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ABSTRACT

We consider policies that manage fixed-size dynamic linear lists, when the references follow the

independent reference model. We define the counter scheme. a policy that keeps lhe records sorted

by their access frequencies, and prove that among all detenninistic policies it produces the least

expected cost of access, at any time.

1. Introduction

We consider a linear list of n records, n ~2. An access to Rj requires a sequential search of the list

smrting at the header, till R j is encountered. The cost of a single access is defined to be the number of

keys examined in the search.

Assumption: The reference history is a series of independent multinomial trials. with fixed but

unknown reference-probability vecLOr (rpv) p = (p 1, . .. ,Pn.). This is the independent reference

model (inn).

The problem of minimizing the expected access cost, using dynamic reorganization of the list, has been

widely studied. Most of the permutation rules which incur no storage overhead, at times called

memory free. are variations of two basic methods:

Move To the Front (MTF), which places an accessed record at the head of the list, leaving the other

elements untouched.

Transposition Rule (TR), which advances the referenced record one step ahead by an interchange with

its preceding neighbour.

t Qmcntly at Lhc Deparunenl of ComIXller Sciencc, Purdue Unive:rsily, W. Lafayeue, IN 47907. USA.
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Rules that use extra storage are naturally less appealing compared with the previous methods. However,

their relative efficiency in the list reorganization process might compensate for their space complexity.

We focus on Counter Scheme (CS). which handles the list in the following manner:

A frequency counter Ci stores the number of accesses to each of the records R i • 1 :s; i:S; n. throughout

the reference history. The list is preserved in nonincreasing order of the counter values.

When asymptotic (expected) cost is considered, the CS achieves the optimum; in this sense it bests all

other common permutation rules. It is also known to have advantages in the finite horizon case. when

the average access cost following ajinUe sequence of requests to the list is considered. This was shown

by Lam et al. (1981) when analyzing their Generalized Counter Scheme, a special instance of which is

the above CS. They proved that-based on the last criterion--CS is better than any other possible

counter based method.

In the following discussion we strengthen their result and prove that CS is optimal among all realizable

policies with respect to the average cost at the mth request, m~1.

From a statistical point of view this is hardly surprising: the optimal order only depends on the ranking

of the probabilities (pj); the counters {cd are known to be sufficient statistics for the (Pd. A-priori

they should then suffice to compute an optimal policy.

2. Proof of Optimality

Assume the initial state of the list is random, with equal probability for each of the n! orderings. The

ammgement of the records after the mth request, also known as ,.at time m", is represented as

1 2 n
am = (am(l) am(2) amen))

with 0m(i) = the position of R i .

We define a history of the list at time m, under the policy H. as the vector

vm=(/(m).s(m», /(m)=(il, ···.im), s(m) =(00. ···,Om_I).

where ik denotes the record accessed at the kth request [em) is called the reference history vector

(rhv). The use of the policy H is left tacit in the notations O'm and vm •

The following notation is convenient in our proof method:

I . . . n

crm = (am(a.-1(1)) ... am(a.-'en)) ).

Om denotes the canonical ordering of the list after the mth request: given an initial state 0'0. each

record is identified by its original position in the list (We could formulate this as a transformation on

the relevant name space). For any initial order. aa is the identity permutation. and am describes the

list-order at time m in terms of the initial position of the records.
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We denote by vm the canonical history vector:

- _ (c;(/m) S-Cm») c;(/m) = IT
Vm - •• -\llo

-) S-(m) (- -)...• lm , == 0'0 •••. 'O'm-I •

3

where Lk = O'o(i.\:) and Ok is the canonical ordering of the list after the kth reference. 1 S;k $m. The

vector 1m
) will be naturally called Ihe crhv. Denote by fH(V) the list resulting from using policy H

with history v; then O'm = fH(Vm). and am = fH(Vm)'

With some abuse of our notation we may also write

since evidently, 0'0 detennines a one-to-one mapping from am to O'm.

We introduce now two classes of policies:

H is key-ignoring if for every pair of initial orderings 0'01, 0'02 and any arrangement O'm 1 such that

O'mi =fH(VmIO'Ol) ,

,
let g be the pennutation that carries 0'01 to 0'02 - that is, 0'01 ~ 0'02. then there exists an ordering

O'mZ, such that

and

ProbH(om 1 [ 001. Vm) = ProbH(omZ I 002. vm)·

Considering the general case, in which H is not necessarily deterministic - the essence of the last

requirement is that the sequence {O'm} has to be measurable with respect to the increasing O'-algebra

generated by the sequence {vm}. which is key-ignorant

Let HKI be the set of all key-ignoring policies.

We use the notation HD for the class of deterministic pennutation roles. such that under an initial

ordering 0'0 and a given reference history Vm• the outcome om is defined by H uniquely.

Let H DK = HDnHKl. The next Lemma shows that we may restrict our attention to H DK:

Lemma 1: Within the class of HK/t there exists a policy HeHDK which minimizes the average access

cost at time m. m ~1.

We leave out the proof; it uses induction on m to show that any non-deterministic rule in HKl cannot

do bener than the best strategy in HDK .

Consider two initial orderings 001.0'02 which differ only by the interchange of two records Ri , Rj :

oOI(i)~k. oOlU)=1 k< I

002(0 = I, 002U) = k ISsSn, s:#.i,j.
(1-0)

Two observations about this notation, fonnulated as lemmata, provide the tools for the main result.

Lemma 2: For all HeHDK , 00i as specified in equation (1-0). a canonical history vector \1m and the

final states
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we find

(l-m)

The proof is immediate: since He HDK, it effects for a specified sequence of references, expressed in

tenus of initial position, the same detenninistic pemlUration g, (regardless of the "actual" labels of the

records), which preserves the relation (1-0).

Remark 1: Another phrasing of Lemma 2 is that for policies in HDK, the vector s(m) is

determined uniquely in terms of the initial ordering and I(m). Moreover, SCm) is determined uniquely
. f -,(jrn) alill terms a one.

Remark 2: Dearly, when pj':f. Pj' the two histories induced by vm and 0"010 or by vm and 0"02,

need not (will not) have equal probabilities.
-em) (m) _(m)

Let C = (CI , ... , en ) be the frequency vector accumulated after a sequence of m references,

where cr) is the counter of the record positioned ith in the initial order.
-em)

Lemma 3: For any frequency vector C and -HeHDK ,

. . -~) .. -~)
ProbH(O"ml(l) <O"mlU) I C ,0"01) = ProbH(O'm2U) <O'mZ(l) I C ,0"02).

. -em) . -;(m)
Proof: For H as gIven, C determmes J up to the order of the references. There are

( ~) ) (a multinomial coefficient) such ammgements, providing as many canonical history vectors vm

that fit the frequency vector CCm). for any initial permutation of the records. Under the irm they are all

equi-probable, and since H is detenninistic, we find that the probability of each vm which fits C(m),

for a fixed initial order, is given by

-(rn) (m )-1
PrObH(Vrn Ie) ~ C(rn)

From relation (l-m) it follows that for any Vm ,

O"mI(i) < O"mlU) < >CJmzU) < CJmz(i)·

Let IA I denote the cardinality of the set A. Then,
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=
IVm :Om2U) <H 0m2(i), vm fits C(m) I

( C'r.,l )

o

Let Ep'}?)(C) and EpR(C) denote the expected access cost to the list after the mth request and in the

limiting state respectively, under the pennutation rule PRo Our main result is

Theorem 4: IfHeHDK , then

for all m ~ 1.

Proof: From the explicit expression for the expected access cost, E(m)(C) = :I:r=lPi O'm(i}, it follows

that it can be split into a sum over the relative positions of pairs of records. Hence it would be sufficient

to show that for any frequency vector C(m), an arbitrary policy HeHDK , and every pair of records

Ri, Rj 1Si, j S n, with the respective access probabilities Pi.Pj. the following implication holds:
-em) -em)

Pi> Pj => Probcs(om(i) < O'mU) I C ) ~ ProbH(om(i) < CJmU) Ie),

where the two probabilities on the right-hand side are with respect to the initial pennutations and the

crhvs that are compatible with C(m). Clearly, if the reference probabilities are equal, the order of the

records in the list does not matter. Also, any possible depndence on 1m
) is restricted to H, since

under CS the outcome O'm is determined uniquely by cm (or C(m) and the initial order of the

records). The n! pennutations are split into two halves, differing just as the paradigmatic initial

orderings 00l and 002 do, with respect to the records placed in locations k and t.

Consider such a particular pair Ri and Rj , and assume with no loss in generality that Pi > Pj. In the
-(nI) -~

vector C we suppress the superscripts temporarily, that is, C =
(m) _em) _em) _em)

(Cl , ... ,Ck , •.• ,CI , •.• 'Cn )==(c!, •.• ,ck, .•. ,Cl' ... ,clI )·

Consider first the particular case of equality of the two counters Ck and Cf. Little reflection shows that
for either the CS or any other H e HDK , with any suitable I(m) , half the 0'0 will result in

CJm(i) < CJm(J), and the other half with the reverse order.

Without loss of generality, we assume now that Ck > Cf, and then

ProbCS(om(i) < 0m(J), C(rn), 0'01) + Probcs(CJm(i) < 0mU), C(m), 0'02) =

1 ( m ) Cl c~ C, C.= - -em) Pi "'Pi ···PJ' "'pi ==n! C I ...

where one term is selected. Then, if HeHDK ,



-em)
C ,O"ot)

On Counter-scheme optimality...

= A(p? Pi"x + pr pf' -(I-x)),

where

with the last equality provided by Lemma 3. Now, the combination Pi > Pi and Ck> Cl implies

CA Cj CA C, Cl CI(! ) Cl C, c, CAt! )Pi Pi =Pi Pi X+Pi Pi -x >Pi Pi x+Pi Pi -x.

Hence, summing over such n!/2 pairs of initial orders

Probcs(crm(i) < crmU), C(m») = L Probcs(crm(i) < (JmU),
{crOl'O'o:I.J

6

-(m) -(m)
+ Probcs("m(i) < "mU), C , "02) ;> ProbH("m{i) < "mU), C ).

The last inequality holds for any C(m), m 2:1 and any pair of indices i, j , such that Pi >Pi' Converting

the joint probabilities to the required conditional ones is immediate, since the inn assumes independence

of the state of the list and subsequent references. The inequality .iD.....tb.e theorem is then achieyed by

summing on all record pairs and frequency vecLors. 0

3. Further Remarks

We have shown that CS is optimal within the class of HDX• One may be easily convinced, by

adversary-type arguments, that any policy which is not key ignoring, would not be optimal under the

irm assumptions.

The CS is the best reorganization method not only in the limiting sense, but for any finite sequence of

requests. It also provides an indirect proof to the superiority of CS-when the irm assumption holds

over some of the well-known pennutations rules, which have not yet been analyzed with respect to our

measures (Transpose belongs to that category).

To avoid the allocation of huge counter fields, CS may be replaced by the Limited Counters Scheme

(Hom and Shachnai, 1988). TIlis 'truncated' version of CS reduces significantly its storage

requirements while still being very cost-effective. It would be of interest to examine the classes of

policies which can still do better than the various versions of LCS.

We comment, that the optimality of CS holds under the following assumptions on the model:

(i) The set of records in the list remains fixed over time.

(ii) No initial infoImation on the rpv.

(iii) Independent and time-homogeneous reference probabilities.

Permitting insertions and deletions, or having some initial knowledge of any subset of the access

probabilities may lead to new conclusions concerning the existence of an optimal policy and its thus-
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implied characteristics.

Relaxing the independence assumption has not been considered in previous work We believe, that for

certain models of dependent references, the optimality of CS still holds, albeit with a different character.

This is certainly the case when the components of p are time varying, but retain their ranking time·

invariant. For a different one, assume a reference model which follows a first-order Markov chain, i.e.

Pij is the conditional probability of accessing R j after a reference to Ri, I::;; i, j::;; n. If none of those

transition probabilities is known in advance, and the same cost structure holds (where key-comparisons

carry a price tag but record shuffies do not), consider the following reorganization scheme:

Each of the records is associated with a frequency vector ci' where Cij counts the number of accesses to

Rj immediately following a request to R j • Then a reference to Ri (preceded by a search for Rk )

would result with an increment of the appropriate counter (Cki) and a new pennutation of the list - in

descending order of the counters Cjj' l:5j:5n.

By the Law of Large Numbers, this rule is asymptotically optimal for the above access model. We

expect it should be also the best policy for any finite sequence of requests, but we have produced no

fonnal proof of that. However, if we charge both for comparisons and shuffles, there is little hope for an

optimal policy with such a simple structure.

We conclude by pointing out, that counter based methods are not optimal with respect to our measure

when memory of the past is of limited span.

This can be demonstrated on a model in which the relative order of the records after the mth request is

determined by the reference history accumulated since the 1+lst request, 1:51 <m.

Let c(m-l) be the partial frequency vector representing the last m-l requests. Obviously, keeping the

list in descending order of the counters in C(m-I) would not always minimize the expected access cost

at the m+lst reference, as that would imply, for l=m-l, that

But the last inequality contradicts Rivest's proof (Rivest, 1976) that

EM[F(C) > ETR(C)

for all non-trivial rp'll's.
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