
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1990

Convex Decomposition of Polyhedra and Robustness Convex Decomposition of Polyhedra and Robustness

Chanderjit Bajaj

Tamal K. Dey

Report Number:
90-990

Bajaj, Chanderjit and Dey, Tamal K., "Convex Decomposition of Polyhedra and Robustness" (1990).
Department of Computer Science Technical Reports. Paper 842.
https://docs.lib.purdue.edu/cstech/842

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

CONVEX DECOMPOSITION OF
POLYHEDRA AND ROBUSTNESS-

Chanderjit Bajaj
and

Tarnal K. Dey

Computer Sciences Department
Purdue University

Technical Report CSD-TR-990
CAPO Report CER-90-27

June, 1990

* Supported in part by ARO contract DAAG29-85-COO18 under Cornell MSI. NSF grant OMS
88-16286 and ONR contract NOOO14-88-K-0402.

'.,

. ,
Revised version accepted in SIAM Journal on Computing

Convex Decomposition of Polyhedra and Robustness·

Chanderjit L. Bajaj Tarnal K. Dey

Department of Computer Science
Purdue University

West Lafayette, IN 47907

Abstract

We present a simple algorithm to compute a convex decomposition of a non-convex, non-manifold
polyhedron of arbitrary genus (handles). The algorithm takes a non-convex polyhedron with n edges
and r notches (features causing non-convexity in the polyhedra) and produces a worst-case optimal
O(r2) number of convex polyhedra Si, with U;S; = S, in O(nr2) time and O(nr) space. Recenlly,
Chazelle and Patios have given a fast O(n r + r2 logr) time algorithm to tetrahedraljze a non-convex
simple polyhedron. Their algorithm, however, works for a simple polyhedron of genus 0 and with no
shells (inner boundaries). The input polyhedron of our algorithm may have arbitrary genus and inner
boundaries and may be a non-manifold. We also present an algorithm for the same problem while doing
only finite precision a.rithmetic computations.

1 Introduction

The main purpose behind decomposition operations is to simplify a problem for complex objects into a
number of subproblems dealing with simple objects. In most cases a decomposition, in terms of a finite
union of disjoint convex pieces is useful and this is always possible for polyhedral models [4,8]. Convex
decompositions lead to efficient algorithms, for example, in geometric point location and intersection de
tection, see [8]. Our motivation stems from the use of geometric models in SHILP, a solid model creation,
editing and display system being developed at Purdue [2]. Specifically, a disjoint convex decomposition of
simple polyhedra allows for more efficient algorithms in motion planning, in the computation of volumetric
properties, and in the finite element solution of partial differential equations. In what follows, we use the
following definitions. The surface of a polyhedron S is called a 2-manifold if for each point on the surface
of S, there exists an E - neighborhood which is homeomorphic to a I-sphere or a circle (19]. Polyhedra,
which have 2~manifold surface are called manifold polyhedra. Polyhedra which are not manifold are called
non-manifold polyhedra. Non·manifold polyhedra may ha.ve incidences as illustrated in the Figure 1. Man
ifold' polyhedra with holes are homeomorphic to toruses with one or more handles. Manifold polyhedra
with inner boundaries are homeomorphic to 3-dimensional annuU i.e., spheres with bubbles inside them.
A reflex edge of a polyhedron is the one where the inner dihedral angle subtended by two incident facets
is greater than 1800

•

Related Work: The problem of partitioning a non-convex polyhedron S into a minimum number of
convex parts is known to be NP-hard [16, 18]. Rupert and Seidel [20] also show that the problem of deter
mining whether a non-convex polyhedron can be partitioned into tetrahedra, without introducing Steiner

·Supported in part by ARO Contract DAAG29-85-C0018 under Cornell MSI, NSF grant DMS 88-16286 and ONR contract
NOOOI4-88-K-0402.

1

lso1oltcd vert:cx

101
Type i notch

(bl~
Type 2 notell

'"qroups cf
features

101

Type J notch

Figure 1: NOIHnanifold incidences or special notches.

11oints, is NP-hard. For a given polyhedron S with n edges of which r edges are reflex, ChazeHe [4, .5]
established a worst· case, DC r2) time lower bound on the complexity of the decomposition problem, allowing
Steiner points, and gave an algorithm that produces a worst-case, optimal number O(r2) convex polyhedra
in O(nr3) time and O(nr2) space. Recently, Chazelle and Palios [6], also gave an O(nr+ r2logr) time algo
rithm to tetrahcdralize a subclass of non-convex polyhedra. The allowed polyhedra are aU homeomorphic
to a 2-sphere, i.e., have no holes(genus 0) and shells (inner boundaries) and are n;'anifold.

Results: In section 3, we first present an algorithm to compute a disjoint convex decomposition of a
manifold polyhedron S which may have an arbitrary number of holes and shells. Given such a polyhedron
S with n edges of which r are reflex, the algorithm produces a worst case optimal O(r2) number of convex
polyhedra Si, with Ui Si = S in O(nr2) time and O(nr) space. We extend this algorithm to non-manifold
polyhedra which may not have abutting edges or facets but may have incidences as illustrated in Figur~

1. In section 4, we give an algorithm for the same problem, which uses sophisticated heuristics based on
geometric reasoning to overcome the inaccuracies involved with fmite precision arithmetic computations.
This algorithm runs in O(nr2 + nrlogTl + r3logn + r4) time and in O(nr) space.

2 Preliminaries

2.1 Data Structure and Definitions

Let S be a polyhedron, ppssibly with holes and shells, and having 8 vertices {Vl.V2, ... ,V.. }, n edges:
{el,e2 •... ,en} and q facets: {ft,f2, ...,fq }·

Polyhedron Data Structure: The polyhedron S with arbitrary number of holes and shells. is represented
by a collection of vertices, edges, and facets, each of which is maintained as structures similar to the

representations of [15).
l'ertices: Each ';ertex is represented with two fields.

1. verlex.coominates: contains the three dimensional coordinates of the vertex.

2

2. verte.x.adjacencies: contains pointers to the edges incident on the vertex.

Edges: Each edge is represented with two fields.

1.. edge. vertices: contains pointers to the incident vertices.

2. edge.orientededges: contains pointers to the structures called orientededges which represent different
orientations of an edge on each face incidertt on it. The orientation of an edge on a facet f is such
that a traversal of the oriented edge has facet f to its right.

Orientededges: Each Orientededge is represented with three fields.

1. orientededge.edge: Contains pointer to the corresponding edge.

2. orientededge.Jacet: Contains pointer to the facet on which the orientededge is incident.

3. orienlededge.orientation: Contains information about the orientation of the edge on the facet.

Facets: Each facet is represented with two fields.

1. facet.equation: contains the equation of the plane supporting the facet.

2. facet.cycles: contains pointers to a collection of oriented edge cycles bounding the facet. The traversal
of each oriented edge cycle always has the facet to the right. Each edge cycle is represented as a
linked list of structures representing the orientededges on the cycle. If there is a vertex touching the
face, (Figure l(a)) called an isolated vertex, a pointer to the vertex is included in face.cycles as a
degenerate edge cycle.

The intersection of S with a plane P is, in general, a set of simple polygons, possibly with holes. If Gis
a simple polygon with vertices VI, V2, ••. , Vk in clockwise order, a vertex Vi is a reflex vertex of G if the inner
angle between the edge (Vi_I,Vi) and (vi,Vi+d is > 180°. The vertices which are not reflex vertices are
called normal vertices of G. The boundary of a polygon G can be partitioned into x-monotone maximal
pieces called monotone chains, Le., vertices of a monotone chain have x-coordinates in either strictly
increasing or decreasing order. See Figure 2.

In general, non-manifold polyhedra have nonconvexity due to the following four types of featmes called
notches.

1. Type 1 notches: These notches are caused by vertices which touch a face as illustrated in the Figure
l(a). The vertex on the face is called an isolated vertex.

2. Type 2 notches: More than two facets may be incident on an edge ei as illustrated in the Figure l(b).
Two adjacent facets around the edge ej which do not enclose any volume of S causes the nonconvexity
or a notch. If there are 2k (k > 1) facets incident on ei, they form k notches.

3. Type 3 notches: These notches are caused by vertices where two or more groups of features (facets,
edges) touch each other as illustrated in the Figure 1(c). The features within a group are reachable
from one another while remaining only on the surface of S and not crossing the vertex. Actually,
type 1 notches are a subclass of these notches. For convenience in the description, we exclude
type 1 notches from the class of type 3 notches. The number of groups attached to the vertex
determines the number of type 3 notches associated with that verteX.

4. Type 4 notches: An edge g of polyhedron S is a type. 4 notch if the inner dihedral angle l' between
two incident facets of g, is greater than 180°. Nonconvexity in a manifold polyhedron S, is a result
of the presence of these notches which are also called refLex edges.

3

v 11 v 10

V,

V,

V.

Va

V,
vI, •.. ,v4 is II monotone chain.
v4,vS is II mOnOtone chllin.
vS, ••• ,va i.o " monOtono chllin.
v8, •.. ,vI is II monotone chain.

Figure 2: Monotone chains in a polygon.

The notches of type 1, type 2, type 3 are called special notchea which are present only in non-manifold
polyhedra. Our algorithm, first, removes all special notches from S creating manifold polyhedra and then
proceeds in removing all notches of type 4 of the manifold polyhedra, by repeatedly cutting and splitting
them with planes containing the notches. If an edge 9 is a notch in a manifold polyhedron. with J;, Ii
as its incident facets, a plane Pg which contains the notch g and sub tends an inner-angle greater than
'Y - 1800 with both Jg- and Ji I js a valid plane which resolves the notch g. The chosen plane p'q is also
called the notch plane of g. Clearly, for each notch g, there exist infinite choices for Pg • Note that Pg may
intersect other notches, thereby producing subnotches. See Figure 3.

2.2 Useful Lemmas

In the next sections we use the following Lemmas.

As discussed in [5], one can always produce a worst case optimal number (O(r 2)) convex polyhedra by.
carefully choosing the notch planes.

Lemma 2.1: A manifold polyhedron S with r notches, can be decomposed into ;'1 +i +1 convE'X pieces
if all subnotches of a notch are eliminated by a single notch plane. Further, this convex decomposition
is worst-case optimal since there exists a class of polyhedra which cannot be decomposed into fewer than
O(r2) convex pieces.

Proof, See [51.

Lemma 2.2: Let G be a simple polygon with T reflex vertices, then the number of monotone chains C~

in G is bounded as C~ ::; 6(1 + r).
Proof: Follows from Theorem 3, page 22 of (4]. .,

4

......

"" /~---'·············--·_·-7

" ..,

............•
InOl:Ch q

~thor notch

,

'~.,"". " '.:,""

,44i_r~,~~,,=«;\1:mf %",..

Q ,

Figure 3: A notch and its notch plane, cross sectional map, cut.

Below, we use the defmitions from section 2.1 of reflex, normal vertices and monotone chains of a
polygon.

Lemma 2.3: Let G be a simple polygon with s normal vertices. There are at most O(s) manalO/Ie chains
in G.

Proof: Let n be the boundary obtained by removing a vertex v and an (-ball around v from the houndary
of G. Add 6 more edges to B as shown in the Figure 4 to construct a new polygon C/, The polygon G'
is of opposite orientation to G. Note that the vertex v always exists such that the construction of Gt is
possible. In fact, any vertex which is on the convex hull of the vertices of G can be taken as v. The
normal vertices of G are the reflex vertices of G' except v. Moreover, constant number of edges am
added to construct G' from G. Thus, G' has 0(3) reflex vertices. According to Lemma 2.2, G' has O(s)
monotone chains. The polygon G cannot have more m~notone chains than G', which implies that G has
0(5) monotone ·chain3 .•

In the following Lemma, the line segments of a line which are interior to a polygon are called chords.

Lemma 2.4: Let G be a simple polygon (possibly with holes) with r reflex vertices. No line can intersecl
G in more than r +1 chords and 2r +2 points.

Proof: The proof proceeds inductively. The case for r :::; 0 is trivial. In the general step, consider a polygon
G with r :::; k ~ 1 reflex vertices. Take an arbitrary reflex vertex, and resolve it by a cut through it.
The cut may separate G into two polygons G1 and G2, of rl and r2 reflex vertices respectively, such that

5

"

Figure 4: Constructing a polygon of opposite orientation.

TI + T2 S k - 1. Furthermore, the number of chords in G cannot exceed the sum of the number of chords
in G1 and G2 - Therefore, using the induction hypothesis, one can conclude that L intersects G in no more
than Tl + 1 +T2 + 1 ::; k + 1 chords. If, however, the cu~ does not split G, one ends up with a polygon G'
of at most k - 1 reflex vertices. Since the line L may jntecsect the cut, just performed, the number of
chords in G is less than or equal to that in G', which again implies that the former is less than or equal to
k-l+l<k+l. '"

2.3 . Nesting of Polygons

,The following polygon nesting problem arises as a subproblem in our polyhedral decomposition.

Problem: Let p be a set of k simple polygons Gi. i = 1..., k which do not intersect along their boundaries.
Corresponding to each polygon Gi we define ancestor(Gi) as the set of polygons containing Gj. The
polygon Gk in ance8tor(Gj) is called the parent ofGj if ance8tor(Gk) = ance8tor(Gj) - Gk • Notice that
there may not exist any such Gk since ancestor(Gi) may be empty. In that case, we say that the parent of
G j is null. Any polygon with parent Gk is called the child of GI;:. See Figure 5. The nesting struC,ture of
p is an acyclic directed graph(a forest of trees) in which there is a node ni, corresponding to each polygon
Gj in p, and a directed edge from a node nj to nj'if and only if Gj is the parent of Gi. The polygon nesting
problem is to c':lmpute the nesting structure of a set p of simple nonintersecting polygons.

Lemma 2.5: The problem of polygon nesting for k simple, nonintersecting polygons can be solved in
O(s + tiogt) time assuming exact numerical calculations, where s is the total number of vertices and t is
the total number of monotone chains of all input polygons.

Proof: See [3]. Though, the algorithm, given in [3], uses a slightly dHferent type of monotone chains, called
subchains, it also works for the monotone chains as defined in this paper. With this slight modification,
Theorem 2.1 of [3J can be restated as Lemma 2.5 given above."

6

,, Parent: of p~. P~

Figure 5: Polygon nesting.

3 Convex Decomposition

We assume the input polyhedron S to be a manifold while describing the algorithm and extend it to handle
non-manifold polyhedra later. By this assumption. notches in S are only reflex edges. The algorithm for
decomposing a polyhedron S with r notches consists of a sequence of intersections of polyhedra with notch
planes. lIenee, we first describe the method of cutting a polyhedron S by a notch pLane Pg of a notch g.

3.1 Cross Sectional Map

The notch plane Pg : ax +by + cz +d = 0 defines two open half spaces Pg+ : ax + by + cz + d > 0 and
P;- : ax + by + cz + d < O. The closure of Pi is pg

U = Pi U P: I where pi : ax +by + cz + d = 0 is
the oriented plane Pg with normal (a,b, c) pointing into the exterior of Pi. SimHarly, the closure of P

g

is P; = Pg- U P; where P; : -ax - by - cz - d = 0 is the oriented plane Pg , with normal (-n, -b, -c)
pointing into the exterior of Pg-.

Cutting a polyhedron S with the plane Pg is equivalent to computing

5 n P" = (5 n p+) U Gp i
9 9 9

5 n P' - (5 n P-) U GP'9 - 9 9

where

GP; = (c1osure(5 n P,+)) - (5 n Pg+))

GP; = (ciosuTe(5 n Pg-)) - (5 n Pg-)).

We also frequently refer to GPi and GP; as cro.9.9 .gectional maps. Note that for a polyhedron S, and a

plane Po, the CTOS.9 sectional maps GPi and GP; may be different. See for example, Figure 3. JIowe\-er,
one can observe that G Pi and GP; are same if there is no facet of S lying on the notch plane. For

simplicity, we assume GPi and GP; to be congruent and refer to it as GPg in describing the algorithm.
With minor modifications of the algorithm one may remove this restriction.

7

f :1+1,
•

1 1

The construction of G Pg corresponding to the notch plane Pg is the crucial part in splitting a polyhedron
S to remove g. The unique polygon Qipossibly with holes) in GPg , called the cut, supporting the
notch 9 is determined and S is split along this cut. Actually, splitting S along the cut instead of the
CTOSS sectional map, is sufficient to remove the notch 9 of S. Note that because of this. S may not get
separated into two different pieces after the split. In Figure 3. the removal of the notch 9 through the cut
Qg does not separate S. The notch 9 may lie on the inner or the outer boundary of Qg. We denote the
boundary containing 9 as Bg •

• Step I: Determine Qg. Tbis calls for computing inner and outer boundaries of Qg .

• Step II: Split S. While describing the algorithm we assume S is separated into two pieces by the
cut Qg. The case where S is merely spliced by Qg instead of getting separated into two pieces does
not incur any extra overhead to our algorithm.

[n what follows. we use (lower case) letters, S,ll. for counting vertices, m,n,p.t for counting edges, and
q for counting facets. Let Shave p edges of which rare reflez.

3.2 Description of the Algorithm

Step I : First compute all boundaries B present in the croas aectional map GPg • Vi.sit all the facets_of S
in turn. If a facet fi intersect the notch plane Pg , all intersection points are computed. Let a~,a~•...• ai
be the intersection points on the edges el, e~, ...• ei respectively of /i. These intersection points can be
sorted along the line of intersection Pg n fi at a cost, linear in number of edges present in the facet Ii
using the algorithm of (13]. Associate this sorted sequence of intersection points with f;. ,Further. with
each intersection point a~. keep the information of the edge e~. Pick an intersection point af. Continue to

...•.......•.•••••..... j .

• 1

... ~+l

1 f •.
f·.. :I ••••••••! .

:: :

! i.1 •.•.
......)....... . .

...... ·············r···

j
Fjgure G: Computation of a boundary in the cross sectional map.

construct the boundary B containing at as follows. See Figure 6. One of the segments ata{+l and a{aLl lies

inside Ji. Without loss of generality. assume a{a{+l lies inside Ji. Join a{ and aiH and continue from a{+l

8

to determine other edges of the boundary B. Consider the other facet Ii+l adjacent to the edge ef+t. The
facet h+l can be retrieved in constant time in our data structure. Determine the intersection point at;tl
adjacent to a{H on fi+! such that the segment a{+Jat;tl lies inside f1+1. Without loss of generality, assume

at;tl is ordered after at+! in the sorted sequence of intersection points associted with h+l. Note that the

points a~!l and a{H are same. Proceed from at;tl a.nd continue the above procedure until the initial point

af is reached. This completes the computation of B. On~e a boundary computation is completed, pick up
another intersection point which has not been visited yet and construct the corresponding boundary by the

. above method. Continuing this procedure until all intersection points are visited gives all the boundaries
present in the cross sectional map. The adjacent points of an intersection point on a facet can be retrieved
in constant time if the sorted sequence of intersection points is maintained as a doubly linked list.

Next, determine the inner and outer boundaries of Qg. It is trivial to determine the boundary Bg
containing the notch g. One can determine whether B g is an inner or outer boundary of Qg by checking
the orientation of the edges on the boundary. Orientation of each such edge is determined in constant time
since the orientations of the notch plane and the facets intersecting the notch plane are known.

Case (i): Bg is an outer boundary of Qg. Let Ii be any inner boundary of Qg. The boundary Ii itself
constitutes a simple polygon. Polygon Ii will have at least one (actually at least three) vertex, which is a
normal vcrtex. Since Ii is the inner boundary of Qg, the vertices which are normal vertices of polygon
Ii are reflex vertices of Qg. Definitely, reflex vertices of Qg lie on notches of S. This implies that all
inner boundades of Qg will have a point which is the intersection point of Pg with a notch of 8. Determine
the set IV of boundaries having at least one point where a notch of Sand Pg intersect. This takes G(u')
time, where u l is the number of vertices present on the cross sectional map. Call the boundaries in the
set W U Bg as interesting boundaries. Certainly, the number of interesting boundaries is O(t) where t
is the number of notches intersected by the notch plane Pg • The interesting boundaries which are outer
boundaries of some polygon in the cross sectional map, have O(t) reflez vertices. On the other hand, the
interesting boundaries which are inner boundaries of some polygon in the cross sectional map have OCt)
normal vertices. Thus, according to the Lemma 2.2 and 2.3, there are at most O(t) monotone chains in
the interesting boundaries. If there are u vertices on the interesting boundaries, the inner boundaries
of Qg can be determined in O(u + tlogt) time using Lemma 2.5. The computation of the boundaries
in the cross scctional map takes at most O(p) time. This is due to the fact that the sorted sequence of
intersection points on each facet can be computed at a cost linear in number of edges of the facet. Thus,
in this case, the inner and onter boundaries of Qg can be determined in

O(p + u + u' + tlogt) = O(p + tlogl)

time, since u = O(u') = O(p).
Case(ii): Bg is an inner boundary of Qg. Visit all edges of the polyhedron 8, being split to compute

the sorted sequence of intersection points on each facet and compute all the boundaries present in the
croSS sectional map. Determine the boundaries which contain the boundary B g inside them. Call these
boundaries, together with Bg , as interesting boundaries. This takes O(p + U') = O(p) time. Apply
the polygon nesting algorithm of [3] on these interesting boundaries to detect the parent polygon of
Bg which ,is the outer boundary of Qg. The intere!lting boundaries can be partitioned into two classes
according to whether they are inner or outer boundaries of some polygon. It is not hard to see that there
must be as many inner boundaries as outer boundaries. Hence, the number of interesting boundaries is
bounded above by twice the number of inner boundaries present in the cross sectional map. As discussed
in the previous case, this number must be bounded above by the number of notches intersected by the
notch plane. Thus, there are O(t) interesting boundaries. Further, the number of monotone chain.~

present in these interesting boundaries can be at most Oct). Hence, as in the previous case, the inner
and outer boundaries of Qg can be determined in O(p + Hogt) time.

9

Step II: Separation of S corresponding to the cut.. Qg is carried out by splitting facets which are intersected
by Q9' Suppose f; is such a facet which is to be split at aLa~, ... ,at which are on the edges ei.e;, ... ,ei.
The splitting of fi consists of splitting the edges on which (ai,a~, ... ,ai) lies. Visit only the intersection
points corresponding to the vertices of Qg and for each such intersection point spend constant time for
setting relevant pointers to carry out the split operation. Create two oppositely oriented facets at the same
geometric location corresponding to the cut Qg. Adjust all the modified incidences properly. A depth first
traversal in the modified vertex list completes the separation of 5 by collecting all the pertinent features
of each piece. This process cannot take more than O(p) time. Combining the costs of StepI and 5telJlJ
yields the following Lemma.

Lemma 3.1. A manifold polyhedron S of genus 0, having p edges can be partitioned with a notch plane
P!J of a notch 9 in O(p + tIogt) time and in O(p) space where t is the number of notches intersected by Pg •

We can generalize the above result for a polyhedron of arbitrary genus. For this, as described in [5], we
need to handle the situation when the cut does not separate 5 into two pieces, but only creates two new
facets supporting the cut at the same geometric location. A depth-first search in the vertex list determines
wh£!ther the Cllt separates 5 into two pieces or not.

Lemma 3.2. Let SI, 52, ... ,5k be the polyhedra in the current decomposition, where each Si contains a
subnotch gi of a notch 9 of a manifold polyhedron 5 with n edges and r notches. Let mj and Iti be the
number of edges and vertices on Q9i respectively. Then m and u, the total number of edges and vertices
on all the cuts supported hy the subnotches of the notch 9 are given as m = L7=1 nlj = O(n) and
It = Lf=l Uj = O(n).

Proof: Consider the cut Qg produced by the intersection of S with Pg. The region in Qg is divided into
smaller facets by notch lines produced by the intersection of other notch planes with Pg • We foe liS on the
facets Qgl ,Qg~, ...• Qy" adjacent to the subnotches glo g2~ ...• gk of the notch g.

Consider the set of notch lines which divides Qg and the line L g corresponding to the notch g. They
produce a line arrangement [8] on the notch plane Pg. Consider the facets adjacent to the line Lg in this
arrangement. These are called zones of L g • See Figure 7(a). Let us denote the set of these zones by Zg and
their vertices and edges by Vg and Eg respectively. It is proved that (Theorem 5.3.pp. 89, [8]) IV!JI .:s; 51- 3
and IEgl .:s; 51 - 1 if there are I lines in the arrangement. Overla.ying Q9 on Zg produces QgI' Q'72' ·.. ,Q9" .

.Let V; and E; denote the set of vertices and edges in QgJ' Q92' ... ,Qg,,' The vertices in V; can be partitioned
into three different sets, namely, Til T2 • T3 • The set T1 consists of vertices formed by the interscctions of
notch lines, T2 consists of vertices formed by the intersections of edges of Qg and T3 consists of vertices
formed by the intersections of notch lines and edges of Qg' Certainly, ITII :5 IVgl = 51- 3 since overlaying
of Qg on Zg cannot introduce any vertices in T1 , If Qg has u' edges, [T2 [~ u f

•

To count the number of vertices in T3 , consider an edge e in Eg which contributes one or more segments
e, to E; as a result of intersections with Qg. There must be at least one reflex vertex of Qg, present
between two successive edge segments e,. Charge a cost of 1 to the reflex vertex which lies to the left
(or, right) of each segment and charge a cost of '1 to e itself for the leftmost (or, rightmost) segment. '\Ie
claim that each reflex vertex of Qg is charged at most once by this method. Suppose, on the contrary,
a reflex vertex is charged twice by this procedure. Then, that reflex vertex must appear between two
segments of two edges in Eg as shown in Figure 7(b). As can be easily observed, all four edge segments
cannot be adjacent to the regions incident on an edge 9 of Qg. This contradicts our assumption that all
these four segments are present in E;. Hence, the total charge incurred upon the reflex vertices of Q!J
and the edges of E g can be at most rg +51- 1 where rg is the number of reflex vertices prcsPllt in Q.Q'

10

,.,
Shadad req~o". era ZoneS ot ~ •

..,/
./

....

eflex vertex

........

,

,

Ib'

Figure 7: Zones of a line and cuts.

11

This implies that as a result of intersections with Qg, at most r g + 51- 1 segments of edges in Eg are
contributed to E;. lIence,lTal .$ 2(r,'1 +51- 1). Putting all these together. we have

IV;I IT,I + IT,I + IT,I
::; 51- 3 + u' +2rg +10l- 6

< 151 +u' +2rg - 9.

Si nce· there can be at most r notch planes, I .$ r. Certainly, rg ~ rand u' ~ n. This gives

u = IV;I S15r + n +2, - 9 = O(n + r) = O(n).

Since Q9I'Q92' ...'Qg.... form a plane graph, we have

Lemma 3.3: The total number of edges in the final decomposition of the polyhedron 5 with r notch.es
and n edges is O(7tr).

Proof: Total number of edges in the final decomposition consists of newly generated edges by the cuts.
and the edges of S which are not intersected by any notch plane. Since the total number of edges present
in all the cuts corresponding to a notch is O(n), the total number of newly generated edges by each notch
plane is O(n). Thus r notch planes generate O(nr) new edges. lIenee, the total number of edges in the
final decomposition is O(nr + n) = O(nr).~

Theorem 3.1: A manifold polyhedron 5, possibly with holes and shells and having r notche.s and n edges
can be decomposed into O(r2

) convex polyhedra in O(nr2) time and O(nr) space.

Proof: Decomposition of a polyhedron consists of a sequence of cuts through the n,oi.ches of 5. Assign
a notch IJlane for each notch in 5 in O(r) preprocessing time. Remove each notch by removing all of
its subnotches with the notch plane assigned to this notch. Each planar cut to remove a subnotch in a
polyhedron, can be carried out by the method descdbed above. According to the Lemma 2.1 this produces
O(r2) convex pieces at the end since all subnotches of a notch are removed by a single notch]Jlane.

Worst-Case Complexity: At a generic instance of the algorithm, let 5 .. 52, ...• Sk be the k distinct
(non·convex) polyhedra in the current decomposition, where each 5i contains the subnotch gj of a notch
9 which is going to be removed. Let Si have Pi edges and P = I:f=1 Pi. Let tj be the number of notches
intersected by P9i in Si and t = Ef=l tj_

Applying Lemma 3.1, each 8ubnotch gj in Si can be removed in O(Pi +tilogtil time and in O(p;) space,
TIt.us, removal of a notch 9 can be carried out in O(Ef=I(Pi + tilogt;)) time and in O(Ef=1 Pi) space. Dy
Lemma 3.3, Ef=t Pi = O(nr). Since a notch plane can intersect at most r - 1 notches, t = Orr). This
gives, .

,
L t, logt, =O(t logt) =O(rlogr).
i=1

lIenee, a notch 9 can be removed in O(nr + f'logr) = O(nr) time. Thus. elimination of r notches takes
O(nr2) time. In Lemma 3.3, we prove that the total number of edges in the final decomposition of S is
O(nr). This implies that the space complexity of polyhedral decomposition is O(nr) . ..

12

3.3 Decomposition of non-manifold polyhedra

For a non-manifold polyhedron 5, nonconvcxity results from notches of four types as discussed in section
2.1. Let 5 have n edges and r notches. Preprocess 8 as follows to remove the notches of first three
types, called the special notches. Let this process produce a decomposition 5 1,52 , ... , 8/ where each Si is
a manifold polyhedron having notches of only the fourth type. Apply Theorem 3.1 on each of them to
obtain a worst-case optimal convex decomposition.

Removal of type 1 notches: In this case, as can be observed from the Figure l(a), the vertex l1i causing
the nonconvexity is detached from the facet j; on which it is incident as isolated vertex. Identifying these
vertices and detaching them from corresponding facets take at most O(n) time.

Removal of type 2 notches: In this case, more than two facets are incident on an edge e;. Let these
facets be It, 12, ..., Ir;. Consider a cross section C which is the intersection of the facets incident on ej, with
the plane P perpendicular to the edge ei. C consists of edges ej = (Ii n Pl. Sort the facets circularly
around the edge ei by the circular sort of the edges ej which are incident on ei n P. Pair the adjacent facets
which enclose a volume of 5. Let this pairing be (It,h.l,(!3, f ..),'(fri-I.fr;). Create an edge between
each pair of facets and delete the edge ei. All these edges are at the same geometric location of ('i. Alljust
all the incidences properly. Sorting of facets around the edge Ei takes O(rilogri) time. The adjustment
time for of all incidences in the internal representation of S cannot exceed O(n). Thus, removal of all
type 2 notches takes at most O("[ogr + nr) = O(nr) time.

Removal of type 3 notches: Let Vi be a vertex which corresponds to a type 3 notch. In this case,
o collect the features (edges, facets) incident on Vi which are reachable from one another while remaining
always on the surface of S and never crossing Vi. This gives a partition of the features incident on Vi into
smaller groups. For each such group, create a vertex at the same geometric location of Vi and adjust all
the incidences properly. This in effect, removes the nonconvexity caused by Vi. All such vertices causing
type 3 notches in S can be identified in O(n) time by depth first traversal in the underlying graph of S.
Removal of each such notch takes at most O(n) time. Thus, all type 3 notches can be removed in O(nr)
time.

Removal of all the above three types of notches.generates at most O(n) new edges and produces at most
k manifold polyhedra where k is the number of special notches in 5.

Theorem 3.2: A non-manifold polyhedron S, possibly with holes and shells and having r notches and n
edges can be decomposed into 0(r2

) convex polyhedra in 0(nr2
) time and D(nr) space.

Proof: Remov~ all special notches from S in O(nr) and O(n) space as discussed above. Let 5,,52 , ... ,.51

be the manifold polyhedra created by this process. Let 5j have ni edges of which Ti are reflex. Using
Theorem 3.1 on each of them, we conclude that S can be decomposed into 0(r2) convex polyhedra in
On:::~=, nir1) = 0(nr2) time and in 0(I:~=1 niTi) = O(nr) space.

Decomposition into Tetrahedra: Let 51,52 , ..• , Sk be the convex polyhedra. produced by convex de
composition of a polyhedron 5. Each convex: piece with Pi edges can be triangulated into O(Pi) tetrahedra
in a straightforward manner (triangulate every convex facet and then tetrahedralize by choosing a point
in the interior of the convex polyhedra). This takes at most O(Pi) time for each convex piece. Hence.
triangulation of all pieces takes 00:::7=1 Pi) = O(nr) time producing D(nr) tetrahedra.

13

4 Convex Decomposition under Finite Precision Arithmetic

Motivation: When implementing geometric operations stemming from practical applications, one cannot
ignore the degenerate geometric configurations that often arise, as well as the need to make spedfLe topo
logical decisions based on imprecise finite precision numerical computations [12, 15, 23J. \Ve model the
inexact arithmetic computations bYe-arithmetic [10, 11] where the arithmetic operations +,-,-:-, x are
performed with relative error of at most E. Under this model, the absolute error in distance computations
of one polyhedral feature from another is hounded by a certain quantity 0 = kEB,where B is the maximum
·value of any coordinate and k is a constant. See [17J. When making decisions about the incidence of these
polyhedral features (vertices, edges, facets), on the the basis of the computed distance(with sign), one
can rely on the sign of the computation only if the distance is greater than 6. On the other hand, if the
computed distances are less than 6, one also need to consider the topological constraints of the geometric
configuration to decide on a reliable choice. In particular, in regions of uncertainity Le. wjthin the 6-ball,
the choices are aU equally likely that the computed quantity, is negative, zero or positive. Such decision
points of uncertainity, where several choices exist, are either "independent" or "dependent". At indepen
dent decision points, allY choice may be made from the finite set of local topological possibilitip.5, while
the choice at dependent decision points should ensure that it does not contradict any previous topological
decisions. The algorithm which follows this paradigm would never fail, though it may not alway!'! compute
a valid output. Such algorithms have been termed as parsimonious by Fortune [10).

An algorithm under e-arithmetic, is called robust if it computes an output which is exact for some
perturbed input. It is called stable if the perturbation required is small. Recently, in [10, 11, 17) authors
have given robust and stable algorithms for some important problems in two dimensions. Except [14]. there
is no known robust algorithm for any problem in three dimensions. The difficulty arises due to the fact th~t

the perturbations in the positions of the polyhedral features may not render a valid polyhedron embedded
in JP. In [14J, Hopcroft and Kahn discuss the existence oCa valid polyhedron which admits the positions
of the perturbed vertices of a convex polyhedron. The case of non-convex polyhedra is perceived to be
hard and requires understanding the deep interactions between topology and perturbations of polyhedral
features of non·convex polyhedra.

Karasick [15] gives an algorithm for the problem of polyhedral intersection where he use.e; geometric
reasoning to avoid conflicting decisions about polyhedral features. In this paper, we extend the results
in [15] and provide an algorithm for the problem of polyhedral decomposition which also uses geometric
reasoning to avoid conflicting decisions. Though, as yet we are unable to prove our algorithm to be
parsimonious, we report various heuristics we have implemented in our effort to make the decomposition
algorithm robust and stable. We also describe a worst case running time bound for the algorithm under
the e-arithmetic model.

More related work:The issue of robustness in geometric algorithms have recently taken added importance
because of the increasing use of geometric manipulations in computer-aided design, a.nd solid modeling [1].
Edelsbrunner and Mucke [9], and Yap (24], suggest using expensive symbolic perturbation techniques for
handling geometric degeneracies. Sugihara and lri [23], and Dobkin and Silver {7], describe an approach
to achieve consistent computations in solid modeling, by ensuring that computations are carried out with
sufficiently higher precision than used for representing the numerical data. There are drawbacks however,
as high precision routines are needed for all primitive numerical computations, making algorithms highly
machine dependent. Furthermore, the required precision for calculations is difficult to a priori est.imate for
complex problems. Segal and Sequin [21] estimate various numerical tolerances, tuned to each computation.
to maintain consistency. Milenkovic [17] presents techniques for computing the arrangements of a set of
lines in two dimensions robustly. lIe introduces the concept of p3e1ldo line3 which preserves some basic

. topological properties of lines and computes the arrangements in terms of these pseudo lines. Hoffmann.

14

Hopcroft and Karasick [12), and Karasick [15], propose using geometric reasoning and apply it to the
problem of polyhedral intersections. Sugihara (22) uses geometric reasoning to avoid redundant decisions
and thereby eliminate topological inconsistencies in the construction of planar Voronoi diagrams. Guibas,
Salesin and Stolfi [11] propose a framework of computations called c-geometry, in which they compute a~

C!xact solution for a perturbed version of the input. So does Fortune [10] who applies it to the problem of
triangulating two dimensional point sets.

4.1 Intersection & Incidence Tests

In what follows, we assume the input polyhedra are manifold. Non-manifold polyhedra can be handled
as discussed in the previous section. It is clear from discussion of our previous algorithm that numerical
computations are needed in different types of intersections and incidence testings. We assume minimum
feature criteria for polyhedra as follows. The distance between two distinct vertices or between a vertex and
an edge and the dihedral angle between any two facets may not be less than a minimum value. The choice
of this minimum threshold value is described in our algorithm. To decide whether an edge is intersected
by a plane, one must decide the classifications of its terminal vertices with respect to the same plane. The
same classification of a vertex is used to decide the classification of all the features incident on that vertex.
This, in effect, avoids conflicting decisions about the polyhedral features. The decisions about different
types of intersectionS and incident testings are carried out by three basic tools, namely, (i) vertex-plane
classifications, (ii) facet-plane classifications and (iii) edge-plane classifications.

The order of classifications is (i) followed by (ii) followed by (iii). Edge-plane classifications are done
only after vertex-plane and facet-plane classifications. In what follows, assume the equation of a plane
Pi : aiX +biy +CjZ + d is normalized with a~ +b1 + c1 = 1.

Vertex-Plane Classification: To classify the incidence of a vertex Vi = (Xj,Yi,zd w.r.t the plane P :
ax+by+cz+d = 0, compute the normalized algebraic distance of Vi from P by computing aXi+bYi+CZi+d.
The sign of this computation, viz., zero, negative, or positive, classifies V; as "on" P (zero), "below" P
(negative) or "above" P (positive), where "above" is the half space containing the plane normal (II, b, c).
Accept the sign of the computations as correct if the above distance of Vi from P is larger than 6. Otherwise,
apply geometric reasoning rules, as detailed below, to classify vertex Vi w.r.t. the plane P. In the following
algorithmic version of the vertex-plane classification, the intersection between an edge e incident on Vi and
the plane P is computed as follows. Let e be incident on planes PI, P2 , where Pi : aiZ + biY + CiZ +di = O.

::m::ew~:~e,~n~e:ec[ti~ Pt£ Jor~ :n~:e_:'~~d~' j:Y. c:::~:~::Tt::S:::t::nso~~::eu:ii::a~~:sts~~~
a2 b2 C2

elimination with scaled partial pivoting and iterative refinement.

Vertex-P lane-Clnssif (Vi'P)
begin

Let Vi = (Xi, Yi, Zi) be a vertex incident on edges et = (Vi, wd,e2 = (WI W2),"" ek = (Vi, Wk).
Let P : ax + by +cz + d = O.
Compute 1 = aXj + bYi + CZi +d.
Ifill> 6 then (*Comment: Unambiguously decide via the sign of distance computation*)

ill> 0 then
classify Vi as "above"

else
classify Vi as "belowll

15

dse
looIJ
(*Comment: If distance computation does not yield an unambiguous
classification for the vertex with respect to the plane, ensure that
th~ "",hove", "below" classification is consistent with all edges
incident on that vertex. If such consistency cannot be ensured then
the vertex is classified as "maybeon" and left for future facet - pLane
classifications to decide its classification consistently.*)

Search for an edge ei incident on Vi such that T ::= ei n P is at a distance
greater than 0 from Vi and wi::= (Xj,Yj,Zj).

Get the classification of Wi if it is already computed.
Otherwise, compute 1'::= aXj + bYj + CZj.

ifll'l > fJ then classify Wi accordingly.
if the classification of Wi is "below" or "above" then

il r is in between Vi and Wi then
classify Vi oppositely to that of Wi

else
classify Vi same as that of Wi

endil
cndif

end/oop
if no such edge ei is found then

classify Vi as "maybeon"
(*Comment: To he classified later in the facet-plane c1assiftcations *)

endif
elldif

('.nd.

Facet-Plane Classification: If a facet Ii is intersected by a plane P in such a way that Ii does not lie on
P then the points of jntersection should necessarily be (i) collinear with the line of intersection of Ii and P,
and (ii) all the vertices of Ii on one side of the intersection line, should all he of the same classification w.r.t.
the plane P. Vertices which have been temporarily classified as "maybeon", are classified in a consistent
way, Le., they satisfy the above two properties (i) and (ii), with perturbations of at most fJ. An algorithmic
version of the facet-plane classification is given below.

Facet-Plane-Classif (f;, P)
begin

case
(i) All the vertices of Ii have been classified as "maybeon":
Classify Ii as "on" the plane and change the classification of all incident vertices to "on·'.
(ii) At least one vertex Vu of Ii has been classifieq. as "above". or "below", but no
edge of Ii has its two vertices classified with opposite signs("below" and "above"):
if there is only one "maybeon" vertex then

classify Vi as "on" and consider Vi as Ii n P

16

else
take two "maybeon" vertices Vj,Vj and
classify Vi and Vj as "on".
Let L be the tine joining Vi, Vj'

Consider L as Ii n P.
cllrtif
loop

for each "maybeon" vertex Vk on Ii do
if Vk is at a distance greater than 0 from L then

if'IJk and V n lie on opposite sides of L then
classify Vk with a classification which is opposite to that of V tI •

else
classify Vk with a classification which is same as that of VtI •

endif
endif

emllool'
The vNtices which are slillllot classified

,

bela"

"

(' 2' , F
S

and P 7 ...• P 9 lICD maybQon vDcl:lces.

P , , P gots tho cLsssification of P •
, 5 6

P , .••• P gets I:he classification of P •
8 9 I

Figure 8: Case(ii) of facet-plane classification.

classify them as "on" (*Comment: These vertices are within a distance of 0
from L and hence will be collinear with L by a perturbation of
at most o. See Figure 8.*)
(iii) There is an edge e whose two vertices have opposite sign classifications:
if there is no other such edge then

let L be the line joining the intersection point on e and
any "maybeon" vertex Vi.

classify Vi as "on".
consider L as Ii n P.
apply methods of case (ii) to classify other "maybeon" vertices.

else
let L be the line which fits ill least square sense all the points

17

of intersections and apply the methods of case (ii) to classify
remaining "maybeon" vertices.

endif
endcase

end.

Edge-Plane Classification: An edge can get any of the three classifications which are Unot-intersected",
'linterscctcd", and 'Ion". The classifications of the vertices incident on an edge are used to c1assif)' an edge
e. An algorithmic version of the edge-plane classification'is given below.

Edge-Plane-Classif (eil P)
begin

Let Ci = (V;,Vj).

case
(i) Vi and Vj are both classified as uon";
classify ei as "on".
(ii) Only one of Vj, Vj, say Vi is classified as 'Ion":
classify ei as "intersected" and consider Vj as ej n P.
(iii) Vi and Vj are classified with one as "above" and another as "below":

. classify ej as llintersected".
compute r = ej n P if it has not heen computed yet.
i/ T does not lie within e then

choose a point at a distance of at least 6 from the vertex
which is nearest to the computed point and consider it as the intersection point of Ci and P,

endif
(iv) Vi and Vj are of same classifications and they are not "on":
classify ei as "not·intersected".

cndcase
end.

The following lemma related to consistent ordering of intersection points of a facet on the line of
intersection is used in later sections.

Lemma 4.1: L~t v be a vertcx which is decided not to lie on the plane P and whose c1assificalion \V.r.t
the plane is known. Let el, e2 be the edges incident 011 V on a facet / which are classified a.<; "intersected".
Denote the intersection points of el, e2 with P as VI and V2 respectively. Let 0 denote the ordering of
VII V2 on the directed intersection line f n P which is consistent with the classification of v. If II} ;:: 31~'O
holds, 0 can be determined correctly. Here 6 is the maximum absolute error in distance computations. 0

is the angle between edges c}, e2 on /, M is a suitably chosen large machine representable absolule value.

Proof: Consider the vertex V with incident edges el, e2 on facet /. Let L = J n P be directed <IS shown
in Fig. -1.2 and let the actual distance of v from P be l. Suppose we know the classification of I' w.r.t P.
We need to determine the ordering 0 of Vll V2 on L which is consistent with the classification of 1.'. Note

18

that the ordering of VI. V2 on L depends on the classification of v. See Fig 4.2(a).
Define a transformation called max translation as follows. Translate the plane P : ax + by + cz + d = 0

to Pmo.~tran."a/e : ax + by + cz - AI = 0 if d > 0, or to Pma:rlTlln.dale : ax + by + cz + Al = 0 if d $; O.
Note that Pma:r:!ran8/lIle is the plane P translated by the amount M +Idl. In the first case P is translated
to its positive side and in the latter P is translated to its negative side. Let v~ ,v; denote the intersection
points of the lines containing the edges et, e2 with the plane Pma:r:tran,lalfl: and L' denote the directed line
Pm,,,,,:L.Tan,late n f.

Case (i): Classificat.ion of v is same as its actual position w.r.t the plane P. See Figure 4.2(b) and
'(.2(c). Transform the plane P to Pma:rITl1.ull1fe' If P is translated by more than I to the same side in
which v lies, the ordering of Vb V2 is opposite to "that of vi v~, where I is the distance between P and v.
Conversely, if P is translated by any amount to the side which does not contain v , the ordering of VI, V2
. h f' ,IS same as t at 0 vII v2 •

Case(ii): ClassifLcation of v is opposite to that of its actual position w.r.t P. Transform the plane P
to Pn"u;tTlJ.n~ll1je' If P is translated by any amount to the same side in which v has been decided to lie in,
the orclering of Vl, V2 is opposite to that of vi, v~. Conversely, if P is translated by more than I to the side
in which v has been decided not to lie in, the ordering of VI, V2 is same as that of v~, v~.

In both cases, if P is translated by more than t, the ordering of VI, V2 can be determined from the
ordering of vI' v~. The ordering of v(, v~ can be determined exactly if the distance eL' between them is
greater than IL Let I' be the distance between V and the plane Pml1%!TlJ.n~'l1!e' From simple geomf!try, olle
can see that I'sina ~ 6 is a sufficient condition for d' to be greater than 6. P is translated by at most 1+('.
lIenee, I + {I :::; AI + Icll. This implies

M + Idl ~ 1+ ...!..-
Slna:

is a sufficient condition for determining the ordering of vl'v~ exactly.. Since, minldl = 0 and maxlll = 6,
we have

M
b

> b+-.-
.!Hna

oc

M
~

b
-
2 Slna

is a sufficient condition for determining the ordering of v~, v~ exactly. The value of AI is chosen to satisfy
the above relation. ,.

Nesting of Polygons with Finite Precision Arithmetic: The polygon nesting problem as: discussed
in section 2 can be solved with finite precision arithmetic if the polygons are restricted to a class of polygons
called fleshy polygons. A polygon P is called fleshy if there is a point inside P such that a sqnare with
center (intersection of square's diagonals) at that point and with sides of length 64€B lies inside P. Band
€ have been defined earlier.

Lemma 4.2: The problem of polygon nesting for k fleshy polygons with s vertices and t monotone chains
can be solved in 0(1.:2 + set + logs)) time under finite precision arithmetic.

Proof: See [3J. Since any vertical line (orthogonal to the ::z: direction) can intersect at most t edges or a
set of polygons having t monotone chains, the above time bound is obvious from the time analysis of the
algorithm under finite precision arithmetic as given in [3J.•

19

.',

•

.,
••.......................................
.,

,
•

't~._'-_'_".:::::.;<
vI" 1

L - fn P

I.' L • f n P

,
L - En'inaxtranslate

Ib'

Case (i). P is translated to the side
opposite to that in which v lies.

ill t'
r.~

•..•~!.,~=:=T·""."J:' '. . .
lv 1 ..

i

I
Id'

Casa!ill, P 18 translated to tho
sid.. opposIte to that In which
v he. been detld"d to lIe In.

,
L-ftlP

m"xtransl"to

10'
Cas.. !1l, P 15 translatod to
the sido In which v 1105.

L - f n P L • fn p
,

L f n p
maxtransl"'t ..

,. ------..

.::~:::::::::::::::::::.::::::: ..Z;....~

"" .. '

...................···;·~:~·:::d'

,
L • fn P

mllxttllnslato
L - f n p

I.'
Cne (111. P 15 translated to the
side In which v has been decided
to lIe in.

Figure 9: Maxtranslation and Lemma 4.1.

20

4.2 Description of the Algorithm

The same paradigm of cutting and splitting the polyhedron about the cuts is followed to produce the convex
decomposition of a manifold, non-convex polyhedron. Choose one of the two planes incident on a notch as

. notch plane. This ensures that no new planes other than facet-planes are introduced by the algorithm and
thus no additional error is introduced in the plane equations containing the facets. This also guarantees
that any input assumption about the planes containing the facets remain valid throughout tne iterative
process of cutting and splitting the polyhedron. We apply heuristics at each numerical computation through
geometric reasoning to make our algorithm as parsimonious as possible. For any notch plane P!I the two
cross sectional maps GP:,GP; are constructed and the corresponding cuts Q~, Q; are computed in Step
I as detailed below. In Step II we split the polyhedron about these cuts which completes the removal of
notch 9.

Step I :

Constructing GPi and GP;: The edges ofGP: and GP; are either the edges transferred from polyhedron
S called old edges, or l:!dges newly generated from S n Pg called new edges. Note, all new edges will be
present in both cross sectional maps while only some of the old edges may be present in either GP; or
in GP;. As with the edges, some of the vertices of the era.!!.!! sectional map.!! will be old vertices while
some of them will be new vertices. To generate old and new edges on these cross sectional map!', compute
the intersection points of each facet f with the notch plane using the vertex-plane, edge-plane, facet-plane
classification as described before. After computing aU intersection vertices (new and old) lying on the facet
I, sort these vertices along the line of intersection In Pg _

"

-,-,--':::"~''----...:f./t---
-" ~......... ~ f f\ P mllxtcoIInslllto

.,
• 2

r

Figure 10: Consistent sorting of intersection points .

. Sorting of intersection points along line In Pg : Consider the facet f as shown in Figure 10. Let
edges et and e'2. incident on v intersect the plane Pg at poi~ts VI and V'2, both necessarily lying on line
L ;:: f n Pg • Further let VI and V2 be new vertices. If Vt and V2 happen to be very close together, it may not
be possible to determine their local ordering on L reliably. However, the classification of V w.r.t Pg can be
used to decide this ordering consistently_ Translate the plane Pg to Pmo:rtrf1nlllf1le and compute the points

21

f?] n P,"""'lrarulote and e2 n PmartTatl~la/e. Let these intersection points be vi and v~ respectivel.v. As the
angle between edges el and e2 cannot be arbitrarily small (minimum feature criteria for dihedral angles)
there exists a certain translation such that the distance between vI and Vz will be > 8. Set the minimum
dihedral angle Omit! between any two facets to be such that 6. < ft.,!. By Lemma 4.1, the ordering of

~mO'm,n -

V .. Vz on L which is consistent with the classification of v can be determined exactly. The ambiguity in
the ordering of old vertices and new vertices on the edges which are not incident on a common verLex does
not arise if we assume minimum feature separation of at least Ii for elements of the input polyhedron S.

Genernling new edges: Let L be the line of intersection of a facet / with the notch plnne. Let
(lJ\, V2, ... , Vk) be t.he sorted sequence of vertices on L, corresponding to the points of intersection be
tween the facet and the notch plane. One needs to decide consistently whether there should be al\ edge
between two consecutive vertices Vi and Vi+! of this sorted sequence. This is done by scanning these sorted
vertices from one end to the ot.her and deciding whether we are "inside" or "outside" the facet. It is easy to
see that if Vi is a new vertex then there would be an edge between Vi and Vi+! if there were no edge between
Vi_1 and Vi and vice versa. Dut if Vi is an old vertex there can be edge between Vi and Vi+! disregard of
the rreSCllce of all edge betwecn Vi-:Il Vi.

v,

foe

Figure 11: Generating new and old edges.

Toggling between "inside" and "outside" of the facet is carried out properly, even with deg£lneracies.
using a multiplicity code at each intersection vertex. Scan the sorted sequence of intersection vertices from
one end to the other and maintain a counter which is incremented by the multiplicity code at each vertex.
Toggle between "inside" and "outside" of the facet as the counter toggles between "odd" and "even"
count. For a new vertex rut a multiplicity code of 1. For an old vertex, put a multiplicity corle of 1 if
two incident edges on the Vertex on that facet lie in different half-spaces of Pg and put a multiplicity code
of 2 if they lie in the same half-space. If there is an old edge between two vertices Vi and Vi+!, put
multiplicity codes on them as follows. If other two incident edges on Vi, VitI on the facet / lie in the same
half·space of the notch lJlune, put a multiplicity code of Ion both the vertices Vi and Vi+!. OthNwise, put
multiplicity codes of 1 and 2 on Vi and Vi+! in any order. In Figure 11, there is an old edge betw('cn V3, t!.\.

The status ("outside") with which one enters the vertex V3 is same as that one with which one leaves the
vertex V<I' This is enforced by putting a multiplicity code of 1 on the two vertices which increment the
counter by an "even" amount and prevent it from toggling. There is another old edge betwepn Vs and

22

lJo. The status ("outside") with which one enters the vertex Us is different from the one with which one
leaves the vertex V6' This is enforced by putting multiplicity codes of 1 and 2 on the two verticc!i in any
order which increment the counter by an "odd ll amount and make it toggle. Initially, the counter is set
to O. Create a new edge from vertex Vi to Vi+l if the count is "odd" after leaving the vertex Vi. In case,
there is an old edge between Vi and Vi+t, skip creating any new edge between them. An old edgf' may he
transferred to GP: or GP; or to both. Transferring of old edges is described below.

Transfer of old edges: The old edge e" should be transferred to GP: (GP; respectively_) if <lily facet
(or a part of it) adjacent to eo which has not been decided to be on the notch plane, g<!ts transferred to
GP: (GP; respectively.). For example, the edge 9 in Figure 3 should be transferred to GP: but not to
GP;. For each old edge eo decided to be on the plane Pg, check all of its oTiented edges on different facets
which have not been decided to be on the notch plane. Suppose 10 is such a. facet. Classify any vertex
Vo of fo w.r.t the oriented edge eo on 10' If it is on the same side of eo in which fo lies then eo should
be transferred to GPt (GPr respectively.) if Vo has been classified to lie in P+ (P- respectively_). It is
trivial to decide the side of eo in which 10 lies from the oriented edge of eo on /0'

Consistent vertex-plane, edge-plane and facet-plane classification takes overall O(p) time where p is the
total number edges of the polyhedron S. The above bound follows from the fact that each edge of Sis
visjt<!d only 0(1) time to determine the intersection points of S with the notch plane Pg • The sorting
of intersection points on the facets adds OCr log r + ql) time where q/ is the total number of facets
decided to be intersected by the notch plane. The above bound follows from the fact that any line segment
intersects a facet having rj reflex verticea in no more than (2r; + 2) points (Lemma. 2.-1). Once the
construction of the maps GP; and GP; is done, it is trivial to recognize the boundary Bg containing the
notch g. The methods as described in section 3 can be used to determine the interesting bonnduries.
Note that, if Dg is an inner boundary, the interesting boundaries consist of all the ancestors of Bg . If
aU the polygons in the cross sectional maps are fleshy, ancestors of Bg can be determined exactly using
Lemma 3.4 of [3] at a cost of O(u') where u/ is the number of vertices on the cross sectional maps. As
discussed earlier, there are O(t) polygons and monotone chains in the interesting boundaries where f is
the number of notches intersected by Pg • Let u be the number of vertices on the interesting boundaries.
According to Lemma 4.2, the children and parent of B g can be determined exactly in 0(t2 + 1I(t + logu)
Lime if the polygons corresponding to the interesting boundaries are fleshy. Set up a safe minimum
feature separation between polyhedral features so that the polygons generated in the cross secl.ionnl maps
are always fleshy. Detection of children and parent of the polygon containing the notch g in effect,
determines the inner and outer boundaries of Q~(Q;). Obviously q/ = O(p) and u = O(u') = O(p).

Combining the complexities of computing the edges of GP; (GP; respectively.) and detecting the inner
and outer boundaries of Q~(Q; respectively.), we conclude that Q~(Q; respectively.) can be computed
in O(p + t2 +. ul(l +10glL/)) time.

Step II: S is separated corresponding to the cut Q~(Q;) by splitting the facets which are intersected by
the cut Qg. Let fi be such a facet which is to be split at aI, a2, "', ak. For each such point of intersection
which may correspond to a new vertex or an old vertex, do the following.

New Vertex: Let elf = (VI,V2) be the edge on which new verlex Vn lies. Generate edges betw{'en VI, Un

and between V2, Vn' Since the half spaces in which VI and V2 lie are known, one can d<!ci~e the half space
in which each such new edges lies.

Old Vertex: For each old vertex Vo lying on the plane Pg , transfer the edges connected to lJo to the half

23

•

space in which their other vertex has been decided to lie in. Here. transferring means connecting those
(!<Iges to the copy of the vertex Vo on the corresponding cut. The edges connected to V o which have been
decided to be on the plane Pg are transferred by procedure as described before. Finally, create two facets
corresponding to the cuts Q~ and Q;. Splitting each facet which are decided to be intersectf'd hy the

f.nt Q; CQ;) eITectively either splits S into separate pieces or splices it about the cuts creating two facets
corresponding to the cuts at the same geometric location. A depth first search starting from on£"! vertex
ill each of P: and P; resolves this ambiguity and also collects all the features pertinent to each piece..
Certainly, this separation step does not take more than O(p) time where p is the number of edges of S.
Combining the time and space complexities of Step I and Step II we have the following Lemma.

Lemma 4.3 Using heuristics to avoid conllicting decisions, a manifold polyhedron S with arbitrary genus.
shells and certain minimum feature separations can be partitioned under finite precision arithmetic with
a notch plane in 0Cp + t2 + u'{t + logu')) time and O(p) space, where p is the number of edges in S, tl
is the number of vertices on the Cl'OSS sectional maps and t is the number of notches intersected by the
Jlotch]Jlrme.

The following combinatorial Lemma is used to derive the time complexity in Theorem 4.1.
Lemma 4.4. Let 5 1 ,51" ... ,51. be the polyhedra in the current decomposition, whe~e each Si contains a
suhnotch gi of a notch 9 of a manifold polyhedron 5 with n edges and r notches, and let ui be the total
number of vertices on the cross sectional map in Sj. Then we have u/ = Lt. Uj 1 = O(n + ,.1,), where
u' is the total number of vertices on the cross sectional maps in 5 1 ,51" ... ,51.'

Proof: Consider the cross sectional map GP; (GP;). The lines of intersection between Pg Clnd other
notch]Jlanes, callC!d the notch lines divide this map into smaller facets which are present on the c/'Oss ~p.c

lional maps in 51> 52, ... , S~. Le. on Uf=l G pi, (Ur=1 G p;J. The vertices on Ur=1 G Pgt; (Ur=, c: p;J can
be partitioned into three sets, viz., T" T2 and T3 • The set T, consists of vertices which are cH'ated by
intersections between notch lines. The set T1, consists of vertices on GP: (GP;l and the set 1; ronsists
of '..-ertices which are created by intersections between edges of GPi (GP;) and notch line.!!. Since lh(!fe
are al most OCr) notch lines, ITII s 1'2. Certainly, IT2 1S n. lly Lemma 2.<1, each notch line can intersect
(IP; (GP;) in at most (2r+2) points since GP: (ep;) can have at most OCr) reflex vertice.!!. This gives
IT,I $ 2r + 2. Thus,

k

u' I::U: = IT,I + IT,I + IT,I
;=1

S r2 +n+2r+2

O(n +r').01-

Theorem 4.1 Using heuristics to avoid confiicting decisions, a polyhedron 5 with arbitrary nnmber of holes
and shells and certain minimum feature separations can be decomposed under finite precision arithmetic
intoO(r2) convex pieces in 0(nr2 +nrlogn +r3logn +r4) time and in O(nr) space, where l' is the number
of notches, n is the number of edges in S.

Proof: Let 5 be a manifold polyhedron. At a generic instance of the algorithm. let 8 11 52,ch be the

24

•

,.. distinct (non-convex) polyhedra in the current decomposition, which contain the subnotchcs of a notch
9 which is to be removed. Let Pi be the number of edges in Sit ui be the numb~r of vertices on the
cross sectional maps in Si and ti be t.he number of notches intersected by the notch plane ill Si. Let
IJ = L:~=l lJi, u' = L:7=1 tL~ and I = 2::7=1 ii. Certainly, k = O(r) and t = OCr). Using Lemma 'Ll. we can
say that the t.ime 'i} to remove t.he notch 9 is given by

k

B' 0(2)1); + l~ +ui(tj + logui))
;=1

O(p +r3 +u'r +u'logu').

By Lemma '1.4, u';::: O(n + ,.2). This gives,

\)' ~ O(p+r'+(n+r')r+(n+r')/ogn)

G(nT + nlogn + r"llogn + r 3
)

To carry out removal of T notches we lIeed O(nr2 + nTlogn + r 310gn + r") time. Obviously, t.he space
complexity is OCIl) = G(nT). If S is a non-manifold polyhedron, remove aU special notc.hes from S 1.0

produce manifold polyhedra and decompose each such polyhedron into convex pieces as discuss!'!d in the
previous section. The complexity remains same for this case. .,

5 Conclusion

We have implemented our polyhedral decomposition algorithm under floating point arithmetic in Common
Lisp on a Symbolics 3650. The numerical computations are all in C, callable from Lisp. 'We used 8 = 2- 17

in the 32 bit machine with precision 2-25 . Simple examples are shown in Figure 12. The expNimental
results have been very satisfying. Test polyhedra were generated by SHILP solid model creation software.

Our next goal is to develop a robust and stable algorithm for polyhedral decomposition prohlem. To
rind a robllst and stable algorithm for this problem seems to be quite hard. It may be worthwhile to
consider the concept of IJSelldo Jacets, the counterpart of pseudo Lines in three dimensions to sol\"(~ this
problem.

Acknowledgements: \Ve thank two anonymous referees for their astute comments. A. preliminar:,.' version
of this pa.per appeared in Proc. of the Foundations oJ Software Technology and Theol'elical ('mnpllicr

Science, Lecture Notes in Computer Science, Springer Verlag, No. 405, 1989, pp. 267·279.

25

Figure 12: Examples.

26

References

[I] Bajaj, C., (1989) "Geometric Modeling with Algebraic Surfaces", The Mathematics of Sllr!n.ces Uf.
edited by D. Ifandscomb, Oxford University Press, 3 - 48.

[2] Anupam. V., llajaj, C., Dey, 'I., Fields, .M., Ihm, 1., Klinkner. S., (1989), "The SIIILP solid model
creation-, editing and display toolkit", Manuscript.

f:J] llajaj, C., and Dey, T., (HlS9) "Polygon Nesting and Robustness" Proe. Inti. Workshop on Discrete
Algorithms and Complexity, Fukuoka, Japan, 33-40. To appear in Information Pl'Ocessing Leiters.

[4] Chazelle. n" (1980). "Computational Geometry and Convexity", Ph.D. Thesis, Clo.'IU-CS-80-150,
Computer Science, Carnegie-lvlellon University.

[5] Chazclle, B., (1981), "Convex Partitions of Polyhedra: A Lower Bound and "Vorst-case Optimal
Algorithm", STAll,! J. on Computing, Vol. 13, No.3, pp. 488-507.

[GI ChazeUe, n., and Palios, 1., (l9S9), "Triangulating a Non-convex Polytope" PI'Of:. of llle 5fh i1CM
Symposium 011 Computational Geometry, Saarbrucken, West Germany, 393-400.

[71 Dobkin. D., and Silver, D., (19S8), "Recipes for Geometry and Numerical Analysis", Pmf'. of the
Fourth .J\CM Symposium OIl Computational Geometry, Urbana, Illinois, 93 - 105.

[8J Edelsbrunner, H., (Hl87), "Algorithms in Combinatorial Geometry", Springer Verlag.

[9] Edelsbrunner, II., and 1'Iucke, P., (1988), "Simulation of Simplicity: A Technique to Cope with
Degenerate Cases in Geometric Algorithms" Pmc. of the Fourth ACM Symposium on Computational
Geometry, Urbana, illinois, 118-133.

[10] Fortune, S., (1989) "Stable Maintenance of Point-set Triangulations in Two Dimensions", Pmc. 30th
IEEE Symposium on the Foundations of Compute.r Science, 494 . 499.

[11] GlIihas, L.. Salesin, D., and Stolfi, J., (1989) IlBuilding Robust Algorithms from Imprecise Computa
tions", Proc. 1989 ACM Symposium on Computational Geometry, Saarhuchen, West Germany, 208
217.

[12} HoITmann, C., Hopcroft, J., and I(arasick, M., (1987), "Robust Set Operations on Polyhedral Solids",
Dept. of Computer Science, Cornell University, Technical Report 87-875.

[13] HoITmann, K., Mehlhorn, K., Rosenstiehl, P., and Tarjan, R., (1986), "Sorting Jordan Sequences in
Linear Time using Level ~iuked Search Trees", Information and Control, 68, 170 . 18-1.

[14) Hopcroft, J.; Kahn, P., "A Paradigm for Robust Geometric Algorithms", Computer Science Tech.
Report, Cornell University, TR 89-1044.

[15J Karasick, M., (1988) "Ou the Representation and Manipulation of Rigid Solids", Ph.D. Thesil>. 1'icGill
Uni versity.

[16J Lingas, A., (1982), "The Power of Non-Rectilinear Holes", Pmc. 9th Inti. Colloq Ilium on A IItomata,
Languages and Programming, Lecture Notes in Computer Science, Springer Verlag, 369 - 38:1.

[17] Milenkovic, V., (1988), "Verifiable Implementations of Geometric Algorithms Using Finite Precision
Arithmetic", Ph.D. Thesis, CUU Tech. Report CS-88·168, Carnegie lvlellon Univ., Pittsburp;h.

27

'.

[18J O'Rourke, J., and Supowil, K., (HJ83), "Some NP-hard Polygon Decomposition Problems", IEEE
Trans. Inform. Theory, 29, 181 . 190.

[19] Requicha, A.A.G., (1£177), "Mathematical Models of Rigid Solid Objects". Tech. Memo 28, Production
Automation Project, University of Rochester, Rochester, NY.

[20] Rupert, .1., and Seidel, R., (1989) "On the Difficulty of Tetrahedralizing Three Dimensional Non
convex Polyhedra", Proc. of the Fifth ACM Symposium on Computational Geometry, Saarhrllcken,
West Germany, 380 - 392.

[21] Segal, Iv!.. and Sequin, C .. (19S5), "Consistent Calculations for Solids lo.lodeling", Proc. of tile First
Jt eM Symposium on Computational Geometry, 29 - 38.

[221 Sugihara, K., (UJ88), ";\ Simple Method of Avoiding Numerical errors and Degeneracy in Voronoi di
agram Constructions", Research Memorandum RM! 88-14, Department of Mathematical Enp;ineering
and Instrumentation Physics. Tokyo University.

[23J Sugihara, K., and Iri, :M .. (1989), "A Solid Modeling System Free from Topological Consistency".
Research Memorandum liMI 89-3, Department of Mathematical Engineering and Instrumentation
Physics, Tokyo University.

[:NJ Yap, C.. (1988) "A Geometric Consistency Theorem for a Symbolic Perturbation Theorem" PJ"OC. of
the Fourth ACM Symposium on Computational Geometry, Urbana, illinois, 134-142.

28

	Convex Decomposition of Polyhedra and Robustness
	Report Number:
	

	tmp.1307986960.pdf.LBUqY

