
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1990

Building Solid Models from Polygonal Data Building Solid Models from Polygonal Data

George Vanecek

Report Number:
90-978

Vanecek, George, "Building Solid Models from Polygonal Data" (1990). Department of Computer Science
Technical Reports. Paper 831.
https://docs.lib.purdue.edu/cstech/831

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

BUILDING SOLID MODELS FROM
POLYGONAL DATA

"George Vanecek, Jr.*

Computer Sciences Department
Purdue University

Technical Report CSD-TR-978
CAPO Report CER-90-20

May, 1990

*' This work has been supported in part by NSF grant CCR-86-19817 to Purdue Universily.

Building Solid Models from
Polygonal Data

George Vanecek, Jr. 1

Department of Computer Science
Purdue University

West Lafayette, IN 47907

May 1, 1990

Abstract

Boundary representations (BRep) of three-dimensional solids are complex data structures that
have to be created with topological and geometrical integrity. In many applications, the boundary
of a solid may he specified as a list of polygons. In this paper, we consider the problem of
constructing a BRep solid model from a list of polygons with the assumption that the points of
each polygon lie in plane within some small tolerance, that two polygons do not penetrate each
other, and that together the polygons enclose a volume. The algorithm works with any boundary
representation based on direded edges and capable of representing nonmanifold edges and vertices,
and accommodates a measure of numerical inaccuracy.

lTbis work has be= supported in pm-l by NSF Grant CCR.86-19S17 to Purdue Universily.

1 Introduction

Boundary representations (BRep) of three-dimensional solids are complex data strudures that
have to be created with topological and geometrical integrity. Creating solids from instantiated
parameterized primitives, and using Boolean set operations is one way of ensuring the integrity of
the created data structures; e.g. [5]. In many applications, however, the boundary of a solid may
have been specified as a list of polygons, where each polygon is given as a list of points in 3-space
ordered counter·clockwise when viewed from outside the solid. For example, such polygon lists may
be created by generating surfaces from contour data. Given the polygons, the construction of the
solid model requires as an example, the creation of and matching up of unique vertices and edges,
and simplifying the original boundary by removing adjacent coplanar faces and adjacent collinear
edges. Topologically, this is a nontrivial task, both in terms of efficiency and correctness. The
resulting boundary-based data structure may contain multiply connected faces, multiple shells,
and nonmanifold edges and vertices [17].

In this paper, we consider the problem of constructing a minimal BRep from a list of polygons.
The points of a polygon are assumed to lie in a plane within some small tolerance and two polygons
that touch do so only at edges and vertices and with reasonable accuracy. Moreover, the polygons
are not self-intersecting and together bound a volume. Finally, we assume that the points are
specified with sufficient accuracy so that collinear edges and coplanar faces can be reasonably
determined [12]. These assumptions are reasonable when the polygons are generated by methods
that intend to yield solid models. As an example, the creation algorithm described here is used
in a solid modeler called ProtoSolid [14] developed at University of Maryland and in Shilp [2], a
geometric system, developed at Purdue University.

In ProtoSolid, the algorithm is used to construct the resulting solid of a Boolean set opera­
tion [13]. The Boolean set algorithm used in ProtoSolid fragments the faces of two solids such that
no face of one solid penetrates the other solid. The faces of each solid are then classified as being
either outside, or inside the other solid, or on the boundary of the other solid. This is referred to
as boundary classification. The BRep data structure of the solid resulting form the set operation
is created by copying the appropriate faces (Le., polygons) from either of the two solids. To give
an example of this process, the sphere of Figure2. was constructed by taking a unit cube, rotating
it 450 about the x axis and intersecting. This is followed by 10 more rotations and intersedions
with the previous result, thus obtaining the sphere. Figure 1 shows the sphere before topological
reduction. The sphere consisted of 9553 faces (input polygons), 20953 edges and 11432 vertices.
After reduction, the sphere contains 3034 faces, 8236 edges, and 5204 vertices. The algorithm took
53 seconds for phase one and 11 seconds for phases two and three at the previous to last iteration,
using a TI-Explorer II Lisp machine.

In Shilp, the algorithm converts medical data obtained from computed tomography, using a
Symbolics 3620 Lisp machine. Triangulated boundaries are obtained using either the marching
cubes approach [8] from 3d-grids, or from contour data [4, 3]. An example solid model of a left
and a right lung is shown in Figure3.

Our algorithm will work for any boundary representation based on directed edges and ca­
pable of representing nonmanifold edges and vertices. This includes Vanecek's ledge-based data
structure [15], Karasick's star-edge data structure [7, 6], and indirectly Weiler's radial-edge data
structure [17J. In case that the input polygons form a manifold surface, Mantyla's half-edge data
structure is also included [9]. A boundary-based data structure can be viewed as a wire frame
consisting of connected wire-edges, and vertices with pieces of canvas stretched across the wire
edges, along with topological adjacency information [16]. Typically, the structure contains nodes
of type solid, shell, face, loop, edge, verl.ex and directed edge, with each node pointing to some of its
adjacent nodes. For access efficiency, the nodes of type solid usually reference all the vertex, edge,
face, and shell nodes. As an example of such a data structure, Figures If- and 5 show the necessary
nodes and pointers to adjacent nodes representing the top face of a block. In the figures, FA, ED,
DE, and VE represent the face, the edge, the directed edge and the vertex nodes.

The algorithm for constructing the solid model has three phases. In the first phase, each input

1

Figure 1: The BRep of a sphere before topological reduction consisting of 9553 faces, 20983 Edges,
and 11432 vertices.

Figure 2: The minimal BRep after topological reduction of the sphere with 3034 faces, 8236 edges
and 5204 vertices.

2

Figure 3: A solid model created from triangles generated from contours.

VE}--[==E~D~=J-iVE

ED ED

VE}--C==Eg'Dt=J--[VE

Figure 4: Diagram of a typical data structure showing the down pointers only, where FA, DE,
ED and VE stand for face, directed edge, edge and vertex respectively. The directed-edge cycle is
ordered counter-clockwise around the face.

3

polygon is simply inserted into the data structure as a new face by creating and properly linking
the nodes necessary to represent the faces (i.e., face, directed edge, edge and vertex nodes). This
construction generates a representation having adjacent coplanar faces and overlapping collinear
edges. Thus the boundary can be viewed as being fragmented and containing gaps between adjacent
faces.

In the second phase, the topological structure is reduced to obtain a minimal boundary repre­
sentation, and its validity is established. The topological reduction consists of a sequence of local
edge and vertex operations consisting of edge reductions that merge two adjacent and coplanar
faces by removing the common edge, and vertex reductions that merge two adjacent collinear edges
by removing the joining vertex. The result is a BRep with maximally connected faces that may
have collinear and overlapping edges. Validity is established by merging all such edges.

The third phase separates faces with inner holes into multi-connected faces and partitions the
faces into shells.

The three phases of the algorithm are described in detail after the definition of some terms are
given in Section 2. In Section 3 a brief overview of the boundary-based data structure is given, and
its initial creation from the polygons is given. A data structure for locating vertices in sublinear
time is also presented. Section 4 gives the topological reduction of phase two of the algorithm and
informally proves its termination. Topological validity is presented in Section 5. The removal of
bridge edges and the creation of multi-connected faces is described in Section 6 and the partitioning
of faces into shells follows in Section 7.

2 Terminology

We define some needed terms. Unless stated explicitly, vertices and edges are assumed to be
manifold. We also distinguish points from vertices, and polygons from faces. A point is just a
zero-dimensional geometrical entity in three-space while a vertex is a topological entity with edge
and face adjacencies. A polygon and a corresponding face are similarly defined.

1. A manifold vertex is a vertex incident on one corner, i.e., a vertex with one edge-face cycle.
A nonmanifold vertex is incident on more than one corner.

2. An isthmus vertex has exactly two adjacent collinear edges. (See Figure 15).

3. A wire edge is an edge without any incident faces.

4. A lamina edge is an edge incident to only one face. Both the wire edge and the lamina edge
can exist temporarily during the creation of a valid BRep.

5. A manifold edge is an edge with two incident faces. A nonmanifold edge has 2n incident
faces, for n ;:: 1. It can be thought of as a composite of n manifold edges.

6. Parallel edges are collinear and overlapping and usually consist of lamina edges. In a manifold
representation such as the half-edge data structure, parallel edges occur in place of a single
non-manifold edge.

The following terms are for manifold edges in reference to a given face. These are referred to
as pseudo (or artifad edges by some authors).

1. One of the vertices of a strut edge is adjacent to no other edges, and it is a manifold vertex.
Thus a strut edge has two directed edges of the same face. (See Figure 12).

2. An isthmus edge has two incident faces that are coplanar. (See Figure 13).

3. A bridge edge has two directed edges of the same face [18]. (See Figureli). Usually a bridge
edge connects an inner edge loop to another loop of a multi-connected face.

4

A fragmented BRep is a BRep containing adjacent coplanar faces, and/or adjacent collinear
edges-in other words, it contains pseudo entities. A mjnimal BRep does not contain pseudo
entities, and it is not fragmented. It is not possible to remove edges or vertices from a minimal
BRep without altering the solid or invalidating the representation.

3 Creation Phase

The first phase of the algorithm is the creation phase in which the faces are created from the input
polygons. To do this, two operations are needed. The first operation finds a vertex given a point,
and the second operation finds an edge given two vertices .

• The vertex-finding operation requires checking a given point against all currently known
vertices. A brute-force approach would maintain the vertices in a list and find the correct
vertex with a linear search. A more efficient approach is to search for the vertex using a
balanced search tree, for example, based on a total ordering of points in 3-space. The search
tree will be called vertex directory and is described later.

• Given two vertices, the edge-finding operation, based purely on topological adjacency infor­
mation, finds the edge between the two vertices, and if one does not exist, creates it. New
edges are created when they are needed by an adjacent face inserted first. Inserting the other
adjacent faces causes the existing edge to be returned. The edge-finding operation takes the
vertex with fewer number of adjacent edges and finds the correct one.

Initially, an empty solid node is created and with the use of the vertex, and the edge-finding
operations, each input polygon is processed as follows:

1. Given the points (po, ... , Pn-l) of a polygon find (and if not found then create) the vertices
(vo, ... ,vrn) using the vertex~findingoperation (described later). Note that rn could be less
than n -1, as described below. Urn < 3 th~n skip the remaining steps.

2. Create and properly insert a new face node in to the BRep data structure.

3. For each vertex pair (vo, VI), ... , (Vn_I,VO), find the edge node between the vertices using
the edge-finding operation described above, and for each edge node create a directed edge
node and properly link it to the edge node, to the face node, and to the next and previous
directed edge nodes if they already exist.

The robustness of this phase depends on the ability to handle €-edges and €-faces and match
up points that are, although different, very close together. The vertex-finding algorithm declares
two points coincident when their Euclidean distance is less than €, for some small € > O. With
this, an €-edge is an edge with no length, and an €-face has zero area. As such, the n points of a
polygon may yield m vertices, for m < n, of distinct adjacent vertices. Since adjacent vertices are
not coincident, ("-edges are not created. Furthermore, if m < 3 vertices are determined from the
input polygon points, then no corresponding face is constructed.

To facilitate the vertex-finding algorithm, a vertex directory is maintained. As new points are
added to the directory, the points that fall within € of existing vertices in the directory are ignored
and the existing vertices are returned. Although this schema introduces certain anomalies that
must be recognized and handled consistently, it does solve the problem of walking points. That is,
if points are not handled consistently on a global level, declaring approximate point equality on a
local level can cause points far apart to be incorrectly inferred as equal. Figure 6 illustrates this
problem; the distance between q and p is more than 2£ but due to the two points in between, q is
assumed to be equal to p by transitivity.

To avoid the walking point problem, the vertex directory is restricted to contain only unique
points that are no closer than £ apart. Inserting a point into the directory causes either a new
vertex node to be created, or an existing vertex to absorb the inserted point, if the inserted point

5

VE

ED

ED VE

ED

VE t==EgDt=j~---j VE

Figure 5: Diagram of the same data strudure showing the up pointers only.

Figure 6: The problem of walking points.

6

(1)

•
o

•

Figure 7: Ambiguity in point insertion

,

G,

'0: .r
,

Figure 8: q -< p -< r; the need for searching both subtrees of p.

is approximately equal to it. Milenkovic calls this data adaptation [10]. When a new point is
absorbed into an existing vertex, that information is returned to the face-creation algorithm which
verifies the shifting of the given point.

However, it is not always possible to insert a new point without ambiguity, as illustrated in
Figure 7. Although no two points can be approximately equal, two points can have overlapping
f-neighborhoods. In 3-space, a point can be approximately equal to at most eight vertices already
in the directory. Ira point to be inserted is approximately equal to more than one vertex, a conflict
arises as to which of the vertices already in the directory the new point ought to belong. From
the directory itself this cannot be determined. Topological assistance is necessary to resolve the
conflict consistently, and so, the vertex-finding function returns all the vertices that are within {
of the point. The face-creation algorithm picks the vertex that is closest to the plane containing
the face and that avoids, at the same time, {-edges.

Imposing a total order on vertices allows for a more efficient implementation of a directory
using a balanced binary search tree structure [1], than simple linear structures such as arrays, or
linked lists. The ordering is based on the exact values of the points' coordinates. Given a vertex
directory V = [VI,'" vn], the sequence of vertices is ordered by a precedence relation -<, where
V, -< Vi+! for i = 1, .. .n-l, with

p-< q iff (zp < x q) or
(xp = Xq and Yp < Yq) or
(xp :::: x q and Yp = Y'l and zp < Zq)

It is easy to see that an ioorder traversal of the directory generates the sequence [VI, ... ,vn]m
ascending lexicographic order [11, p351].

Now consider locating all the vertices ofD which are approximately equal to some query point
q. Figure 8 illustrates a case in which q -< p -< T, and q ~ T, but P ¢ q. That is, a search with point
q is at a node in the tree corresponding to vertex p, and since q -< p the search should continue
down the left subtree. However, the desired vertex f' is in the right subtree of p.

This shows that the directory must be searched for all vertices with coordinates in the range
x q - { ::; x 5 X'l + {, Yq - { ::; Y ::; Yq + {, and Zq - { ::; Z ::; Zq + c The usual search of a binary
search tree which follows a single path from the root down to a leaf must be extended to follow

7

~ered

C yor ered

~~

z ordered
~

~~···~~···~< ...~< ... R<···~l, ~

•
yordered

Figure 9: Subtrees of D that are ordered by y and the z coordinates.

several paths. Therefore, for any vertex p in the tree for which the query point q has

(2)

the search splits and continues downwards in both the left and the right subtrees. Specifically, the
search continues down the left path if x q .:::; x p + £, and the search continues down the right path
ifx q ~Xp-L

The conditions of Eq. (2) are sufficient for finding all the vertices in the directory that are
approximately equal to q. However, with only the conditions of Eq. (2), the search is based solely
on the :z: coordinates. The search will take less than linear time only as long as all the vertices in
the directory are spread out in space so that any two points are separated in x by at least ("-or
at least there are very few of such points.

When a vertex directory is used in solid modeling, where the solids are represented with respect
to a specific orientation, it is more likely that there are many points with the same x coordinate.
In the worst case, a search of the directory could be lineax under the conditions of Eq. (2). This is
undesirable. Clearly searching through a sequence of points having the same x coordinates dictates
that. the y coordinates be referred to as well.

Because the directory is a sequence of points that is ordered in ascending lexicographic order, it
has a special property. Given the ordered sequence of points PI ... Pn, as shown in Figure 9, there
are subsequences Pi, .. .PI with 1 ~ i ~ 1 ~ n, for which the x coordinates alone or both the x and
the y coordinates do not change. In other words, D i.li x-ordered with y-ordered subsequences.

Whenever the search enters a y-ordered subtree (as shown in Figure 10), the search proceeds
down the left branch of some node P if yp ~ yq + €, and similarly proceeds down the right branch
if Up ~ Yq - €. Essentially this becomes a two-dimensional search in the plane X = x q . Finally,
within the two-dimensional search, a one-dimensional search occurs on the z coordinate whenever
a subtree is entered in which all the points contains the same x coordinates and the same y
coordinates.

To analyze the cost. required to search the directory, let C(n, k) be the cost of locating k' vertices,
for 1 ~ k' ~ n, in the €-neighborhood of a given point q. Here k is the total number of nodes in
V that require the search to proceed in both the leU and the right subtrees (i.e., k' ~ k ~ n). If
k = 0, that is, there is no node in V whose x coordinate is within c distance of the query point,
then a single path from the root down to a leaf is traversed at a cost of C(n, 0) = Llog2 nJ.

The maximum cost occurs when all of the k nodes appear at the top of the tree. See Figure 11.

8

A
c)

~c))

iP;

T, 1]

(al (b)

Figure 10: When X(Pi) = x(Pj), the tree 1/ (or Tr) is y-ordered.

Figure 11: Proof of Gen, k).

9

Figure 12: A face with eight edges and a chain of bridge edges that ends with a strut edge, e. Note
that removal of e makes e' a strut edge.

k+ (k + 1) llog, ~j
O(k+klog~)

The minimum cost occurs when all of the k nodes appear at the bottom of the tree,

C(n,k)::::k+llog2~J, O<k$n.

Thus, the exact value of C(n, k) depends on where the k nodes appear in the tree. The closer the
k nodes lie to the root, the higher the cost. Although k can be as high as n, it would be so only if

and this is extremely rare. Because the vertices ofa solid are frequently distributed throughout E 3 ,

k' is empirically found to be less than 2, and k is small. However, from a theoretical perspective,
the cost is bound by

Llog2 nJ $ C(n, k) $ n,

and the total retrieval or insertion cost is O(k + k log2 F)'

4 Topological Reduction

The topological reduction phase creates maximally connected faces and removes all pseudo enti­
ties. Three operations are needed to remove pseudo vertices and edges. The operations preserve
topological consistency locally. They are:

1. Isthmus edges that join adjacent coplanar faces are removed and the two faces are merged.

2. In a face, a chain of bridge edges that ends with a strut edge and contains only manifold
vertices is removed (refer to Figure 12).

3. Adjacent collinear edges are merged into a single edge by removing one of the edges and the
joining isthmus vertex.

Consider first the removal of isthmus edges. The removal of an isthmus edge from the data
structure is shown in Figure 13. Referring to the labels of that figure, e is the isthmus edge
node, v and ware the vertices, /;. is a face node, and 9ij is the jth directed edge node of face
i. Before removing the edge, the directed edges of face h change their face references to face ft.
The edge node and both its directed edge nodes 912 and 922 are then removed. The two directed
edge cycles-now broken-are spliced by connecting the directed edge node 911 to 923, and by

10

®

,

Figure 13: Before and after removal of isthmus edge e and its directed edges 912 and 922.

-----Iv,1-----

Figure 14: Before and after the removal of strut edge e and its directed edges 92 and 93.

connecting 921 to 913- After this, the face node h which was arbitrarily chosen is removed from
the list of faces.

When an isthmus edge is removed, an adjacent edge can become a strut edge, and these also
have to be removed. Removing individual strut edges is a simple process. However, the problem
is that edges become strut edges as the result of removing both the isthmus edges and other strut
edges. Thus, although initially there may be no strut edges at all, in the end many strut edges
may have to be removed. Consider the chain of bridge edges shown in Figure 12. When the strut
edge e is removed, the bridge edge e' becomes a strut edge. This implies that a single pass over
the initial edges may not remove all the isthmus and the strut edges. By simply considering all
the original edges one at a time, many of the newly created strut edges would be missed. Since
however, strut edges are created only by removing an adjacent edge, the single pass over the initial
edges can be modified to recursively check and remove adjacent edges. This method is analogous
to rehashing in situ [11].

When a strut edge is detected, it is removed. If it has only one adjacent edge, then that edge
is checked. If the adjacent edge has become a strut edge, the process continues with that edge.
Otherwise, the process continues with the Ilext edge on the list of the remaining edges.

The recursive removal of isthmus and strut edges may create isthmus vertices that have to
subsequently be removed. Since an isthmus vertex has exactly two adjacent collinear edges, the
two edges share the same faces and must therefore have the same number of directed edges. The
removal of an isthmus vertex v is shown in Figure 15. One of the incident edges, say e2-by
convention-and all its directed edges are removed. The other edge, el, is extended towards

11

"

Figure 15: Isthmus vertex v before and after removal; forces edge e2 and its directed edges to be
removed as well.

w

v w

Figure 16: Parallel edges el and e2 having two vertices in common are merged by removing edge

".

vertex w.
The removal of an isthmus vertex cannot cause adjacent vertices (which are not already isthmus

vertices) to become isthmus vertices. Therefore, a single pass over the vertices suffices to remove
all the isthmus vertices.

With the reduction operations just described, the topological reduction phase bas two steps:

1. Remove all the isthmus edges in the data structure along with any adjacent strut edges
(performed recursively). All the isthmus, and strud edges are removed in a single pass over
all the edges.

2. Remove all the isthmus vertices in the data structure.

5 Merging Parallel Edges

We define three classes of parallel edges according to which one of the following three conditions
hold.

1. The two edges el and e2 have vertices in common. Merging edges el and e2 is shown in
Figure 16. Edge e2 is removed, and all its directed edges are added to the list of directed
edgesofcl.

2. The two edges el and e2 overlap but share only one vertex. Without loss of generality-we
assume that el is shorter than e2. (See Figure 17). So we split edge e2 into two edges at
vertex r and absorb edge el into the other equal sized edge according to rule one stated
above.

12

B---- B----
v " , "" ,
-EJ---------8v

" w

---G
Figure 17: Parallel edges Cl and e2 having a common vertex are merged.

(
a

/
/'

Figure 18: Three trees of bridge edges used in a multi-connected face with five holes, one of which
is a singular nonmanifold vertex, a.

3. The two edges el and e2 overlap but do not share either vertices. We assume that either one
or both vertices of el are in the interior of e2; t.hat is.? ", or. ' . "

Removing parallel edges is analogous to the removal ofstrut edges. Only the edges of the first two
classes stated above are checked for, and merged. IT edges of the second class are merged, vertex r
(Figure 17) is checked and the process is repeated until no more adjacent parallel edges are found.
Edges of the third class are not handled explicitly. Either such pairs of edges are manifold edges or
they are lamina edges. If they are lamina edges, they have to be a part of a sequence of such edges
terminated at both ends by edges with a common vertex. Thus, a recursive procedure similar to
the one for the removal of edges merges all the lamina edges.

6 Removing Bridge Edges

At this stage of the algorithm, maximally connected faces and validity have been established.
However, faces with inner holes are represented as a single directed-edge cycle with bridge edges
connecting the various edge loops of a multi-connected face. For representations such as the fedge­
based data structure which use bridge edges to represent multi-connected faces, the algorithm is
now done. But for representations such as the star-edge data structure which do not use bridge
edges but instead uses edge loops, the algorithm needs to remove the bridge edges, and return
a list of pointers to each of the remaining directed-edge cycles. The removal of bridge edges is
complicated by the fact that bridge-edges may form trees as shown in Figure 6.

13

f,
f, [,

f,

to
r;o-faCeS

II

Figure 19: Cross section of a nonmanifold edge with three pairs of co-faces: (ft, h), (h, 14.)' and
(t,.!,)-

The removal proceeds as follows. The directed-edge cycle around the face is traversed. When a
bridge edge is encountered, it is removed, the directed-edge cycle is split into two cycles and both
are processed recursively. When a directed edge is encountered that has been already visited, the
cycle containing that directed edge is added to the loop structure of the face. Since it is not known
beforehand which faces contain bridge edges, all faces are processed requiring time linear in the
number of directed-edges.

7 Partitioning Faces into Shells

Data structures that contain an explicit representation of shells, such as the star-edge data struc­
ture, additionally require the partitioning of faces into shells. Therefore, we have to identify which
faces belong to which shell.

For manifolds, shells cannot touch and this leads to a simple mark-and-collect algorithm based
on face-edge and edge-face adjacency relationships. However, for non manifolds where two or
more shells may touch at vertices or along edges, the faces can be partitioned into two or more
components, and the face adjacency must be considered for co-faces only, as explained below.

Recall that the faces adjacent to a nonmanifold edge can be ordered cyclically about the face,
and that consecutive face pairs enclose volume of the solid [5].

So far, the faces around a nonmanifold edge have not yet been so paired and ordered in the
data structure. Given a face j, its partner in the pairing is the co-face of j. See also Figure 19.

From the normal vector of each face and the edge vector we compute the in-vector of each face,
where the in-vector of a face points into the face and away from the edge. Choosing one in~vector

as a reference vector yields angles for the faces with which the faces around the edge can be sorted,
and co-faces identified.

With co-faces identified, the mark-and-collect algorithm is the same as for manifolds. That is,
from a face all adjacent co-faces are recursively collected into a shell structure. This, therefore,
takes O(nlogn) time, for n faces in the solid.

8 Conclusion

In this paper we presented an algorithm for creating solid models given the polygons that bound
the solid.

The vertex directory is a dynamic data structure allowing both insertions and deletions. It
is also an improvement over linear structures and yields sublinear time operations. Although
the worst-case behavior of inserting and searching for the n vertices in the directory is 0(n2), in
practice, the average behavior is closer to O(n log n). Lower worst-case behaviour could be attained
by relinquishing the dynamic property and creating a static directory allowing lookups only (e.g.,

14

(a) (b)

Figure 20: Unresolved vertex-on-face, (a), and edge-on-face, (b), contacts.

the multidimensional binary search trees also known as k-D trees). A static data structure cannot
be used because insertions may be ambiguous and require topological assistance, and because the
creation algorithm is frequently a component in a larger system requiring intermixed insertions
and deletions (e.g., ProtoSolid).

The shortcommings of this algorithm is that nonmanifold vertices and edges lying in the interior
of a face will not be incorporated into the face as singular holes. See Figure 8. To do so would
require another step that would check every vertex against the interior of every face. Depending on
the types of operations being performed this mayor may not be necessary. A similar shortcomming
is that parallel nonmanifold edges for which one edge is contained entirely in the interior of the
other edge will not be merged. One way of solving this is to modify the vertexAinding function
of Section 3 to crack an edge when a new vertex falls on it. However, without some kind of an
efficient edge-directory suitable for finding the appropriate edge in sublinear time, this approach
is too time consuming and is better left to a post processing step. In such a step, every vertex is
checked for the containment in every edge.

After completion, the algorithm reports errors if after the third phase any lamina edges remain.
Lamina edges indicate that the boundary is not closed. Reporting lamina edges is beneficial for
the cases in which the input data contains missing polygons, as for example, when only half of a
femur is scanned resulting in a missing patch at the last cross section. Such missing polygons must
be inserted by hand to complete the solid model, as is done, for example, in Shilp.

9 Acknowledgements

I would like to acknowledge Christoph Hoffmann and Chanderjit Bajaj for their continued support
at Purdue, Malcom Fields for implementing the contour data triangulation algorithm, and Bill
Bouma for implementing the marching-cubes algorithm.

15

References

[1] G. M. Adel'son-Vel'skii and E. M. Landis. An algorithm for the organization of information.
Dok!. Acad. Nauk SB8R Math, 146(2):263-266, 1962.

[2] V. Anupam, C. Bajaj, and S. Klinkner. A Tutorial and User Guide to SHILP. Department
of Computer Science, Purdue University, West Lafayette, IN, February 1990.

[3] H. N. Christiansen and T. W. Sederberg. Conversion of complex contour line definitions into
polygonal element mosaics. Computer Graphics, 12(3):187-192, 1978.

[4] H. Fuchs, Z. M. Keclem, and S. P. Uselton. Optimal surface reconstruction from planar
contours. Graphics and Image Processing, 20(10):693-702, October 1977.

[5] C. H. Holfmann. Geometric and Solid Modeling: An Introduction. Morgan Kaufmann Pub­
lishers, Inc., San Mateo, CA, 1989.

[6] C. M. HoITmann, J. E. Hopcroft, and M. S. Karasick. Robust set operations on polyhedral
solids,. Technical Report 87~875J Department of Computer Science, Cornell University, 1987.

[7] M. Karasick. On the Representation and Manipulation of Rigid Solids. PhD thesis, McGill
University, 1988.

[8J W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construction
algorithm. ACM Computer Graphics SIGGRAPH '87, 21(4):163-168, July 1987.

[9] M. Miintylii. AN Introduction to Solid Modeling. Helsinki University of Techuology, 1984.

[10] V. J. Milenkovic. Verifiable Implementations of Geometric Algorithms Using Finite Precision
Arithmetic. PhD thesis, Carnegie Mellon University, July 1988.

[11] T. A. Standish. Data Structure Techniques. Addison-Wesley Publishing Company, Reading,
Mass., 1980.

[12] K. Sugihara and M. Iri. A solid modeling system free from topological inconsistency. Research
Memorandum RMI 89-03, University of Tokyo, March 1989.

[13J G. Vanecek Jr. Obtaining boundaries with respect: A simple approach to performing set oper­
ations on polyhedra. CAPO Report CER-89-25, Purdue University, Department of Computer
Science, West Lafayette, IN 47907, November 1989.

[14] G. Vanecek Jr. Protosolid: An inside look. CAPO Report CER-89-26, Putdue University,
Department of Computer Science, West Lafayette, IN 47907, November 1989.

[15] G. Vanecek Jr. Set Operations on Polyhedra using Decomposition Methods. PhD thesis,
University of Maryland, College Park, Maryland, June 1989.

[16] K. Weiler. Edge-based data structures for solid modeling in curved-surface environments.
IEEE Computer Graphics & Applications, pages 21-1.0, January -1985.

[17] K. Weiler. Topological Structures for Geometrical Modeling. PhD thesis, Rensselaer Polytech­
nic Institute, Troy, N.Y., August 1986. Technical Report TR-86032.

[18] F. Yamaguchi and T. Tokieda. Bridge edge and triangulation approach in solid modeling. In
Tosiyasu L. Kunii, editor, Frontiers in Computer Graphics '84, pages 44--65. Springer-Verlag,
1985.

16

	Building Solid Models from Polygonal Data
	Report Number:
	

	tmp.1307986960.pdf.N5mzc

