarity [21]),
computing the Lyndon factorization of a string (e.g., in some public key
cryptosystems [11]), etc.

While the assumption that the alphabet be ordered does not pose a restric-
tion in practice (every practical encoding of an alphabet is subject to a nat-
ural order relation), it does represent sometimes a discriminating feature in
string algorithmics. For example, some lower-bounds for string editing and
related problems (see, e.g., [23]) have been established in a model of com-
putation where only tests of equality between symbols are allowed. Outside
this model, such lower-bound constructions no longer hold, even though no
significant exploitation of the alphabet order is known.

Recently, a few algorithms have been produced which derive their increased
efficiency precisely from the assumption that the alphabet be ordered [3,
10, 19]. This is quite interesting, since it shows that assuming an arbitrary
order on the input alphabet may lead to discover a more efficient solution
to problems on strings to which any notion of alphabet order seems totally
extraneous. In this paper, we discuss some such algorithms in connection
with the efficient parallel implementation of the following extension of the
classical problem of string searching.



Assume we are given a set of strings W upon which we want to perform many
strmg queries, as follows. In each query, we specify arbitrarily a substring
w’ of some string w in W (possibly, w' = w) as the pattern, ad also a set
W' = {i,,y, ..., ¢} of textsirings, where each @ is a string from W or a
substring of one such string. The result of the query is the set of all the
occurrences of w’ in W',

This problem is solved by serial computation in time linear in the total length
i = Y_h—y |@a] + |w’| of the arguments of the query, by resorting to any of
the available fast string searching algorithms (see, e.g., [14]). Alternatively,
one may precompute an index such as the suffix tree [18] for every string w
in W, at an individual cost of O(|w|log|w]|), and then process each query w’
in time proportional to O(|w’| + ¢), where ¢ is the number of occurrences of
w’ in the smallest subset of W from which the strings of W’ were selected.

On a CRCW-PRAM, the algorithm [7] solves the problem in time
O(loglog |w'|) with (7/loglog|w’|) processors. A by-product of the suf-
fix tree construction in [6] allows one to test whether or not a pattern y
occurs (or to detect the first occurrence of y) in a text z in time log|y|
with |y|/log|y| processors, but the preprocessing of z requires auxiliary
space proportional to |¢|?log|z|. The algorithm in [22] performs our string
query in O(log” |w'|) time with 7/log* |w’| processors, but it requires an
O(log? |w'{/ loglog |w'|)-time preprocessing of the pattern. Bringing this
preprocessing in line with the time complexity of the processing phase is
precluded by the loglog-time lower bound recently established in [8] for
parallel string searching.

In this paper, we develop a standard representation for strings supporting
string queries in constant time. Specifically, we show that if all strings in W
are given in their individual standard representations, then a CRCW PRAM
with O(% = 3"} _, |@a| + |w'|) processors can find all the occurrences of any
w' in any set W' = {&;, 9, ...,W;} from W, in constant time. Putting a
string z in such a standard representation requires O(log |z|) CRCW-PRAM
steps and O(|z|log|z|) total work and space. Thus, in particular, searching
for any substring of a pattern of size m in any substring of a text of size n can
be done in constant time with at most n + m processors, once both the text
and the pattern have been put in standard form at a cost of O((n+m)log n)
operations. This has the same global complexity as the early algorithm in
[13] which, however, only handled one definite pattern at a time.



In view of the recent results in [22] and [8], it may be instructive to interpret
the present constructions in terms of tradeoff between precomputation and
run-time computation. One consequence of such constructions, for instance,
is that it is possible to preprocess a text z in O(log|z|) time with |z| proces-
sors, preprocess a pattern y in constant (alternatively, O(log|y|)) time with
ly|? (alternatively, |y|) processors, and then answer any substring query on
the pattern in constant time.

Single-pattern parallel searches do not translate into efficient universal
searches of the kind considered here, in that they depend crucially on the
specific pattern being considered. Tipically, these algorithms build a se-
ries of partitions of the text into larger and larger blocks keeping track for
each block of which substrings beginning in that block match a longer and
longer prefix of the pattern. At each stage, the processors assigned to each
block check whether a suitable extension of each candidate substrings in the
block still matches a prefix of the pattern. In order to translate any such
strategy to the case of g different patterns, we would need g times as many
processors as those used in that strategy, since earlier searches do not yield
any advantage for the subsequent ones. Qur approach consists instead of
pre-computing some “universal” substrings in the texstring, which are used
to latch on possible occurrences of any individual pattern. These substrings
are universal in the sense that they reflect structural properties of the text,
independently of any particular pattern. Reversing the usual perspective of
string searching, we search for occurrences of such text substrings into any
given pattern, and a careful organization of the latter represents the way in
which the total work is reduced.

This paper is organized as follows. In the next section, we outline the ba-
sic criterion used in our constructions. For this, we adopt as a paradigm a
special case of the standard, single-pattern search where the assumption is
made that both the pattern and the text do not contain any substring in
the form ww. In Sections 3 and 4, we generalize our single search to unre-
stricted cases, and present the standard representation of strings supporting
instantaneous substring-searches after preprocessing.

We use the model of computation known as CRCW PRAM. The reader is
referred to [3] for more details about this model, as well as for the conventions
that support the fast partitions and allocations of processors presupposed
in this paper. It should be noted that we make frequent use of the constant-
time priority write emulation of the model described in [12].



2 Outlining the Main Criterion

We work with words or strings from an alphabet A ordered according to the
linear relation <. This order induces a lexicographic order on A%, which we
also denote by <. Given two words u and v, we write ¥ <€ v or v 3> u to
denote that there are two symbols @ and o’ with a < @/, and a word z € A*
such that za is a prefix of u and za’ is a prefix of v. Thus, v < v iff either
u < vor uis a prefix of v. If z = vwy, then the integer 1 + |v|, where |v]
is the length of v is the (starting) position in = of the substring w of z. Let
I = [i,j] be an interval of positions of a string z. We say that a substring
w of = begins in I if I contains the starting position of w, and that it ends
in I if I contains the position of the last symbol of w.

A string w is primitive if it is not a power of another string (i.e., writing
w = v* implies k£ = 1). A primitive string w is a period of another string
z if z = ww' for some integer ¢ > 0 and w' a possibly empty prefix of w.
A string z is periodic if z has a period w such that |w| < |z]/2. It is a well
known fact of combinatorics on words that a string can be periodic in only
one period [17]. We refer to the shortest period of a string as the period of
that string. A string w is a square if it can be put in the form vv in terms
of a primitive string v (v is the root of the square). A string is square-free if
none of its substrings is a square.

The basic idea subtending our algorithms is best explained in terms of the
standard, single-pattern string searching problem. Let then y s.t. ly| > 4
be this pattern and z a text string, as in Fig. 1. Consider the ordered set
S of all positioned substrings of y having length ¢ = 2(llglvll=2) and let
(4,8) be the one such substring such as s is a lexicographic minimum in S
and ¢ the smallest starting position of s in y. Substring (i,s) is called the
seed of y. Pattern y is left-seeded if i < c, right-seeded if i > |y| — 2¢ + 1,
balanced in all other cases. Let now the positions of z be also partitioned
into cells of equal size ¢ = 2(l'8I¥l]=2)_ and assume that there is at least one
occurrence of y in z, starting in some cell B. In principle, every position of
B is equally qualified as a candidate starting position for an occurrence of y.
However, the same is not true for the implied occurrences of the seed of y.
This seed will start in a cell B’ that is either B itself or a close neighbor of
B. Consider the set of all substrings of z which start in B’ and have length
Is|. It is not difficult to see then that the one such positioned substring
corresponding to (,s) has the property of being a lexicographic minimum



among all such substrings originating in B’ and to its right, or originating
in B’ and to its left, or both, depending on whether y is left-, right-seeded,
or balanced. Once we have a candidate position for s in B', it is trivial to
check in constant time with s processors whether this actually represents
an occurrence of y, since |y| < 8|s|. The problem is thus to identify such a
candidate position. Note that, although we know that the seed of, say, a left-
seeded pattern must be lexicographically least with respect to all substrings
of equal length that begin in B’ and to its right, there might be up to
|s| = | B’| substrings with this property. Even if we were given the starting
positions of all such substrings (hereafter, left stubs [3]), checking all of them
simultaneously might require |s|? processors.

However, assume for a moment that z and y were known to be square-free.
Then, any pair of consecutive left stubs (¢/,2) and (i, 2") in B’ must differ
on one of their first i — i’ symbols. Along these lines, it is possible to build,
from the ordered sequence of left stubs, a corresponding ordered sequence
of prefixes of left stubs with the following properties: (1) these prefixes are
in strictly (i.e., according to the relation <) increasing lexicographic order
from left to right, and (2) the sum of their lengths is bounded by | B’| up to a
small multiplicative constant. Point 2 is a handle to check all these prefixes
against (i,s) simultaneously and instantaneously, with O(|s|) processors.
Point 1 guarantees that these prefixes are all different, whence at most one
of the comparisons might return with equality. If this case occurs, we would
have identified the unique candidate position j for a seed of y beginning in
B'. As already mentioned, checking whether there is an actual occurrence
of y seeded at j is done trivially in constant time with O(|s|) processors.

In order to compute the sites of candidate seeds, we need the lists of starting
positions of the left stubs in each block of z. These lists are called left lists,
and they can be computed with [z| processors in less than [log|y]] main
passes, starting with the left lists trivially associated with the partition of
positions of z into blocks of size 1. In each subsequent pass, the cells of the
partition of the positions of z double in size, and the left lists relative to
the blocks in the current partition are produced from a suitable composition
of the old left lists in a pair of adjacent old blocks. The crucial task is to
perform each pass in constant time with n processors. This rests on the
following result from [3].

Theorem 1 Let (B4, Byy1) be two consecutive cells in a partition of z.
Given the left lists of By and Byy,, the left list of ByU Byy1 can be produced



by a CRCW PRAM with | Bq U By41| processors in constant time.

In conclusion, we can find all occurrences of a left-seeded, square-free pat-
tern y in a square-free text z in log |y| time with n = |z| processors. In the
following sections, we generalize this construction to the case where z and
y are not necessarily square-free. Throughout the rest of the paper, we con-
centrate on the management of left-seeded patterns, but it shall be apparent
that the case of right-seeded patterns is handled by symmetric arguments.

3 A Standard Representation for Constant-time
String Searching

In this section and in the following one, we describe a O(log|y|)-time,
O(Jz|log|y|)-work CRCW algorithm for detecting all the occurrences of a
single pattern y in a text z. This performance matches that of the early
parallel algorithm in {13}, but is clearly inferior to the (optimal) O(loglog n)
performance of the algorithm in, e.g., [7]). However, the new algorithm
is actually more powerful than that of [13], in the sense that it yields, as
an intermediate product, a standard representation for strings having the
important property exposed in the following Theorem.

Theorem 2 Consider a set W of strings individually given in standard rep-
resentation. Let w be an arbitrarily chosen such string, w' an arbitrary sub-
string of w, and {®y, Wy, ..., W} an arbitrary set of substrings of strings in
W. A CRCW PRAM with 7 = Y }_, || + |w’| processors can find all the
occurrences of w' in {Wy, W, ..., W} in constant time.

The proof of Theorem 2 will be completed in Section 4. Theorem 2 is
of interest in implementing parallel string data bases. Assume that every
string in the data base is stored in its standard form. Whenever a new
string w is added to the data base, we need to spend O(log|w|) CRCW
time with |w| processors in order to put w in standard form. Having done
that once, however, we can answer in constant time any query regarding the
occurrences of any substring w’ of w in any set of substrings of any present
or future strings (in standard form), including w itself, with a number of
processors linear in the length of the arguments of the query.



To start with the discussion of Theorem 2, we need to recapture some notions
and results from [3].

Let z be a string of n symbols, and B = [k, h + m], where m < n/2 and
h < (n—2m+ 1), a cell of size m. Let L(B) = {(i1,21), (32, 22), +--, (ik, 2) }
be the sequence of left stubs of B, and let the sequence {#1,92, ..., 1} be the
left list of B. (It will be clear that the cases where k < e with e an arbitrary
constant can be handled trivially in our strategy, thus we assume henceforth
that £ > 3.)

As an example, let the substring of z in block B be eacaccdlacdacdacdlllh f
(cf. Fig. 2), and assume for simplicity that the positions of z falling within
B be in [1,22]. We have 8 left stub in B, beginning with the rightmost
such stub (22,28) = f... . Since h and ! are both larger than f, the next
left stub is (17,27) = dlllhf... . We immediately have (16, 2) = cdlllhf...
and (15,25) = acdlllhf... . Since d and c¢ are both larger than a, there
will not be a left stub until (12,2z4) = acdacdlilhf... . We similarly have
(9, z3) = acdacdacdlllhf... . Finally, we have (4, 2;) = accdlacdacdacdlllh f...
and (2, 21) = acaccdlacdacdacdlllhf... . Note that the prefix of z; of length
2 = 13 — 1) matches the corresponding prefix of z;. Similarly, the prefix of
z3 of length 3 = iy — i3 matches a prefix of z4, and the prefix of z, of length
3 = 15 — 14 matches a prefix of z5. We say that z; and z; are in a run, and
so are 23, z4 and zs.

Formally, for f = 1,2,....k — 1 in the left list, let ly be the prefix of
zg such that |lg] = igyy — df, and let the mate of (if,l;) be (r1, 1),
where I} is the prefix of z;4; having the same length as l;. A sub-
string (25, 25), (441, Zi41)s s (44> Zj45) With f > 1 of L(B) is a run if
li=lisa= .=l = Uy, 1 # liys. Stub (ij,2;) is called the head
of the run. Run (3}, 2;), (4541, 2j4+1), -y (4541, 2j+7) is mazimalif j = 1 or
li_1 # 1.

We now describe a sequence H(B) = {(hy,71), (ha, 72), .., (hg, 74)}, Where
{P1,h2, ..., hg} is called the head list and is a subsequence of the left list
{i1,42,..s 8k}, and 75 (f = 1,2,...,q) is a suitable prefix of the left stub
z at position #; = hs. Sequence H(B) plays an important role in our
constructions, because it is the shuffle of two sequences of words ’l:((l)(B)
and H(?)(B) with the following properties (3].



Lemma 1 The word terms in H?)(B) (p = 1,2) form a lezicographically
strictly increasing sequence.

Lemma 2 The sum of the lengths of the word terms in H(B) is bounded
above by 4|B|.

The specification of the A’s and 7’s requires some auxiliary notions, that are
given next with the help of Fig. 2.

If [(4j,2;),(43,2;)] is an ordered pair of (not necessarily consecutive) left

stubs, we use w; to denote the prefix of z; of length j — j. An ordered pair
(%5, 25), (i3, 2;)] with the property that w; is a prefix of z; is called a diplet.
A diplet is strong if j = j + 1, i.e., if w; = I; = I 41, weak otherwise. It
is possible to prove that two left stubs are in a run if they form a diplet,
whence a left stub cannot be the head of two distinct runs. (Note that this
does not forbid that the last stub in a run be also the head of another run.)

We define now H(B) = {(h1, Z1), (h2,22), ..., (hq, Z;)} to be the ordered se-
quence of all left stubs that are not in any run and all run heads of maximal
runs. In our previous example, we have 5 elements in H(B), starting at
hy = 1,hy = 9,h3 = 16,hs = 17 and hs = 22. Given a copy of z, the set
H(B) is completely specified by the ordered sequence of starting positions
of its elements, which we called the head list. The head list of any cell B
enumerates also the starting positions of all elements of H(B). Any such
element can be identified by local manipulations, i.e., by comparing the re-
spective values of three alternately consecutive elements of the head list.
Observe that a maximal run (i}, 2;), (141, 2j41)5 v (%j4f, zj+5) is describ-
able in compact form by giving i;, its period length |I;| = i;4; — i;, and and
ij+f- In the following, we consider the head list always annotated in this
fashion (an empty annotation denoting a left stub not belonging to a run),
so that the left list is implicitly described by it. This new version of head
list is called lezicographic list.

For f = 1,2,...,¢—2,let r; be the prefix of Z; such that |r;| = hiyo—hy,and
let the mate of (hys,ry) be (hyi2,7)), where 1’ is the prefix of Z;,, having
the same length as ry. Finally, define H(B)= {(h1,71), (ha, 72), ..., (hq, 74)}
as follows. First, set 7; = ry, 73 = 79, Tg—1 = r;_3 and 7, = r{,_2. Next,
for 2 < f<q-1,set 7y =7}, if hyyo — hy < hy — hy_y, and 7y =
rs otherwise. We now partition H(B) into two subsequences H(!)(B) and

8



HP)(B), each one of which is obtained by extracting alternate elements
of H(B). Thus, HO(B) = {(h1,71), (h3,73), (hs, Fs),...}, and H®(B) =
{(h2,72), (h4sT4), (he,T6), ...} (cf. Fig. 2). In the following, we retain the
indexing of the sequence H(B) when speaking of either sequence H(1)(B)
and H()(B). Thus, the subscripts of two consecutive elements in H(})(B)
differ by 2.

Let now w be a string, and assume w.l.o.g. that |w| is a power of 2. For each
t = 1,2,4,..., let the positions of w be partitioned into |w|/2!~! disjoint
cells each of size 2~!. Assume that the lexicographic lists relative to each
cell partition are given. Clearly, the space required for storing all these
lists is O(|w|log|w|). A string w together with the first (z < |log |w|| — 2)
lexicographic lists is said to be in :-standard form. When 1 = [log |w|] — 2,
we simply say that w is in standard form. We are now ready to show that
searching for a string in standard form into another string also in standard
form is done instantaneously with a linear number of processors. With y
denoting the pattern and = the text, we revisit the discussion of the previous
section.

Clearly, retrieving the seed (i, s) of y from its |s|-standard form is immediate.
In fact, consider the partition of y into cells of size |s| and let C be the cell
of this partition which contains .

Lemma 3 Stub (i, s) is the first element of H(C).

Proof: Straightforward, since word s is by definition the earliest lexico-
graphic minimum among all substrings relative to the stubs in C. O

Lemma 3 is the handle to identify the position 7 of s in y. Since there are
at most 4 cells in the partition of the positions of y, and each such cell
contributes one known candidate, mutual comparison of the substrings of
length |s| starting at these candidate positions is all is needed. This is easily
done in constant time with |y| processors. Although there are more direct
ways of computing the seed of y within these bounds, reasoning uniformly
in terms of standard forms has other advantages in our context.

Assume now that there is an occurrence of a left-seeded pattern y starting
in a cell B of the partition of z into cells of size |s|, and let B’ be the cell
of z where the corresponding occurrence of the seed s begins (cf. Fig. 1).
We address the identification of the position j of s within B’. Clearly, j is

9



the position of a left stub in £(B’). Lemma 1 of the previous section tells
us that, if we consider the sequence, say, H(1)(B’), then we can find in the
general case either at most one term #; such that 7 is a prefix of s, or two
consecutive terms 7y and 7742 such that 7y < s < 7743. The same would
hold had we considered H(*)(B’) instead. We thus search in, e.g., H()(B’)
for a pair of consecutive terms 7y and 7442 such that, letting 3 be the prefix
of s of length |¢|, we have that 7; < § < Fy, (finding just 7; is sufficient if
71 is the last element of H(1)(B’)). Lemma 2 tells us that O(|B|) processors
are enough to match, simultaneously, each 7s-term against a corresponding
prefix 3 of s. The technique in [12] allows us to obtain the lexicographic
outcome of each such comparison in constant time.

Once 75 has been identified, the search for j is delimited to within the span
of some run. Specifically, assume that #; has a predecessor Tf1 and a
successor 7711 in H(B’). We need to search the runs headed by Zy_1, Zf
and Zy4; in order to identify the candidate position j of the seed y. In
principle, we may have two or more identical stubs in a run, i.e., j may be
anyone of several positions of left stubs that match s. Actually, more than
one among such positions may correspond to an occurrence of the seed of Y.
A full run is defined as a run (4y, 2,), (ig41; 2g41); -+ (3g+p> Zg4+p) Such that
zp = zp41 for h = ¢,q+1,...,g+ p— 1. It is known [3] that there can be at
most one full run in £(B).

Lemma 4 Assume that j—i+1andj'—i+ 1> j—i+ 1 are two distinct
occurrences of y in z. Then, there is a full run in L(B') with z = s.

Proof: By definition, s is a lexicographic minimum among the substrings
of y of length |s|. Since y is left-seeded, then every member of £(B’) that
starts at a position equal to j/ or higher is a substring of y. Therefore, (7', 9)
is a left stub. Now, stubs (j,s) and (j/,s) have length |s| = | B’[, but their
starting positions differ at most by | B’|— 1. Hence, these stubs form a diplet,
and thus they belong to the same run. This run is a full run where z = s.
a

Consider first the case where £(B’) does not contain a full run. This implies
that at most one candidate seed position j may exist in B’. Observe that
any non-full run implies the existence of a substring of z of length not larger
than 2|s| and in the form u¥u’a, where a is a character, v’ is a prefix of u

but «'a is not. Knowing the head of this run and its immediate successor

10



in £(B'), we know |u|, and we can compute k and |u’a| by lexicographic
comparison of strings of length 2|s|. Similar computations are carried out
on the suffix of y that starts at i. This leads to identify another integer &’
and a string u”a’ such that v” is a prefix of u but «”a” is not, and u* u"a’
is a prefix of s'. Comparing now u’a with u”a’ and k with &' identifies the
unique position j of the left list possibly compatible with an occurrence of
y. Assume that such a candidate position j was found. Since we know 1,
~ We Can NOW compare Z;—;T;—i4+1...Zj—i+m With y and output an occurrence
of y at j — ¢ if the two strings match. These manipulations take constant
time with ©(B’) processors, hence constant time with ©(]z|) processors for
the entire string z.

The case where we have a full run may yield more than one candidate only
under the additional condition that the pattern is periodic with a period
u equal to the period of this run. (Note that such a condition is trivially
checked in constant time with O(]y}) processors.) If the pattern does not
have such a period, then the only candidate for an occurrence of the seed in
this cell of z is the first stub in the full run. If the pattern does have such a
period, then those occurrences of y that have seeds in B’ are spaced apart
precisely by |u| positions, like the corresponding seed occurrences in B'.
We can easily check all the occurrences relative to these seeds: specifically,
we first perform substring comparisons similar to the above to discover the
extent of a periodicity of the form u* in a neighborhood of B’ of size |y|+|B’|,
and then we use this notion in order to compute all occurrences of y seeded
in B’ at once. Also these manipulations take constant time with @(B’)
processors, hence constant time with @(]z|) processors for the entire string
z.

The case of a right-seeded pattern is handled somewhat symmetrically, i.e.,
by introducing lists of suitably defined right stubs, etc.

Let now y' be a substring of y, and consider the (log[|y’|] — 2)-th lexico-
graphic list for y. Clearly, 3’ is embedded in a set of at most 9 consecutive
cells in the associated cell partition of y. The same holds for every occur-
rence of y' in any substring z’ of z such that |2’| > |¢’|. Assume to fix the
ideas that y’ is left-seeded. Note that if ' and its seed (#,s’) start in the
same cell, say, C’ on y, it is no longer necessarily true that (#,s’) is the
first term in the head list of C’. However, (i, s') must still be a left stub in
C'. Since the starting position f of 3’ in y is known, all we need to do is
to identify the leftmost left stub in £(C”) that starts at f or to the right of
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f. This takes constant time with the priority-write emulation in [12], after
which we have a suitable substitute for Lemma 3. From this point on, the
search for 3’ into z’ involves only minor variations with respect to the above
description, and so does the search for 3’ in any set of substrings of a given
set of strings. This concludes the discussion of Theorem 2. O

4 Epilogue

In this section, we reconsider briefly the task of searching from scratch for
all occurrences of a string y into another string z. Along the lines of the
preceding discussion, we may regard this task as subdivided in two phases.
The task of the first phase (preprocessing) is to identify the seed of y and the
positions of candidate, say, left-seeded patterns in z, the task of the second
phase is to check these candidates. In principle, the preprocessings of y is
less demanding than that of z, but in view of Theorem 2 it is advantageous
to treat the two strings uniformly and speak in terms of a generic string w.
The goal of the preprocessing is to put w in standard form. This is done by
a simple doubling scheme that consists of approximately |log |w]|| stages.

At the beginning of stage ¢ (t = 1,2,...) of the preprocessing the positions
of w are partitioned as earlier into |w|/2¢~! disjoint cells each of size 2¢-1.
Starting with the first cell [1,2~1], we give now all cells consecutive ordinal
numbers. Fort = 1,2,..., stage t handles simultaneously and independently
every pair (Bog, Bod+1) of cells such that od is an odd index. The task of a
stage is to build the lexicographic list relative to each cell By U Byy1, using
the lexicographic lists of Bog and B,441). This is supported by Theorem 1
and by the following additional result from [3].

Theorem 3 Given the head lists of By and Byy1, the head list of B4U By,
can be constructed in constant time by a CRCW PRAM with | By| processors.

In conclusion, we can list the following claim.

Theorem 4 For any string w and integer £ < |w|, a CRCW PRAM with
|w| processors can compute the lezicographic lists relative to the first log?
stages of the preprocessing of w in O(log{) time and using linear auziliary
space per stage.

12



The constructions that lead to theorems 1 and 3 are too elaborate to be
reported here. Still, some insight can be gained in the light of the discussion
of the preceding section. For example, it is not difficult to see that the
head list of Bgy; is usually a suffix of By U Bgi1. Thus, the combined list
can be produced by first finding the prefix of £(By) where the first element
of £(Bat1) “falls” lexicographically, and then appending £(Byy;) to such
prefix. In analogy to the search stage, the first step can be implemented by
simultaneously checking which terms of H(")(B;) (p = 1,2) matches a prefix
of the first left stub of Byy;. Lemma 1 tells us that at most two of those
terms might return with a match. Lemma 2 tells us that @(m) processors
are sufficient to carry out this task in constant time.

To conclude this section, we list two additional applications of theorems 2
and 4.

In on-line string searching, we are interested in performing efficiently queries
involving many different patterns on a same textstring. In this context, it
may be advantageous to preprocess the text once and for all if this speeds
up the subsequent queries significantly. We can use standard forms as a
space-efficient alternative in the on-line string searching described in (6].
The preprocessing of that method has the same time complexity but re-
quires O(|z|?log |z|) auxiliary space. The present preprocessing requires
O(|z|log |z|) such space. The on-line pattern-processing phase in [6] requires
log |y| steps with |y|/log|y| processors, after which it outputs whether or not
y occurs in z. Given the text in standard form, the standardization of the
pattern with the present approach requires the same time with O(|y|) pro-
cessors. After that, we can find all the occurrences of y in any substring z’
of z in constant time with O(|z’|) processors.

Additional possible uses of Theorem 2 arise in the context of approximate
string searching in parallel, as described, for instance, in [15] and [6], where
we are interested in answering repeatedly and quickly questions of the kind:
given a suffix of the text and a suffix of the pattern, what is the longest
prefix that these two suffixes have in common?
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Figure 1
Ilustrating the main criterion as applied to a left-seeded (top portion of the figure), right-seeded (middle)
and balanced pattern (bottom).
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Extracting the sequences H (top half of the figure) and H (bottom half) from a sequence
of left stubs.
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