
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1989 

Efficient Geometric Algorithms in the EREW-PRAM Efficient Geometric Algorithms in the EREW-PRAM 

Danny Z. Chen 

Report Number: 
89-928 

Chen, Danny Z., "Efficient Geometric Algorithms in the EREW-PRAM" (1989). Department of Computer 
Science Technical Reports. Paper 789. 
https://docs.lib.purdue.edu/cstech/789 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951678?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


EFFICIENT GEOMETRIC ALGORITHMS
IN THE EREW·PRAM

Danny Z. Chen

CSD-TR-928
December 1988

(Revised October 1990)



Efficient Geometric Algorithms in the EREW-PRAM
(Preliminary Version)

Danny Z. Chen*

Department of Computer Science
Purdue University

West Lafayette, IN 47907.

Abstract

We present a technique that can be used to obtain efficient parallel algorithms in
the EREW-PRAM computational model. This technique enables us to optimally solve
a number of geometric problems in O(logn) time using O(n/logn) EREW-PRAM
processors, where n is the input size. These problerns include: computing the convex hull
oCa sorted point set in the plane, computing the convex hull oCa simple polygon, finding
the kernel of a simple polygon, triangulating a sorted point set in the plane, triangulating
monotone polygons and star-shaped polygons, computing the all dominating neighbors,
etc. PRAM algorithms for these problems were previously known to be optimal (i.e.,
O(log n) time and O(n{logn) processors) only in the CREW-PRAM, which is a stronger
model than the EREW-PRAM.

1 Introduction

·This research was partially supported by the Office of Naval Research under Grants NOOOl4-84-K-0502
and N00014.86-K-0689, the National Science Foundation under Grant DCR-8451393, and the National
Library of Medicine under Grant ROI-LM05118.

1



The computational model we use is the EREW-PRAM (Exclusive Read Exclusive Write

Parallel Random Access Machine); it is a synchronous parallel computational model in

which all processors share a common memory and each processor can access any memory

location in constant time. The EREW-PRAM does not allow more than one processor to

simultaneously access the same memory address. We also refer to another version of the

PRAM model, called the CREW (Concurrent Read Exclusive Write) PRAM. The CREW

PRAM allows simultaneous accesses to the same memory location by multiple processors

if all such concurrent accesses are for reading data only. The CREW-PRAM is obviously

a more powerful model than the EREW-PRAM, and the simulation of a CREW-PRAM

algorithm on an EREW-PRAM, using the same number of processors, can cost an increase

in the time complexity by a logarithmic factor.

We use the technique to optimally solve the following problems: computing the convex

hull of n sorted points in the plane (and hence the dual problem of finding the common

intersection of n half-planes given sorted by their slopes), computing the convex hull of an

n-vertex simple polygon, finding the kernel of an n-vertex simple polygon, triangulating

n sorted points in the plane, triangulating an n-vertex monotone polygon or star-shaped

polygon, and computing the all dominating neighbors of n values. Our EREW-PRAM

algorithms for these problems all take O(logn) time using O(nJ log n) processors.

The problems of computing the convex hulls of point sets and polygons, computing the

kernel of a simple polygon, and triangulating point sets and polygons, are offundamental

importance in computational geometry and have applications in many areas. A great deal of

work, both in the sequential and parallel computational models, has been done on finding

efficient solutions for these problems (see [22, 27] for the sequential algorithms for these

problems). For the problem of computing the convex hull of n arbitrary points in the plane,

optimal solutions (i.e., O(Iogn) time and O(n) processors) have been given in the CREW

PRAM [1, 4, 5] and in the EREW-PRAM [2G]. Optimal CREW·PRAM algorithms were

also known for the problem of triangulating n arbitrary points in the plane [25, 32] and for

the problem of triangulating polygons [13, 33].

The problems we consider in this paper all have an obvious lower bound of linear work,

and sequential linear time algorithms for them have already been known. Some of the

solutions can be found in [G, 11, 14, 15, 1G, 18, 21, 23, 30, 31]. (Our algorithms are optimal in

the EREW-PRAM since they all run in O(logn) time and their time X processors products

match the lower bound of these problems.)

2



Efficient CREW-PRAM algorithms solving the problems that we consider in this paper

have also been discovered. The convex hull problem for a sorted point set can be solved in

O(log n) time using O(nj log n) CREW-PRAM processors [6, 12,29], and such an algorithm

implies (by duality) the same complexity bounds for computing the common intersection

of n half-planes whose slopes are given sorted [12]. Note that in the case where the points

are already given sorted, the EREW-PRAM algorithm of [26] still requires O(n) processors,

which is sub-optimal. Our algorithm for the convex hull of a sorted point set can be viewed as

another optimal algorithm (i.e., O(logn) time and O(n) processors) in the EREW-PRAM

for the case of unsorted input, because we can first obtain a sorted point set with O(n)

processors [8] and then use O(nj logn) processors for the remaining computation. For the

case where the input points are given as a list of vertices on a simple polygon, the convex

hull problem can be solved optimally in O(logn) time using O(nflogn) CREW-PRAM

processors [29].

The problem of computing the kernel of a simple polygon has been solved optimally in

the CREW-PRAM by Cole and Goodrich [9]. Their algorithm is based on the interesting

observations which characterize the "curvature" of the polygon boundary.

For sorted point sets and monotone polygons, the triangulation problems can be solved

optimally in the CREW-PRAM [6, 13, 18, 30]. In fact, Goodrich [13] showed that if the

trapezoidal decomposition of a polygon (possibly with holes) has been provided, then a

triangulation for that polygon can be done in O(log n) time using O(nflog n) CREW·PRAM

processors. A CREW-PRAM algorithm in O(logn) time with O(n/logn) processors for

triangulating a star-shaped polygon is recently given in [24].

The problem of computing the all dominating neighbors of n values js defined as follows:

Given values WI, W2, ••. , W n , find for each index i the largest (resp., smallest) index

j < i (resp., k > i) such that Wi ;::: Wi (resp., Wk ;::: Wi). This problem was considered

by [6, 18] to be fundamentally important for solving several other problems (not only in

computational geometry) in the PRAM. Especially, this problem was used as the basic

subproblem for triangulating point sets in the plane and monotone polygons [6, 18, 25,

30]. Optimal algorithms for tills problem (in O(logn) time and O(nflogn) CREW-PRAM

processors) have been given in [6, 18,30].

Most of the constituent parts of our algorithms, namely, the geometric observations, the

divide and conquer strategies, the binary tree data structure, and the parallel tree operations

(except for the parallel split), have been used before (for example, see [3, 5, 9, 12, 13, 28]).

3



Our contribution is in putting these already available "parts" together in such a way that

will enable us to avoid read conflicts that occurred in the previous known CREW-PRAM

algorithms.

The rest of this paper is organized as follows. Section 2 gives the notation we use in the

paper and outlines the general structure of the algorithms. Section 3 discusses the binary

tree data structure and the parallel tree operations. Sections 4 to 6 show how to solve the

problems we mentioned above.

2 Notation and Basic Algorithm Structure

Let 8 be a set of n points PI, P2, .. ", Pn. 8 is sorted either by x-coordinate, or by polar

angle with respect to a specified polar point q E 8. Let P be a simple polygon defined

by the list of vertices VI, V2, ••• , V n , in the order of a clockwise travel along the polygon

boundary.

WLOG (without loss of generality), we assume that in 8 (resp., P), no two points (resp.,

vertices) have the same x- or y-coordinate and no three points (resp., vertices) are collinear.

The general situations can be taken care of by slightly modifying our algorithms.

We say two point sets 8 ' and 8" are separable if there exists a vertical line such that 8 1

and 8 1f are on the opposite sides of the line. Furthermore, for k ~ 2, we say k point sets

are separable if there exist k - 1 vertical lines such that for any two point sets, at least one

of the k - 1 vertical lines separates them.

The main procedure of our algorithms has a basic structure, which is the same as the

one used in [3]. We outline it as follows.

Input: A set X of size m, which is either a sorted point set or the vertex set of a simple

polygonal chain, and a positive integer d.

Output: The desired output T(X) represented by a tree data structure.

Case 1. If m::; d, then compute T(X) with one processor in O(m) time, using a sequential

linear-time algorithm.

Case 2. If d < m ::; c£l, then divide X into two subsets Xl and X 2 of equal size and

recursively solve the two subproblems in parallel. Then compute T(X) from T(Xd

and T(X2 ), in O(logm) time using one processor.

4



Case 3. If m > d2, then partition X into 9 = (m/d)1/4 subsets X1,X2, ... , X g of sjze

m 3/ 4d1/ 4 each. Then, in parallel, recursively solve the 9 subproblems. Finally, com

pute T(X) from T(X1), T(X2 ), ••• , T(Xg ), in O(1ogm) time using mid = g4 proces-

SOTS.

end.

Observe that, if we could perform the various cases of the above outline within the

claimed bounds, then the algorithm would run in O(d+logm) time with Oem/d) processors

since the recurrences of the time and proce.<lSor complexities are (almost) the same as those

in [3J (the only difference is that Case 2 in [3J runs in 0(1og2 m) time while it takes only

O(logm) time here). Choosing d = logm, the above implies a time bound of O(1ogm) and

a processor bound of O(mflogm). Therefore, a call to the algorithm with input (X, logn),

IXI = n, will compute T(X) in O(logn) time using O(n/logn) processors. The rest of the

paper shows how to solve the problems by using algorithms like the one outlined above.

3 The Binary Tree Data Structure and Operations

The algorithms make use of a binary tree data structure. The definition of this tree structure

is similar to the one for hull tree, used by Goodrich to store the information of the convex

hull for a set of points [12] or the monotone funnel polygons [13J. We call such trees the

rank trees because they support efficient operations based on the ranks of the leaves in the

trees. A rank tree T is a binary search tree with a set of points stored at its leaves in

some specified order (e.g., by increasing x-coordinate or polar angle). WLOG, we assume

that the points are sorted by increasing x-coordinate. The leaves of T are doubly linked

together. We denote the height of T (the length of the longest root·to-Ieaf path in T) by

h(T). Let Tv be the subtree of T rooted at node v of T. Each internal node v of T has four

labels: the first stores the number of leaves in Tv, the second stores the point p at a leaf of

Tv such that p has the smallest x-coordinate among the points stored at the leaves of Tv,

and the other two respectively store the predecessor and the successor of p in the sorted

point set stored at the leaves of T. In O(h(T)) time, one processor can search in T for an

x-coordinate (and hence for a point) or search for the i-th ranked point stored in T (Le.,

the i-th leaf of T in the left-to-right order) using the first or the second label stored in the

internal nodes, respectively.

In the rest of this paper, all trees are assumed to be rank trees unless otherwise specified.

5



Our algorithms may need many processors to simultaneously search in such a tree. The

next lemma, which is based on the parallel searching scheme of [28], enables us to avoid

read conflicts during such parallel searching.

Lemma 1 ([3]) Given a tree T, suppose each of k processors wants to perform a search in

T. Two types of searches are allowed: the first type is a search for a particular point using

its x-coordinate, and the second is of the type "find the t-th leaf ofT starting from leaf I and

moving to the right". Then the k processors can perform their searches in O(log k + h(T))

time, without any read conflict.

Proof. Same as that for Corollary 5.2 of [31 and hence omitted.

The next two lemmas are for the parallel concatenation and split.

o

Lemma 2 (Goodrich [12, 13]) Let Sl, 82 , ••• , 8k be subsets of a point set 8' separated

by k - 1 vertical lines, and let the trees T(81 ), T(S2), ... , T(Sk) for the subsets be given.

Then tree T(S') for S' can be built in O(logk +h) time using k EREW-PRAM processors,

whereh is the maximum of the h(T(S;))'s. Also, h(T(S')) = O(h+logk).

Proof. Same as the proof of Lemma 4.3 in {13] and hence omitted. o

Lemma 3 Given a tree T and a list (Xl, X2, ... , Xk) of x-coordinates, suppose k EREW

PRAM processors want to split T into k + 1 trees To, Tl , ... , Tk such that all points in

Ti have their x-coordinates within interval [Xi, Xi+1], for i E {O, 1, ... , k} (xo = -00 and

Xk+1 = +00). Then the parallel split can be done in O(logk + h(T)) time.

Proof. WLOG, we assume that the list (Xl, X2, ... ,Xk) is given sorted (otherwise, we have

enough processors to do the sorting in O(logk) time [8]). Let processor Pi have value Xi, i

= 1,2, ... , k. Each Pj does the split operation in the same way as shown in Lemma 3.2 of

[12]. That is, it searches for Xi in a tree and, when going down the tree following a root-to

leaf path, it makes two copies of the root-to-Ieaf path, whose nodes have the appropriately

modified data from the original root-to-leaf path (actually, the original path is replaced

by one copy); after it reaches the leaf of the path, it retraces the two paths which it just

created, to update the labels of the nodes on the paths (see Lemma 3.2 jn [12] for more

details).

To avoid read conflicts, we use a procedure consisting of O(logk) stages. Let T1,k = T.

Before a tree Ta,b is split (a S b), there is a group of processors Pa, Pa+1, ... , Pb associated

6



with it. The following is the general step. Suppose (the root of) Ta,b is available in stage i

but not in stage i-I. If a = b, then Pa splits Ta,b at its root; otherwise, Pr(a+bl/21 splits Ta,b

at its root (by making two copies) and makes the roots of Ta ,r(a+bl/21-I and Tr{a+b)/21+I,b

available for stage i + 1 (no split is done on TrCa+b)/21+1,b if rea + b)/21 + 1 > b). The

processors stop when they reach the leaves on the root-to-Ieaf paths they follow. After all

processors stop at the leaves of the k + 1 trees so obtained, we let each processor retrace

the leaf-to-root paths in each tree which it just created and update the labels of the nodes

on the paths just as was done in [12].

The correctness of this parallel split procedure is guaranteed by the facts that (Xl, X2,

... , Xk) is sorted and the split is based on searching the Xi'S. No read conflict can occur in

the procedure because although in the searching, different processors may follow the same

root-to-leaf path in T, the processors, when doing the split, actually use different copies of

the path, and such copies would have been created in the previous stages of the procedure.

The time complexity of the procedure is clearly O(1og k +h(T)).

4 Computing the Convex Hull of Sorted Points

o

This section discusses the algorithm for computing the convex hull of a point set in the

plane sorted by increasing x-coordinate. Let S = {PI, Pz, ... , Pn} be a set of sorted points.

We denote the convex hull of S by CH(S). Points PI and Pn are both vertices of CH(S)

because Pi and Pn, respectively, have the smallest and the largest x-coordinates among the

points in S. Traveling along CH(S) from PI to Pn clockwjse, the portion of CH(S) so

visited is called the upper hull of S, denoted by UH(S). Similarly, the portion of CH(S)

visited by traveling along CH(S) from Pn to PI clockwise is called the lower hull of S,

denoted by LH(S). Due to the similarity in the computation of UH(S) and LH(S), we

only discuss the algorithm for UH(S). For two upper hulls UH(S') and UH(S"), where S'

and 8" are separable point sets, the upper common tangent between UH(S') and UH(SII)

is the common tangent of UR(S') and UR(S") such that both UH(S') and UH(SII) are

below it. The lower common tangent for two lower hulls is defined similarly. In the rest of

this section, we just say the "common tangent" to mean the "upper common tangent".

The following two known results are useful.

Lemma 4 (Goodrich [12, 13]) Let two upper hulls UH(Sl) and UH(S2) be stored in trees Tl

and T2, respectively, where SI and S2 are two sepamble point sets. Then in O(h(Tl)+h(T2))

7



time, one processor can find the common tangent between UII (81) and UH (82 ).

Proof. See Lemma 3.1 in [12]. o

Lemma 5 (Atallah, Goodrich [5]) Let 81 and 82 be two separable point sets with both 1811
and ]821 being O(m), and let UH(81) and UH(82) be their upper hulls stored in two arrays,

respectively. Then the common tangent between UH(81 ) and UH(82) can be computed in

O(c2) = 0(1) time using m 11e CREW-PRAM processors, where c is a positive constant.

Proof. See Theorem 1 and Algorithm A in [5].

We immediately have the following corollary.

o

Corollary 1 Let 81 and 52 be two separable point sets with both 1811and 1821being O(m),

and let T(8d and T(82) be two trees storing the upper hulls UH(5t} and UH(82), re

spectively. Then the common tangent between UH(St} and UH(52 ) can be computed in

O(logm + h) time using m 11e EREW-PRAM processors, where c is a positive constant and

h is the maximum of h(T(Sl)) and h(T(S,)).

Proof. Recall that Algorithm A in [5] partitions the two arrays for the two upper hulls

UH(81 ) and UH(82 ) into subarrays, then it finds in which subarrays the common tangent

lies, and it then recursively solves the problem in the (two) subarrays so found. We simulate

Algorithm A using m 11e EREW·PRAM processors. Note that Algorithm A is in the

CREW-PRAM and it requires 0(1) time (given c a constant). Since now UH(Sl) and

UH(82 ) are stored in trees (instead of arrays), each access to a leaf of a tree requires O(h)

time and one processor. Parallel searching for the points at the leaves of a tree (without

read conflicts) can be done in O(logm +h) time using the available processors by Lemma

1. Each time an array (or a subarray) is partitioned in Algorithm A, we can achieve the

same effect by partitioning the leaves of the relevant tree by using the ranks of the leaves.

Such a partition can also be done in O(logm +h) time by doing parallel searching in the

tree by Lemma 1. The other steps of Algorithm A can be easily simulated in O(logm)

time in the EREW·PRAM. 0

Now we show the algorithm for computing UH(8). We refer to the cases of the outline

in Section 2. In Case 1, we call the linear time algorithm in [14] to compute the upper hull.

In Case 2, we use Lemma 4 to compute the common tangent between the two upper hulls

returned from the two recursive calls, then we split the tree for each upper hull to remove

the portion of that upper hull (if any) that is under the common tangent. The portions of

8



the two upper hulls that remain form the upper hull that we seek in this case (by doing a

simple concatenation). Since we use only one processor in tills case, no read conflict occurs.

We perform Case 3 as follows. Given 9 subsets 81 , S2 •... , So of a point set 8 ', separated by

g-1 vertical lines, where lS'1 = m and 9 = (m/d)l/4, and given the trees T(Sl), T(S2), ... ,

T(So) representjng their upper hulls, respectively, we compute the common tangent Cij for

each pair of UH(Si) and UH(Sj), 1 :::; i < j :::; g. Recall that we have g'l = mid processors

to do so, and ISkl = m 3/'1dl / 4 for each k. Every Cij is obtained in O(logm) time using g2

= (mld)1/2 processors by Corollary 1 (it has been shown in [3] that h(T(Sk)) is O(logm)

for every k). Note that, in this case, we do not use the procedure for Lemma 4 to compute

the Cij'S. This is because the procedure for Lemma 4 searches for the points, on two upper

hulls, where the common tangent for the two upper hulls lies, and before the search starts,

we do not know at all which points we are getting to. In Case 3, each T(Sk) is involved

in the computation of O(g) common tangents. H we used the procedure for Lemma 4, we

would have read conilicts from the O(g) simultaneous searches in T(Sk), since we could not

prearrange the O(g) processors doing the searches (as was done in the scheme of [28]) in

order to avoid read conflicts. From the 0(92
) common tangents (the Cij's), we can find the

portions of the UH(Sk)'S that form UH(S'), by doing parallel prefix [19, 20] (see [12J for

the details on how this is done). The tree T(S') is then bullt using Lemma 2.

5 Triangulating a Trapezoidally Decomposed Polygon

This section deals with the algorjthm for triangulating an n-vertex polygon P (possibly

with holes) when given a trapezoidal decomposition of P. Goodrich (13] showed how to

triangulate a polygon in O(logn) time using O(n/logn) CREW-PRAM processors, pro

vjded that the trapezoidal decomposition of the polygon has been given (the trapezoidal

decomposition of P can be done in O(logn) time using O(n) CREW-PRAM processors

[2]). Here we assume that the same input as in [13] is given. We will basically perform

the same computation as in [13) (hence the reader is referred to [13] for more details of

the algorithm). We only show how to use a quarter~root divide and conquer strategy and

the parallel tree operations to perform various operations of [13] in the required time and

processor complexities without read conflicts.

There are three phases in [13]. The reader is referred to [13] for the definitions used here.

There is no read conflict in Phase One, whose goal is to construct the set of one~sided

9



monotone polygons which decomposes P (by using parallel prefix [19, 20] and list ranking

[10]). There is also no read conflict in Phase Three, whose goal is to triangulate the set of

monotone funnel polygons resulting from Phase Two (by using parallel prefix and parallel

merging [7, 17]). Hence we only need to concern ourselves with Phase Two, whose goal is

to decompose everyone-sided monotone polygon (from Phase One) into a set of monotone

funnel polygons.

The difficult computation in Phase Two is to decompose every one·sided monotone

polygon whose size is larger than log n into a set of monotone funnel polygons. Given

a monotone chain C (from the one-sided monotone polygon), lei = m, the procedure in

Phase Three for this computation first partitions chain C into a: subchains of equal size,

and recursively solves the a: subproblems in parallel. Then, from the results for the 0:'

subproblems, it computes the bases of the monotone funnel polygons that consist of the

decomposition of the one-sided monotone polygon. Finally, it computes the left and right

boundaries of the monotone funnel polygons and the lower hull of C. This procedure,

although being quite complicated, essentially consists of the following operations: parallel

prefix, sorting 0(0:') values, computing 0(0:2
) lower common tangents (among the lower hulls

of the a: subchains represented by 0: trees, as returned by the recursive calls), parallel splits

on the 0: trees (into 0(0:) trees), and parallel concatenatioru; of 0(0:) trees (to construct

new trees representing the left and right boundaries of the monotone funnel polygons as

well as the lower hull of chain C). Recall that our algorithm is based on the outline given

in Section 2. Case 1 and Case 2 of this algorithm can be easily handled in the required

complexity bounds. In Case 3, we have 9 = (mjd)1/4 subproblems and 94 processors. The

parallel prefix and sorting [81 can be done using the available number of processors. The

0(g2) lower common tangents are computed in a way similar to the convex hull algorithm

of Section 4 (i.e., by Corollary 1). The parallel splits are done by Lemma 3 and the parallel

concatenations are done by Lemma 2. None of these operations introduces read conflicts

and all of them can be performed in O(logm) time using g4 EREW-PRAM processors.

6 Other Geometric Algorithms

The algorithms described in Sections 4 and 5 enable us to obtain optimal EREW-PRAM

algorithms for other geometric problems. All algorithms in this section take O(logn) time

using (njlogn) EREW-PRAM processors.

10



If a point set in the plane is given sorted by polar angle with respect to a polar point q,

the convex hull algorithm in Section 4 can be slightly modified to compute the convex hull

of this point set. Using the convex hull algorithm in Section 4, we compute the convex hull

of an n-vertex simple polygon P as follows: apply the visibility algorithm by Atallah, Chen,

and Wagener [3] (which runs in O(logn) time using O(nJ logn) EREW-PRAM processors)

to P to obtain a point set sorted by x-coordinate (the vertices of P that are visible from

the point q = (0,+00)). then apply the convex hull algorithm in Section 4 to the visible

vertex set to find the upper hull of P. Using the geometric duality transformation [27], an

hnmedlate result from the convex hull algorithm in Section 4 is an optimal EREW-PRAM

algorithm for the problem of computing the common intersection of n half-planes given

sorted by their slopes. The kernel of a simple polygon can be computed optimally by using

the convex hull algorithm in Section 4 as a subroutine in the algorithm of [9] (parallel prefix

and parallel merging [7, 17] are also used in [9]).

The triangulation algorithm in Section 5 implies an optimal EREW-PRAM solution

for triangulating a monotone polygon P, since a parallel merging will decompose P into a

set of one-sided monotone polygons (triangulating one-sided monotone polygons is done in

Section 5). Using the algorithm for computing the kernel of a simple polygon, we can check

whether a simple polygon P is star-shaped or not. If it is, then the kernel of P is nonempty.

Let T be the ray starting from vertex 'Vt of P and going through a point q in the kernel of

P. WLOG, we assume that l' does not contain any edge of P. Let T intersect the boundary

of P at a point p f=. 'Vt. If p is at some vertex of P, then we partition the boundary of P

into two polygonal chains G' and Gil by 1'. Otherwise, let p be on edge e with endpoints

Vi and ViH, and let G' be the polygonal chain consisting of vertices 'lit, 'V2, ••• , Vi, and

Gil the polygonal chain consisting of WH, 'Vi+2, ••• , 'Vn, 'lit. Clearly, G' and Gil are both

star-shaped (i.e., they are all visible from q). A triangulation for each of GI and CU can be

done in a way similar to the algorithm in Section 5 for triangulating a one-sided monotone

polygon, since the vertices of P are sorted along the boundary of P in polar angle with

respect to point q (in this case, q plays the role for G' and GU same as the distinguished

edge of a one-sided monotone polygon does for the polygon). The triangulation of G' and

Gil also gives a monotone funnel polygon inside P (with base e, the right boundary from the

triangulation of GI
, and the left boundary from the triangulation of Gil). This monotone

funnel polygon is the only portion of P that has not yet been triangulated. A triangulation

of P can be completed by doing a parallel merging (see Phase Three in [13]). Hence we

11



optimally solve the problem of triangulating a star-shaped polygon.

Triangulating a point set in the plane sorted by x-coordinate can be reduced to that

of triangulating a set of one-sided monotone polygons, as follows. We first construct a

monotone chain with the sorted points being the vertices of the chain. Then we compute

the convex hull of the monotone chain (by using the convex hull algorithm of Section 4).

The convex hull and the monotone chain, together, partition the region bounded by the

convex hull into a set of one-sided monotone polygons. Triangulating a point set in the plane

sorted by polar angle with respect to a polar point q can be reduced to that of triangulating

the interior and the exterior of a star-shaped polygon, which can be done optimally in a

way similar to the triangulation algorithm for a star-shaped polygon.

Given n values WI, W2, .•. , W n , the all dominating neighbors problem, in fact, can be

viewed as a rectilinear version of triangulating a monotone polygonal chain. That is, we

reduce the n values into n points (1, WI), (2, W2), •.. , (n,wn), and let a rectilinear monotone

polygonal chain C have the n points as part of its vertices. The chain C consists of only

vertical and horizontal line segments. All the "common tangents" we compute, and all the

"diagonals" we add to the "triangulation", are horizontal line segments. Our algorithm in

Section 5 can be modified to solve this problem.

Acknowledgement. The author is very grateful to Professor Mikhail Atallah for his great

support and valuahle suggestions to this work.

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. O'Dunlang and C. Yap. "Parallel computational
geometry." Algorithmica 3 (3) (1988), 293-327.

[2] M. Atallah, R. Cole and M. Goodrich. "Cascading divide-and~conquer: a technique for
designing parallel algorithm." SIAM J. Comput. 18 (3) (1989), 499-532.

[3] M. J. Atallab, D. Z. Chen and H. Wagener. "An optimal parallel algorithm for the visibil
ity of a simple polygon from a point." TR 88-759, Dept. of Comput. Sci., Purdue Univ.,
April 1988. To appear in Journal a/the ACM. A preliminary version appeared in Proc.
5th Annual ACM Symp. on Computational Geometry, 1989, pp. 114-123.

[4] M. J. Atallah and M. T. Goodrich. "Efficient parallel solutions to some geometric prob
lems." J. Parallel fj Distributed Comput. 3 (1986), 492-507.

[5] M. J. Atallah and M. T. Goodrich. "Parallel algorithms for some functions of two convex
polygons." AIgorithmica 3 (1988), 535-548.

[6] O. Berkman, D. Breslauer, Z. Galil, B. Schieber and U. Vishkin. "Highly parallelizable
problems (Extended abstract)." Proc. 21st Annual ACM Symp. on Theory o/Computing,
1989, pp. 309-319.

12



[7] G. Bilardi and A. Nicolau. "Adaptive bitonic soding: An optimal parallel algorithm for
shared-memory machines." SIAM J. Comput. 18 (1989), 216-228.

{S] R. Cole. "Parallel merge sort." SIAM J. Comput. 17 (4) (1988),770-785.

[9] R. Cole and M. T. Goodrich. "Optimal parallel algorithms for polygon and point-set
problems." Proc. 4th Annual ACM Symp. Computational Geometry, 1988, pp. 211-220.
(To appear in Algorithmica.)

[10] R. Cole and U. Vishkin. "Approximate parallel scheduling. Part I: the basic technique
with applications to optimal parallel list ranking in logarithmic time." SIAM J. Comput.
17 (1) (1988), 128-142.

[11] A. Fournier and D. Y. Montuno. "Triangulating simple polygons and equivalent prob
lems." ACM Trans. Graphics 3 (2) (1984), 153-174.

[12] M. T. Goodrich. "Finding the convex hull of a sorted point set in paralIel." Inform.
Process. Lett. 26 (1987/88), 173-179.

[13] M. T. Goodrich. "Triangulating a polygon in paralleL" J. of Algorithms 10 (1989), 327
351.

[14] R. L. Graham. "An efficient algorithm for determining the convex hull of a finite planar
set." Inform. Process. Lett. 1 (1972), 132-133.

[15] R. L. Graham and F. F. Yao. "Finding the convexhulI of a simple polygon." J. Algorithms
4 (4) (1983), 324-331.

[16] M. R. Garey, D. S. Johnson, F. P. Preparata and R. E. Tarjan. "Triangulating a simple
polygon." Inform. Process. Lett. 7 (4) (1978), 175-179.

[17] T. Hagerup, and C. Rub. "Optimal merging and sorting on the EREW PRAM." Inform.
Process. Lett. 33 (1989), 181-185.

[18] D. G. Kirkpatrick and T. Przytycka. "An optimal parallel algorithm for all dominating
neighbors problem and its applications." Manuscript.

[19] C. P. Kruskal, L. Rudolph and M. Snir. "The power of parallel prefix." IEEE Trans.
Comput. C-34 (19S5), 965-968.

[20] R. E. Ladner and M. J. Fischer. "Parallel prefix computation." J. o/the ACM 27 (4)
(1980),831-838.

[21] D. T. Lee. "On finding the convex hull ofa simple polygon." Int'l J. Comput. and Inform.
S". 12 (2) (1983), 87-98.

[22] D. T. Lee and F. P. Preparata. "Computational geometry ~ A survey." IEEE Trans.
Comp.t. C-33 (12) (1984), 1072-110l.

[23] D. T. Lee and F. P. Preparata. "An optimal algorithm for finding the kernel ora polygon."
Journal of the ACM26 (1979), 415-42l.

[24] C. J. Lee and W. J. Hsu. "Triangulating a star-shaped polygon in parallel." To appear
in Proc. 28th Annual Allerton Con! on Communication, Control, and Computing, Mon
ticello, lllinois, 1990.

[25] E. Merks. "An optimal parallel algorithm for triangulating a set of points in the plane."
International Journal of Parallel Programming Vol. 15, No.5 (1986), 399-41l.

{26] R. Miller and Q. F. Stout. "Efficient parallel convex hull algorithms." IEEE Trans. Com
p.t. C-37 (12) (1988), 1605-1618.

[27] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer
Verlag, New York, 1985.

13



[28] W. Paul, U. Vishkin and H. Wagener. "Parallel dictionaries on 2-3 trees." Froc. 10th Coli.
on Autom., Lang., and Prog. (ICALP), LNCS 154, Springer, Berlin, 1983, pp. 597---Q09.

(29] H. Wagener. "Parallel Computational Geometry Using Polygonal Order." Ph.D. thesis,
Technical University of Berlin, FRG, 1985.

[30] H. Wagener. "Triangulating a monotone polygon in parallel." Computational Geometry
and Its Applications, Proc. International Workshop on Computational Geometry (GG'SS),
Wurzburg, FRG, 1988, pp. 136-147.

[31] T. C. Woo and S. Y. Shin. "A linear time algorithm for triangulating a point-visible
polygon." AGM Trans. Graphics <1 (1) (1985), 60-70.

[32] C. A. Wang and Y. H. Tsin. "An O(logn) time parallel algorithm for triangulating a set
of points in the plane." Inform. Process. Lett. 25 (1987), 55-60.

[33] C. K. Yap. "Parallel triangulation of a polygon in two calls to the trapezoidal map."
Algorilhmica 3 (1988), 279-288.

14


	Efficient Geometric Algorithms in the EREW-PRAM
	Report Number:
	

	tmp.1307986960.pdf.9bhSE

