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Piecewise testable tree languages

Miko laj Bojańczyk∗ Luc Segoufin Howard Straubing†

Warsaw University INRIA and ENS-Cachan, LSV Boston College

June 20, 2012

Abstract

This paper presents a decidable characterization of tree languages that can be defined by

a boolean combination of Σ1 sentences. This is a tree extension of the Simon theorem, which

says that a string language can be defined by a boolean combination of Σ1 sentences if and

only if its syntactic monoid is J -trivial.

1 Introduction

Logics for expressing properties of labeled trees and forests figure importantly in several different
areas of Computer Science. This paper is about logics on finite trees. All the logics we consider are
less expressive than monadic second-order logic, and thus can be captured by finite automata on
finite trees. Even with these restrictions, this encompasses a large body of important logics, such
as variants of first-order logic, temporal logics including CTL* or CTL, as well as query languages
used in XML.

One way of trying to understand a logic is to give an effective characterization. An effective
characterization for a logic L is an algorithm which inputs a tree automaton, and says if the
language recognized by the automaton can be defined by a sentence of the logic L. Although
giving an effective characterization may seem an artificial criterion for understanding a logic, it
has proved to work very well, as witnessed by decades of research, especially into logics for words.
In the case of words, effective characterizations have been studied by applying ideas from algebra:
A property of words over a finite alphabet A defines a set of words, that is a language L ⊆ A∗. As
long as the logic in question is no more expressive than monadic second-order logic, L is a regular
language, and definability in the logic often boils down to verifying a property of the syntactic
monoid of L (the transition monoid of the minimal automaton of L). This approach dates back to
the work of McNaughton and Papert [11] on first-order logic over < (where < denotes the usual
linear ordering of positions within a word). A comprehensive survey, treating many extensions and
restrictions of first-order logic, is given by Straubing [16]. Thérien and Wilke [20, 18, 19] similarly
study temporal logics over words.

An important early discovery in this vein, due to Simon [14], treats word languages definable in
first-order logic over < with low quantifier complexity. Recall that a Σ1 sentence is one that uses
only existential quantifiers in prenex normal form, e.g. ∃x∃y x < y . Simon proved that a word
language is definable by a boolean combination of Σ1 sentences over < if and only its syntactic
monoid M is J -trivial. This means that for all m,m′ ∈ M, if MmM = Mm′M, then m = m′.
(In other words, distinct elements generate distinct two-sided semigroup ideals.) Thus one can
effectively decide, given an automaton for L, whether L is definable by such a sentence. (Simon did
not discuss logic per se, but phrased his argument in terms of piecewise testable languages which
are exactly those definable by boolean combinations of Σ1 sentences.)

∗First author supported by Polish government grant no. N206 008 32/0810. This work was partially funded by
the AutoMathA programme of the ESF and the PHC programme Polonium.

†Third author supported by National Science Foundation grant CCF-0915065
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There has been some recent success in extending these methods to trees and forests. (We
work here with unranked trees and forests, and not binary or ranked ones, since we believe
that the definitions and proofs are cleaner in this setting.) The algebra is more complicated,
because there are two multiplicative structures associated with trees and forests, both horizontal
and a vertical concatenation. Benedikt and Segoufin [1] use these ideas to effectively characterize
sets of trees definable by first-order logic with the parent-child relation. Bojańczyk [2] gives a
decidable characterization of properties definable in a temporal logic with unary ancestor and
descendant operators. Similarly Bojańczyk and Segoufin [3] and Place and Segoufin [13] provided
decidable characterizations of tree languages definable in ∆2(<) and FO2(<,<h) where < denotes
the descendant-ancestor relationship while <h denotes the sibling relationship. The general theory
of the ‘forest algebras’ that underlie these studies is presented by Bojańczyk and Walukiewicz [6].

In the present paper we provide a further illustration of the utility of these algebraic methods
by generalizing Simon’s theorem from words to trees. In fact, we give several such generalizations,
differing in the kinds of atomic formulas we allow in our Σ1 sentences.

In Section 2 we present our basic terminology concerning trees, forests, and logic. Initially our
logic contains two orderings: the ancestor relation between nodes in a forest, and the depth-first,
left-first, total ordering of the nodes of a forest. In Section 3 we describe the algebraic apparatus.
This is the theory of forest algebras developed in [6].

In Section 4 we give our main result, an effective test of whether a given language is piecewise
testable (Theorem 4.) The test consists of verifying that the syntactic forest algebra satisfies a
particular identity. While we have to some extent drawn on Simon’s original argument, the added
complexity of the tree setting makes both formulating the correct condition and generalizing the
proof quite nontrivial. We give a quite different, equivalent identity in Proposition 18, which
makes clear the precise relation between piecewise testability for forest languages and J -triviality.

In Section 5, we study in detail a variant of our logic in which the binary ancestor relation is
replaced by a ternary closest common ancestor relation, and prove a version of our main theorem
for this case. Section 6 is devoted to other variants: the far simpler case of languages defined by Σ1

sentences (instead of boolean combinations thereof); the logics in which only the ancestor relation
is present, and in which the horizontal ordering on siblings is present; and, since our algebraic
formalism concerns forests rather than trees, the modifications necessary to obtain an effective
characterization of the piecewise testable tree languages. We discuss some directions for further
research in the concluding Section 7.

An earlier, much abbreviated version of this paper, without complete proofs, was presented at
the 2008 IEEE Symposium on Logic in Computer Science.

2 Notation

Trees, forests and contexts. In this paper we work with finite unranked ordered trees and
forests over a finite alphabet A. Formally, these are expressions defined inductively as follows: for
any a ∈ A, a is a tree. If t1, ... , tn is a finite sequence of trees, then t1 + · · ·+ tn is a forest. If s is
a forest and a ∈ A, then as is a tree. It will also be convenient to have an empty forest, that we
will denote by 0, and this forest is such that a0 = a and 0 + t = t + 0 = t. Forests and trees alike
will be denoted by the letters s, t, u, ...

For example, the forest that we conventionally draw as

b b

ba

aa

c

c

corresponds to the expression

t = a(a+ bc) + b + c(a + b) .
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When there is no ambiguity we use as instead of a(s). In particular bc stands for the tree whose
root has label b and has a unique child of label c .

The notions of node, child, parent, descendant and ancestor relations between nodes are defined
in the usual way. We write x < y to say that x is a strict ancestor of y or, equivalently, that y

is a strict descendant of x . We say that a sequence y1, ... , yn of nodes forms a chain if we have
yi < yi+1 for all 1 ≤ i < n. As our forests are ordered, each forest induces a natural linear order
on its set of nodes that we call the forest-order and denote by <dfs, which corresponds to the
depth-first left-first traversal of the forest or, equivalently, to the order provided by the expression
denoting the forest seen as a word. We write <h for the horizontal-order, i.e. x <h y expresses
the fact that x is a sibling of y occurring strictly before y in the forest-order. Finally, the closest
common ancestor of two nodes x , y is the unique node z that is a descendant of all nodes that
are ancestors of both x and y .

If we take a forest and replace one of the leaves by a special symbol �, we obtain a context.
This special node is called the hole of the context. Contexts will be denoted using letters p, q, r .
For example, from the forest t given above, we can obtain, among others, the context

p = a(a+ bc) + b + c(�+ b) .

A forest s can be substituted in place of the hole of a context p; the resulting forest is denoted
by ps. If we take the context p above and if s = (b + ca), then

ps = a(a+ bc) + b + c(b + ca+ b) .

This is depicted in the figure below.

p s ps

a

b c

b b

ba

a

c

c

a

b c

b b

ba

a

c

c

There is a natural composition operation on contexts: the context qp is formed by replacing
the hole of q with p. This operation is associative, and satisfies (pq)s = p(qs) for all forests s and
contexts p and q.

We distinguish a special context, the empty context, denoted �. It satisfies �s = s and
�p = p� = p for any forest s and context p.

Regular forest languages. A set L of forests over A is called a forest language. There are
several notions of automata for unranked ordered trees, see for instance [8, chapter 8]. They all
recognize the same class of forest languages, called regular, which also corresponds to definability
in MSO as defined below.

Piecewise testable languages. We say that a forest s is a piece of a forest t if there is an
injective mapping from nodes of s to nodes of t that preserves the label of the node together with
the forest-order and the ancestor relationship. An equivalent definition is that the piece relation
is the reflexive transitive closure of the relation

{(pt, pat) : p is a context, a is a node, t is a forest or empty}

In other words, a piece of t is obtained by removing nodes from t while preserving the forest-order
and the ancestor relationship. We write s � t to say that s is a piece of t. In the example above,
a(a+ b) + c is a piece of t.

We extend the notion of piece to contexts. In this case, the hole must be preserved while
removing the nodes:
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The size of a piece is the size of the corresponding forest, i.e. the number of its nodes. The notions
of piece for forests and contexts are related, of course. For instance, if p, q are contexts with
p � q, then p0 � q0. Also, conversely, if s � t, then there are contexts p � q with s = p0 and
t = q0.

A forest language L over A is called piecewise testable if there exists n ≥ 0 such that membership
of t in L is determined by the set of pieces of t of size n or less. Equivalently, L is a finite boolean
combination of languages {t : s � t}, where s is a forest. Every piecewise testable forest language
is regular, since given n ≥ 0, a finite automaton can calculate on input t the set of pieces of t of
size no more than n.

Logic. Regularity and piecewise testability correspond to definability in a logic, which we now
describe. A forest can be seen as a logical relational structure. The domain of the structure is
the set of nodes. The signature contains a unary predicate Pa for each symbol a of the label
alphabet A, plus possibly some extra predicates on nodes, such as the descendant relationship, the
forest-order or the closest common ancestor. Let Ω be a set of predicates. The predicates Ω that
we use always include (Pa)a∈Σ and equality, hence we do not explicitly mention them in the sequel.
We use the classical syntax and semantics for first-order logic, FO(Ω), and monadic second order
logic, MSO(Ω), building on the predicates in Ω. Given a sentence φ of any of these formalisms, the
set of forests that are a model for φ is called the language defined by φ. In particular a language
is definable in MSO(<,<h) iff it is regular [8, chapter 8].

A Σ1(Ω) formula is a formula ∃x1 · · · xn γ, where the formula γ is quantifier-free and uses
predicates from Ω. Initially we will consider two predicates on nodes: the ancestor order x < y

and the forest-order x <dfs y . Later on, we will see other combinations of predicates, for instance
when the closest common ancestor is added, and the forest-order is removed.

It is not too hard to show that a forest language L can be defined by a Σ1(<,<dfs) sentence if
and only if it is closed under adding nodes, i.e.

pt ∈ L ⇒ pqt ∈ L

holds for all contexts p, q and forests t. Moreover this condition can be effectively decided given
any reasonable representation of the language L. We will carry out the details in Section 6.1.

We are more interested here in the boolean combinations of properties definable in Σ1(<,<dfs).
It is easy to see that:

Proposition 1. A forest language is piecewise testable iff it is definable by a boolean combination
of Σ1(<,<dfs) sentences.

One direction is immediate as for any forest s, the set of forests having s as a piece is easily
definable in Σ1(<,<dfs). For instance the sentence

∃x , y , z , u Pa(x) ∧ Pa(y) ∧ Pb(z) ∧ Pc(u) ∧ x < y ∧ x < z ∧ y <dfs z ∧ ¬(x < u) ∧ x <dfs u

defines the language of forests having a(a+ b) + c as a piece.
For the other direction, notice that for any language definable in Σ1(<,<dfs), by disambiguating

the relative positions between each pair of variables, one can compute a finite set of pieces such
that a forest belongs to the language iff it has one of them as a piece. For instance the sentence

∃x , y , z , u Pa(x) ∧ Pa(y) ∧ Pb(z) ∧ Pc(u) ∧ x < y ∧ x < z ∧ y <dfs z ∧ ¬(x < u)
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defines the language of forests having a(a+ b) + c , c + a(a+ b) or ca(a+ b) as a piece.

This result does not address the question of effectively determining whether a given regular
forest language admits either of these equivalent descriptions. Such an effective characterization
is the goal of this paper:

The problem. Find an algorithm that decides whether or not a given regular forest language
is piecewise testable.

As noted in the introduction, the corresponding problem for words was solved by Simon, who
showed that a word language L is piecewise testable if and only if its syntactic monoid M(L) is
J -trivial [14]; that is, if distinct elements m,m′ always generate distinct two-sided ideals. Note
that one can test, given the multiplication table of a finite monoid M, whether M is J -trivial in
time polynomial in |M|: for each m 6= m′ ∈ M, one calculates the ideals MmM and Mm′M and
then verifies that they are different. Therefore, it is decidable if a given regular word language is
piecewise testable. We assume that the language L is given by its syntactic monoid and syntactic
morphism, or by some other representation, such as a finite automaton, from which these can be
effectively computed.

We will show that a similar characterization can be found for forests; although the charac-
terization will be more involved. For decidability, it is not important how the input language is
represented. In this paper, we will represent a forest language by a morphism into a finite forest
algebra that recognizes it. Forest algebras are described in the next section.

3 Forest algebras

Forest algebras. Forest algebras were introduced by Bojańczyk and Walukiewicz as an algebraic
formalism for studying regular tree languages [6]. Here we give a brief summary of the definition of
these algebras and their important properties. A forest algebra consists of a pair (H,V ) of monoids,
subject to some additional requirements, which we describe below. We write the operation in V

multiplicatively and the operation in H additively, although H is not assumed to be commutative.
We denote the identity of V by � and that of H by 0.

We require that V act on the left of H. That is, there is a map

(h, v) 7→ vh ∈ H

such that
w(vh) = (wv)h

for all h ∈ H and v ,w ∈ V . We further require that this action be monoidal, that is,

� · h = h

for all h ∈ H, and that it be faithful, that is, if vh = wh for all h ∈ H, then v = w .
We further require that for every g ∈ H, V contains elements (�+ g) and (g +�) such that

(�+ g)h = h + g , (g +�)h = g + h

for all h ∈ H. Observe, in particular, that for all g , h ∈ H,

(g +�)(h +�) = (g + h) +�,

so that the map h 7→ h +� is a morphism embedding H as a submonoid of V .
A morphism α : (H1,V1) → (H2,V2) of forest algebras is actually a pair (γ, δ) of monoid

morphisms γ : H1 → H2, δ : V1 → V2 such that γ(vh) = δ(v)γ(h) for all h ∈ H, v ∈ V . However,
we will abuse notation slightly and denote both component maps by α.

Let A be a finite alphabet, and let us denote by HA the set of forests over A, and by VA the set
of contexts over A. Clearly HA forms a monoid under +, VA forms a monoid under composition of
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contexts (the identity element is the empty context �), and substitution of a forest into a context
defines a left action of VA on HA. It is straightforward to verify that this action makes (HA,VA)
into a forest algebra, which we denote A

∆. If (H,V ) is a forest algebra, then every map f from A to
V has a unique extension to a forest algebra morphism α : A∆ → (H,V ) such that α(a�) = f (a)
for all a ∈ A. In view of this universal property, we call A∆ the free forest algebra on A.

We say that a forest algebra (H,V ) recognizes a forest language L ⊆ HA if there is a morphism
α : A∆ → (H,V ) and a subset X of H such that L = α−1(X ). We also say that the morphism α
recognizes L. It is easy to show that a forest language is regular if and only if it is recognized by
a finite forest algebra.

Given L ⊆ HA we define an equivalence relation ∼L on HA by setting s ∼L s ′ if and only if for
every context p ∈ VA, ps and ps ′ are either both in L or both outside of L. We further define an
equivalence relation on VA, also denoted ∼L, by p ∼L p′ if for all s ∈ HA, ps ∼L p′s. This pair of
equivalence relations defines a congruence of forest algebras on A

∆. The quotient (HL,VL) is called
the syntactic forest algebra of L. The projection morphism of A∆ onto (HL,VL) is denoted αL and
called the syntactic morphism of L. αL always recognizes L and it is easy to show that L is regular
iff (HL,VL) is finite.

Idempotents and aperiodicity. We recall the well known notions of idempotent and aperi-
odicity. If M is a finite monoid and m ∈ M, then there is a unique element e = mn, where n > 0,
such that e is idempotent, i.e., e2 = e. If we take a common multiple of these exponents n over all
m ∈ M, we obtain an integer ω > 0 such that mω is idempotent for every m ∈ M. Observe that
while infinitely many different values of ω have this property with respect to M, the value of mω

is uniquely determined for each m ∈ M.
Let (H,V ) be a forest algebra. Since we write the operation in H additively, we denote powers

of h ∈ H by n·h, where n ≥ 0. As noted above, H embeds in V , so any ω > 0 that yields idempotents
for V serves as well for H. That is, there is an integer ω > 0 such that vω is idempotent for all
v ∈ V , and ω · h is idempotent for all h ∈ H.

We say that a finite monoid M is aperiodic if it contains no nontrivial groups. Since the set of
elements of the form mωmk for k ≥ 0 is a group, aperiodicity is equivalent to having mω = mω+1

for all m ∈ M. In this case we can take ω = |M|. All the finite monoids that we encounter in this
paper are aperiodic. In particular, every J -trivial monoid is aperiodic, because all elements of a
group in a finite monoid generate the same two-sided ideal.

Pieces. Recall that in Section 2, we defined the piece relation for contexts in the free forest
algebra. We now extend this definition to an arbitrary forest algebra (H,V ). The general idea is
that a context v ∈ V is a piece of a context w ∈ V , denoted by v � w , if one can construct a term
(using elements of H and V ) which evaluates to w , and then take out some parts of this term to
get v .

Let (H,V ) be a forest algebra. We say v ∈ V is a piece of w ∈ V , denoted by v � w , if
α(p) = v and α(q) = w hold for some morphism

α : A∆ → (H,V )

and some contexts p � q over A. The relation � is extended to H by setting g � h if g = v0 and
h = w0 for some contexts v � w .

As we will see in the proof of Lemma 2, in the above definition, we can replace the term “some
morphism” by “any surjective morphism”. The following example shows that although the piece
relation is transitive in the free algebra A

∆, it may no longer be so in a finite forest algebra.

Example: Consider the syntactic algebra of the language {abcd}, which contains only one forest,
which in turn has just one path, labeled by abcd . The context part of the syntactic algebra has
twelve elements: an error element ∞, and one element for each infix of abcd . We have

a � aa = ∞ = bd � bcd
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but we do not have a � bcd .

We will now show that in a finite forest algebra, one can compute the relation � in time
polynomial in |V |. The idea is to use a different but equivalent definition. Let R be the smallest
relation on V that satisfies the following rules, for all v , v ′,w ,w ′ ∈ V :

� R v

v R v

vw R v ′w ′ if v R v ′ and w R w ′

�+ v0 R �+ v ′0 if v R v ′

v0 +� R v ′0 +� if v R v ′

Lemma 2. Over any finite forest algebra the relations R and � are the same.

In any finite algebra, the relation R can be computed by applying the rules until no new
relations can be added. This gives the following corollary:

Corollary 3. In any given finite forest algebra, the relation � on contexts (also on forests) can
be calculated in polynomial time.

Proof of Lemma 2. We first show the inclusion of R in �. Let α : A∆ → (H,V ) be any surjective
morphism. A simple induction on the number of steps used to derive v R w , produces contexts
p � q with α(p) = v and α(q) = w . The surjectivity of α is necessary for starting the induction
in the case � R v .

For the opposite inclusion, suppose v � w . Then there is a morphism α : A∆ → (H,V ) and
contexts p � q such that v = α(p), w = α(q). We will show that α(p) R α(q) by induction on the
size of p:

• If p is the empty context, then the result follows thanks to the first rule in the definition of
R . If p = a� then from p � q it follows that q = q1aq2 for some contexts q1, q2 and using
the first three rules in the definition of R we get that � · α(a�) · � R α(q1) · α(a�) · α(q2)
and hence p R q.

• If there is a decomposition p = p1p2 where p1 and p2 are not empty contexts, then from
p � q there must be a decomposition q = q1q2 with p1 � q1 and p2 � q2. By induction we
get that α(p1) R α(q1) and α(p2) R α(q2). Then α(p) R α(q) follows by using the third rule
in the definition of R .

• Suppose now p = s + � or p = � + s. We can assume that s is a tree, since otherwise the
context p can be decomposed as (s1 +�)(s2 +�). Since s is a tree, it can be decomposed as
a(p′0), with a being a context with a single letter and the hole below and p′ a context smaller
than p. By inspecting the definition of �, there must be some decomposition q = q0(a(q

′0)+
q1) or q = q0(q1 + a(q′0)), with p′ � q′. By the induction assumption, α(p′) R α(q′). From
this the result follows by applying rules three, four and five in the definition of R .

This argument shows that if v � w with respect to a particular morphism α, then v R w and
consequently v � w with respect to every morphism. Thus we have also established the claim
made above that the � relation on H is independent of the underlying morphism.

4 Piecewise Testable Languages

The main result in this paper is a characterization of piecewise testable languages:

Theorem 4. A forest language is piecewise testable if and only if its syntactic algebra satisfies
the identity

uωv = uω = vuω (1)

for all u, v ∈ VL such that v � u.
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Figure 1: The identity uω = uωv , with v � u. The gray nodes are from v .

The identity (1) is illustrated in Figure 1.
In view of Corollary 3, an immediate consequence of Theorem 4 is that piecewise testability is

a decidable property.

Corollary 5. It is decidable if a regular forest language is piecewise testable.

Proof. We assume the language is given by its syntactic forest algebra, which can be computed in
polynomial time from any recognizing forest algebra. The new identities can easily be verified in
time polynomial in |VL| by enumerating all the elements of VL.

The above procedure gives an exponential upper bound for the complexity in case the language
is represented by a deterministic or even nondeterministic automaton, since there is an exponential
translation from automata into forest algebras. We do not know if this upper bound is optimal.
In contrast, for languages of words, when the input language is represented by a deterministic
automaton, there is a polynomial-time algorithm for determining piecewise testability [15].

In Sections 4.1 and 4.2, we prove both implications of Theorem 4. Finally, in Section 4.3, we
give an equivalent statement of Theorem 4, where the relation � is not used. But before we prove
the theorem, we would like to show how it relates to the characterization of piecewise testable
word languages given by Simon.

Let M be a monoid. For m, n ∈ M, we write m ⊑ n if m is a—not necessarily connected—
subword of n, i.e. there are elements n1, ... , n2k+1 ∈ M such that

n = n1 · · · n2kn2k+1 m = n2n4 · · · n2k .

We claim that, using this relation, the word characterization can be written in a manner identical
to Theorem 4:

Theorem 6. A word language is piecewise testable if and only if its syntactic monoid satisfies
the identity

nωm = nω = mnω for m ⊑ n . (2)
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Proof. Recall that Simon’s theorem says a word language is piecewise testable if and only if its
syntactic monoid is J -trivial. Therefore, we need to show J -triviality is equivalent to (2). We
use an identity known to be equivalent to J -triviality (see, for instance, [9], Sec. V.3.):

(nm)ωn = (nm)ω = m(nm)ω . (3)

Since the above identity is an immediate consequence of (2), it suffices to derive (2) from the
above. We only show nωm = nω. As we assume m ⊑ n, there are decompositions

n = n1 · · · n2kn2k+1 m = n2n4 · · · n2k .

By induction on i , we show

nωni = nω ,

The result then follows immediately. The base i = 0, is immediate. In the induction step, we use
the induction assumption to get:

nωn1 · · · ni−1 = nω .

By applying (3), we have

nω = nωn1 · · · ni

and therefore

nω = nωni .

Note that since the vertical monoid V in a forest algebra is a monoid, it would make syntactic
sense to have the relation ⊑ instead of � in Theorem 4. Unfortunately, the “if” part of such a
statement would be false, as we will show in Section 4.3. That is why we need to have a different
relation � on the vertical monoid, whose definition involves all parts of a forest algebra, and not
just composition in the vertical monoid.

4.1 Correctness of the identities

In this section we show the easy implication in Theorem 4.

Proposition 7. If a language is piecewise testable, then its syntactic algebra satisfies identity (1).

Proof. Fix a language L that is piecewise testable and let n be such that membership of t in L

only depends on the pieces of t with at most n nodes.
We will use the following simple fact:

Fact 8. If r is any context, p � q are contexts and t is a forest, then rpt � rqt.

We only show the first part of the identity, i.e.

uωv = uω for v � u

Fix v � u as above. By definition of ω, we can write the identity as an implication: for k ∈ N,
if uk = uk · uk then uk · v = uk . Let k be as above. Let p � q be contexts that are mapped to v

and u respectively by the syntactic morphism of L. By unraveling the definition of the syntactic
algebra, we need to show that

rqkpt ∈ L iff rqkt ∈ L
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holds for any context r and forest t. Consider now the forests

rqikt and rqikpt for i ∈ N .

As � � p � q, thanks to Fact 8, we get

rqikt � rqikpt � rq(i+1)k t

When i is increasing, the number of pieces of size n of rqikt is increasing. As there are only finitely
many pieces of size n, for i sufficiently large, the two forests rqikt and rq(i+1)kt have the same
set of pieces of size n. Therefore, for sufficiently large i , the two forests rqikt and rqikpt have the
same set of pieces of size n, and either both belong to L, or both are outside L. However, since
αL(q

k) = αL(q
kqk), we have

rqik t ∈ L iff rqkt ∈ L

rqikpt ∈ L iff rqkpt ∈ L ,

which gives the desired result.

4.2 Completeness of the identities

This section is devoted to showing completeness of the identities: an algebra that satisfies iden-
tity (1) in Theorem 4 can only recognize piecewise testable languages. We fix an alphabet A,
and a forest language L over this alphabet, whose syntactic forest algebra (HL,VL) satisfies the
identity. We will write α rather than αL to denote the syntactic morphism of L, and sometimes
use the term “type of s” for the image α(s) (likewise for contexts).

We write s ∼n t if the two forests s, t have the same pieces of size no more than n. Likewise
for contexts. The completeness part of Theorem 4 follows from the following two results.

Lemma 9. Let n ∈ N. For k sufficiently large, if two forests satisfy s ∼k s ′, then they have a
common piece t in the same ∼n-class, i.e.

t � s, t � s ′, t ∼n s, and t ∼n s ′ .

Proposition 10. For n sufficiently large, pat ∼n pt entails α(pat) = α(pt).

Proof of the completeness part of Theorem 4. Take n as in Proposition 10, and then apply Lemma 9
to this n, yielding k . We show that s ∼k s ′ implies s ∈ L ⇐⇒ s ′ ∈ L, which immediately shows
that L is piecewise testable, by inspecting pieces of size k . Indeed, assume s ∼k s ′, and let t be
their common piece as in Lemma 9. Since t is a piece of s with the same pieces of size n, it can
be obtained from s by a sequence of steps where a single letter is removed in each step without
affecting the ∼n-class. Each such step preserves the type thanks to Proposition 10. Applying the
same argument to s ′, we get

α(s) = α(t) = α(s ′) ,

which gives the desired conclusion.

We begin by showing Lemma 9, and then the rest of this section is devoted to proving Propo-
sition 10, the more involved of the two results.

Proof of Lemma 9. We begin with the following observation.

Fact 11. Let n ∈ N and let K be a regular language. There is some constant k, such that every
t ∈ K contains a piece s ∈ K of size at most k such that s ∼n t.
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Proof of Fact 11. Let β : A∆ → (H,V ) be a morphism into a finite forest algebra. Let m = |H|.
There is a k such that every forest s of size greater than k can be written as s = q0q1 · · · qms

′

where s ′ is a forest and the qi are nonempty contexts: this is because every large enough forest
contains either a collection of m siblings or a chain of length m. It follows that the sequence of
values β(s ′),β(qms

′),β(qm−1qms
′), ... ,β(q1 · · · qms

′) contains a repeat, and so we can remove a
subsequence of the qi and obtain a proper piece t of s such that β(s) = β(t). Thus every forest s

has a piece t of size at most k such that β(s) = β(t).
Now let (H,V ) be the direct product of the syntactic algebra (HK ,VK ) and the quotient algebra

A
∆/ ∼n, and let β be the product of the syntactic moprhism of K and the natural projection onto

the quotient by ∼n . If s ∈ K then there is a piece t of s of size at most k such that β(s) = β(t).
Thus t ∈ K and s ∼n t, proving the Fact.

We are now ready to prove Lemma 9. Fix n ∈ N. Notice that each ∼n class is a regular
language and ∼n has finitely many classes. For each ∼n-class K , Fact 11 gives a constant kK . Let
k be the maximum of n and all these kK ; we claim the lemma holds for k . Indeed, take any two
forests s ∼k s ′. Let t be a piece of s of size at most k with s ∼n t, as given by Fact 11. Since
s ∼k s ′, the forest t is also a piece of s ′. Furthermore since ∼k implies ∼n (by k ≥ n), we get
s ′ ∼n s ∼n t, which implies s ′ ∼n t by transitivity of ∼n.

We now show Proposition 10. Let us fix a context p, a label a and a forest t as in the statement
of the proposition. The context p may be empty, and so may be the forest t. We search for the
appropriate n; the size of n will be independent of p, a, t. We also fix the types v = α(p), h = α(t)
for the rest of this section. In terms of these types, our goal is to show that vh = vα(a)h. To
avoid clutter, we will sometimes identify a with its image α(a), and write vh = vah instead of
vh = vα(a)h.

Let s be a forest and X be a set of nodes in s. The restriction of s to X , denoted s[X ], is the
piece of s obtained by only keeping the nodes in X .

Let s be a forest, X a set of nodes in s, and x ∈ X . We say that x ∈ X is a vah-decomposition
of s if: a) if we restrict s to X , remove descendants of x , and place the hole in x , the resulting
context has type v ; b) the node x has label a; c) if we restrict s to X and only keep nodes in X

that are proper descendants of x , the resulting forest has type h.

Definition 12. A fractal of length k inside a forest s is a sequence x1 ∈ X1 · · · xk ∈ Xk of
vah-decompositions of s, where Xi ⊆ Xi+1 \ {xi+1} holds for i < k.

A subfractal is extracted by only using a subsequence

xi1 ∈ Xi1 · · · xij ∈ Xij

of the vah-decompositions. Such a subsequence is also a fractal.

Lemma 13. Let k ∈ N. For n sufficiently large, pat ∼n pt entails the existence of a fractal of
length k inside pat.

Proof. The proof is by induction on k . The case k = 1 is obvious.
Assume the lemma is proved for k and n and consider the case k + 1.
The set of forests which have a fractal of length k is a regular language, call it K . By Fact 11

applied to K , there is some constant m such that every forest in K has a piece that is also in K ,
and whose size is bounded by m. (In this reasoning, we do not use the parameter n of Fact 11, so
we can call Fact 11 with n = 0). We can assume without loss of generality that m > n. In other
words, if a forest has a fractal of length k , then it has a piece of size at most m which has a fractal
of length k . This means that if a forest has a fractal of length k , then it has a fractal of length k

which has at most m nodes (the number of nodes in a fractal is the number of nodes in the largest
of its vah-decompositions).

Assume now that pat ∼m pt. By the induction assumption, as m > n, we have a fractal of
length k inside pat. From the previous observation, this fractal can be assumed to be of size
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Figure 2: Two types of tame fractal.

smaller than m. Hence we obtain a piece of pt which is a fractal of length k inside pt. Clearly,
this resulting fractal can be extended to a fractal of length k + 1 by taking for Xk+1 all the nodes
of pat and for xk+1 the node a.

Thanks to the above lemma, Proposition 10 is a consequence of the following result:

Proposition 14. For k sufficiently large, the existence of a fractal of length k inside pat entails
vh = vah.

The rest of this section is devoted to a proof of this proposition. The general idea is as follows.
Using some simple combinatorial arguments, and also Ramsey’s Theorem, we will show that there
is also a large subfractal whose structure is very regular, or tame, as we call it. We will then apply
identity (1) to this regular fractal, and show that a node with label a can be eliminated without
affecting the type.

A fractal x1 ∈ X1 · · · xk ∈ Xk inside a forest s is called tame if s can be decomposed as
s = qq1 · · · qks

′ (or s = qqk · · · q1s
′) such that for each i = 1, ... , k , the node xi is part of the

context qi , see Fig. 2. This does not necessarily mean that the nodes x1, ... , xk form a chain, since
some of the contexts qi may be of the form �+ t.

Lemma 15. Let k ∈ N. For n sufficiently large, if there is a fractal of length n inside pat, then
there is a tame fractal of length k inside pat.

Proof. The main step is the following claim.

Claim 16. Let m ∈ N. For n sufficiently large, for every forest s, and every set X of at least n
nodes, there is a decomposition s = qq1 · · · qms

′ where every context qi contains at least one node
from X .

Proof. Let Y be the smallest set of nodes that contains X and is closed under closest common
ancestors. If n is chosen large enough, either s[Y ] consist of more than m trees, or it contains a
node having more than m children, or s[Y ] contains a chain of length bigger than m. We are thus
left with three cases:
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• In the set Y , there is a path y1 < · · · < ym+1. For i ∈ {1, ... ,m + 1}, consider the set of
nodes

Yi = {z : z ≥ yi and z 6≥ yi+1}.

Each set Yi contains at least one node of X , by definition of the set Y . The decomposition in
the statement of the lemma is chosen so that context qi corresponds to the set Yi . The context
q corresponds to all nodes that are not descendants of y1, and the forest s ′ corresponds to
all descendants of ym+1.

• There is a node y ∈ Y such that at least m + 1 children of y have some node from Y (and
therefore also X ) in their subtree. Let t be the forest containing all proper descendants of
y . By assumption on y , the forest t can be decomposed as t = t1 + · · ·+ tm+1 so that each
of the forests contains at least one node from X . For the decomposition in the statement of
the lemma, we define q to be the set of nodes outside t, which includes y , and we define qi
to be ti +� and s ′ as tm+1.

• The forest s can be decomposed as t = t1 + · · ·+ tm+1 so that each of the forests contains at
least one node from X . We conclude as in the previous case but with an empty q.

We now come back to the proof of the lemma. For k ∈ N let n be the number defined by
Claim 16 for m = k2. Let x1 ∈ X1 · · · xn ∈ Xn be a fractal of length n inside s = pat. We apply
Claim 16, with X = {x1, ... , xn} and obtain a decomposition s = qq1 · · · qms

′. For each i = 1, ... ,m
the context qi contains at least one node of X . We chose arbitrarily one of them and denote it
by xni . Unfortunately, the function i 7→ ni need not be monotone, as required in a tame fractal.
However, we can always extract a monotone subsequence, since any number sequence of length k2

is known to have a monotone subsequence of length k [10]

We now assume there is a tame fractal x1 ∈ X1 · · · xk ∈ Xk inside s = pat, which is decomposed
as s = qq1 · · · qks

′, with the node xi belonging to the context qi . The dual case when the decom-
position is s = qqk · · · q1s

′, corresponding to a decreasing sequence in the proof of Lemma 15, is
treated analogously.

The general idea is as follows. We will define a notion of monochromatic tame fractal, and
show that vah = vh follows from the existence of large enough monochromatic tame fractal.
Furthermore, a large monochromatic tame fractal can be extracted from any sufficiently large
tame fractal thanks to the Ramsey Theorem.

Let i , j , l be such that 0 ≤ i < j ≤ l ≤ k . We define uijl to be the image under α of the context
obtained from qi+1 · · · qj by only keeping the nodes from Xl (with the hole staying where it is).
We define wijl to be the image under α of the context obtained from qi+1 · · · qj by only keeping
the nodes from Xl \ {xl}. Straight from this definition, as Xl ⊆ Xl+1 we have

wijl � uijl and uijl � uij(l+1) (4)

A tame fractal is called monochromatic if for all i < j < l and all i ′ < j ′ < l ′ taken from
{1, ... , k}, we have

uijl = ui ′j′l′ .

Note that in the above definition, we require j < l , even though uijl is defined even when j ≤ l .
We apply the following form of Ramsey’s Theorem (see, for example, Bollobas [7]): Let c , r , k

be positive integers. Then there exists an integer N with the following property. Let |S | ≥ N,
and suppose that the subsets of S of cardinaility r are colored with c colors. Then there exists a
subset T of S with |T | ≥ k such that all subsets of T with of cardinality r have the same color.

Let ω be the exponent associated to the syntactic forest algebra (HL,VL) as defined in Section 3.
If there is a tame fractal of size N inside s, then the map {i , j , l} 7→ uijl gives us a coloring of the
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cardinality 3 subsets of {1, ... ,N} with |VL| colors. By Ramsey’s Theorem, if N is sufficiently large,
there is a monochromatic fractal of length k = ω + 1 inside s.

We conclude by showing the following result:

Lemma 17. If there is a monochromatic tame fractal of length k = ω+1 inside pat = qq1 · · · qks
′,

then vah = vh.

Proof. Fix a monochromatic tame fractal x1 ∈ X1 · · · xk ∈ Xk inside a forest s = pat = qq1 · · · qks
′.

Since xk ∈ Xk is a vah-decomposition, the statement of the lemma follows if α assigns the same
type to the two restrictions s[Xk ] and s[Xk \ {xk}].

Recall the definition of uijl and wijl above. The type of the forest s[Xk ] can be decomposed as

α(s[Xk ]) = α(q[Xk ]) · u01k · u12k · u23k · · · u(k−1)kk · α(s
′[Xk ])

The type of s[Xk \ {xk}] is decomposed the same way, only u(k−1)kk is replaced by w(k−1)kk .
Therefore, the lemma will follow if

u01k · u12k · u23k · · · u(k−1)kk = u01k · u12k · u23k · · ·w(k−1)kk .

Since the fractal is monochromatic, and since k = ω + 1 the above becomes

uω01k · u(k−1)kk = uω01k · w(k−1)kk .

By (4) and monochromaticity we have

w(k−1)kk � u(k−1)k(k+1) = u01k

u(k−1)kk � u(k−1)k(k+1) = u01k .

Therefore identity (1) can be applied to show that both sides are equal to uω01k . Note that we use
only one side of identity (1), uωv = uω . We would have used the other side when considering the
case when s = qqk · · · q1s

′.

4.3 An equivalent set of identities

+ + +...+ +... =

ω times ω times

Figure 3: The identity ω(vuh) = ω(vuh) + vh, with the white nodes belonging to u.

In this section, we rephrase the identities used in Theorem 4. There are two reasons to rephrase
the identities.

The first reason is that identity (1) refers to the relation v � w . One consequence is that we
need to prove Corollary 3 before concluding that identity (1) can be checked effectively.

The second reason is that we want to pinpoint how identity (1) diverges from J -triviality of
the context monoid V . Consider the forest language “all trees in the forest are of the form aa”. It
is easy to verify that the syntactic forest algebra of this language is such that V is J -trivial. But
this language is not piecewise testable, since for any k > 0, the forests k · aa and k · aa+ a contain
the same pieces of size at most k , but the first of these forests is in the language, while the second
is not.

The proposition below identifies an additional condition (depicted in Figure 3) that must be
added to J -triviality.
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Proposition 18. Identity (1) is equivalent to J -triviality of V , and the identity

vh + ω · vuh = ω · vuh = ω · vuh + vh (5)

Proof. One implication is obvious: both J -triviality and (5) follow from (1). For the other impli-
cation, we assume V is J -trivial and that (5) holds. We must show that if v � u, then

uωv = uω = vuω .

We will only show the first equality, the other is done the same way. By unraveling the definition
of v � u, there is a morphism

α : A∆ → (H,V )

and two contexts p � q over A such that α(p) = v and α(q) = u.
The proof goes by induction on the size of p.
If p can be decomposed as p1p2 with p1, p2 nonempty, then we have p1 � q and p2 � q and,

by induction, α(q)ω · α(p1) = α(q)ω, α(q)ω · α(p2) = α(q)ω. Hence we get:

α(q)ω · α(p1) · α(p2) = α(q)ω · α(p2) = α(q)ω .

If p consists of single node with a hole below, then we have q = q0pq1 for some two contexts
q0, q1, and therefore also u = u0vu1 for some u0, u1. The result then follows by J -triviality of V
(recall that J -triviality implies identity (3)):

uωv = (u0vu1)
ωv = (u0vu1)

ωu0v = (u0vu1)
ω = uω .

In the above, we used twice identity (3): Once when adding u0 to uω, and then when removing
u0v from after uω.

The interesting case is when p = � + s for some tree s. In this case, the context q can be
decomposed as q1(�+ t)q2, with s � t. We have

uωv = α(q1(�+ t)q2)
ωα(�+ s) .

Thanks to identity (3), the above can be rewritten as

uωv = α(q1(�+ t)q2)
ω(α(�+ t))ωα(�+ s) .

Notice now that

(α(�+ t))ωα(�+ s) = (�+ α(s) + ω · α(t)) .

It is therefore sufficient to show that s � t implies

ω · α(t) = α(s) + ω · α(t) .

The proof of the above equality is by induction on the number of nodes that need to be removed
from t to get s. The base case s = t follows by aperiodicity of H, which follows by aperiodicity
of V , itself a consequence of J -triviality. Consider now the case when t is bigger than s. In
particular, we can remove a node from t and still have s as a piece. In other words, there is a
decomposition t = q0q1t

′ such that s � q0t
′. Applying the induction assumption, we get

ω · α(q0t
′) = α(s) + ω · α(q0t

′) .

Furthermore, applying identity (5), we get

ω · α(t) = α(q0t
′) + ω · α(t) = ω · α(q0t

′) + ω · α(t) .

Combining the two equalities, we get the desired result.
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5 Closest common ancestor

According to the definition of piece in Section 2, t = d(a+b) is a piece of the forest s = dc(a+b).
In this section we consider a notion of piece which does not allow removing the closest common
ancestor of two nodes, in particular removing the node c in the example above. The logical
counterpart of this notion is a signature where the closest common ancestor (a three argument
predicate) is added.

Recall that in a forest s we say that a node z is the closest common ancestor of the nodes x

and y , denoted z = x ⊓ y , if z is an ancestor of both x and y and all other nodes of s with this
property are ancestors of z . Note that the ancestor relation can be defined in terms of the closest
common ancestor, since a node x is an ancestor of y if and only if x is the closest common ancestor
of x and y . We now say that a forest s is a cca-piece of a forest t, and write this as s E t, if there
is an injective mapping from nodes of s to nodes of t that preserves the label of the node together
with the forest-order and the closest common ancestor relationship (the ancestor relationship is
then necessarily preserved). An equivalent definition is that the cca-piece relation is the reflexive
transitive closure of the relation

{(pt, pat) : p is a context, a is a node, t is a tree or empty}

Notice the difference with the notion of piece as defined in Section 2, where t could be an arbitrary
forest. Similarly we say that a context p is a cca-piece of the context q, pEq, if there is an injective
mapping from p to q as above that also preserves the hole.

A forest language L is called cca-piecewise testable if there exists n > 0 such that membership
of t in L depends only on the set of cca-pieces of t of size n.

As before, every cca-piecewise testable language is regular and an analogue of Proposition 1
holds as well.

Proposition 19. A forest language is cca-piecewise testable iff it is definable by a Boolean
combination of Σ1(⊓,<dfs) formulas.

Recall that the ancestor relation can be expressed using the closest common ancestor relation
hence Σ1(⊓,<dfs) could be replaced by Σ1(⊓,<dfs,<) in the statement of Proposition 19. A first
remark is that there are more cca-piecewise testable languages than there are piecewise testable
ones. Hence the identities that characterize piecewise testable languages are no longer valid. In
particular, in the syntactic algebra of a cca-piecewise testable language, the context monoid V may
no longer be J -trivial. To see this consider the language L of forests over {a, b, c} that contain
the cca-piece a(b + c). This is the language “some a is the closest common ancestor of some b

and c”. Then, for all n, the context p = (ab)n� is not the same as the context q = (ab)na�
as p(b + c) 6∈ L while q(b + c) ∈ L. Hence the identity (uv)ω = (uv)ωu does not hold in the
syntactic context monoid of L. However as we noted earlier, any J -trivial monoid satisfies this
identity. Note however that p and q satisfy the equivalence pt ∈ L iff qt ∈ L for all trees t. The
characterization below is a generalization of this idea of distinguishing trees from forests.

We call a context a tree-context if it is nonempty and has one node that is the ancestor of all
other nodes, including the hole.

In the presence of the closest common ancestor, the algebraic situation is more complicated
as well: cca-piecewise testability of a forest language L is not determined by the syntactic forest
algebra alone. To obtain an algebraic characterization of this class of languages, it is necessary
to look at the syntactic morphism αL : A∆ → (HL,VL) that maps each (h, v) to its ∼L-class, and
not just the the image of this morphism. (We can be considerably more precise about this: The
distinction is that the cca-piecewise testable languages do not form a variety of languages in the
sense described by Eilenberg [9]. In particular, this family of languages lacks the crucial property
of being closed under inverse images of morphisms between free forest algebras; this fails if the
morphism maps some generator a� to the empty context, or to a context of the form p+ s, where
p is a context and s is a nonempty forest. However cca-piecewise testable languages satisfy all the
other properties of varieties of languages and in particular they are closed under inverse images
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of homomorphisms that are “tree-preserving”, i.e., the image of a� is a tree-context p for all a.
Varieties of forest languages are discussed in [4].)

We extend the cca-piece relation to elements of a forest algebra (H,V ) in the presence of a
morphism α : A∆ → (H,V ) as follows: we write v Ew if there are contexts pEq that are mapped
to v and w respectively by the morphism α. There is a subtle difference here with the definition
of � defined in Section 2: the E relation on V depends on the morphism α! Similarly we define
the notion of g E h for g , h ∈ H.

The elements of V that are images under the morphism α of a tree-context are called tree-
context-types. Similarly, the elements of H that are images of a tree are called tree-types (it is
possible for an element to be an image of both a tree and a non-tree, but it is still called a tree-type
here). Note that the notions of tree-type and of tree-context-type are relative to α.

Theorem 20. A forest language L is cca-piecewise testable if and only if its syntactic algebra and
syntactic morphism satisfy the following identities:

uωh = uωvh = vuωh (6)

whenever h is a tree-type or empty, and v E u are tree-context-types, and

ω · h = ω · h + g = g + ω · h if g E h (7)

Because of the finiteness of the syntactic forest algebra (HL,VL) one can effectively decide
whether an element of one of these monoids is the image of a tree-context or of a tree. Whether
or not v Eu or g Eh holds can be decided in polynomial time using an algorithm as in Corollary 3
based on the following equivalent definition of E: Let (H,V ) be a forest algebra and α a surjective
morphism from A

∆ → (H,V ). Let then R be the smallest relation on V that satisfies the following
rules, for all v , v ′,w ,w ′ ∈ V :

� R v

α(a)v R α(a)v ′ if v R v ′

vw R v ′w ′ if v R v ′ and w R w ′ and w ,w ′ are tree-context-types
vw R v ′w ′ if v R v ′ and w R w ′ and v , v ′ are of the form (s +�+ t)

�+ v0 R �+ v ′0 if v R v ′

v0 +� R v ′0 +� if v R v ′

Lemma 21. For any finite (H,V ) and surjective morphism α, the relations R and E are the
same.

Proof. We first show the inclusion of R in E. A simple induction on the number of steps used
to derive v R w , produces contexts p E q with α(p) = v and α(q) = w . Moreover p (q) is a
tree-context whenever u (v) is a tree-context-type. The surjectivity of α is necessary for starting
the induction in the case � R v .

For the inclusion of E in R , we show that α(p) R α(q) holds for all contexts p E q. The proof
is by induction on the size of p:

• If p is the empty context, then the result follows thanks to the first rule in the definition
of R . If p = a� then from p E q it follows that q = q1aq2 for some contexts q1, q2 and
using the first and second rule in the definition of R we get that � R α(q1), � R α(q2), and
α(a)Rα(a)α(q2). Hence using the third rule in the definition of R we get the desired result
by composition.

• If there is a decomposition p = p1ap2 where p1, p2 are contexts, then from pEq there must be
a decomposition q = q1aq2 with p1Eq1 and p2Eq2. By induction we get that α(p1) R α(q1)
and α(p2) R α(q2). Applying the second rule to the latter we get that α(ap2) R α(aq2). We
can now apply the third rule to derive α(p) R α(q).
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• If there is a decomposition p = p1p2 where p1, p2 are non empty contexts and p1 is of the
form (s +�+ t), then from pE q there must be a decomposition q = q1q2 with p1 E q1 and
p2 E q2 and where q1 is of the form (s ′ + � + t ′). We conclude by induction and using the
fourth rule in the definition of R .

• The remaining case is when p = (t + �) (or p = � + t) where t is a tree of the form ap′0
for some context p′. Then from p E q we have q = aq′0 + q1 for some contexts q1, q

′, with
p′ E q′. By induction we have α(p′) R α(q′). Using the second rule we get α(ap′) R α(aq′).
Using the last rule we get α(p) R α(aq′0 + �). By the first rule we have � R α(q1). We
conclude using the fourth rule.

This implies that Theorem 20 yields a decidable characterization of the cca-piecewise testable
languages.

Corollary 22. It is decidable if a regular forest language is cca-piecewise testable.

The proof of Theorem 20 follows the same outline as that of the proof of Theorem 4, but the
details are somewhat complicated.

5.1 Proof of Theorem 20

The proof that (6) and (7) are necessary is the same as Section 4.1. The only difference is that
instead of Fact 8, we use the following.

Fact 23. If r is any context, p E q are tree-contexts, and t is a tree or empty, then rpt E rqt.

We now turn to the completeness proof in Theorem 20. The proof is very similar to the one
of the previous section, with some subtle differences.

As before, we fix a language L whose syntactic forest tree algebra (H,V ) satisfies all the
identities of Theorem 20. We write α for the syntactic morphism.

We now write s ∼n t if the two forests s, t have the same cca-pieces of size n. Likewise for
contexts.

The main step is to show the following proposition.

Proposition 24. For n sufficiently large, if t is a tree or empty, then pat ∼n pt entails α(pat) =
α(pt).

Theorem 20 follows from the above proposition in the same way as Theorem 4 follows from
Proposition 10 in the previous section. The reason why we assume that t is either a tree or empty
is because when s is an cca-piece of s ′, then s can be obtained from s ′ by iterating one of the
following two operations: removing a leaf, or removing a node which has only one child. Hence
during the pumping argument yielding Theorem 20 from Proposition 24 it is enough to preserve
the type only for these operations. We thus concentrate on showing Proposition 24.

We will now redefine the concept of fractal for our new, closest common ancestor setting. The
key change is in the concept of a vah-decomposition. We change the notion of x ∈ X being a
vah-decomposition of s as follows: all conditions of the old definition hold, but new conditions
are added. First we require that s[X ] be a closest common ancestor piece of s, in particular this
implies that if two elements of X have a closest common ancestor in s then this closest common
ancestor is also in X . Moreover either x has no descendants in X ; or there is a minimal element
of X that has x as a proper ancestor. In other words, the part of s[X ] that corresponds to h is
either empty, or is a tree. In particular, s[X \ {x}] is a closest common ancestor piece of s[X ];
which is the key property required below. From now on, when referring to a vah-decomposition,
we use the new definition. In particular in the concept of a fractal x1 ∈ X1, ... , xk ∈ Xk inside s we
now have that for each i , xi ∈ Xi is a vah-decomposition of s in the new sense.

The proof of the following lemma is exactly the same as its counterpart in Section 4.2 (Lemma 13)
and is therefore omitted.
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Lemma 25. Let k ∈ N. For n sufficiently large, if t is a tree or empty, then pat ∼n pt entails
the existence of a fractal of length k inside pat.

A fractal x1 ∈ X1 · · · , xk ∈ Xk inside s is called cca-tame if s can be decomposed as s =
qq1 · · · qks

′ (or s = qqk · · · q1s
′) such that x1 ∈ q1, · · · , xk ∈ qk and such that either:

• Each qi is a tree context whose root node belongs to Xi \ {xi}.

• Each qi is a context of the form �+ ti , with ti a forest.

Lemma 26. Let k ∈ N. For n sufficiently large, if there is a fractal of length n inside pat, then
there is a cca-tame fractal of length k inside pat.

Proof. The proof is essentially the same as for the counter part in Section 4.2 (Lemma 15); only
this time we need to be more careful to satisfy the more stringent requirements in a cca-tame
fractal.

Let m = 2k + 2. Using the same reasoning as in the proof of Lemma 15, if n is large enough
then we may extract a subfractal of length m where either:

• All the nodes x1, ... , xm have the same closest common ancestor. In this case, we can extract
a cca-tame subfractal, where each context is of the form �+ ti .

• The set Y = {y : y is a closest common ancestor of some xi , xj} contains a chain y1 < · · · <
ym, such that for each i ≤ m, the set Yi = {z : z ≥ yi and z 6≥ yi+1} contains at least one of
the node xi . (There is a second case, where the nodes y1, ... , ym are ordered the other way:
with yi+1 an ancestor of yi . This case is treated analogously.) In particular, yi is the closest
common ancestor of xi and any of the nodes xi+1, ... , xm. Since Xi+1 contains both xi and
xi+1, each node yi belongs to the set Xi+1. As we may have xi = yi , the desired cca-tame
fractal is obtained as follows: We use x2 ∈ X2, x4 ∈ X4, ... , x2k ∈ X2k as the fractal (recall
that m = 2k + 2); while the decomposition qq1 ... qks

′ is chosen so that qi has its root in
y2i−1, and its hole in y2i+1.

Recall the definition of uijl and wijl as the image under α of the context obtained from qi+1 · · · qj
by restricting s to Xl and Xl \{xl}, respectively. Note that because of the new definition of fractals
we have:

wijl E uijl and uijl E uij(l+1) (8)

if the qi are tree-contexts then uijl ,wijl are tree-context-types (9)

The definition of monochromaticity is the same as in the previous section and Ramsey’s The-
orem gives.

Lemma 27. If there is a cca-tame fractal of sufficiently large size inside pat, then there is a
monochromatic cca-tame fractal of size m = ω + 2 inside pat.

We will now take a monochromatic cca-tame fractal, and conclude by showing that α(pat) =
α(pt).

Lemma 28. If there is a monochromatic cca-tame fractal of size ω+2 inside pat, then vah = vh.

Proof. Fix a monochromatic cca-tame fractal of size m = ω + 2 and let k = m − 1. Since xk ∈ Xk

is a vah-decomposition, the statement of the lemma follows once we show that α assigns the same
type to the forest s[Xk ] and s[Xk \ {xk}].

Recall that the type of the forest s[Xk ] can be decomposed as follows (the case where s =
qqmqm−1 · · · q1s

′ is treated similarly by duality).

α(s[Xk ]) = α(q[Xk ]) · u01k · u12k · u23k · · · u(k−1)kk · α(qm[Xk ]s
′[Xk ])

19



The type of s[Xk \ {xk}] is decomposed the same way, only u(k−1)kk is replaced by w(k−1)kk . Let
h = α(qm[Xk ]s

′[Xk ]) and notice that if qm is a tree-context then h is a tree-type. Therefore, the
lemma will follow if

u01k · u12k · u23k · · · u(k−1)kk · h = u01k · u12k · u23k · · ·w(k−1)kk · h .

Since the fractal is monochromatic, and since k = ω + 1, the above becomes

uω01k · u(k−1)kk · h = uω01k · w(k−1)kk · h .

By (8) and monochromaticity, we have

w(k−1)kk , u(k−1)kk E u(k−1)k(k+1) = u01k , (10)

We now have two cases. If all the qi are tree-contexts, we conclude using identity (6) which can be
applied because of (10), and the fact that h is then a tree-type and (9). If all the qi are contexts
of the form �+ fi , we conclude from (10) using identity (7).

5.2 An equivalent set of identities.

In this section, we give a set of identities that is equivalent to the one used in Theorem 20. The
rationale is the same as in Proposition 18: we want to avoid the use of v E w in the identities.

Proposition 29. The conditions on the syntactic morphism stated in Theorem 20 are equivalent
to the following equalities:

(uv)ωh = (uv)ωuh (11)

whenever h is a tree-type or empty, and

(uv)ω = v(uv)ω (12)

whenever u and v are tree-context-types, and

(u(�+ vwh))ωg = (u(�+ vwh))ωu(�+ vh)g = (u(�+ vh))(u(�+ vwh))ωg (13)

whenever u is a tree-context-type or empty and g , h are tree-types or empty.

The rest of Section 5.2 is devoted to showing the above proposition.
It is immediate to see that identity (6) implies identity (12) and that identity (6) implies

identity (13). We now show that identities (6) and (7) imply identity (11). Let u and v be two
context-types and h be a tree-type. We want to show that (uv)ωh = (uv)ωuh.

We consider several cases.
• In the first case we assume that u = u1u2 for some tree-context-type u2. In that case we

have:

(uv)ωh = (uv)ω(uv)ω(uv)ωh = (u1u2vu1u2v)
ω(u1u2v)

ωh = u1(u2vu1)
ω−1(u2vu1u2vu1)

ωu2vh

Notice now that u2v E u2vu1u2vu1 and that u2vu1u2 E u2vu1u2vu1. As u2 is a tree-context-type,
all the context-types involved are tree-context-types and we can use identity (6) twice and replace
u2v by u2vu1u2. This yields:

(uv)ωh = u1(u2vu1)
ω−1(u2vu1u2vu1)

ωu2vu1u2h

And we have
(uv)ωh = (u1u2vu1u2vu1u2v)

ωu1u2h

By idempotency, this yields the desired result:

(uv)ωh = (uv)ωuh
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• The second case, in which we assume that v = v1v2 for some tree-context-type v2, is treated
similarly.

(uv)ωh = (uv1v2)
ωh = (uv1v2)

ω(uv1v2)
ωh

Therefore,
(uv)ωh = uv1(v2uv1)

ω−1(v2uv1)
ωv2h

Notice now that v2 E v2uv1 and that v2u E v2uv1. As v2 is a tree-context-type, all the context-
types involved are tree-context-types and we can use identity (6) twice and replace v2 by v2u. This
yields:

(uv)ωh = uv1(v2uv1)
ω−1(v2uv1)

ωv2uh

And we have
(uv)ωh = (uv)ω(uv)ωuh = (uv)ωuh

• When none of the above cases works, we must have u = f1 +�+ f2 and v = g1 +�+ g2. In
that case we have (uv)ωh = ω · (f1 + g1) + h + ω · (g2 + f2), and we conclude using identity (7) as
f1 E (f1 + g1) and f2 E (f2 + g2).

We now consider the converse implication in Proposition 29. Assume that identities (11)-(13)
hold. We show that identities (6) and (7) are satisfied.

We first show the following lemma:

Lemma 30. If u is a tree-context-type, v ,w ,w ′ are (not necessarily tree) context-types with w ′Ew ,
and g , h are either tree-types or empty, then the following identity holds

(u(�+ vwh))ωg = (u(�+ vwh))ωu(�+ vw ′h)g (14)

Note that the identity (7) is a direct consequence of the above, by taking u, v to be the empty
context, and g , h to be the empty tree. We will also use the above lemma to show (6), but this
will require some more work.

Proof. The proof is by induction on the number of steps used to derive w ′ E w .

• Consider first the case when w ,w ′ can be decomposed as

w = w1w2 w ′ = w ′

1w
′

2 w ′

1 E w1,w
′

2 E w2

Two applications of the induction assumption give us for all tree-type or empty g :

(u(�+ vw1w2h))
ωg = (u(�+ vw1w2h))

ωu(�+ vw1w
′

2h)g (15)

(u(�+ vw1w
′

2h))
ωg = (u(�+ vw1w

′

2h))
ωu(�+ vw ′

1w
′

2h)g (16)

As u is a tree-context-type we can iterate on (15) and then apply (16) in order to derive:

(u(�+ vw1w2h))
ωg = (u(�+ vw1w2h))

ω(u(�+ vw1w
′

2h))
ωu(�+ vw ′

1w
′

2h)g (17)

As u is a tree-context-type, we can apply again (15) in the reverse direction in order to derive
the desired result.

• Consider now the case when w ,w ′ can be decomposed as

w = w1w2w3 w ′ = w ′

1w
′

3 w ′

1 E w1,w
′

3 E w3

with w ′

3 a tree-context-type or empty. We first use the induction assumption to get

(u(�+ vw1w2w3h))
ωg = (u(�+ vw1w2w3h))

ωu(�+ vw1w2w
′

3h)g (18)

By applying the identity (13), we get for all tree-type or empty g :
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(u(�+ vw1w2w
′

3h))
ωg = (u(�+ vw1w2w

′

3h))
ωu(�+ vw1w

′

3h)g (19)

Note that it is important here that w ′

3h is either a tree-context-type or empty. Finally, we
apply once again the induction assumption to get

(u(�+ vw1w
′

3h))
ωg = (u(�+ vw1w

′

3))
ωu(�+ vw ′

1w
′

3h)g (20)

As u is a tree-context type, we can first iterate on (18), then iterate on (19) and finally
applying (20) in order to get:

(u(�+vw1w2w3h))
ωg = (u(�+vw1w2w3h))

ω(u(�+vw1w2w
′

3h))
ω(u(�+vw1w

′

3h))
ωu(�+vw ′

1w
′

3h)g

Because u is a tree-context-type we can now apply (18) and (19) in reverse to eliminate the
inner products and obtain the desired result.

• Finally, consider the case when w ,w ′ can be decomposed as

w = �+ w10 w ′ = �+ w ′

10 w ′

1 E w1

In this case, the identity becomes:

(u(�+ v ′w10))
ωg = (u(�+ v ′w10))

ωu(�+ v ′w ′

10)g

where v ′ = v(h + �). The result now follows by induction assumption with w1,w
′

1 in place
of w ,w ′.

We now claim that all cases have been considered. Assume first that either w ′ or w consists
of several trees. Then, by the definition of E, w ′ and w can be decomposed into smaller forests
and we conclude using the first bullet. We can thus assume that both w and w ′ are trees. If w ′

contains a node between its root and its hole then, by definition of E, we can decompose w and
w ′ and apply the second bullet. Similarly we can transform w using the first bullet until the third
bullet can be applied.

We now derive the first part of identity (6). Let u, v be tree-context-types such that v E u,
and let h be a tree-type. We show by induction on v that uωh = uωvh. If v = v1v2 where both v1
and v2 are tree-context-types then we consider v2 first and v1 next:

uωh = uωv2h = uωv1v2h .

It is important here that v2h is a tree-type.
Therefore it is enough to consider the case where v is of the form α(a)(�+ f ) for some letter

a and some forest-type f . In the sequel we write a instead of α(a) in order to improve readability.
From v E u we get u = u1a(�+ g)u2 where u1 and u2 are tree-context-types and f E g . Then we
have from identity (11) for any tree-type h:

uωh = (u1a(�+ g)u2)
ωh = uωu1a(�+ g)h

uωh = (u1a(�+ g)u2)
ωh = uωu1h

and therefore, as a(�+ g)h is a tree-type we get for any tree-type h:

uωh = uωa(�+ g)h (21)

Iterating on (21) we get:
uωh = uωa(�+ g)h = uωa(�+ g)ωh .

It will therefore be enough to show

(a(�+ g))ωh = (a(�+ g))ωa(�+ f )h

for f E g . This, however, is a consequence of (14).
The second part of identity (6), uω = vuω, is shown the same way using identity (12) instead

of identity (11) and building on (22) below instead of (14).
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Lemma 31. If u is a tree-context-type, v ,w ,w ′ are (not necessarily tree) context-types with w ′Ew ,
and g , h are either tree-types or empty, then the following identity holds

(u(�+ vwh))ω = (u(�+ vw ′h)(u(�+ vwh))ω . (22)

Proof. Identical to the proof of Lemma 30, applying the other side of identity (13).

6 Variations

In this section we show that the techniques we developed in the previous sections are fairly robust
and can be adapted to many situations. We describe some of them.

6.1 Languages definable in Σ1.

Here we treat the relatively simple case of languages defined by Σ1 sentences (rather than boolean
combinations of such formulas). We will prove:

Theorem 32. It is decidable whether a given regular forest language L is definable by a Σ1(<,<dfs)
sentence.

We will show how to do this using the syntactic forest algebra and syntactic morphism, although
this could be carried out just as well using an automaton model. The argument we give is based
on an idea of Pin [12] concerning ordered monoids.

Let L ⊆ HA be a regular forest language, and let αL : A∆ → (HL,VL) be its syntactic morphism.
We set X = αL(L) ⊆ HL. Note that L = α−1

L (X ). For h1, h2 ∈ HL we define

h1 ≤
H
L h2

if for all v ∈ VL, vh2 ∈ X implies vh1 ∈ X . Further, for v1, v2 ∈ V2 we define

v1 ≤
V
L v2

if for all h ∈ HL, v1h ≤H
L v2h.

Proposition 33. The relations ≤H
L and ≤V

L are partial orders on HL and VL, respectively. These
orders are compatible with the algebra operations in the sense that whenever h1 ≤H

L h2, u1 ≤V
L u2,

and v1 ≤
V
L v2, we have

v1h1 ≤
H
L v2h2,

u1v1 ≤
V
L u2v2.

Proof. This is straightforward from the definitions: Transitivity and reflexivity of ≤H
L are obvious.

To prove antisymmetry, suppose h1 ≤H
L h2 and h2 ≤H

L h1. Let s1, s2 ∈ HA with αL(si ) = hi . Let
p ∈ VA and set v = αL(p). If ps2 ∈ L then vh2 = α(ps2) ∈ X , so α(ps1) = vh1 ∈ X and thus ps1 ∈ L.
Likewise ps1 ∈ L implies ps2 ∈ L, so s1 ∼L s2 and thus h1 = h2.

Transitivity and reflexivity of ≤V
L are likewise trivial, and antisymmetry follows from the

antisymmetry of ≤H
L and the faithfulness of the action of VL on HL.

For the multiplicative properties, let hi , ui , vi be as in the statement of the Proposition. If
v2h2 ∈ X , then v2h1 ∈ X (since h1 ≤

H
L h2) and thus v1h1 ∈ X (since v1 ≤

V
L v2). Thus v1h1 ≤

H
L v2h2.

Similarly u2v2h ∈ X implies u1v2h ∈ X (since u1 ≤V
L u2) and thus u1v1h ∈ X (since v1 ≤V

L v2) so
u1u2 ≤

V
L u2v2.

Theorem 34. Let L ⊆ HA be a regular forest language. The following are equivalent:

• L is definable by a Σ1(<,<dfs) formula.
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• For all contexts p, q and forests t,

pt ∈ L ⇒ pqt ∈ L

• For all v ∈ VL, v ≤V
L �.

Proof. The first condition implies the second, because inserting new nodes in a forest does not
change the < or <dfs relation among the already existing nodes.

To show that the second condition implies the first, we use a pumping argument: Let n = |HL|.
There exists K > 0 such that any forest s with at least K nodes has a factorization

s = q1q2 · · · qnt

for some forest t, nonempty contexts qi . In particular, there is a factorization s = pqt with
αL(t) = αL(qt). Thus a forest belongs to L if and only if it is obtained by successive insertion of
nodes starting with a forest in L of size less than K . We can write a Σ1 sentence φ that describes
all the relations among nodes of the forests of size less than K that belong to L, and thus this
sentence defines L.

To show the equivalence of the second and third conditions, suppose the second condition holds.
We need to show v ≤V

L � for all v ∈ V . This says that for every forest s and every context p, s ∈ L

implies ps ∈ L, which follows from the second condition. Conversely, suppose the third condition
holds, and that p, q are contexts and t a forest with pt ∈ L. Then αL(pt) = αL(p)�αL(t) ∈ X . By
the multiplicative properties of the partial order, αL(p)αL(q)αL(t) ∈ X , and thus pqt ∈ L.

Theorem 32 is an immediate corollary, since one can effectively compute the order ≤V
L given

the syntactic algebra and syntactic morphism of L.

6.2 Commutative languages

In this section we consider forest languages that are commutative, i.e., closed under rearranging
siblings.

A forest t ′ is called a reordering of a forest t if it is obtained from t by rearranging the order
of siblings. In other words, reordering is the least equivalence relation on forests that identifies
all pairs of forests of the form p(s + t) and p(t + s). A forest language is called commutative if
it is closed under reordering. In other words, a forest language is commutative if and only if its
syntactic forest algebra satisfies the identity

g + h = h + g .

We say a forest s is a commutative piece of t, if s is a piece of some reordering of t. A forest
language L is called commutative-piecewise testable if for some n ∈ N, membership of t in L depends
only on the set of commutative pieces of t that have no more than n nodes. This definition also has
a counterpart in logic, by removing the forest-order from the signature. The following proposition
is immediate:

Proposition 35. A forest language is commutative-piecewise testable iff it is definable by a
Boolean combination of Σ1(<) formulas.

If a language is commutative-piecewise testable, then it is clearly commutative and piecewise
testable (in the more powerful, noncommutative, sense). Below we show that the converse
implication is also true:

Theorem 36. A forest language is commutative-piecewise testable if and only if it is commutative
and piecewise testable.

As piecewise testability is decidable, by Corollary 3, and commutativity is obviously decidable,
the theorem above implies decidability:
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Corollary 37. It is decidable if a regular forest language is commutative-piecewise testable.

Theorem 36 follows quite easily from:

Lemma 38. Let n ∈ N. For k sufficiently large, if two forests have the same commutative pieces
of size at most k, then they can be both reordered so that the resulting forests have the same pieces
of size at most n.

To see this, assume L is a commutative and piecewise testable forest language. We need to
show that there is a k such that if t and s have the same commutative pieces of size k then t ∈ L

iff s ∈ L. As L is piecewise testable there exists an n such that whenever s and t have the same
pieces of size no more than n then t ∈ L iff s ∈ L. Let k be the number given by Lemma 38 for
that n. Assume now that s and t have the same commutative pieces of size k . By Lemma 38
they can be reordered into respectively s ′ and t ′ such that s ′ and t ′ have the same pieces of size
n. Hence s ′ ∈ L iff t ′ ∈ L. But as L is commutative this yields s ∈ L iff t ∈ L as desired.

Proof of Lemma 38. Let P(s) be the set of pieces of s that have size at most n. As in Lemma 9,
there is some k such that any forest s has a piece t � s of size at most k with P(s) = P(t). Let
now s1, s2 be two forests with the same commutative pieces of size k . For i = 1, 2, consider the
families

Pi = {P(s ′i ) : s
′

i is a reordering of si} .

To prove the lemma, we need to show that the families P1 and P2 share a common element. To
this end, we show that for any X ∈ P1, there is some Y ∈ P2 with X ⊆ Y , and vice versa; in
particular, the families share the same maximal elements. Let then X = P(s ′1) ∈ P1. By the choice
of k , the forest s ′1 has a piece t of size at most k with P(t) = X . Therefore t is a commutative
piece of s1 of size k . By assumption, the forest t is also a commutative piece of s2 and therefore a
piece of some reordering s ′2 of s2. Hence X ⊆ P(s ′2) ∈ P2.

Similarly we can define the notion of commutative-cca-piece and commutative-cca-piecewise
testable forest language. Using the same arguments as above we can prove:

Proposition 39. A forest language is commutative-cca-piecewise testable iff it is definable by a
Boolean combination of Σ1(⊓) formulas.

Theorem 40. A forest language is commutative-cca-piecewise testable if and only if it is com-
mutative and cca-piecewise testable.

Corollary 41. It is decidable if a regular forest language is commutative-cca-piecewise testable.

6.3 Tree languages

Our previous results were provided decidable characterizations for forest languages, and in fact
the algebraic theory used here works best when forests, rather than trees, are treated as the
fundamental object. Traditionally, though, interest has focused on trees rather than forests.
Thus we want to give a decidable characterization of the piecewise testable tree languages or,
equivalently, the sets of trees that are definable by Boolean combinations of Σ1 sentences.

For certain logics, like first-order logic over the descendant relation, or first-order logic over
successor, one can write a sentence that says “this forest is a tree”, and thus there is no need
to treat tree and forest languages separately. For piecewise testability, we need to do something
more, since the set of all trees over a finite alphabet A is not definable by a Boolean combination
of Σ1 sentences over any of the predicates mentioned in this paper.

We define a tree piecewise testable language over a finite alphabet A to be the intersection of
a piecewise testable forest language with the set of all trees over A. In other words this is the
set of languages definable by a Boolean combination of Σ1(<,<dfs) formulas when we interpret
these formulas in trees. This is preferable to defining a piecewise testable tree language to be a
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tree language that is piecewise testable (as a forest language), since the latter definition would
only define tree languages that are either finite or contain only chains (no branching). Moreover
it would not correspond to the tree languages definable by a Boolean combination of Σ1(<,<dfs)
formulas. The cases when the pieces are assumed to be commutative and/or take into account
closest common ancestor are defined analogously.

We will obtain our decidability result by a general method for translating algebraic charac-
terizations of classes of forest languages to characterizations of the corresponding classes of tree
languages. This method will apply to all the cases we considered earlier: piecewise testable lan-
guages, cca-piecewise testable languages, and their commutative counterparts.

First, suppose
α : A∆ → (H,V )

is a surjective forest algebra morphism. Recall that we denote by HA the set of all forests of A.
Based on α, we define an equivalence relation on HA: We write s ∼ t if for all contexts p such
that ps and pt are both trees (this happens if p is a tree-context or if p is the empty context and
both t and s are trees) we have α(ps) = α(pt). Notice that if s and t are such that α(s) = α(t)
then s ∼ t and that if s and t are both trees then s ∼ t implies α(s) = α(t) (take p = � in the
definition of ∼). It is clear that if s ∼ t then for any context q, qs ∼ qt. Thus ∼ defines a forest
algebra congruence on A

∆. Let
α′ : A∆ → (H ′,V ′)

be the projection morphism onto the quotient by this congruence. We call α′ the tree reduction of
α. From the remark above it follows that if t and s are both trees then α(s) = α(t) iff α′(s) = α′(t).

Let F be a family of forest languages over A. We say that a set F of surjective forest algebra
morphisms with domain A

∆ characterizes F if a forest language L belongs to F if and only if L

is recognized by some morphism in F . We will further assume that F is closed in the following
sense: suppose α : A∆ → (H1,V1) belongs to F , and β : (H1,V1) → (H2,V2) is a morphism onto a
finite forest algebra. Then βα belongs to F .

Theorem 42. Let F and F be as above, and let L ⊆ HA be a set of trees. Then there is a forest
language K ∈ F such that L consists of all the trees in K if and only if the tree reduction of the
syntactic morphism αL of L belongs to F .

Proof. Let L be a tree language, αL be its syntactic morphism and let α′

L : A∆ → (H ′

L,V
′

L) be its
tree reduction.

Assume first that there is a forest language K such that L consists of all the trees in K . Let
αK : A∆ → (HK ,VK ) be the syntactic morphism of K . By definition, αK ∈ F . Fix h ∈ HK and
let t, s be forests such that αK (t) = h = αK (s). We show that α′

L(s) = α′

L(t). Suppose this is not
the case. Then there exists a context p such that ps and pt are both trees but αL(ps) 6= αL(pt).
By definition of αL this means that there exists a context q such that qps ∈ L but qpt 6∈ L. From
qps ∈ L we know that qps is a tree, hence, as pt is a tree, qpt must also be a tree. By hypothesis
this implies qps ∈ K but qpt 6∈ K , contradicting αK (t) = αK (s).

Since V ′

L acts faithfully on H ′

L, it follows that for any contexts p and q, αK (p) = αK (q) implies
α′

L(p) = α′

L(q). Thus α′

L = βαK for some morphism β : (HK ,VK ) → (H ′

L,V
′

L) sending h ∈ HK to
β(h) = α′

L(α
−1
K (h)). By hypothesis on F this implies that α′

L ∈ F .

Conversely, suppose that α′

L belongs to F . Let X = α′

L(L) and set K = (α′

L)
−1(X ). From the

hypothesis it follows that K ∈ F. Assume that t is a tree such that α′

L(t) ∈ X . By definition of
X , there is a tree s ∈ L such that α′

L(s) = α′

L(t). But as α′

L is the tree reduction of αL, we have
α′

L(s) = α′

L(t) implies αL(s) = αL(t) and therefore t ∈ L. Hence L is the set of trees of K .

As a result we have:

Corollary 43. It is decidable if a regular tree language is tree (commutative) (cca-)piecewise
testable.
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Proof. We only give the proof for the piecewise testable case. The other cases are handled similarly.
Let F be the family of piecewise testable forest languages over A, and let F be the family of

morphisms from A
∆ onto finite forest algebras that satisfy the identities of Theorem 4. Notice

that from Proposition 18 it follows that if α ∈ F then βα ∈ F for all onto morphism β. Hence F

and F satisfy the hypothesis of Theorem 42.
Consequently, a regular tree language L is tree piecewise testable if and only if the tree reduction

of αL belongs to F . It remains to show that we can effectively compute the image of the tree
reduction given αL. Consider h ∈ HL and notice that all the forests in α−1

L (h) agree on α′

L. Hence
the procedure amounts to deciding which pairs of elements of the syntactic forest algebra are
identified under the reduction, which we can do as long as we know which elements are images
under αL of trees. It is easy to see that if an element of HL is the image of a tree, then it is the
image of a tree of depth at most |VL| in which each node has at most |HL| children, so we can
effectively decide this as well.

6.4 Horizontal order

We could also consider other natural predicates over forests. Recall for instance the definition of
horizontal-order with x <h y expresses the fact that x is a sibling of y occurring strictly before y

in the forest-order.
Correspondingly we say that s is a horizontal-piece of t, denoted s  t, if there is an injective

mapping from nodes of s to nodes of t that preserve the horizontal-order and the ancestor rela-
tionship. An equivalent definition is that the piece relation is the reflexive transitive closure of the
relation

{(pt, pat) : p is a context, a is a node, t is a forest or empty

and either t is empty or a does not have a sibling in pat}

From this notion of horizontal-piece we derive the notion of horizontal-piecewise testability as
expected and the very same proofs as in Section 4 yield:

Proposition 44. A forest language is horizontal-piecewise testable iff it is definable by a Boolean
combination of Σ1(<h,<dfs) formulas.

Theorem 45. A forest language is horizontal-piecewise testable if and only if its syntactic algebra
satisfies the identity

uωv = uω = vuω (23)

for all u, v ∈ VL such that v  u.

This implies decidability of horizontal-piecewise testability and it would be interesting to see
what would be the corresponding equivalent set of identities that does not make use of , in the
spirit of Proposition 18.

A straightforward adaptation of Section 5 would also give a decidable characterization of
definability by a Boolean combination of Σ1(<,<h,⊓).

7 Conclusion/discussion

Simon’s theorem on J -trivial monoids has emerged as one of the fundamental results in the
algebraic theory of automata on words. The principal contribution of the present paper has been
to show that the use of forest algebras leads to a natural generalization of this theorem to trees
and forests. In proving this generalization we have introduced a number of new techniques that we
believe will prove useful in the continuing development of the algebraic theory of tree automata.

Let us briefly indicate a few directions for further research. There is a purely algebraic formu-
lation of Simon’s theorem, stating that every finite J -trivial monoid M is the quotient of a finite
monoid N that admits a partial order compatible with the multiplication in N and in which the
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identity is the maximum element. Our new results have a similar formulation: Every finite forest
algebra satisfying the identities of Section 4 is the quotient of an algebra that admits compatible
partial orders on both its horizontal and vertical components. In fact, Straubing and Thérien [17]
have proved this order property of finite J -trivial monoids directly, yielding a quite different proof
of Simon’s theorem. It would be interesting to know whether such an argument is also possible
for forest algebras.

In the word case, the boolean combinations of Σ1-definable languages form the first level of hi-
erarchy whose union is the first-order definable languages. Little is known about the higher levels
of this hierarchy, apart from the fact that it is strict. Indeed, the problem of effectively charac-
terizing the languages definable by boolean combinations of Σ2-sentences has been open for many
years. In contrast, the first-order definable languages themselves constitute one of the first classes
for which an effective algebraic characterization was given: these are exactly the languages whose
syntactic monoids are aperiodic. (McNaughton and Papert [11].) The corresponding problem
for trees and forests, however, remains open: We possess non-effective algebraic characterizations
for the forest languages definable by first-order sentences over the ancestor relation, and for the
related subclasses CTL and CTL* (see Bojańczyk, et. al. [5]), but the problem of finding effective
tests for membership of a language in any of these classes remains one of the greatest challenges
in this work.
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