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Abstract

We present a simple algorithm to compute a convex decomposition of a non-convex, non-manifold
polyhedron of arbitrary genus (handles). The algorithm takes a non-convex polyhedron with n edges
and r nolches ((eatures causing non-convexily in the polyhedra) and produces a worst-case optimal
O(r?) number of convex polyhedra S;, with |J;$; = $, in O(n+?) time and O(nr) space. Recently,
Chazelle and Palios have given a fast O(n r + r?logr) time algorithm to tetrahedralize a non-convex
simple palyhedron. Their algorithm, however, works for a simple polyhedron of genus 0 and with no
shells (inner boundaries). The input polyhedron of our algorithmm may have arbitrary genus and inner
boundaries and may be a non-manifold. We also present an algorithm for the same problem while doing
only finite precision arithmetic computations.

1 Introduction

The main purpose behind decomposition operations is to simplify a problem for complex objects into a
number of subproblems dealing with simple objects. In most cases a decomposition, in terms of a finite
union of disjoint convex picces is useful and this is always possible for polyhedral models [4, 8]. Convex
decompositions lead to efficient algorithms, for example, in geometric point location and intersection de-
tection, see [8]. Our motivation stems from the use of geometric models in SHILP, a solid model creation,
editing and display system being developed at Purdue [2]. Specifically, a disjoint convex decomposition ol
simple polyhedra allows for more efficient algorithms in motion planning, in the computation of volumetric
properties, and in the finite element solution of partial differential equations. In what follows, we use the
following definitions. The surface of a polyhedron § is called a 2-manifold if for each point on the surface
of §, there exists an € — neighborhood which is homeomorphic to a 1-sphere or a circle [19]. Polyhedra,
which have 2-manifold surface are called manifold polyhedra. Polyhedra which are not manifold are called
non-manifold polyhedra. Non-manifold polyhedra may have incidences as illustrated in the Figure 1. Man-
ifold 'polyhedra with holes are homeomorphic to toruses with one or more handles. Manifold polyhedra
with inner boundaries are homeomorphic to 3-dimensional annuli i.e., spheres with bubbles inside them.
A reflex edge of 2 polyhedron js the one where the inner dihedral angle subtended by two incident facets
is greater than 180°.

Related Work: The problem of partitioning 2 non-convex polyhedron $ into a minimum number of
convex parts is known to be NP-hard [16, 18]. Rupert and Seidel [20] also show that the problem of deter-
mining whether a non-convex polyhedron can be partitioned into tetrahedra, without introducing Steiner

*Supporied in part by ARO Contract DAAG29-85-C0018 under Cornell MSI, NSF grant DMS 88-16286 and ONR contract
N00014-88-1{-0402.
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Figure 1: Non-manifold incidences or special nolches.

points, is NP-hard. For a given polyhedron § with n edges of which r edges are reflez, Chazelle [4, 5]
established a worst-case, O(r?) time lower bound on the complexity of the decomposition problem, allowing
Steiner points, and gave an algorithm that produces a worst-case, optimal number O{r?) convex polyhedra
in O{nr?) lime and O(nr?) space. Recently, Chazelle and Palios [6], also gave an O(nr + r2logr) time algo-
rithm to tetrahedralize a subclass of non-convex polyhedra. The allowed polyhedra are all homeomorphic
to a 2-sphere, i.e., have no holes(genus 0) and shells (inner boundaries) and are manifold.

Results: In section 3, we first present an algorithm to compute a disjoint convex decomposition of a
manifold polyhedron § which may have an arbitrary number of holes and shells. Given such a polyledron
S with n edges of which r are re flez, the algorithm produces a worst case optimal O(r?) number ol convex
polyhedra S;, with [J; i = § in O(nr?) time and O(nr) space. We extend this algorithm to non-inanifold
polyhedra which may not have abutting edges or facets but may have incidences as illustrated in Figure
t. In section 4, we give an algorithm for the same problem, which uses sophisticated heuristics based on
geometric reasoning to overcome the inaccuracies involved with finite precision arithmetic computations.
"This algorithm runs in O(nr? + nriogn + r3logn + r?) time and in O(nr) space.

2 Preliminaries

2.1 Data Structure and Definitions

Let S be a polyhedron, possibly with holes and shells, and having ¢ vertices : {v1, 12, vy U}, 1 oedges ¢
{€1,€9,...,en} and g facets : {f1, fa,.... fo}-

Polyhedron Data Structure: Tlle polyhedron S with arbitrary number of holes and shells, is represented
by a collection of vertices, cdges, and [acets, each of which is maintained as structures similar to the
representations of [15].

Vertices: Bach vertex is represented with two fields.

1. verlezr.coordinales: contains the three dimensional coordinates of the vertex.




2.

vertes.adjacencies: contains pointers to the edges incident on the vertex.

Edges: Each edge is represented with two fields.

1.

2.

_edge.verlices: contains pointers to the incident vertices.

edge.orieniededges: contains pointers to the structures called orientededges which represent diflerent
orientations of an edge on each face incident on it. The orientation of an edge on a facet f is such
that a traversal of the oriented edge has facet f to its right.

Orientededges: Each Orientededge is represented with three fields.

1.
2.

3.

orientededge.edge: Contains pointer to the corresponding edge.
orieniededge. facet: Contains pointer to the facet on which the orientededge is incident.

orienlededge.orientation: Contains information about the orientation of the edge on the facet.

Facets: Each facet is represented with two fields.

L. facet.equation: contains the equation of the plane supporting the facet.

2,

Jacet.cycles: contains pointers to a collection of oriented edge cycles bounding the facet. The traversat
of each oriented edge cycle always has the facet to the right. Each edge cycle is represented as a
linked list of structures representing the orientededges on the cycle. If there is a vertex touching the
face, (Figure 1(2)) called an isolated verter, a pointer to the vertex is included in face.cycles as a
degenerate edge cycle.

The intersection of § with a plane P is, in general, a set of simple polygons, possibly with holes. If G is
a simple polygon with vertices vy, vy, ..., o in clockwise order, a vertex v; is a re flex vértez of G if the inner
angle between the edge (vi—1, %) and (v;,v:41) is > 180°. The vertices which are not reflez vertices are
called normal vertices of G. The boundary of a polygon G can be partitioned into x-monotone maximal
pieces called monotone chains, i.e., vertices of a monotone chain have x-coordinates in either strictly
increasing or decreasing order. See Figure 2.

In general, non-manifold polyhedra have nonconvexity due to the following four types of features called
noiches.

1.

Type I notches: These nolches are caused by vertices which touch a face as illustrated in the Figure
1(a). The vertex on the face is called an isolated vertez.

Type 2 noiches: More than two facets may be incident on an edge e, as illustrated in the Figure 1(b).
Two adjacent facets around the edge e; which do not ernclose any volume of § causes the nonconvexity
or 2 notch, If there are 2k (k > 1) facets incident on e;, they form & notches.

. Type 3 notches: These notches are caused by vertices where two or more groups of features ([acets,

edges) touch each other as illustrated in the Figure 1(c). The features within a group are reachable
from one another while remaining only on the surface of § and not crossing the vertex. Actually,
type 1 noiches are a subclass of these notches. For convenience in the description, we exclude
type 1 nolches from the class of type 3 notches. The number of groups attached to the vertex

* determines the number of type 3 nolches associated with that vertex.

Type { notches: An edge g of polyhedron § is a type 4 notch if the inner dihedral angle ¥ between
two incident facets of g, is greater than 180°. Nonconvexity in a manifold polyhedron S, is a result
of the presence of these notches which are also called reflez edges.



vl,...,vd i & monotone chalin.
vy, vS ls a monorone ehain.

v5,...,v8 ls a monocone chain.
v8,...,v]l 13 a monatone chalin.

Figure 2: Monotone chains in a polygon.

The nolches of type 1, type 2, type 3 are called special notches which are present only in non-manifold
polyhedra. Qur algorithm, first, removes all special notches from § creating manifold polyhedra and then
proceeds in removing all notches of type 4 of the manifold polyhedra, by repeatedly cutting and splitting
them with planes contairing the noiches. If an edge ¢ is a notch in a manifold polyhedron, with -, f"'
as its incident facets, a plane P; which contains the notch g and subtends an inner-angle greater tha.n
7 — 180° with both f7 and f y is a valid plane which resolves the notch g. The chosen plane P, is also
called the notch p!ane of g. Clea.rly, {or each nolch g, there exist infinite choices for P,. Note that P, may
intersect other notches, thereby producing subnotéhes. See Figure 3.

2.2 Useful Lemmas

In the next sections we use the [ollowing Lemmas.

As discussed in [5], one can always produce a worst case optimal number (O(r2)) convex polyhedra by,

carefully choosing the noich planes.

Lemma 2.1: A manifold polyhedron S with r notches, can be decomposed into % 5 + 4 1 convex pieces
if all subnotches of a noich are eliminated by a single notch plane. Further, thls convex decomposition
is worst-case optimal since there exists a class of polyhedra which cannot be decomposed into fewer than
O(r?) convex pieces.

Proof: See [5].

Lemma 2.2: Let G be a simple polygon with r reflex vertices, then the number of monotone chains C,
in G is bounded as C, < 6(1 + ).
Proof: Follows from Theorem 3, page 22 of [4]. &




ﬂgthor notch

- : notch g

Figure 3: A noich and its notch plane, cross sectional map, cut.

Below, we use the definitions from section 2.1 of reflez, normal vertices and monotone chains of a
polygon.

Lemma 2.3: Let & be a simple polygon with s normal vertices, There are at most O(s) monotone chains
in G.

Proof: Let B be the boundary obtained by removing a vertex v and an e—ball around v from the houndary
of G. Add 6 more edges to B as shown in the Figure 4 to construct a new polygon G’. The polygon G’
is ol opposite orientation to G. Note that the vertex v always exists such that the construction of G’ is
possible. In fact, any vertex which is on the convex hull of the vertices of (¢ can be taken as v. Tle
normal verlices of G are the reflex vertices of G' except v. Moreover, constant number of edges are
added to construct G’ from G. Thus, G' has O(s) reflex vertices. According to Lemma 2.2, G’ has O(s)
monolone chains. The polygon G cannot have more monotone chains than G’, which implies that G has
0O(s) monolone chains.d

In the lollowing Lemma, the line segments of a line which are interior to a polygon are called chords.

Lemma 2.4: Let G be a simple polygon (possibly with holes) with r reflez vertices. No line can intersect
G in more than r 4+ 1 chords and 2r + 2 points.

Proof: The proof proceeds inductively. The case for r = @ is trivial. In the general step, consider a polygon
G with r = & > | reflezx vertices. Take an arbitrary reflez verfez, and resolve it by a cut through it.
The cut may separate G into two polygons (/1 and Ga, of ry and r; reflez vertices respectively, such that



Figure 4: Constructing a polygon of opposite orientation.

r1+72 <k — 1. Furthermore, the number of chords in G cannot exceed the sum of the number of chords
in Gy and G3. Therefore, using the induction hypothesis, one can conclude that L intersects G in no more
than ry + 14724+ 1 < k1 chords. If, however, the cut does not split G, one ends up with a polygon G'
of at most k — 1 reflez vertices. Since the line L may intersect the cut, just performed, the number of
chords in G is less than or equal to that in G’, which again implies that the former is less than or equal to
E—1+1<k+1. &

2.3 . Nesting of Polygons

- The following polygon nesting problem arises as a subproblem in our polyhedral decomposition.

Problem: Let p be a set of k simple polygons G,i = 1...,k which do not intersect along their boundaries.
Corresponding to each polygon G; we define ancestor(G;) as the set of polygons containing G;. The
polygon G in ancestor(G;) is called the parent of G if ancestor(Gy) = ancestor(G;) — G. Notice that
there may not exist any such G since ancestor(G;) may be empty. In that case, we say that the parent of
G is null. Any polygon with parent Gy is called the child of Gi. See Figure 5. The nesting structure of
g is an acyclic directed graph(a forest of trees) in which there is a node »;, corresponding to each polygon
G in p, and a directed edge from a node n; to n; if and only if G; is the parent of G;. The polygon nesting
problem is to compute the nesting siructure of a set p of simple norintersecting polygons.

Lemma 2.5: The problem of polygon nesting for k simple, nonintersecting polygons can be solved in
O(s + tlogt) time assuming exact numerical caleulations, where s is the total rumber of vertices and { is
the total number of monotone chains of all input polygons.

Proof: See[3]. Though, the algorithm, given in (3], uses a slightly different type of monotone chains, called
subchains, it also works for the monotone chains as defined in this paper. With this slight modification,
Theorem 2.1 of [3] can be restated as Lemma 2.5 given above.d
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I'igure 5: Polygon nesting.

3 Convex Decomposition

We assume the input polyhedron S to be 2 manifold while describing the algorithm and extend it to handle
non-manifold polyhedra later. By this assumption, rotches in § are only reflez edges. The algorithm for
decomposing a polyhedron § with r noiches consists of a sequence of intersections of polyhedra with notch
planes. Ilence, we first describe the method of cutting a polyhedron S by a notck plane P, of a notch g.

3.1 Cross Sectional Map

The nolch plane Py: az + by + ¢z + d = 0 defines two open half spaces P;‘ ez +by+ecz+d>0and
Py iaz+by+cz+d < 0. The closure of P} is Py = P U Pf, where P! :az + by +cz+d =01s
the oriented plane P, with normal (a,4, ¢) pointing into the exterior of PF. Similarly, the closure of P;°
is P;’ = Py U Py where P : —az — by ~ ¢z — d = 0 is the oriented plane P,, with normal {—a, b, —c)
pointing into the exterior of P.

Cutting a polyhedron § with the plane Py is equivalent to computing

u {
SnP!=(SnPfiuGPr,
b - r
SNP;=(SNP)UGF,

where

GP, = (closure(§ N P;})) ~ (SN P}))
GPy = (closure(§ N Py )) = (SN P;)).

We also frequently refer to G'P; and G Py as cross sectional maps. Note that for a polyhedron S, and a
plane P,, the cross sectional maps GP; and GF; may be different. See for example, Figure 3. However,
one can observe that GP{ and GP; are same if there is no facet of § lying on the notch plane. For

simplicity, we assume G'Psf and GF; to be congruent and refer to it as GP, in describing the algorithm.
With minor modifications of the algorithm one may remove this restriction.




The construction of G P, corresponding to the notch plane P, is the crucial part in splitting a polyhedron
5 to remove g. The unique polygon Q,(possibly with holes) in GP,, called the cut, supporting the
noich g is determined and § is split along this cut. Actually, splitting § along the cut instead of the
cross seclional map, is sufficient to remove the noich g of §. Note that because of this, S may not get
separated into two different pieces after the split. In Figure 3, the removal of the nolch g through the cut
Qg does not separate §. The noich g may lie on the inner or the outer boundary of (Jg- We denote the
boundary containing ¢ as B,. '

» Step I: Determine Q,. This calls for computing inner and outer boundaries of Qg

+ Step II: Split §. While describing the algorithm we assume § is separated into two pieces by the
cut 5. The case where § is merely spliced by €}, instead of getting separated into two pieces does
not incur any extra overhead to our algorithm,

In what follows, we use (lower case) letters, s,u, for counting vertices, m,n,p,l for counting edges, and
q for counting facets. Let S have p edges of which r are re flez.

3.2 Description of the Algorithm

Step I: First compute all boundaries B present in the cross sectional map G P,. Visit all the facets.of §
in turn. If a facet f; intersect the notch plane Fy, 21l intersection points are computed. Let al,al, )
be the inlersection points on the edges e, e, ..., el respectively of f;. These intersection points can be
sorted along the line of intersection P, N f; at a cost, linear in number of edges present in the facet fi
using the algorithm of [13]. Associate this sorted sequence of intersection points with f;. Further, with
cach intersection point a_‘;-, keep the information of the edge e_';. Pick an intersection point . Continue to

Figure 6: Computation of a boundary in the cross sectional map.

construct the boundary B containing aj as follows. See Figure 6. One of the segments ajal 41 and aja]_; lies

inside f;. Without loss of generality, assume ajaj,, lies inside f;. Join ¢f and af,; and continue from af,,




to determine other edges of the boundary B. Consider the other facet f;;; adjacent to the edge e{;,- The
facet f;;1 can be retrieved in constant time in our data structure. Determiné the intersection point @it?
adjacent to aj,, on fjy1 such that the segment af_l_la-};;"l lies inside f;;;. Without loss of generality, assume
ait! is ordered after aj,, in the sorted sequence of intersection points associted with fis1. Note that the
points a;':'_ll and af_l_l are same. Proceed from a}! and continue the above procedure until the initial point
aj is reached. This completes the computation of B. Once a boundary computation is completed, pick up
another intersection point which has not been visited yet and construct the corresponding boundary by the
- above method. Continuing this procedure until all intersection points are visited gives all the boundaries
present in the eross sectional map. The adjacent points of an intersection point on a facet can be retrieved
in constant time if the sorted sequence of intersection points is maintained as a doubly linked Iist.

Next, determine the inner and outer boundaries of @g- It is trivial to determine the boundary B,
containing the notch g. One can determine whether B, is an inner or outer boundary of (J¢ by checking
the orientation of the edges on the boundary. Orientation of each such edge is determined in constant time
since the orientations of the notch plane and the facets intersecting the noich plane are known.

Case(i}: D, is an outer boundary of Q,. Let I; be any inner boundary of €)4. The boundary I; itself
constitutes a simple polygon. Polygon J; will have at least one (actually at least three) vertex, which is a
normal vertez. Since I; is the inner boundary of Q,, the vertices which are normal vertices of polygon
I; are reflex vertices of Q,. Definitely, reflex vertices of @4 lie on notches of §. This implies that all
inner boundaries of (), will have a point which is the intersection point of P, with a noteh of §. Determine
the set W of boundaries having at least one point where a notch of § and P, intersect. This takes O(u')
time, where «’ is the number of vertices present on the cross sectional map. Call the boundaries in the
set W U B, as inleresting boundaries. Certainly, the number of interesting boundaries is O(t) where ¢
is the number of notches intersected by the notch plane P,. The interesting boundaries which are outer
boundaries of some polygon in the cross sectional map, have O(t) reflez vertices. On the other hand, the
interesting boundaries which are inner boundaries of some polygon in the cross sectional map have O(2)
normal verlices. Thus, according to the Lemma 2.2 and 2.3, there are at most O(t) monotone chains in
Lhe interesiing boundaries. If there are u vertices on the interesting boundaries, the inner boundaries
of ¢y can be determined in O(u + tlogt) time using Lemma 2.5. The computation of the boundaries
in the cross sectional map takes at most O(p) time. This is due to the fact that the sorted sequence of
intersection points on each facet can be computed at a cost linear in number of edges of the facet. Thus,
in this case, the inner and outer boundaries of @, can be determined in

O(p + u + ¢’ + tlogt) = O(p + tiogt)

time, since v = O(x') = O(p).

Case(ii): By is an inner boundary of ;. Visit all edges of the polyhedron §, being split to compute
the sorted sequence of intersection points on each facet and compute all the boundaries present in the
cross sectional map. Determine the boundaries which contain the boundary B, inside them. Call these
boundaries, together with By, as interesting boundaries. This takes O(p + u') = O(p) time. Apply
the polygon nesting algorithm of [3] on these interesting boundaries to detect the parent paolygon of
By which is the outer boundary of ;. The interesting boundaries can be partitioned into two classes
according to whether they are inner or outer boundaries of some polygon. It is not hard to see that there
must be as many inner boundaries as outer boundaries. Hence, the number of interesting boundaries is
bounded above by twice the number of inner boundaries present in the eross sectional map. As discussed
in the previous case, this number must be bounded above by the number of notches intersected by the
notch plane. Thus, there are O(t) interesting boundaries. Further, the number of monotone chains
present in these inleresting boundaries can be at most O(t). Hence, as in the previous case, Lhe inner
and outer boundaries of @, can be determined in O(p + tlogt) time.
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Step II: Separation of § corresponding to the cut Qg is carned out by splitting facets which are intersected
by (5. Suppose f; is such a facet which is to be split at a,,az, .»a}, which are on the edges ef.¢},.. f.'l,L
The splitting of f; consists of splitting the edges on which (a},as, ..., a}) lies. Visit only the intersection
points corresponding to the vertices of Q, and for each such intersection point spend constant time for
setting relevant pointers to carry out the split operation. Create two oppositely oriented facets at the same
geometric location corresponding to the cut Qg. Adjust all the modified incidences properly. A depth first
traversal in the modified vertex list completes the separation of § by collecting all the pertinent features
of each piece. This process cannot take more than O(p) time. Combining the costs of Stepl and Stepl]
yields the {ollowing Lemma.

Lemma 3.1. A manifold polyhedron 5 of genus 0, having p edges can be partitioned with a nofch plane
Py ol a notch g in O(p+ tlogt) time and in O(p) space where ¢ is the number of notches intersected by P,.

We can generalize the above result for a polyhedron of arbitrary genus. For this, as described in [5), we
need to handle the situation when the cut does not separate § into two pieces, but only ereates two new
[acets supporting the cut at the same geometric location. A depth-first search in the vertex list determines
whether the cut separates § into two pieces or not.

Lemma 3.2. Let 5), §2,...,5; be the polyhedra in the current decomposition, where each $; contains a
subnotch gi of 2 nolch g of 2 manifold polyhedron § with n edges and r nolches. Let m; and 1; be the
number of edges and vertices on Q; respectively. Then m and u, the total number of edges and vertices
on all the cuts supported by the subnotches of the notch g are givenas m = 35, m; = O(n) and

w= Sl—l u = O(n)

Proof. Consider the cut Q, produced by the intersection of § with Py. The region in Qg is divided into
smaller facets by noich lines produced by the intersection of other notch planes with FP,. We focus on the
lacets g, ,Qyg;s - Qg adiacent to the subnotches gy, g, ..., gx of the notch g.

Consider the set of notch lines which divides Q, and the line L, corresponding to the notch g. They
prodnce a line arrangement [8] on the notch plane P;. Consider the facets adjacent to the line L in this
arrangement. These are called zones of L,. See Figure 7(a). Let us denote the set of these zones by Z, and
Lheir vertices and edges by Vy and E; respectively. It is proved that (Theorem 5.3,pp. 89, (8]} [V,| < 5/-3
and |Eg| < 51 — 1if there are { lines in the arrangement. Overlaying Q, on Z, produces Qq,,Q sy ey Qs -
‘Let ¥ and £ denote the set of vertices and edges in Qg,,Qg,, .--,@g,. The vertices in ¥/ can be partitioned
into three d:ITerent sets, namely, T},T3,75. The set T} consists of vertices formed by the intersections of
notch lines, T; consists of vertices formed by the intersections of edges of @, and T3 consists of vertices
formed by the intersections of notch {ines and edges of Q. Certa.inly, |71 < |V | = 51 — 3 since overlaying
of 4 on Z; cannot introduce any vertices in 737, If @, has ' edges, |T3| < u'.

To count the number of vertices in T3, consider an edge e in E; which contributes one or more segments
e, to L' as a result of intersections with Q,. There must be at least one reflez vertez of Q,, present
between two successive edge segments e,. Charge a cost of 1 to the refiex vertez which lies to the left
(or, right) of each segment and charge a cost of 1 to e itself for the leftmost (or, rightmost) segment. We
claim that each reflex vertez of (), is charged at most once by this method. Suppose, on the contrary,
a reflex vertex is charged twice by this procedure. Then, that reflezx verter must appear between two
segments of two edges in I, as shown in Figure 7(b). As can be easily observed, all four edge segments
cannot be adjacent to the regions incident on an edge g of Q. This contradicts our assumption that all
these four segments are present in E;. Hence, the total charge incurred upon the reflex vertices of @,
and the edges of Iy can be at most ry + 5/ — 1 where ry is the number of re flez vertices present in (J,.
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Figure 7: Zones of a line and cuts.
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This implies that as a result of intersections with g, at most r4 + 5/ — 1 segments of edges in E, are
contributed to Ej. Ilence, {T3| < 2(r, 4+ 5 — 1). Putting all these together, we have

|Vl

[Tl + |72 + | T3]
51 =3 +u'+2r; + 100 ~ 6

<
< 1si+u +2r,-09.

Since there can be at most r notch planes, ! < r. Certainly, r; < 7 and %’ < n. This gives
u=|V,| <15r+n+2r-9=0(n+ 1) = O(n).
Since Qg , Qa5 .-, @ g, form a plane graph, we have

m = |E}J = O(IV{]) = O(n).%

Lemma 3.3: The total number of edges in the final decomposition of the polyhedron § with r nolches
and n edges is O(nr).

Proof Total number of edges in the final decomposition consists of newly generated edges by the cuts,
and the edges of § which are not intersected by any notch plene. Since the total number of edges present
in all the cuts corresponding to a noich is O(n), the total number of newly generated edges by each notch

plane is O(n). Thus r notch planes generate O(rr) new edges. Ilence, the total number of edges in the
final decomposition is O{nr + n) = O(nr).é

Theorem 3.1: A manifold polyhedron 5, possibly with holes and shells and having r notches and n edges
can be decomposed into O(r?) convex polyhedra in O(nr?) time and O(nr} space.

Proofi Decomposition of a polyhedron consists of a sequence of cuts through the noiches of 5. Assign
a nolch plane for each notch in § in O(r) preprocessing time. Remove each nolch by removing all of
its subnoiches with the noich plane assigned to this notch. Each planar cut to remove a subnoich in =
polyhedron, can be carried out by the method described above. According to the Lemma 2.1 this produces
O(r?) convex pieces at the end since all subnotches of a notch are removed by a single notch plane.

Worst-Case Complezily: At a generic instance of the algorithm, let Sy, S»,...,5¢ be the & distinct
(non-convex) polyhedra in the current decomposition, where each 5; contains the subnoteh g¢; of a noich
¢ which is going to be removed. Let S; have p; edges and p = Y5, p;. Let ; be the number of notches
intersected by Py, in §; and t = 5, 1.

Applying Lemma 3.1, each subnotch g; in 5; can be removed in O(p; + 2;logt;) time and in O(p;) space.
Tlhus, removal of a notch g can be carried out in O35, (p; + tilogt;)) time and in O(X%, p;) space. By
Lemma 3.3, Y%, pi = O(nr). Since a notch plane can intersect at most r — 1 notches, t = O(r). This
gives, -

. :
Zt.- logt; = O(t logt) = O(rlogr).
i=1

Hence, a noich g can be removed in O(nr + rlogr) = O(nr) time. Thus, elimination of r nolclres takes
O(nr?) time. In Lemma 3.3, we prove that the total number of edges in the final decomposition of S is
O(nr). This implies that the space complexity of polyhedral decomposition is O(nr). &
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3.3 Decomposition of non-manifold polyhedra

For 2 non-manilold polyhedron S, nonconvexity results from noiches of four types as discussed in section
2.1. Let 5 have n edges and r nolches. Preprocess § as follows to remove the notches ol first three
types, called the special notches. Let this process produce a decomposition 51, 52, ...,5; where each §5;is
a manifold polyhedron having notches of only the fourth type. Apply Theorem 3.1 on each of them to
obtain a worst-case optimal convex decomposition.

Removal of type 1 notches: In this case, as can be observed [rom the Figure 1(a), the vertex »; causing
the nonconvexity is detached [rom the facet f; on which it is incident as isolated vertez. Identifving these
vertices and detaching them [rom corresponding facets take at most O(n) time.

Removal of type 2 notches: In this case, more than two facets are incident on an edge e;. Let these
facets be f1, f2, -.-, fr;- Consider a cross section C which is the intersection of the lacets incident on e; with
the plane P perpendicular to the edge e;. C consists of edges e; = (fi N P). Sort the [acets circularly
around the edge e; by the circular sort of the edges e; which are incident on ;N P. Pair the adjacent facets
which enclose a volume of §. Let this pairing be (f1, f2),(f3, f1)y-eea{ fri=1, fr; ). Create an edge between
cach pair of facets and delete the edge e;. All these edges are at the same geometric location of ¢;. Adjust
all the incidences properly. Sorting ol facets around the edge e; takes O(r;logr;) time. The adjustment

time [or of all incidences in the internal representation of § cannot exceed O(n). Thus, removal of all
type 2 notches takes at most Q(rlogr + nr) = Q(nr) time.

Removal of type 3 notches: Let v; be a vertex which corresponds to a type 3 noich. In this case,
“collect the features (edges,facets) incident on v; which are reachable from one another while remaining
always on the surface of 5§ and never crossing v;. This gives a partition of the features incident on v; into
smaller groups. For each such group, create a vertex at the same geometric location of v; and adjust all
the incidences properly. This in eflfect, removes the nonconvexity caused by v;. All such vertices causing
type 3 nolches in § can be identified in O(n) time by depth first traversal in the underlying graph of 5.
Removal of each such notch takes at most O(n) time. Thus, all type 3 notches can be removed in O(nr}
time.

Removal of all the above three types of noiches.generates at most O(n) new edges and produces at most
& manifold polyhedra where k is the number of special noiches in §.

Theorem 3.2: A non-manifold polyhedron §, possibly with holes and shells and having r notches and n
edges can be decomposed into O(r?) convex polyhedra in O(nr?) time and O(nr) space.

Proof: Remove all special notches from § in O(nr) and O(n) space as discussed above. Let Sy, 53,..., 5
be the manifold polyhedra created by this process. Let §; have n; edges of which r; are reflex. Using
Theorem 3.1 on each of them, we conclude that § can be decomposed into O(r?) convex polyhedra in
O(3 L., nir?) = O(nr?) time and in O(3h, niry) = O(nr) space.

Decomposition into Tetrahedra: Let §y,S52, ..., 5% be the convex polyhedra produced by convex de-
composition of a polyhedron §. Each convex piece with p; edges can be triangulated into O(p;) tetrahedra
in a straightforward manner (triangulate every convex facet and then tetrahedralize by choosing a point
in the interior of the convex polyhedra). This takes at most O(p;) time for each convex piece. IHence.
triangulation of all pieces takes O(ZX, pi) = O(nr) time producing O{nr) tetrahedra.
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4 Convex Decomposition under Finite Precision Arithmetic

Motivation: When implementing geometric operations stemming from practical applications, one cannot
ignore the degenerate geometric configurations that often arise, as well as the need to make specific topo-
logical decisions based on imprecise finite precision numerical computations [12, 15, 23). We model the
inexact arithmetic computations by e-arithmetic [10, 11] where the arithmetic operations 4, —,=, X are
performed with relative error of at most e. Under this model, the absolute error in distance computations
of one polyhedral feature from another is bounded by a certain quantity § = ke B,where B is the maximum
value of any coordinate and k js a constant. See [17]. When making decisions about the incidence of these
polyhedral features (vertices, edges, facets), on the the basis of the computed distance(with sign), one
can rely on the sign of the computation only if the distance is greater than 6. On the other hand, if the
computed distances are less than §, one also need to consider the topological constraints of the geometric
conftguration to decide on a reliable choice. In particular, in regions of uncertainity i.e. within the §-bali,
the choices are all equally likely that Lhe computed quantity, is negative, zero or positive. Such decision
points of uncertainity, where several choices exist, are either “independent” or “dependent”. At indepen-
dent decision points, any choice may be made from the finite set of local topological possibilities, while
the choice at dependent decision points should ensure that it does not contradict any previous topological
decisions. The algorithm which follows this paradigm would never fail, though it may not always compute
a valid output. Such algorithms have been termed as parsimonious by Fortune [10}].

An algorithm under e-arithmetic, is called robust il it computes an output which is exact for some
perturbed input. It is called stable if the perturbation required is small. Recently, in {10, 11, 17) authors
have given robust and stable algorithms for some important problems in two dimensions. Except [14], there
is no known robust algorithm for any problem in three dimensions. The difficulty arises due to the fact that
the perturbations in the posilions of the polyhedral features may nrot render a valid polyhedron embedded
in $3. In [14] , Hopcroft and Kahn discuss the existence of a valid polyhedron which admits the positions
of the perturbed vertices of a convex polyhedron. The case of non-convex polyhedra is perceived to be
hard and requires understanding the deep interactions between topology and perturbations of polyhedral
features of non-convex polyhedra.

Karasick [15] gives an algorithm for the problem of polyhedral intersection where he uses geometric
reasoning to avoid conflicting decisions about polyhedral features. In this paper, we extend the results
in [15] and provide an algorithm for the problem of polyhedral decomposition which also uses geometric
reasoning to avoid conflicting decisions. Though, as yet we are unable to prove our algorithm to be
parsimonious, we report various leuristics we have implemented in our effort to make the decomposition
algorithm robust and stable. We also describe a worst case running time bound for the algorithm under
the g-arithmetic model.

More related work:The issue of robustness in geometric algorithms have recently taken added importance
because of the increasing use of geometric manipulations in computer-aided design, and solid modeling [1).
Edelsbrunner and Mucke [9], and Yap [24], suggest using expensive symbolic perturbation techniques for
handling geometric degeneracies. Sugihara and Iri (23], and Dobkin and Silver {7], describe an approach
to achieve consistent computations in solid modeling, by ensuring that computations are carried out with
sufficiently higher precision than used for representing the numerical data. There are drawbacks however,
as high precision routines are needed for all primitive numerical computations, making algorithms highly
machine dependent. [Furthermore, the required precision for calculations is difficult to a priori estimate (or
complex problems. Segal and Sequin [21] estimate various numerical tolerances, tuned to each computation.
to maintain consistency. Milenkovic [17] presents techniques for computing the arrangements of a set of
lines in two dimensions robustly. Ile introduces the concept of pseudo lines which preserves some basic
topological properties of lines and computes the arrangements in terms of Lhese pseudo lines. ITollmann.
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Hopcroft and Karasick [12], and Karasick [15], propose using geometric reasoning and apply it to the
problem of polyhedral intersections. Sugihara {22] uses geometric reasoning to avoid redundant decisions
and thereby eliminate topological inconsistencies in the construction of planar Voronoi diagrams. Guibas,
Salesin and Stolfi [11] propose a framework of computations called e-geometry, in which they compute an
exact solution for a perturbed version of the input. So does Fortune [10] who applies it to the problem of
triangulating two dimensional point sets.

4.1 Intersection & Incidence Tests

In what follows, we assume the input polyhedra are manifold. Non-manifold polyhedra can be handled
as discussed in the previous section. It Is clear from discussion of our previous algorithm that numerical
computations are needed in different types of intersections and incidence testings. We assume minimum
feature criteria for polyhedra as follows. The distance between two distinct vertices or between a vertex and
an edge and the dihedral angle between any two facets may not be less than a minimum value. The choice
of this minimum threshold value is described in our algorithm. To decide whether an edge is intersected
by a plane, one must decide the classifications of its terminal vertices with respect to the same plane. The
same classilication of a vertex is used to decide the classification of all the features incident on that vertex.
This, in effect, avoids conflicting decisions about the polyhedral features. The decisions about different
types of intersections and incident testings are carried out by three basic tools, namely, (i) vertex-plane
classifications, (ii) facet-plane classifications and (iii) edge-plane classifications.

The order of classifications is (i) followed by (ii) followed by (iii). Edge-plane classifications are done
ouly after vertex-plane and facet-plane classifications. In what follows, assume the equation of a plane
P;: aix + biy + c;z + d is normalized with a? 4 8% 4 ¢ = 1.

Vertex-Plane Classification: To classify the incidence of a vertex v; = (z;,%i, 2¢) w.r.t the plane P :
az+by+ecz+d = 0, compute the normalized algebraic distance of v; from P by computing az;+by;+¢2;+d.
The sign of this computation, viz., zero, negative, or positive, classifies v; as “on” P (zero), “below” P
(negative) or “above” P (positive), where “above” is the half space containing the plane normal (a,b,c).
Accept the sign of the computations as correct if the above distance of v; from P is larger than §. Otherwise,
apply geometric reasoning rules, as detailed below, to classify vertex v; w.r.t. the plane P. In the {ollowing
algorithmic version of the vertex-plane classification, the intersection between an edge e incident on v; and
the plane P is computed as follows. Let e be incident on planes Py, Py, where P; : aiz + bjy + ciz + di = 0.
Compute the intersection point r of e and the plane P by computing the solution of the linear system,

a b ¢
Ar =d where A= | ay b5 ¢ | d = [-d,—d1,—d, |7 . The linear system is solved using Gaussian
az b2 ¢

elimination with scaled partial pivoting and iterative refinement.
Vertex-Plane-Classif (v;,P)
begin
Let v; = (zi,¥i, 2i) be a vertex incident on edges e1 = (vi, w1),e2 = (vi, w2), ..., ex = (i, w).
Let P:az+by+cz+d=0.
Compute { = az; + by; + cz; + d.
If|l} > 6 then  (*Comment: Unambiguously decide via the sign of distance computation*)
ifl > 0 then
classify v; as “above”
else
classify vi as “below”
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else
loop
(*Comment: If distance computation does not yield an unambijguous
classilication for the vertex with respect to the plane, ensure that
the “above”, “below” classification is consistent with all edges
incident on that vertex. Il such consistency cannot be ensured then
the vertex is classified as “maybeon” and left [or future facet — plane
classifications to decide its classification consistently.*)

Search for an edge e; incident on v; such that r = e; N P is at a distance
greater than 6 from v; and w; = (z;, 35, z;)-
Get the classification of w; if it is already computed.
Otherwise, compute I’ = az; + by; + cz;.
if {I'| > é then classify w; accordingly.
if the classification of w; is “below” or “above” then
if r is in between v; and w; then
classily v; oppositely to that of w;
else
classify v; same as that ol w;
endif
endif
endloop
if no such edge e; is found then
classily v; as “maybeon”
(*Comment: To be classified later in the facet-plane classifications *)
endif
endif
end.

Facet-Plane Classification: If a facet [; is intersected by a plane P in such a way that f; does not lie on
P then the points of intersection should necessarily be (i) collinear with the line of intersection of f; and P,
and (ii) all the vertices of f; on one side of the intersection line, should all be of the same classification w.r.t.
the plane P. Vertices which have been temporarily classified as “maybeon”, are classified in a consistent
way, i.c., they satisly the above two properties (i) and (ii), with perturbations of at most §. An algorithmic
version of the facet-plane classification is given below.

Facet-Plane-Classif { f;, P}
begin
case '

(i) All the vertices of f; lave been classified as “maybeon”:

Classify f; as “on” the plane and change the classification of all incident vertices to “on”.

(ii} At least one vertex v, of f; has been classified as “above”, or “below”, but no

cdge of f; has its two vertices classified with opposite signs(“below” and “above”):

if there is only one “maybeon” vertex then

classify v; as “on” and consider »; as f;n P
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. else
lake two “maybeon™ verlices v;,v; and
classify v; and v; as “on™.
Let L be the lire joining v;, v;.
Consider L as f; N P.
endif
loop
for each “maybeon” vertex v, on f; do
if v is at a distance greater than § from L then
if v and w, lie on opposite sides of I then
classify v with a classification which is opposite to that of v,.
else
classifly v with a classification which is same as that of v,.
endif
endif
endloop
The vertices which are still not classified

Figure 8: Case(ii) of facet-plane classification.

classify them as “on” {(*Comment: These vertices are within a distance of §
from L and hence will be collinear with L by a perturbation of
at most §. See Figure 8.%)
(iii}) There is an edge e whose two vertices have opposite sign classifications:
if there is no other such edge then

let L be the line joining the intersection point on e and

any “maybeon” vertex v;. -

classify v; as “on”.

consider L as f;n P.

apply methods of case (ii) to classily other “maybeon” vertices.
else

let L be the line which fits in least square sense all the points
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of intersections and apply the methods of case (ii) to classify
remaining “maybeon” vertices.
endif
endcase
end.

Edge-Plane Classification: An edge can get any of the three classifications which are “not-intersected”,
“intersected”, and “on"”. The classifications of the vertices incident on an edge are used to classify an edge
e. An algorithmic version of the edge-plane classification is given below.

Edge-Plane-Classif (e;, P)
begin
Let ¢; = (v;, v;).
case
(i) v; and v; are both classified as “on™:
classifly e; as “on”.
(ii) Cnly one of v;, v;, say v; is classified as “on”:
classify e; as “intersected” and consider v; as ¢; N P.
(iil) v; and v; are classified with one as “above” and another as “below”:
" classify e; as “intersected”,
compute r = ¢; N P if it has not been computed yet.
if r does not lie within e then
choose a point at a distance of at least § from the vertex
which is nearest to the computed point and consider it as the intersection point of e; and P.
endif
(iv) v; and v; are of same classifications and they are not “on":
classily e; as “not-intersected”,
endease
end.

The flollowing lemma related to consistent ordering of intersection points of a facel on the line of
intersection is used in later sections.

Lemma 4.1: Let » be a vertex which is decided not to lie on the plane P and whose classification w.r.t
the plane is known. Let e;, ez be the edges incident on v on a facet f which are classified as “intersecled”.
Denote the intersection points of e, e; with P as v; and v, respectively. Let O denote the ordering of

1, v on the directed intersection line f N P which is consistent with the classification of v. If 4L z > ;;'f,—o
holds, O can be determined correctly. Here 8 is the maximum absolute error in distance computations, o

is the angle between edges e;, €2 on f, M is a suitably chosen large machine representable absolute value.
Proof. Consider the vertex v will incident edges e;, e on facet f. Let L = f N P be directed as shown

in Fig. 4.2 and let the actual distance of v from P be I. Suppose we know the classification of v w.rt P.
We need to determine the ordering O of vy, v2 on L which is consistent with the classification ol v. Nole
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Lhat the ordering of v, v on L depends on the classification of v. See Fig 4.2(a).

Define a transflormation called maz transilation as follows. Translate the plane P: az +by+ecz+d =10
10 Poaziransiate t @2+ 0y +cz ~ M =01l d > 0, or to Praztransiate : @ + 0y +cz+ M =0ifd € 0.
Note that Ppaztransiate is the plane P translated by the amount M + |d|. In the first case P is translated
lo ils posilive side and in the latter P is translated to its negative side. Let v],v} denote the intersection
poinls of the lines containing the edges e, ez with the plane Praztransiate and L’ denote the directed line
Pmn:l._‘runn'al‘.c n f

Case(i): Classification of v is same as its actual position w.r.t the plane P. See Figure 4.2(b) and
4.2(c). Transform the plane P to Praziransiete. [ P is translated by more than [ to the same side in
which v lies, the ordering of v, v is opposite to that of v v5, where ! is the distance between /> and v.
Conversely, il P is translated by any amount to the side which does not contain v , the ordering of v;, ¥,
is same as that of v}, v}.

Case(ii): Classification of v is opposite to that of its actual position w.r.t P. Translorm the plane P
t0 Pnagtransiate- If P is translated by any amount to the same side in which » has been decided to lie in,
the ordering of vy, v is opposite to that of v], v}. Conversely, if P is transiated by more than { to the side
in which v has been decided not to lic in, the ordering of v, vz is same as that of v}, vj. '

In bolh cases, if P is translated by more than /, the ordering of v;,2; can be determined from the
ordering of »{,v5. The ordering of v{,v3 can be determined exactly il the distance d' between them is
greater than 6. Let I’ be the distance between v and the plane Ppgoiranstate- From simple geometry, one

can sce Lhat U'sina > § is a sullicient condition for ¢’ to be greater than §. P is translated by at most I +1".
Ilence, | + I’ < M + |d|. This implies

Mo+ =
sStnoa

is a sullicient condition for determining the ordering of v{, %} exactly.. Since, min|d| = 0 and maz|l| = 4,
we have -

M > _6
sina
or
M ]
2 © sina

is a sullicient condition for determining the ordering of v{, v} exactly. The value of Af is chosen to satisfy
the above relation. &

Nesting of Polygons with Finite Precision Arithmetic: The polygon nesting problem as discussed
in section 2 can be solved with finite precision arithmetic if the polygons are restricted to a class of polygons
called fleshy polygons. A polygon P is called fleshy if there is a point inside P such that a square with
center (intersection of square’s diagonals) at that point and with sides of length 64¢ B lies inside . B and
¢ have been defined earlier.

Lemma 4.2: The problem of polygon nesting for & fleshy polygons with s vertices and t monotone chains
can be solved in O(k? + s(i + logs)) time under finite precision arithmetic.

Proof: See [3]. Since any vertical line (orthogonal to the z direction) can intersect at most ¢ cdges of a
set of polygons having ¢ monotone chains, the above time bound is obvious [rom the time analysis of the
algorithm under finite precision arithmetic as given in [3).é
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4.2 Description of the Algorithm

The same paradigm of cutting and splitting the polyhedron about the cuts is followed to produce Lhe convex
decomposition of a manifold, non-convex polyhedron. Choose one of the two planes incident on a notch as
“notch plane. This ensures that no new planes other than facet-planes are introduced by tlie algorithm and
thus no additional error is introduced in the plane equations containing the facets. This also guarantees
that any input assumption about the planes containing the facets remain valid throughout the iterative
process of cutting and splitting the polyhedron. We apply heuristics at each numerical computation through
geomelric reasoning to make our algorithm as parsimonious as possible, For any notch plane P, the two
cross seclional maps GP' GP] are constructed and the corresponding cuts Q Q5 are computed in Step

I as-detailed below. In Step H we split the polyhedron about these cuts wh:ch completes the removal of
notch q.

Step I:

Constructing GPE‘ and GP;: The edges of GP; and G P; are either the edges transferred from polyhedron
S called old edges, or edges newly generated from § N P, called new edges. Note, all new edges will be
present in both cross sectional maps while only some of the old edges may be present in either G'P‘ or
in GPJ. As with the edges, some of the vertices of the cross sectional maps will be old vertices whlle
some of them will be new vertices. To generate old and new edges on these cross sectional maps, compute
the intersection points of each facet f with the noich plane using the vertex-plane, edge-plane, facet-plane
classification as described before. After computing all intersection vertices (new and old) lying on the facet
[, sort these vertices along the line of intersection f N P,.

A
Y,

CEne maxtranslato

v
v, 2 fnp

Y

Figure 10: Consistent sorting of intersection points.

- Sorting of intersection points along line f N P;: Consider the facet f as shown in Figure 10. Let
edges e; and ep, incident on v intersect the plane P, at points vy and v3, both necessarily lying on line
L = fNP,. Further let v; and v be new vertices. If v; and v, happen to be very close together, it may not
be possible to determine their local ordering on L reliably. However, the classification of v w.r.t P, can be
used to decide this ordering consistently. Translate the plane Py to Praztransiate and compute the points
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€1 0 Praztransiate 2nd €2 N Prigogranslate- Lot these intersection points be v{ and v} respectively. As Lhe
angle between edges €1 and e2 cannot be arbitrarily small (minimum feature criteria for dihedral angles)
there exists a certain translation such that the distance between v{ and v} will be > §. Set the minimum
dihedral angle ay,in between any two facets to be such that ?.':T.{:.-‘.;' < % By Lemma 4.1, the ordering of
v1, vz on L which is consistent with the classification of v can be determined exactly. The ambiguity in
the ordering of old vertices and new vertices on the edges which are not incident on a common vertex does

not arise if we assume minimum feature separation of at least § for elements of the input polyhedron S.

Generating new edges: Let L be the line of intersection of a facet f with the noich plane. Let
(v1,v2,...,0) be the sorted sequence of vertices on L, corresponding to the points of intersection be-
tween the facet and the notch plane. One needs to decide consistently whether there should be an edge
between two consecutive vertices v; and vy of this sorted sequence. This is done by scanning Lhese sorted
vertices [rom one end Lo Lhe other and deciding whether we are “inside” or “outside” the facet. Ii is easy to
sce that il v; is a new vertez then there would be an edge between »; and v;y. if there were no edge between
vi—i1 and v; and vice versa. But if v; is an old vertez there can be edge between v; and v;y; disregard of
Lhe presence of an edge between vy, v;.

Figure 11: Generating new and old edges.

Togeling between “inside” and “outside” of the facet is carried out properly, even with degeneracies,
using a multiplicity code at each intersection vertex. Scan the sorted sequence of intersection verticés [rom
one end to the other and maintain a counter which is incremented by the multiplicity code at each vertex.
Toggle between “inside” and “outside™ ol the facet as the counter toggles between “odd” and “cven”
count. For a new verlez put a mulliplicily code of 1. For an old verlez, put a multiplicity code of 1 if
two incident edges on the vertex on that facet lie in different half-spaces of P, and put a multiplicily code
of 2 if they lie in the same half-space. If there is an old edge between two vertices v; and viyy, put
multiplicily codes on them as follows. If other two incident edges on v;, ¥iy; on the facet f lie in the same
half-space of the notch plane, put a multiplicily code of 1 on both the vertices v; and v;4;. Otherwise, put
mulliplicity codes of 1 and 2 on »; and v;41 in any order. In Figure 11, there is an old edge between v, 4.
The status {“outside™) with which one enters the vertex v; is same as that one with which one leaves the
vertex v4. This is enforced by putting a multiplicity code of 1 on the two vertices which increment the
counter by an “even” amount and prevent it [rom toggling. There is another old edge between vs and
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vg. The status (“outside”) with which one enters the vertex vs is different from the one with which one
leaves the vertex vg. This is enforced by putting multiplicily codes of 1 and 2 on the two vertices in any
order which increment the counter by an “odd” amount and make it toggle. Initially, the counter is set
to 0. Create a new edge from vertex v; to viy; il the count is “odd” after leaving the vertex v;. In case.
Lliere is an old edge between v; and v;yq, skip creating any new edge between them. An old edge may be
transferred to GP{ or GP} or to both. Translerring of old edges is described below.

Transfer of old edges: Tlhe old edge ¢, should be transferred to GP; ( GP; respectively.) il any facet
(or a part of it) adjacent to e, which has not been decided to be on the notch plane, gets transferred to
G'P; ( GP; respectively.). For example, the edge g in Figure 3 should be transferred to GP; but not to
G P7. Tor each old edge €, decided to be on the plane Py, check all of its oriented edges on dilferent facets
which have not been decided to be on the notch plane. Suppose f, is such a facet. Classify any vertex
v, of fo w.r.t the oriented edge e, on f,. Il it is on the same side of €, in which f, lies then e, should
be transferred to GP; ( GP. respectively.) il v, has been classified to lie in P+ ( P~ respectively.). It is
trivial to decide the side of e, in which f, lies from the oriented edge of €, on f,.

Consistent vertex-plane, edge-plane and facet-plane classification takes overall O(p) time where p is the
total number edges of the polyhedron 5. The above bound follows {rom the fact that each edge of § is
visited only O(1) time to determine the intersection points of § with the noich plane P,. The sorting
of intersection points on the facets adds O(r lég + + ¢') time where ¢’ is the total number of [acets
decided to be intersected by the nolch plane. The above bound follows from the fact that any line segment
intersects a facet having r; reflex vertices in no more than (2r; + 2) points (Lemma 2.1). Once the
construction of the maps GP; and G P[] is done, it is trivial to recognize the boundary B, containing the
nolch g. The methods as described in section 3 can be used to determine the interesting boundaries.
Note that, il B, is an inner boundary, the interesting boundaries consist of all the ancestors of B,. If
all the polygons in the cross sectional maps are fleshy, ancestors of By can be determined exactly using
Lemma 3.4 of [3] at a cost of O(u') where u' is the number of vertices on the cross sectional maps. As
discussed earlier, there are O(t) polygons and monolone chains in the interesiing boundaries where 1 is
the number of noiches intersected by P,. Let 2 be the number of vertices on the interesting boundaries.
According to Lemma 4.2, the childrer and parent of B, can be determined exactly in O(f2 + (¢ + logu)
time if the polygons corresponding to the interesting boundaries are fleshy. Set up a safe minimum
feature separation between polyhedral features so that the polygons generated in the cross sectional maps
are always fleshy. Detection of children and parent of the polygon containing the noich g in eflect,
determines the inner and outer boundaries of Q;(Q;) Obviously ¢ = O(p) and v = O(u") = O(p).
Combining the complexities of computing the edges of GP; (GP; respectively.) and detecting the inner
and outer boundaries of Q;( @y respectively.), we conciude that Q_f,( (J, respectively.} can be computed
inO(p + 12 + o'(t+ logu)) time.

Step II: § is separated corresponding to the cut Q;(Q;) by splitting the facets which are intersected by
the cut Q,. Let f; be such a facet which is to be split at a,,ay, ..., a;. For each such point of intersection
which may correspond to a new verlez or an old vertez, do the [ollowing.

New Vertex: Let e, = (v1,72) be the edge on which new verter v, lies. Generate edges between vy, vn
and between vy, v,. Since the hall spaces in which v; and v, lie are known, one can decide the half space
in which ecach such new edges lies. '

Old Vertex: For each old vertez v, lying on the plane Py, transfer the edges connected to v, to the half
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space in which their other vertex has been decided to lie in. Here, transferring means connecting those
edges to Lhe copy of the verlex v, on the corresponding cut. The edges connected to v, which have been
decided to be on the plane Py are transferred by procedure as described before. Finally, create two facets
corresponding to the cuts Q; and Q7. Splitting each facet which are decided to be inlersected by the
cut Q; ((27) eflectively either splits § into separate pieces or splices it about the cuts creating two facets
corresponding to the cuts at the same geometric location. A depth first search starting from one vertex
in each of P and Py resolves this ambiguity and also collects all the features pertinent to each piece.
Certainly, this separation step does not take more than O{p) time where p is the number of edges of §.
Combining the time and space complexities of Step [ and Step II we have the lollowing Lemma.

Lemma 4.3 Using heuristics to avoid conlflicting decisions, 2 manifold polyhedron § with arbitrary genus,
shells and certain minimum feature separations can be partitioned under finite precision arithmetic with
a notch plane in O(p+ £* + w'(L 4 logu’)) time and O(p) space, where p is the number of edges in §, '

is the number of vertices on the cross sectional maps and ¢t is the number of nolches intersected by the
nolch plane.

The following combinatorial Lemma is used to derive the time complexity in Theorem 4.1.

Lemma 4.4. Let &, 53,...,5: be the polyhedra in the current decomposition, where each S; contains a
subnotch g; of a notch g of a manifold polyhedron § with n edges and r notches, ard let u! be the total
number of vertices on the cross sectional map in S;. Then we have v’ = 5, u; ' = O(n + r?), where

u' is the total number of vertices on the cross sectional maps in $,,53, ..., S.

Proof: Consider the cross sectional map GP{ (GPZ). The lines of intersection between P, and other
nolch planes, called the notch lines divide this map into smaller facets which are present on the cross sec-
tional maps in 51, 85z,..., 8 i.e. on Uf';lGP;.. (Uf-‘=1GP;..). The vertices on U{-‘=1GP;I, (UL,G’PL) can
be partitioned into three sets, viz., 7\, T2 and T3. The set 7| consists of vertices which are created by
inlersections between notch lines. The set T, consists of vertices on GP; (GP;) and the set T3 consists
of vertices which are crealed by intersections between edges of GP; (GP]) and nolch lines. Since there
are at most O(r) noteh lines, |T1| < r2. Certainly, |T3| € n. By Lemma 2.4, each notch line can intersect
GP; (GP;) in at most (2r +2) points since GPf (GP]) can have at most O(r) reflex vertices. This gives
(T3] < 2r + 2. Thus,

1T + | T3] + | T3

k
w o= u
i=1

r2+n+2r+2
= O(n+r2).$

IA

Theorem 4.1 Using heuristics to avoid conflicting decisions, 2 polyhedron § with arbitrary number of holes
and sheils and certain minimum feature separations can be decomposed under finite precision arithmetic
into O(r?) convex pieces in O(nr? + nriogn + r3logn + 1) time and in O(nr) space, where 7 is the number
of noiches, n is the number of edges in 5.

Proof: Let § be a manifold polyhedron. At a generic instance of the algorithm. let Sy, S2,.... Sx be the
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k distinct {non-convex) polyhedra in the current decomposition, which contain the subnotches of a notch
g which is to be removed. Let p; be the number of edges in 5;, u! be the number of vertices on the
cross sectional maps in 5; and {; be the number of nolches intersected by the notch plane in 5;. Let
p=f py ' =% vl and { = 35 t;. Certainly, & = O(r) and { = O(7r). Using Lemma 4.3, we can
say that the time & to remove the notch g is given by

k
OO “(mi + & + ul(t; + logul))

i=1

= O(p+r2+u'r+ u'logy).

<

By Lemma 4.4, v’ = O(n 4 r?). This gives,

<

IH

Olp+ 2+ (n+ ) r+(n+ r3)logn)
= O(nr + nlogn + rlogn + r3)

To carry out removal of r notches we need O(nr? + nrlogn 4+ r3logn + r') time. Obviously, the space
complexity is O(p) = O(nr). I[ § is a non-manifold polyhedron, remove all special notches from § lo
produce manifold polyhedra and decompose each such polyhedron into convex pieces as discussed in the
previous section. The complexity remains same for this case. &

5 Conclusion

We have implemented our polyhedral decomposition algorithm under floating point arithmetic in Common
Lisp on a Symbolics 3650. The numerical computations are zll in C, callable from Lisp. We used § = 2-17
in the 32 bLit machine with precision 272°. Simple examples are shown in Figure 12. The experimental
resulls have been very satislying. Test polyhedra were generated by SHILP solid model creation software.

Our next goal is to develop a robust and stable algorithm for polyhedral decomposition problem. To
ind a robust and stable algorithm for this problem seems to be quite hard. It may be worthwhile to
consider the concept of pseude facels, the counterpart of pseude lines in three dimensions to solve this
problem.
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