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ABSTRACT

A standard combinatorial problem calls to cstlmate the expected number of
purchases of coupons needed LO complete Ute collection of all possible m different
types. Generalizing this problem. by letting lhe coupons be obtained with an
arbitrary probability distribution. and considering other related processes, the
problem has been found to model many practical siwations. The usefulness of lhis
model has been seriously hampered by !.he computational difficulties in obtaining
any numerical results concerning moments or distributions. We show, following
Flajolet et al. [15], !hat Ute calculus of generating functions over regular languages
may be applied La the problem, answer numerous questions about the sampling
process and demonstrate their numerical efficiency. We also present a proof of a
long-standing folk-theorem. concerning lhe extremalily of uniform reference
probabilities. The paper concludes with a discussion of estimation problems related

lo the engineering applications of lhis problem.

1. INTRODUcrION

The Coupon~Collector Problem (CCP) is defined as follows: A set contains m distinct objects:
balls in an urn, letters in an alphabet, comics figures taken from the vaults of Disney
Productions and sold with chocolate bars... The collector samples from the set with
replacement. On each trial he has a fixed probability Pi of drawing the i-th object,
independently of all past events. Several variables--or processes-are associated with the
sequence of trials. all depending on the sample probability vector p = (PbPZ, ... •Pm):

Xn{p) - The item number (or 'name') drawn on the n-th trial.

tCum:ntly at thc Dcpwtrnmt of Compllcr Science, Purduc University, W. Waycnc, In. 47907.
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T (p) - The number of the trial that completes the collection.
T(k)(p) _ The number of the trial that completes the kth full collection.

T/p) - The number of the trial that completes a sub-collection of size j. Clearly T (p) =

Tm(p).
Tc(p) - The number of the trial that completes a sub-collection C of specified objects.
y11(p) - The number of different items observed in the first n trials.
Nk(P, n) - The number of different items observed exactly k times during the first n draws.

Note: The verb 'complete' has always, in the present context. the meaning of 'complete for
the first time'. The traditional symbols E and V will be used throughout to denote the
expectation and variance of random variables.

The CCP has an extensive past; so extensive, in fact. that even a concise run-down of existing
results is well beyond the scope of this report. However, the vast majority of the results we
have seen concern the classical problem, where all the coupons have the same probability,
m-1, of being drawn. This case is not our main concern. We shall have several occasions
below to cite works that are relevant to ours.

The CCP belongs to the family of Umproblems [25]. It is a natural framework in which to

cast combinatorial questions (and cited as such in [14]). Consequently it has seen numerous
applications, though these rarely preserve the ideal simplicity of the original CCP. Here are
three examples:

Applications of the CCP

(1) Detection of all necessary (also called 'hard' or non-redundant) constraints in a constrained
optimization problem.

A class of algorithms for detecting such constraints, when the feasibility region is convex and
of full dimension d. is based on a CCP-like sampling process. One such algorithm is
PREDUCE (for Probabilistic REDUCE) suggested by Boneh and Golan [4] and incorporated in
an optimization package. Each iteration of PREDUCE consists of generating a ray in random
direction, passing tluough a randomly selected interior feasible point and which hits the
boundary of the feasible region. The hit point thus created is a boundary point of the feasible
region. and it can be shown that the facet(s) on which it is located belongs with probability one
to the hard-constraints set The algorithm proceeds to generate rays until some stopping rule is
satisfied. All the consrraints not hit by that time are assumed to be redundant - possibly
erroneously. Each such a trial corresponds to drawing one coupon. The number of items is
known; however each probability Pi is not known, and is not constant, because the selected
interior point is not necessarily the same in all trials: it can be said to be proportional to the
expected d -1 dimensional angle subtended by the corresponding facet, over the set of ray
origins. For more details on this set of algorithms see [29]. A direct determination of the non­
redundant set is equivalent to computing the probabilities p, and is usually very hard, in terms

of common representations of constraint sets.
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(2) Determining the convex closure of a set of points in R R:

This problem appears to be related to the first one, but behaves rather differently. A CCP-like
detennination of the subset of points that span the closure proceeds by generating random
n-l-dimensional hyperplanes and computing the distances of all points from each. The
extreme values (one. if they are all of one sign, or two otherwise) belong to points that are in
the desired susbset Note that if some of the closure hyperplanes contain more than n-l
points, some of these points will never be discovered (it is simple to visualize this for n= 2
with triads (or larger sets) of colinear points: the intermediate ones have a zero probability of
being extremally distant from any random line).

(3) The fault-detection (FD) problem in combinatorial circuits.

A combinatorial circuit may be viewed as a black box with two sets of pins: one for input and
one for output. Each pin carries one bit (0 or 1) at any specified time. Loading the input pins
with a bit configuration (the input vector) produces an output vector on the output set ­
ostensibly according to the design specifications of the circuit. However, circuits fail
sometimes. The standard fault model, "stuck at" [13], assumes the following:

(a) The only possible faults are of lines in the circuit that are stuck (at 0 or 1) independently
of the input vector.

(b) Faults are rare events, and the probability of having more than one fault at anyone
time-assuming no previous faults-is negligible.

(c) FauIts occur as independent events.

Funhennore, we assume that a list of all possible fauIts is available to the test designer.

A possible way to detect a fault is to find that an input vector produced an output which differs
from the specified output vector by at least one bit. Correct output may be produced (for
certain input vectors) by a faulty circuit. The FD problem consists of finding a list of input
vectors-as short as possible, since in critical applications the test is perfonned very
frequently-which detect all the entries in the fault-list

One approach to the FD problem is to select random input vectors, simulate a faulty circuit and
determine the faults detected by that input. Let n be the size of the input-pins set If all n-Iong
input vectors are generated equi~probably then Pi. the probability of detecting the i-th fault is
2-n x #(of input vectors producing wrong output when fauIt i is present). Again, searching for
such a set of vectors can be viewed as CCP-reIated: input vectors 'draw' faults at random.
There is, however, the added complication that most vectors detect more than one fault,
possibly hundreds. This may be represented within the CCP fonnalism either by saying that
LPi > 1, or by viewing each vector as corresponding to a batch of drawings of a random size.
The distribution of the batch can be estimated by the designer. Further details may be found in

[2].

In view of these applications (and others) it is hardly surprising that the literature dealing with
the CCP and its ramifications is rich enough. It might be surprising that we found reason to
add to it, but we expect the following sections will support the need. Section 2 will survey the
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main results we find in the open literature and comment how numerical difficulties have

stymied much of the applications of the CCP.

Section 3 brings a relatively unfamiliar device-shuffling of regular languages-and shows its
effectiveness in producing numerical values for moments of various variables associated with
the CCP. It also leads us to a proof of a property of the CCP that has attained the status of a
folk-theorem, but has apparently never been proved: among all possible p, the uniform vector

produces the shortest expected collection completion times.
.'

Section 4 brings some numerical examples and discusses the computational techniques we
used. We then consider various statistical problems when CCP-like processes are employed in
practice. As the above sample applications show, the individual probabilities are usually
unknown. Even the number of items with nonwzero probabilities is not always known to the
user. Much work has been done on several aspects of these difficulties. We summarize some of

this work and relate it to our methods.

2. RELATED WORK

(I)

-+ ...

Texts on probability commonly use the CCP as an example for elementary derivations of
expectations. So does Feller (in [14]), who also considers the waiting times between successive
increases of the "observed set". David and Barton consider in [11] the CCP within their
discussion of occupancy problems, and compute the time required to fill a given number of
boxes, remarking that the <moments are not tractable' (though it was not computational
complexity that seems to have concerned them, but rather the lack of explicit form for the
results). Most of the treatments we know of concern the expected time to complete the
collection, E [T(p)], and its (mainly asymptotic) properties, in the classical case, of
stochastically indistinguishable elements. The others will be mentioned during our discussions.

The best known expression for E[T(p)] is probably

m I I I
E[T(p)] = L- - L + L

i=lPi l:Si<j:fmPi + Pi l:f.i<j<k:f.mPi + Pi +Pk

which is easy to prove from the inclusion-exclusion principle (see [8]) and the relation
E[T(p)J = L,~Prob(T(p) > t). The earliest source we noticed for equation (I) is [11], wbo

derive it and provide some distributional results.

For the special case of a unifonn sampling vector p :::: elm, where e:::: (I, 1, ... ,1),
commonly called the equalJy likely (EL) case, it is possible to obtain more compact
expressions, and for higher moments as well, since T ( elm) is representable as a sum of
independent geomettically disttibuted random variables, the parameters of which only depend
on their position in the sum - rather than on the particular items that had been sampled.

Specifically,
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m-l ( ')
E[T(elm)]=mHm. V[T(elm)]=m2H~21,-mHm_1. E[zT(e'm)]=zII m-Jz, (2)

j=l m-lZ

The notation Hm stands for the m-th Harmonic number, :Ei~ lIi, and HJ~1 for :Ei~1111i2,

which converges rapidly to C(2) = ,,2 /6.

A. Boneh [5] has obtained a different expression for E[T(p)] by considering the different
orders in which the coupons may be obtained., and conditioning on that sequence. He finds

E [T(p)] = :E P (i)g (i), (3)
i E S(N",)

where Nm is the set of the first m natural numbers and S (Nm) is the symmetric group of

pennutations of Nm • Denoting a particular pennutation by i == (i I, ... im ) he writes

m-l 1
g(i)= :E ,

r=O I - LPi
l

k=1

(4)

for the probability of obtaining the collection in the order i and the expected time to complete
it in that order, respectively. A convenience of this result is that it often produces ready rough

bounds on E [T(p)], by computing the function gO for two extreme cases: first the most likely
order (items are sampled in order of decreasing probability). and secondly, the reverse one ­
when the 'rarest' item is sampled first, and one ends by finding the item with highest Pi-this

can be shown to be the least likely order. The mean must be between these two, but the gap

may be substantial and we are hard put to produce from it a tighter bound.

Indeed, as David and Barton comment ruefully, the expressions in equations (1) and (3) are not
amenable for numerical evaluation even for moderate m, requiring a large number of
operations: on the order of 2m and m! respectively. Another expression of intennediate

complexity is also produced in [8]: let E {il. i 2.'" ,il } denote the expected time to observe the

entire sub-collection {i 1. i 2, . •. ,ik], then

E[T(p)]=EN ,
m

and one proceeds recursively, from E {0} == 0:

I k __..:.P.::i, ,
E {ib i

2
• "'. il } = --+--=--+--+ L + + E (£1.i2•... ,ill - {i,}.

Pi l . . . Pij: r=IPil Pil

(5)

(6)

Brayton obtains in [7] a result equivalent to our equation (40) (the expected time to complete k

collections), and the corresponding variance. Since his main concern is in obtaining asymptotic

properties, rather than direct computation, he uses a slightly different setup: the {Pi} are
assumed to be expressible as (F(i1n) - F«i-I)ln)); the dlstribution FO is then assumed to
admit a density concentrated on [0, I], that vanishes nowhere, has a finite variation and
achieves its minimal value at a finite number of isolated points. The asymptotic properties turn

out to hinge on this' 'minimum set".
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The reference [8] repons on an effort to show the intuitively appealing conjecture for the CCP,
that E [T(p)] is minimized over all probability vectors in the EL case. This conjecture has been
part of the folklore for quite some time [1], but we have not seen it proven anywhere. A reason
for the interest in this fact beyond the mere mathematical one is that it would give a natural
(and easily computable, for a change) yardstick by which to judge the relative difficulty of CC
problems. It is quite easy to show-at least from some of the expressions that were obtained
for E[T(p)]-that elm is a stationary point. The authors there also show-through equation
(l}--that e 1m is a strong local minimum. But the proof that it is a global minimum remained
elusive. The difficulty is that these expressions are not convex in the components of p. A
possible way is then to show that E [T (p)] is convex on the sheet 4Jj= 1; it appears there is no
way to do this uniformly, for all m. The authors indeed managed to do this for m:5: 6.

The references [12] and [28] contain accounts of other fascinating questions. of statistical
nature, concerning the coupon collecting process.

The most detailed treatment of CCP-related questions is [30]. The authors' starting point is not
any specific problem actually, but rather the answer: they consider a few parametrized families
of the so-called 'Dirichlet integrals of type 2'. They then show a very large and rich collection
of sampling stopping-time problems, the solutions of which can be expressed in terms of these
integrals, and the CCP problem falls squarely in that domain. The reference [30] also contains
numerous tables, and recurrence relations that can reduce higher-dimensional problems to the
range of the tables. All the numerical data are geared to problems in which all items have
either the same - or at most two different values for the selection probabilities. In order to
treat non-unifonn sampling probability vectors, the authors provide Taylor expansions of the
basic integrals at the equally-likely point. Using those does not appear easy. The approach of
the next section indicates that it should be possible to convert the above integrals directly to
one-dimensional ones (possibly a sum of such integrals) for any probability vector.

Computational Difficulty

We have commented before on the huge computational effort required to obtain the expected
value E [T(p )]. It app= that except for the EL case, only rarely-and then, for rather small
m-are any expectations or probabilities explicitly calculated. Often in such situations one tries
to use asymptotic results: the precision is often sufficient in practice, and it is of course at large
sizes of the problem where at one and the same time numerical difficulties are at their worst,
and asymptotic methods at their best. This works fine when p can be characterized by one or
two parameters, but in more general cases, where the components of p do not satisfy any
convenient relation (beyond summing to 1, that is) no asymptotic results seem forthcoming.
The situation seemed so bad that a researcher in an area that applies the CCP was moved to
say that once m exceeds 30 or so distinct values, it is immaterial whether one knows the
selection probabilities or not - one can compute nothing with them anyway. We shall show, in
the next section, that this is definitely not the case: we can routinely compute expectations and
probabilities for thousands of items and more, with the effort (for most of the computations)
roughly linear in m and essentially independent of the probability values.
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3. A NEW APPROACH
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Recently, Flajolet et al. presented in [15] a new approach, or rather, a novel point of view of
the CCP, which resulted in a computationally superior expression for the expected duration of
the CC activity, which they obtained as well. We show both below. Their approach may be
viewed in a wider context, as a way to compute probabilities for various variables defined in
terms of sequences of independent sampling from a finite population. The same approach was
briefly mentioned earlier by Comtet in [10]. In this framework there is a natural way to

answer more detailed questions about the sampling process.

Mter showing the outlines of the method, its application will be illustrated by posing and
solving a sequence of such questions. In this section we only provide analytic expressions. The
power and utility of the method lie largely-as the authors in [15] observe-in the amenability
of these to numerical evaluation. Computational techniques for this purpose is the topic of

Section 4.

We collect here the questions, so that their inter-relationships will be easier to perceive:

(1) In a sample of length n, what is the probability that item #i occurs at least ri times? In the

CCP the rj are specialized to be all 1.

(2) The same question as (1), but now we ask only about a subset of the items, C cA.

(3) What is the probability of finding in a sample of size n at least r items repeated each at

least k times?

(4) What is the expected number of different items drawn in a sample of size n?

(5) What is the expected time until j ~m different coupons have been sampled?

(6) What is the expected time until j~m different coupons have been sampled at least k times

each?

(7) What is the expected time until j ~m specified different coupons have been sampled?

(8) How many coupons will be sampled exactly r times, or more than r times, before T(p)?

(9) Is the expected time a good estimate of the required time? - we want more information
about the distribution of T (p), so we can answer the questions: with what probability will
T(p l exceed E [T (p l] by a certain fraction, or in still another way: how long do we have

to sample to obtain all coupons with a probability exceeding a?

(10) What is the distribution of Nl(p,n), defined as the number of coupons observed exactly
once in the first n trials? In the next section we explain the significance of this variable.

This is what we need in order to solve the above:

Strings Over A Finite Alphabet

Let A = {al' ... , am} be an alphabet. The set of all finite words of letters from A is denoted
by A·. A subset of A· is called a language, and a word in a language will be generically
denoted by w. The letter aj is associated with the probability Pj' and a word w is assumed to
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carry two types of weights: one is the standard additive weight, chosen here to be the size of
the word in letters, and denoted by Iw I. The second is a "probabilistic weight" that equals
the product of the probabilities of its letters: 1t(W):;::: TIajEwPj' Define for a language L the

following probability generating functions (pgf):

$L<z)= L It(w)z'w',
weL

(7)

(8)

The functions $L(Z) and ~L<z) are called the ordinary and exponential pgf's of L, respectively.
They are related through the so-called Laplace-Borel transform:

$L(z) ~ f ~L(zt)e-Idt_
t>D

These are not the usual pgf's used in probability theory for the distributions of (discrete)
random variables, but observe that [zn] $L<z) is the probability that a random word of size n,
from A" is in the language L. This formalism does not support directly the notion of a

random word of arbitrary size.

We define two operations on languages: concatenation and shuffling, which are used
extensively below; they expose two properties of the pgf's we defined and exhibit the need for

both types of functions.

1. The concatenation of two functions, L 1 and L2' is a language L, written as £=L 1L2' such
that each word of L is formed by concatenating a word from L2 to a word from L 1, to form
w=w l.w2. The operation is "well-defined" iff it has the property of unique factorization: for

each w E L there exists a unique pair WI, w2, such that Wi E Lj, and W=Wl·WZ·

Proposition 1: IT the operation £=L 1L2 is well-defined, then

(9)

2. The operation of shuffling two languages is defined recursively as follows: Two languages
are shuffled by shuffling all their words pair-wise. Two words are shuffled by merging their
letters in all possible manners, while retaining the original order in each. This recursive

definition can be formally expressed as follows:

WoE=EoW=W, (e is the null word.)

a.wl 0 b.W2 = a. (WI 0 b.wz)Ub. (a'WI 0 wz)

L 1o£2= U WloW2.
WI eLl

w2 EL 2

a, b E A, Wi E Lj,
(10)

The operation is "well-defined" for languages that use disjoint subsets of A - that is, employ

different alphabets. When this is the case, it is straightforward to show that

Proposition 2: If the operation L = LID L 2 is well-defined, then

(11)

All our applications of this tool have the following format: the statement of the problem is
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reinterpreted-sometimes this is straightforward and occasionally involves intermediate
steps-as a specification of a language H from A·. The words of H are shown to be
constructible from simple components by concatenation and shuffling. The building-blocks will

be such that their pgf's are easy to compute directly, and Propositions 1 and 2 will provide the
pgf's of H, from which we shall <read off' the desired answers. We show here one such

construction that is used extensively below:

Define a k-hit as the occurrence of a letter k times (or more) in a word. We shall see later that
it is useful to be able to compute the probability that a random word of a specified size has k~

hits for exactly q distinct letters.

The basic construct is the following one: Let Hq, It: be a language with only such words in
which exactly q letters recur at least k times, and the other m-q letters appear at most k-l
times. Then introduce the following notation for um-Ietter languages:

ad = {E, a, a 2 , ••. ,ak - 1 } , a~ =ak·a· • (12)

where a2 is shorthand for the word aa. etc., and a· is the supremum of all ad. The crux of
the approach is that this notation provides the following expression for all the words of Hq, k:

(13)

(15)

(16)

where the union is over all two-set partitions of A, indexed by I and J: I = (i 1, , iq ),

] =lh..... im-q}, In] =0. IU] =Nm. This may seem merely a complicated way to
repeat the verbal specification of Hq, k> but since the exponential pgf's of the constituent
elements are straightforward to write, we shall obtain immediately that of Hq,k: Let ek(z)

denote the incomplete exponential function

k zi
ek(z) = k -., ' (14)

i=O t.

then. since a· contains exactly one word of each size j:::: 0, the desired exponential pgf's are:

j j
a~ PI Z zp·
U i (z) =k-',- =e '- ek-l(zPi),

j'" I·

The sets I and J involve disjoint alphabets; hence, summing over products of these exponential

pgf's, we obtain for the exponential pgf of Hq, k:

~q,k(Z) = k II (e'Po - ek-l (ZPi) II (ek-l (zPj).
I,JiEI jEJ

This ungainly sum allows for a more compact representation; we need for it the notation

Ixrlf ex), for the coefficient of xr in the power series development off ex):

~q.k(Z) = [uqrrr [ek_l(ZPi) + u(e'P, -ek-l(zp;J)]. (17)
;=1

If we are interested in probabilities of words of a specified size n, this is all that is needed. If
the interest is in the sum of these probabilities over words of any size-or in CCP formulation:
of any sequence of trials-it is more convenient to use the ordinary pgf, and with the Laplace-
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Borel Transform we find

10

$q, k(Z) = [u q] f
1>0

m
IT [ek-l (zip,) + u(e"P; - ek-l (ZIp,»)]e-'dt.
j=l

(18)

When all the probabilities are equal, at 11m. the expressions are naturally much neater. The

summation in equation (16) is over (~) identical tenns, yielding

~q.k(Z) = (~)(e,'m - ek-l (zlm»)q (ek-l (zlm)t-q • (19)

and similarly for the ordinary pgf.

The utility of the the machinery outlined above will be now demonstrated in providing answers

to problems (I) through (10).

(I) The probability ofdrawing coupon #i at least r, times in n trials, i= I,m

The samples satisfying this requirement make up a "language" in which each word contains

the letter aj at least 'j times. Denote this language by H(p, r). Then in analogy with equation

(13)

( >r >r >r)H(p.r)= al loaz 2. 0 ... oam'" . (20)

where the ar,· are defined in equation (12). The exponential egf of the collection of uni-Ietter

d >r,. p,' (P)·th () 0 hwar s aj IS e -e,_l jZ, Wl e-l' == ; ence,
m

~(p, r; z) = IT(eP,'- e,,1 (PiZ»),
i=l

and the desired probability is given by
m

pep, r; n) = n ![z"lIT(eP,'- e,,1 (PiZ»).
i=l

(21)

(22)

As is usually the case in these problems, there is no ready explicit fonn for this coefficient.

For moderate m and n, its numerical value may be obtained using the Cauchy integral fonnula

(we remark that ~(p, r; z) is an entire function).

(2) The probability ofdrawing coupon #i at least ri times in n trials, i E C c A

This problem is very similar to problem (1), with no requirements on the elements of A -C,
which is equivalent to setting there 'j =0 for aj E A -C. Alternatively, The language we need

can be written (with a suitable notation for the indexes of the elements of C)

H(p, r, C) = (aff,'" 0 ai2>"' 0 •.. 0 alrJ"') 0 (A - C)', (23)

where a(i)E C, 1:S;;i:S;;k=1 C I. The exponential pgf of (A -ct is e(l-Pcl
z
, where Pc = ~iEePi'

The desired probability is analogously produced by
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k
pep r C· n) = n '[z']e,(I- Pclrr(eP(,,' - e I~ . z))• • ,. r(i)-llJ"(l) .

i=l
(24)

Naturally this may be obtained from equation (22) when r (i) = 0 is inserted there, for 1~ i ~ k.

(3) The probability of scoring k-hits for r coupons in a sample of size n

A k-hit is defined above as the occurrence of a letter at least k times in a word. We also write
there the exponential pgf of the language Hr,k, which contains words with exactly r k-hits ­
these are equations (16) and (17). The construction is indeed similar to the one above, but
since the items are not specified, we need to sum over all possible rwout-of-m sets.

What is the probability of scoring at least r k-hits? The temptation to use the language

H(p,r,k)= u [(ai;"oai;"o ... oal;') o (A-I)'], (25)
/: l/I=r

should be resisted, since many words are repeated in this specification. The way to follow is to

use equation (17). Define Yn(p, k) as the number of k-hits in a word of size n. Then

.m
Prob[Y,(p, k) = j] = n ![z'u1Jrr(ek_l (PiZ) + u(eP

,'- ek-l (Pi Z)))
i=l

[z'ui ] f IT(ek-l (Pizt) + U (e P'" - ek-l (pizt)))e-'dt,
l~ i=1

(26)

where we have used in the last line the Laplace-Borel transfOITIl. The required answer is then
Lr:S:j:s:mProb[Yn(p, k) = n. There does not seem to be any essentially simpler way of
expressing this truly complex combinatorial quantity. Even in the EL case, while it looks
simpler, the computational effort is essentially the same.

(4) The expected number of different coupons drawn in a sample of size n

(27)
= n ![z'j aa b(u, z) I '

U u=1

This problem calls for the evaluation of E[Yn(p, 1)]. The answer is available from elementary
considerations (see e.g. [9]), but it should be instructive to use the present apparatus to
recapnrre it. Since equation (26) gives the probabilities, we have

E[Y,(p, I)] = Ljn![z'uijIT(1 +u(eP"-I)),
j=1 i=l

where b (u, Z)=II~1 (1 + u(e PiZ
- 1». The differentiation and evaluation are routine:

a m eP;z_1
-ab(u,z)=b(u'Z)L '

u i=ll+u(eP;z-l)
(28)

and at u=1
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a m ePiZ_1
au b(l, z) = b(l, z\~ eP"

Finally

m
=e'L(l-e-P,').

i=l

12

(29)

m 1 (1 - Pi)'" m
E[Yn(p, 1)] =nlL(-, - ,) = L[1- (l-pi)n],

i=l n. n. i=l

as we should expect. In Section 4 we consider some properties of this value.

(5) The expected time to draw a sub-collection of size j [15]

Consider the following set of equalities:

E[T/p)] = LProb(T/p) > n) = LProb(Yn(p, 1) < j).
n2:0 n~

(30)

(31)

(34)

The second equality results from the fact that the two compound events (Tj(p) > n} and
(Yn(p, 1) < j} consist of precisely the same sequences of trials, and hence have the same

probability. Now we prepare to use equation (26):
j-l j-l

L Prob(Yn(p,l) <j)= L LProb(Yn(p,l)=r)=L [L Prob(Yn(p,l)=r)). (32)
n~ n~ r=O r:=O n2:0

Anned now with the necessary ingredients, equations (26) and (18) give, specialized to k= 1

E[T/P)]=ji! LProb[Yn(p, l)=r] =ji! [u'] lfi(l+u(eP"-l))e-'dr. (33)
r=O n2:0 r=O t~ j=}

Since the integrand is an m-degree polynomial in u, the case j=m simplifies greatly: in this

case we need the sum of the coefficients of ur for all r except r=m, which is n~l (e
Pit

- 1).
The sum of all the coefficients is simply the value of the right-hand side at U= 1, and we find:

E[Tm(p)] = E[T(p)] = 1 [e' - fi(e P,' - l)]e-'dr,
t2:0 i=l

and since exp(-t)= exp(-:Epjt), we further simplify to

E[T(p)] = 1[1- fi(l - e-N)]dt.
t~O j=}

(35)

We have thus obtained a computationally convenient fonn for the expected duration of T (p).

Equation (35) has a particularly simple fonn in the particularly simple EL case of unifonn

probability vector:

E[T(elm)] = 1[1- (1- e-IImt]dt.
,>0

(36)

Interestingly enough, an integral nearly identical with the one in equation (36) (with the
transfonnation of the integration variable to x=e-t ) may be found in an unpublished report by
tbe authors of [8]. Observe, moreover, that the equality of the integral in (35) to the right-hand
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side of equation (1) is straightforward.

The computational advantage of this integral over the sums we encountered in Section 2 is
enormous: instead of dealing with 2m oscillating terms, we integrate a bounded, smooth,
everywhere-positive function. It is true that the range of integration may be tremendous as well

(we shall discuss this below), but the function is smooth enough for an integration routine with
locally adaptive step-size to compute it with several hundreds of function evaluations, under

very stringent accuracy requirements.

There is interest also in finding the time to 'almost complete' the sampling, that is, for values
of j that are very close to m, and the same approach that led to equation (35) applies, with a

somewhat heavier price. Thus, for example, we find

(37)

Note that with some care the computations of these quantities can be still kept to be essentially

linear in m.

Remark: We found it instructive to consider the two quantities, computed in problems (4) and
(5), side by side. Both may be viewed as functions in the (sampling. duration, number of
captures) plane, but with the relation of independent/dependent variables reversed. Consider

these coordinates as providing the abscissa and ordinate, respectively, as shown in the generic

Fig.!.

The engineering (and statistical) significance of the two functions are also very different: The
"detection curve", given by equation (30), shows the expected number of detected items as a
function of the sampling duration; we find it more suggestive to think of the fraction of the

Detected
Fraction

1 . --- ---. -- ------------ ------ - --- ------ --------

E [T(P)] Sample size

Fig. 1: Detection-temporal relationships
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items that have been captur~ rather than their number. Then the "sample duration curve",
computed via equation (33), gives the expected duration required to complete a specified
fraction. Equations (35) and (37) above give expressions for two points on this curve;
computing each is linear in m, but obtaining the entire curve still appears infeasible when the
number of distinct probabilities is large. Note that the :first curve extends to infinity (along the
abscissa), while the second one tenninates in the point (E [T (P )], 1). Another way to
distinguish the two curves is to consider how they compare with individual experiments. Thus
points of the :first curve represent average of samples scattered along the ordinate, while the
second one features averages of horizontal scatter. We conjecture the duration curve to lie
always (that is, for any p) entirely above the detection curve.

(6) The expected time to draw a size j sub-collection k times [7]

For j=m. k=2, in the EL case, this problem has been known as the "double Dixie cup
problem" (after the product that carried the collected coupons). Holst provides an answer for
the EL case in [23], and comments on earlier derivations of that result, extending to 1960, all
considering complete collections (i.e. j =m), and-except [7]-the EL case. Other references
of interest (all essentially concerned with limiting properties of E[T(elm)] and variations
thereof) are [16], [26] and [27].

The required expected value is obtained exactly as for Problem (5):

E [Tj·) (p)] = L Prob(TjkJcp) > n) = L Prob(Yn(p, k) < j).
1l~ n~

Tbe same approach lbat produced equations (33) and (35) will now provide

j-I j-I / m
E[Tjk)(p)] = L L Prob[Yn(p, k) =r] = L [u'] nO + u (eP,'- e._l (p,t)))e-'dt,

r=O n~O r=O r~ i:::1

and

E[T(·)(p)] = /[1- ficl- e-P"ek-l(P,t))]dt.
l~ ;=1

(38)

(39)

(40)

Computing this expected time is of roughly lbe same difficulty as lbat of E[T(p)], and
increases sub-linearly with k. Equation (40) is precisely the result already obtained in [7].
Brayton also considers asymptotic results (as m-7oo); his results there depend on a particular
model he chose to generate p, so we shall not go into them in any detail, except to mention
lbat in lbe EL case he obtains E[T(·)(elm)] = m[logm + (k-l)loglogm + C.].

(7) Expected time to draw a specified sub-collection of size j

While the formulation appears rather different than problem (5), and may be seen as a
significant generalization, it can be handled almost identically. Let the required subset be

C E A. As above,
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j-l
E[TcCp)] = LProb[TcCp) > n] = LProb[W.(C,p) < j] = L (LProb[W.(C,p) =k]J,(41)

n~ n~ k=O n~

where Wn(C,p) is the number of coupons from C observed in a sequence of n drawings. Still
as before, except that different words contribute and therefore we construct a different
language: Rk(C) is a language containing only words in which exactly k items of C appear.

Using equations (12) and (13) it can be written as

Hk(C) = U (a~l 0 a~' 0 •.. 0 a~' ) 0 (A - C)", (42)
IcC

where the union is over all I = {ail' ... , ail} C C, so that Rk(C) has the exponential pgf

II> () "<' IT ('P, I) '(I-Pel
~~C Z =... e - e , (43)

];III=kiel

where Pc = LieC Pi . Let us write C={a(l).... ,aU)}· The same manipulations that led us to

equation (35) provide

hcCZ) = [uk] fi[1 + u(e'P''> _1)]e,(I-Pel,
;=1

and for the expectation we find

E[Tc(p)] = ji$~c(l) = ji / [Uk] nJI + u(e'P, _1)]e,(I-Pele-'dt,
k=O k=O t~ ;=1

= /[1- IT(I-e-P''>')]dt,
l~ ie C

in complete analogy with equation (35).

(8) The distribution of r-hits during T (p)

(44)

(45)

Denote by Mr(p) the number of coupons observed at least r times once T(p) is over. Words
that contribute to Prob(M,(P) = k) temtinate with a letter appearing for the first time and
completing the collection. Specifying this letter as al, the corresponding prefixes form the

language Lr. k(l) that has the structure

L (I) U ( ".". ".) (+<' +<' +<' )r k = ail aai,. 0 ... o ail 0 ajl oah 0 .•. Oaj -H' (46)
. IcA-{l} '"

where I = (a· ... a·) a· eA -I - {I} for 1~c5m-k-l and a+<r is a language
I]' • Il' Jc '

consisting of words of sizes between 1 and r-1. Lr,k(l) has then the exponential pgf

1\,. k(l; z) = L IT (e'P' - e,_1 (ZPi)) IT (e,-I (zPj) - I).
I iel jeA-I-{I}

m (47)
= [ukJIT [e,_I(zPi) -I + u(e'P; -e,_I(zPi))]'

i=1
i~l

and the ordinary pgf
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(48)

The complete words that contribute to Prob(Mr(p) = k) are formed by concatenating the above
prefixes with al. The letter has the ordinary pgf P1Z. and hence, by Proposition 1 and the
observation that the probabilistic weight of each word is actually equal to the probability of

obtaining the corresponding sample,

(49)

For example, the probability that the maximal frequency obtained by any coupon does not

exceed r-l, is given by the readily computable expression

m f m
Prob(M,(p) ~ 0) ~ kP, e-' II (e'_1 ('Pi) - I)dt.

1=1 t;;1) i=1
"~l

Also, the expected number of such multiplicities is given by

E[M,(p)] ~ mi'Lkp,[Ukj f IT [e,-I('Pi) - I + u(e'P, - e,_I('Pi))]e-'dt.
k=ll=1 f~ i=1

i~l

(50)

(51)

This integral can be simplified to some extent. Since Ek[uk]f(u) ~f'(I), we get

E [M,(p)] ~ f LP,e-tp, L [I - e-'P1e'_1 ('Pjl] II (I - e-tp')dt. (52)
r~ i=1 j=1 i#, I

j#

Changing the order of summation and integrating by pans:

m (pt)r-l m
E[M,(p)]~m- f kP,e-tp, ('_ )1 II (I-e-tp')dt. (53)

1;;:01=1 r 1. i=1
i~l

The language defined in equation (46) can be used to evaluate directly the expectation of T(P),

rather than the circuitous way that led us to equation (35). It results however in a

computationally less-efficient expression for the expectation.

(9) On the distribution of T (p).

Actually we have obtained already expressions for the distribution of T(P): from the discussion
leading to E[T(p)] - see equation (31), we find for the tail probabilities of T(p), specializing

eq"ation (26) to k~ I, that
m-l m

Prob[T(p»n]~Prob[Y"(p,I)<ml ~ kn![z"u'lII(I+u(eP"-I)). (54)
r=O i=1

The same treatment that led to equation (35) also provides
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(
m pz m

Prob[T(p) >n] = n ![z"l e' - II(e ; - I») = I - n '[z"lII(eP;' - I). (55)
i=l i=l

which is as simple as we could ask for. The last equality is also a specialization of equation

(22).

Consider now another property of the distribution - the variance V[T(p)]. We use the relation
E [T2(p)] =E">o(2n+ I)Prob[T(p» n] =212 + E[T(p)]. To compute /2 we have the choice
of using the exponential pgf or the ordinary one. The first produces

m
/2 = LnProb[T(p) >n] = Ln(l- n![z"lII(eP"-I»).

n2:1 n~l j=l

The second one yields

(56)

f m [ m ( pi
/2= LnProb[T(p»n]= LPjt I-II I-e-;)]dt.

n?:l 12:0 j=l i=l
i;t.j (57)

m
IT(t) '" II(I - e-P;I).

j=l

Then V[T(p)] =212 +E[T(p)](I-E[T(p)]). Both expressions for /2 are cumbersome to
compute; the first one is of the same type as equation (35): it could be decomposed to
something like equation (1), involving 0 (2m) terms, most of which would be vanishingly
small and hard to estimate. The second would be - numerically - less troublesome. It is very
similar to the integral required for E[T(p)], but in order to keep the computation time linear in
m, we have to separate the evaluation of the product, as shown there.

(10) On the distribution of N I (n).

Here we are interested in the number of letters that occur exactly once in a word of size n. The
words that contribute to Prob(N1(n)=r) are similar to those we constructed in problem (3):

and hence

H(p,r)= U [(ai,oai,o ... o a') o (A-I)'I].
I: III=r

~,(Z) = L IIZPiII(e'P, - ZPj),
I iEI jT

m 'PProb[N 1(p, n) = r] = n ![z"u']II(e ; + (u - I)zp;).
j=l

(58)

(59)

(60)

In this case as well, numerical evaluations are not simple, and unless the components of p have
an analytically tractable form one is unlikely to obtain even useful asymptotic estimates. The
expectation is sttaightfonvard to obtain either from equation (60) or from elementary

considerations, and equals
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m
E[N1(p, n)] = nLpi(I - p,)n-l

i=1

18

(61)

Sobel et al. in [30] bring up a few more questions that are of interest in this context, all of
which can be answered with the tools used above - one just has to create the appropriate

'languages'. Here is an example that gives the flavor:

Given two sets, C and D, what is the probability of hitting r of the first before capturing k

of the second?

Improvements of the algorithm PREDUCE described in Section 1 lead to CCPs with the
multiple completion-sets criterion: Let (Ad, 1~i~r be r subsets of A. What can be said about
the number of trials required for the elements of at least one of them to be all obtained? One
can easily write expressions as above, but direct evaluation is typically not easy.

We now twn to the minimization conjecture mentioned above:

Proof of the Conjecture

The conjecture that E[T(p)] is minimal when the probability vector p is uniform is of
practical interest because it would then provide an easily computable lower bound when the
actual probabilities are unknown (as is the case in many applications). We mentioned the
difficulties encountered in showing it from equation (1), but starting with equation (35) it is as
simple as one can ask for. Denote the integrand in that equation by f (t, p). We observe that
f (t, p) is everywhere positive, and shaH show that it is minimized-uniformly in t-for the
EL probability vector elm. The desired result follows. The minimization problem

=
rrlinf (t,p) = min[I - n(I - e-P,')]
p~ p<:.O i=1

is clearly equivalent to the problem
m

max[I- f(t,p)] = max n(I- e-N )
p~ p~ i=1

=
Subject to LPi = 1,

i=1

=
Subject to LPi = 1.

i=1

(62)

(63)

The last relation shows that at the optimum p > O. Then f (t,p) is strictly positive, and since the
logarithm function is strictly monotone increasing over the positive reals, we can replace the

above with the equivalent problem

= t
max 10g[I - f (t,p)] = max Llog(I - e -P, )
p>o p>o i=l

=
Subject to LPi = 1.

i=l
(64)

The last problem is clearly equivalent to searching for the usual saddle-point of the Lagrangian

m t m m
Up, A., v) " Llog(I - e-P' ) + A.(LPi - 1) + L viPi·

i=l i=l i=l

(65)

Now it is immediate to see that for any t > 0 the Lagrangian L (P, A., v) has a stationary point at
the uniform p (with the values for A. and v there uniquely defined). Moreover: in the p-space it
is every-where concave (its Hessian is diagonal, with negative elements only), hence that point
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is a global maximum for equation (63), and a global minimum for E [T (p )].

4. COMPUTATIONAL ASPECTS AND NUMERICAL EXAMPLES

19

A major consideration in the treatment presented above-indeed, the reason it was done in the
first place-is its suitability for numerical work. We describe some computations, and remark
on the significance of the numerical results.

For engineering problems that can be modelled by the CCP one needs estimates in particular
for the following quantities:

(a) The expectation of T(p).

(b) Dispersion measures of T (p), where tail probabilities are possibly the most useful.

(c) The tradeoffs between length of sampling and the probabilities of detecting given
fractions of the items.

(d) A rather different issue arises in applications: the vector p is frequently unknown. We
shall consider some results that are relevant in this case.

(a) The expectation ofT(p)

The convenience of the right-hand side of equation (35) for numerical computation was already
noted in [15] and was the starting point of our interest in the issue. Fig. 2 shows the integrand
f (t) there for the EL case with m= 100, and the shape is typical.

I -, .....:...1- Region of descent -I

0.8

f (t) ~:~
0.2
O+------.----,-::::::::=--r----,------.-

o 0.2 0.4 0.6
( in units of Iu

0.8 I

(66)

Fig. 2: The integrand of equation (35)

It starts from 1 at t=O and decreases very slowly (its first m-1 derivatives vanish at t=O), has
a relatively restricted region of faster descent towards 0, where it has an inflection point (for
m> 1), and vanishes exponentially. The dominant tenn in the tail is exp(-pmint), wherepmin is
the smallest element in p. This term was used to determine the cut-off point for the integration,
tu' Requiring an absolute error on the order of E, tu was determined by the relation

f -pod I -'0"e """- I = --e "1""""- = E,
Pmin

or (u=-log(PminE)IPmin. If there are r items associated with the minimal probability Pmin the
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cut-off point needs to be pushed to tu := -log(PminE/r)IPmin. In our work we routinely also
integrated also along the interval (tu,1.5t/.l)' to estimate the actual error. We used for E the
value 10-7, which is far too stringent than is necessary in actual applications, but was selected
in order to drive the integration procedures hard. The integration was done with the routine
quancB from [17], which uses 8-point Newton-Cotes integration with locally-adaptive step size.
Sample results are shown in tables 1 and 2.

m 10 100 1000 10,000 100,000

E[T(p)] 56.24 1856.52 41,288.83 739,709.57 11,670,512.01

mHmlogm 63.6 2388 51,707 901,472 13,919,295

'. 571 17,406 281,140 4,053,471 54,629,467
# Evalu. 177 161 177 193 145

Table 1: E [T (p)] for the Zipf distribution.

The probability vector used in table 1 is the Zipf distribution, with Pi := 11iHm . The second line
corresponds to the estimate mHmlogm, suggested in [15] as an asymptotic estimate of
E [T (p )]. This estimate clearly tracks the correct values, but produces a substantial
overestimate that seems to be little influenced by the increase of m, at least up to 105. The
computational effort is roughly linear in m (and is essentially independent of the particular
probability vector, when all the probabilities are distinct). The last line reports the number of
function evaluations used in the integration, and it is practically constant in m, with the
oscillations depending on the location of the region of descent of the integrand (which is fairly
small compared with tu ) with respect to the evaluation points selected by the integration
routine.

Table 2 presents results for a different distribution that arises in applications: the so-called
Linear distribution. There Pi = 2i1m(m+l). For comparison, the second line brings the
corresponding expected values in the EL case.

m 10 100 1000 10,000 100,000

E[T(p)] 68.985 6338.74 628,226.33 62,766,148.84 6,276,050,044.96
E[T(elm)] 29.929 518.74 7485.47 97,876.06 120,901.46

'. 1107 124,458 14,635,349 1.692x109 1.923xlO"
# Evalu. 177 225 225 209 209

Table 2: E[T(p)] for the Linear distribution.

In a sense this distribution is an inversion of the picture presented by the Zipf distribution:
there as here we have many probabilities of very close values, but for the Zipf distribution it is
the small probabilities that are close, whereas for the linear one it is the higher values that are
nearly uniform. The change this causes in E[T(p)] is dramatic: it is now quadratic in m, and
can be shown to have the asymptotic value m (m+ 1)(2,qV3 - 3) " 0.6275987m (m+ 1). This
result was stated first-without proof-in [11]. The proof consists in showing that for this
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(67)

particular probability distribution, the integral in equation (35) can be written in the limit

m~ 00 as ~lLk~lbkXkdx, where bk is a well-known number-theoretic function, specifying the
difference between the number of partitions of k with even number of distinct parts, and the
number of such odd-sized partitions. In [19, p.14] it is shown that bk is (_1)71 when k equals
n(3n+1)/2 for some integer n, and vanishes otherwise. The rest is routine integration. The
asymptotic estimate agrees with the exact value to six decimal places already for m= 100.

The influence of the last few hard-to~get items on the expected sampling time is considerable:
To demonstrate the effect of those rare items, we used equation (45) to compute the expected
time to draw-for m= IOOo-all but the IO items with smallest probabilities, and obtained

E [Tc~"l = 106,387.30, about one sixth of the corresponding E[T(p)].

(b) Dispersion measures and tail probabilities

The variance of T (p) is somewhat more expensive to calculate-using equation (57)-than the
expected value, hence we only computed it for m= 1000 for the above distributions, and
evaluated its variance ratio. We found the values 0.20521 and 0.72201 for the Zipf and the
Linear distributions, respectively. (For the EL case it equals -V163745017485. = 0.17134.) It is
rarely the case that tail probabilities are easier to compute than moments, and the situation
here, despite the innocent appearance of equation (55), is no exception. A direct approach is to

use the Cauchy integral formula, and write

I r m
Prob[T(p) >n] = 1 _..!!.-=:- fP z-n-1II(eN - I)dz.

2m C i=l

, 2•
= 1 - E...:.... jz-nrr(eP,Z

- 1)d8,
21t 0 i=l

The integration, however, except for small (and relatively uninteresting) values of m and n is
numerically unstable, because the integrand oscillates, assuming very large positive and
negative values along the path. The larger values occur however only at values of z with small
argument, hence the integral is a good candidate for estimation by the saddle-point method:
writing the integrand in the first line of equation (67) as exp(hn(z)), we have

n(eP;R. - I)
'=1 (68)

Prob[T(p) >n] = 1 - n! 1-' ,
R~+ v2rr;hn;"(Rn )

where Rn is the root of the equation hn;'(z) = O. We experimented with this expression - and
there were no surprises: the computations are straightforward, and reasonably accurate, but for
m ex.ceeding a few scores, and n larger than m by a single order of magnitude, one must
arrange the computations in equation (68) very carefully, to avoid a numerical disaster. An
example is the EL case, where it is very easy to show that !J. E n+ 1 - Rn: > 0 tends to zero
rather fast (it is smaller than 1 already for n ::::: mlogm, that is - for all values at which one

would consider looking for tail probabilities). We find there
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(69)
n!R~-n

Prob[T(p) >n] = 1 - -l!.-::mC"1~""2,,-(-n-+":1):"(l---l!.-lm-) .

Solving for Rn is easy, but getting reasonable accuracy for tail probabilities below 0.01 called

for multiprecision arithmetic.

The distribution of the number of unsampled coupons after n drawings approaches
asymptotically, for large m and n, the Poisson distribution with parameter :Lr;l exp(-nPi)· Holst
et at. have shown in [24] that when all the probabilities satisfy c 11m S Pi S C2/m, the rate of
convergence to this distribution is bound from above by C·max(m-e

1
/c

2, m-I/Zlogm, for some

constant C.

(c) Sampling Tradeoffs

Consider equation (30). We can get closed-form results from it mainly in the EL case, for the
following derivation. When n = E [T(elm)] = mHm we find, for large m

1 mil -H
E[Yn(elm,l)]=m[l-(l--) m]=m(l-e m)

m
(70)

The approximation of Hm by logm + y (Euler's constant) will suffice here; the error is
(12mr' + 0 (m -2), and y= 0.57722... We find that the expected number of items detected by
the time the CC would expect to finish is extremely close to m, at m-e-'Y::::: m-0.56146.., with
the shortfall essentially independent of m. The standard deviation of T(elm) is by equation
(2) approximately equal to m"r!6 " 1.28255m. It is a suitable uuit of comparison with
E[T(elm)]. and so we compute the expected number of items found in
E [T (e 1m)] + kxnmr!6 trials. We present the expected shortfalls below. When the expected
number of detected items is m-a, then a is the shortfall, given in Table 3:

k a

-4 94.9148
-3 26.3227
-2 7.30004
-1 2.02451
0 0.56146
1 0.15571
2 0.04318

3 0.01198
4 0.00332

Table 3: Expected shortfalls for sampling in the EL case

To appreciate the values in this table, note first that these shortfalls are virtually independent of
m. Secondly, the length of E [T(e 1m)] measured in standard deviations is quite small: it comes
to 3.6 for m= 100, 5.386 for m= 1000 (where all of the approximations used above are quite
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tight), and 7.1813 and 8.9766 for m at 10" and 105 , respectively. For the last case, e.g., the
table provides that in the first five standard deviations (approximately 55% of the expected
total sampling time), the expected number of detected items is 99905.1. On the other hand, to
be fairly confident that all the items are obtained the collector must endure a very long
sampling sequence.

For other reference distributions we do not have such closed expressions, but experimentation
revealed very similar patterns, usually-and surprisingly-with smaller shortfalls.

Cd) Unknown probability vector p.

In many applications that are modelled by the CCP. the vector p is not known to the collector.
This raises several questions of interest.

What does the item-drawing process tell us about p? Of course, one could simply count the
number of times each item comes up in the sampling process, and use it to estimate the
probabilities. Good estimates, especially for the smaller probabilities, require an inordinately
long sampling time, typically much longer than E[TCp)] Csee [21]). We could settle for less,
and just inquire about the general shape of the vector: is it close to elm? Or to the Zipf

distribution? Or to any other attracting distribution? The process N 1(n) that was considered in
problem (10) appears interesting in this context. It requires very little overhead in terms of
book-keeping, compared with maintaining counters for all items, and is informative. To show

this we computed its expected value for several types of p, for a few values of m and plotted
the results, in Fig. 3.

For all the distributions, the curve for m =10 peaks higher and sooner than the others. The high
dispersion of the curves for the Zipf distribution is curious, as the others do not exhibit such a
phenomenon. At least between these families one might distinguish as the sampling process

continues.

Another situation of interest arises when some of the components of p might be zero! A good
example of such situation is the redundancy problem introduced as application (1) in Section 1.

Out of the m constraints,let q be hard ones. The other r = m-q will never show up, regardless

of how long the optimizer samples. Since the value of r is not known a priori, it is reasonable
to ask about a stopping rule which does not depend on the number of sampled items, and in
particular - not on its closeness to m. In [28] Robbins makes the following remarkable

suggestion, aUributed there to an observation by A.M. Turing: Let Xj(n) be a random variable
corresponding to item #i, that assumes the value zero if that item has been sampled by the n-th
trial, and I otherwise. The quantity of interest for the optimizer, that measures "what remains

to be done''. is U(p,n) = I:.PiXi(n) - a random variable that is unobservable. by definition. (Its

reciprocal is sometimes called the resistance of the process.)

However, let us compute its expected value: Prob(Xi(n) = 1) is simply (I-Pit, hence
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Fig. 3: The fraction of items observed exactly once .vs sample size

m
E[U(p,n)] = LPi(l- Pi)"'

j=l
(71)

Comparing this with equation (61) we find

I
E[U(p,n)] = --E [N 1(p,n+ I)).

n+1
(72)

Now, N 1(p,n+l) is certainly observable, from which the optimizer has an unbiased estimate
of U(p,n.). The curves in Fig. 3 should be viewed again in the light of this characterization.
We can do even better, by considering the variance of U(p.n):

m
E[U2 (p,n)] =E[(DiXi(n))(~pjXj(n))] =LPf(l- Pi)" + LPiPj(l- Pi - Pj)"' (73)

i j i=l i#

It is also easy to find observables that estimate these expressions. Let N2(p.n) be the number
of items drawn exactly twice in the first n trials, and N(2)(p,n) be the number of distinct pairs

observed once (in any order) in that sequence (it clearly simply equals (~I ). Then immediately
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m
E[N2(p,n)] ~ G)LPT(l- Pir2

i::ol

25

(74)

E [N (2)(p,n)] ~ (~)LPiPj(1 - Pi - pjr2

r~j

Hence an unbiased estimate of V[U(p,n)] is given by cn~2r2 (Nz(p,n+2) +N(z)(p,n+2))

- (n+I)-2Nr(p,n+I).

Of even more interest is the evaluation and estimate of the variance of of the difference
U(p,n) - N 1(p,n+ l)/(n+ 1). This is available from results above, except the expected value

of their product, which is easy to obtain (and to estimate via equation (74» as well:

m
E[U(p,n)N 1(p,n+ I)] ~ LPT(l- Pi)" + L(l- Pi - Pjr1(n+ I)p/I - pjl- PiPj). (75)

i::ol i~j

Surprisingly, it is even possible to estimate the number of new items the sampler may expect to
find in the next n' trials, once it has done n of those and dutifully recorded all of Nk • Good and

Toulmin show in [18] that the suitable estimator is given by

n'B,,-.
n

(76)

This is typically useful at a stage of the sampling process when the first few Nk have not yet
decreased too much towards their ultimate value - zero. This result is used in [12] to estimate
the number of words of English Shakespeare knew, on the basis of his available output...

5. CONCLUSION

We have shown that for the CCP one may barter time for precision in obtaining numerical
results. In some cases this was relatively easy, but some of the expressions we derived are very
ill-conditioned; they may of course be handled by any computational method that uses user­
defined precision, but then we are likely to run into substantial computation times again. Most
of the expressions share however the fortunate characteristic, that it is precisely those large
values that obstruct direct numerical evaluation, that would make them susceptible for
asymptotic analysis. The way equation (68) was obtained is one example, and we expect to

extend this approach to several more of the results that were derived above.

There is a different, intriguing point of view of the sampling process, that is suggested by
equation (35). Consider m independent Poisson counting processes, with parameters {Pi}'
Since the probabilities sum to one, the expected number of counts per time unit is one as well;
let us then establish an equivalence between the 'time' of those processes and the 'time' of the
coupon sampling process - which is simply the number of sampled coupons. The probability

that each of the Poisson processes produces at least one count by time t is II;;1 (1 - e-Pi').
Hence the expected time until they all count (at least once) is given by equation (35).
Similarly, equation (37) is the expected time to get m-l distinct counts. The asymptotic
distribution for the number of unsampled coupons, shown at the end of section 4(b), is
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obtained by this coupling as well.

Holst shows in [23] a deeper relationship between these two schemes, and obtains a result
which is related to Problem (1) above. We shall use his notation. Let {Zd denote the time
intervals between successive counts, and In - the type of the nth arrival. We consider the
stopping time Tk;m, which is when exactly k of the processes have reached---or exceeded­
their quota (the process of type i has a quota of Tj). Also, we let Ti denote the time until
process i fills its quota, and clearly T j has the Erlang distribution with parameters (Tj,Pi)· Now
he observes that Tk;m is simply the kth order statistic of {TdF;l· If Tk;m falls at the Wk;m th

arrival, we have that
W~;m

Tk;m = 1; Zj, (77)
j=l

where Wk;m and the Zj are all independent. Now Holst finds for the egf of both sides

wJ:;oo

E[exp(xTk;m)j = Ew[Ez[exp(x 1; Z) IWk;m]], (78)
j=l

and since the interarrival periods are iid - exp(l), this gives

-w. 9)E[exp(xTk;m)] =E[(I-x) ~], (7

from which there is an immediate relationship between the moments of Tk;m, which are
straightforward to compute (in principle, that is) and the (ascending) factorial moments of

Wk;m'

There is a different way to relate the two processes, which uses the Poisson transform [20]. Let
A (t) be a functional over the Poisson processes up to time t, such as a moment of some
counter or a probability related to some stopping time, and let An be the corresponding
functional with respect to the first n samples, of the discrete process. The value of A (t) can be

computed by conditioning on the number of 'arrivals' during t, since given that there occurred
n arrivals, they are distributed among the coupon types according to the same underlying

multinomial distribution. Hence
n

A (i) = 1; Prob(n arrivals during i)An = 1;e-'-'-;-An .
n~ n~ n.

(80)

Hence A (t)e I is the egf of {An}' if we can compute the first - the second is immediately

available:

An = n ![injA (i)e'. (81)

We have thus another stochastic process, in continuous time, of independent processes (unlike
the coupon sampling processes, where the discreteness of the time measure introduces
dependence), which provides a handle on the original, less tractable one. We hope to show in
a forthcoming work how this may lead to further reductions in the computational effort
required for some of the problems above, as well as for more complex quantities that we have
not tackled so far. It is obvious however, that in terms of computational complexity this is not
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a panacea; for example, it is as complicated to evaluate the moments of any order statistic of
the (Til, when the rates (probabilities) are distinct, as it is to evaluate the right-hand side of
equation (33). Hence it will not reduce the time required to compute the 'sample duration

curve' discussed in the Remark following equation (37).
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