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Abstract

A regularized set operation on two solids can be separated into four steps: partition the faces

of the boundaries of the two solids to impose respect, obtain an eight-way classification of

the faces, create a solid according to the set operation, and reduce the representation to its

minimal form. Of these four steps, the first step is the most difficult. This paper presents and

proves correct a general approach for imposing respect on two boundary representations. The

approach is based on a data-driven, binary form of decomposition.

Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling-Geometric algorithms.
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1 Introduction

To date, many representations have been devised for modeling solids. Of these, the boundary

representation technique is most widely used. A boundary representation (BRep) models a

solid by explicitly encoding the bounding surfa.ces of the solid as a collection of vertices, edges

and faces. Such BReps are frequently modified using regularized unioD, U· > intersection, n",

and difference, -". The operators provide a conceptually simple method to construct complex

solids by combining simpler ones.

The basic approach for performing set operations on two boundary representations can be

separated into four distinct steps:

1. Impose respect on the faces; that is, partition every face of one solid, A, by the boundary

of the other solid, B, so that each of the resulting faces in its entirety is either inside,

outside or on the boundary of B.

2. Classify the faces; that is, identify which faces of one solid are inside the other solid,

which faces are outside the other solid, and which faces lie on the boundary of the other

solid.

3. Depending on the set operation at hand, assemble the appropriate faces.

4. Topologically reduce the result to a minimal boundary representation.

In this paper, we focus on solving the first step of the regularized set operations and present

a new method that does this; that is, a method that imposes respect; and we prove its correct

ness. The motivation for this approach is to utilize spacial decomposition methods to directly

manipulate boundary representation models without resorting to some intermediate hierarchical

data structures. The presented solution has several appealing properties:

• The approach is purely face-based. An implementation needs only to keep track of faces

partitions. This greatly simplifies or entirely eliminates the use of intermediate data

structures.

• The approach handles all solids uniformly without making nonmanifolds the exceptions.

• The eight-way classification allows the simultaneous creation of the union, the intersection

and the difference without the need to copy and reclassify the original boundaries for each

operation in turn.

• The approach allows both regular and the nonregular decomposition methods to be ap

plied. A hybrid method that utilizes both methods improves efficiency.

Section 2 defines solids and their boundaries. Section 3 gives a detailed outline of the four

steps for performing the set operations. The first step and its algorithm are then given in detail

in Section 4. Section 5 discusses the merits of the algorithm,
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2 The Modeling Domain

A commonly used class of solids is the class of compact 3-D manifolds with boundary that are

planar polyhedra. Solids in this class are three-dimensional objects that have a finite interior

and a boundary that is a closed two-manifold[Req80]. This class of solids is not closed under

regularized Boolean operations because performing a set operation on two solids with two

manifold boundaries may not result in a solid with a two-manifold boundary[Req77, RV77,

TRBO]. So, we work with a domain which also includes Ilonmanifolds. We call this larger

class of solids the modeling domain M (see Definition 1). Let 'H. be the class of all half-spaces

bounded by a plane. That is, each half-space H is defined as the point set

H= {(x,y,z)ER31 ax+by+cz+d~O}

for some numbers a, h, c, d. We consider all finite intersections of half-spaces in 1i such that the

resulting point set is compact. Then define the class C of simple convex polyhedra. The class

M is now defined as the set of polyhedra obtained from convex polyhedra by a finite number

of regularized Boolean operations, U~, n~ I and _.. Note that this class includes nonmanifold

objects as considered by Weiler [Wei86] and by Hoffman, Hopcroft and Karasick [HHK87].

Definition 1 The class of solids M is defined as follows:

1. lfSEC then S E M.

2. lfSI and S2 are in M and (op)~ is one of the regularized Booleans you consider, then

S, (op)· S, E M.

9. Nothing else is in M.

The boundary of any solid in M can be partitioned into a set of faces, edges and vertices.

The faces can be defined in terms of maximal faces which are uniquely given by the half-spaces

of 1i that form the solids of M:

Definition 2 A maximal face of S at H, where S E M and H E 1i, is

where r O and i O are the regularization and the interior operators in the relat1ve topology ofbH,

and bS is the boundary of S.

Each maximal face consists of one or more connected components called the maximally con

nected faces. A minimal boundary description, Urnin, is a triple consisting of a set of the

maximally connected faces, a set of maximally connected edges, and a set of vertices defined

as follows:
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Figure 1: The maximal face determined by the half-space H is fma-x = it U h u Is. Face f~ is
the maximal face for half-space c· H.

Definition 3 Let S E M. Then Urn;" of S is the triple (V, E, F) where V, E, and F are the

set of vertices, edges, and faces respectively, for which:

and f<:mall is maximally connected}

{eemax I (3il,hEF(um;n»eem"x~iO(r°ftnrOh)
and f cmllx is marimally connected}

V(Um,") = {v I (3, E E(um,")) v E bO
,}

(4)

(5)

(6)

The maximal faces and the maximally connected faces have definitions similar to the defi

nitions of C-faces and M-faces given by Silva[Sil81]. The difference is that Silva assumes faces

that are dosed sets, but for us the faces of F(O"min), as well as the edges of E(Umin), are open

sets. Therefore, the faces, edges and vertices are pairwise disjoint point sets. As an illustration,

Figure 1 shows a closed half.space H whose boundary contains the four faces It, ... .14. Of

these four faces in bH, only It, hand h have the same orientation as H, and so the maximal

face !m"x in H is it U hUh. Within this maximal face there exist three maximally connected

and open faces, namely II, hand h.
All valid boundary descriptions ofsolid 8 in the modeling domain M comprise the set 8(5).

Definition 7 Let 8 E M. Then 8(8) = {cr I cr = (V, E, F)} is the set of all valid boundary

descriptions .such that

F(u) = {t I I is a maximally connected face !cm"x in F(Umin),

or I is the interior of the intersection of !cml1x and a convex region}

E(") =

V(u) =

and where

{, I (3f"j, E F(u))(, ~ q,0f, n,°j,))

{v I (3'EE(u))VEbO,)
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Figure 2: Several different arrangements of faces, edges a.nd vertices of a tetrahedral solid.

1. Feu), E(u) and V(u) are finite sets,

2. each set F(u), E(u) and V(O') is pairwise disjoint,

9. the union of all the faces, edges and vertices form the boundary of S:

IS = V(.) u UE(.) uUF(.).

Consider the various boundary descriptions of a specific tetrahedral solid T. Figure 2 shows

graphically four different descriptions of the boundary of T. Each face set, along with the

corresponding edges and the vertices, is one of the valid boundary descriptions in

B(T) { , /I ,,// }= Tmin,T,T ,T , ....

In the following, lower case Greek letters, with exceptions to V, E, and F , denote the ac

tual solids. Furthermore, lower case Roman letters are arbitrary variables, which ale defined

appropriately.

3 Outline of the Algorithm for the Boolean Operations

Consider the spatial locations occupied by two solids 8 and T, where 8 = T is allowed. Given

u E B(8) and r E B(T), we ask whether the boundaries described by u and r penetrate or

touch each other, and if so, where? IT they do, the penetrating faces are subdivided so that

they do not penetrate each other. In consequence, the construction of the result is simplified.

Recall the four basic steps needed for computing the set operations given on Page 1.

• We will say that a boundary description respects a solid if each face of the boundary

description is homogeneous in relation to the other solid. A face of F(u) is homogeneous

in relation to solid T ir the face is entirely inside T, outside T, or on the boundary of T.

That is, no face of F(u) is both inside and outside, or partially on T.

In the first step, u and r are used to derive new boundary descriptions 0" E B(8) and

r' E B(T) that respect each other's solids. The function that perrorms this is

Respect(u, r) _ [0", r'].
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Figure 3: All allowed singularities: vertex-on-edge, vertex-on-face, edge-on-face, edge-on-edge

When (T respects T, for example, the faces, and the edges of (T are homogeneous almost

everywhere in relation to T. Here "almost everywhere" means that singularities such as

those shown in Figure 3 are allowed. Thus, a face or an edge is homogeneous with a few

allowed exceptions.

The following property establishes one of the four conditions necessary for a face to be

homogeneous (almost everywhere) in relation to another solid:

Property B Let u E 8(8), and Tmin E B(T) where 8, T E M. Then a face f E F(u)

is homogeneous (almost everywhere) in relation to T if one and only one 01 ike following

relations holds true:

lINT ;fJ Ie (T-UF(Tm ;.»)
louTT ;fJ Ie (,·T-UF(Tm ;.»)

IWITHT ;fJ (3/' E F(Tm ;.)) (I £; k°f) ond (~PE (In!')) (Ns(p) = NT(p))

I ANTil' ;fJ (31' E F(Tm;.» (I £; .0f) .nd (~p E (I n!')) (N,·s(p) = NT(p));

Nx(p) is the regularized neighborhood of point p with respect to the solid X; it describes

tke local region around p.

Relation lINT holds when the face is inside T with the exception of some boundary

points ofT-namely, some vertices or some edges. Relation /ouTT holds when the face

f is outside T with the exception of some boundary points of T. If only manifolds were

being considered, then the conditions could simply be stated as f C iT and f C cT.

Since however, nonmanifolds are part of the modeling domain M, the singularities are

tolerated.

Relations fWITHT or f ANTrT hold when the face lies completely on the boundary of

T-with some exceptions. The two relations distinguish between the two solids touching

along the face, or overlapping each other along the face. Rerer to Figure 3.

So, if exactly one or the relations hold for each face of a boundary description and some

solid, then the boundary description is said to respect the solid. Given that u respects
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Figure 4: (a) shows two solid touching. (b) shows two solids overlapping.

T does not imply that T respects S. From Property 8, we can say that u E 8(S) and

T E B(T) respect each other if and only if u respects T and T respects S .

• In the second step of the Boolean operation, the faces of one boundary description are

classified in relation to the other solid. The face classification process partitions the

faces, F(z), of each boundary description, x, in relation to solid y into four classification

sets Fcy(x), Fiy(X), Pwy(x), and Fay(x). The notation FR(X) is chosen to resemble the

notation used for a fragment (defined later) where R is a region containing a subset of

F(x).

In the first step, Respect returned u l and r'. Because u' respects T and T 1 respects S, each

face of one solid along with the other solid belongs to exactly one of the four relations of

Property 8. Specifically, the Relations (1)-(4) of Property 8 correspond to the relations

that hold for faces of the four classification sets. That is, the eight-way classification of u

and r~that respect each other's solids-is given by

(l",;fY([U,TJ) = [F,T(U), F;T(U), FWT(U), FoT(U),

F'S(T), F;S(T), FwS(T), FoS(T»),

where

F;T(U)

F'T(U)

FWT(U) =
FaT(D') =

Thus,

{J E F(u) I flNT}

{J E F(u) I fouTT}

{J E F(u) I fWITHT}

{J E F(u) I fANTIT}

F;S(T) =
F'S(T)

Fws(r)

F.s(T)

{J E F(T) I fiNS)

{J E F(T) I fouTS}

{J E F(T) I fWITHS}

{J E F(T) I fANTIS}.

F(u')

F(T')

FCT(D") U FiT(D") U FwT(D") U FaT(D"),

Fcs(r') U Fis(r l
) U Fws(T' ) U Fas(r' ).

These sets roughly correspond to Tilove's classification sets XOUTS, and XINS, and the

two cases for XONS. They can be thought of as the in, out, with and anti sets.

As an example of face classification, Figure 5 shows the union of two cubes, and face

classification of each face. The six faces of each cube are made to respect the other cube

by splitting the top, the front, the right, and the back faces of the lower cube, and splitting
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Figure 5: (a) shows the union of two boxes, (J' and T. The faces of the classification sets Fes(r),
FCT(U), Fws(r) and FWT(O') needed for the union are shown in (b).

U T

F'T FiT F.T F'T F,s FiS F.s Fos
uU· T Ell Ell Ell
(1 n9

T Ell Ell Ell

Table 1: The relevant sets effaces for each set operation are indicated by ffi and 9. e signifies
the complementation.

the len, the bottom, the front and the back faces of the upper cube. In consequence, each

cube will have ten homogeneous faces. or these, six faces are outside, two faces are on,

and two faces are inside the other cube. The two on faces belong to Fwy sets.

• Once the eight-way face classification is done, we construd a boundary description of the

result of 8. regularized Boolean operation (op)·, , = u'{Op)·T', namely,

where, , E B(C) ofsome solid C = S(op)·T. 'describes the boundary of C and consists

of the faces in either F(u') or F(T'). The faces of F(,) are all the faces of exactly three

of the eight classification sets of C1assify([iT, T'l). Which three depends only on the set

operation, as shown in Table 1. The appropriate face sets are indicated by the symbols

e and 8.

When constructing the BRep " the face normals of certain faces must be complemented.

For the difference operation, , = U _.', the faces comprise the set FiS(T') or FiT(U').

A complemented face covers the same area, but the solid which is on one side of the face

7



is on the other side of its complement. In the table, the sets with faces that need to be

complemented are indicated by the symbol e .

• The created boundary description ( resulting from Create is fragmented. That is, ( is not

necessarily minimal. In the fourth step of the set operation algorithm, function Reduce

maps ( to a minimal boundary description (min:

Reduce«) - (min.

This mapping is called topological reduction. Coplanar faces that have at least one

common edge are merged into a single maximally connected face, and adjacent collinear

edges are merged into a single maximally connected edge.

It is now possible to express the composition of functions to compute a set operation. Given

u E B(8) and T E B(T), along with a binary set operation (op), the result of applying the set

operation to u and T is

U{OprT = Reduce (Create ({op), Classify (Respect (0-, T)))).

4 Obtaining Boundaries with Respect

Establishing respect requires the partitioning of existing faces and edges, and the introduc

tion of new edges and vertices. Whenever a face does not satisfy one of the four relations of

Property 8, the face must be subdivided into two or more faces, so that each face does satisfy

one of the four relations. Instead of viewing the problem ILS one of partitioning two boundary

descriptions in relation to each other, it can be viewed differently as a problem of partitioning

two boundary descriptions in relation to common regions of space. This way, a face of one

boundary description is compared only to some common region of space and is not directly

compared to the other solid.

Regions, as used here, are point sets that have an interior, a boundary and an exterior,

however, unlike solids, regions need not be closed sets. A region, R, is the intersection of a

finite number of open or closed half-spaces with planar boundaries. The boundary of R is

bR = r R - iR, and so, portions of the boundary of R do not necessarily belong to R.

If, for some u E 8(S) and some region R, each face of F(o-) is either completely in the

region or completely outside the region, then u respects R.

Definition 9 u respects a region R if ('if E F(er») (J ~ R or f C cR).

If u respects R, a fragment is the set of all faces of F(u) that lie in R, written FReer), where

Observe that a face of F(er) lying on bR mayor may not be in the fragment FR(U), since R need

be neither open nor closed. Similarly, since a face is an open set, the edges and the vertices of

a face lying in R mayor may not be in R. Formally, we define fragments as follows:
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Definition 10 For a nonempty region R and a u that respects R, the fragment of u in R is

FR(u) = {J E F(u) If!;; R}.

It is not hard to see that the faces of FR(U) and the faces of F(7) - FR(7) are pairWIse

disjoint. That is, the faces of F(u) within R cannot intersect any of the faces of F(7) that are

not in R, and vice-versa. In consequence, an algorithm for imposing respect can be based on

the divide-and-conquer paradigm [BenBO). A partitioning of space into the two regions Rand

cR, divides the problem into two smaller subproblems.

Consider a fmite set of n convex regions 1l = {R1 , ... , Rn}, that are pairwise disjoint and

together cover E
3

along with some u and 7 that both respect each of the n regions. The n

regions of'R partition the faces into n fragments,

for x either u or 7. The problem of imposing respect on u and 7 consists of n subproblems of

imposing respect on each of the two fragments of the n regions independently.

We wish to specil'y an algorithm that obtains respect by splitting regions and fragments. In

particular, the algorithm should produce a sequence

(11)

in which the nth triple is known to contain Un and 7n that respect each other, and where the

ith triple, for 1 ~ i < n, does not. To map the ith triple to the (i + 1) triple, three operations

are needed:

1. Select some region R E 1l; for decomposition,

2. select some splitting plane P that intersects R, and

3. partition R and subdivide the faces of FR(ui) and FR(7;) by P, producing U;+1 and 7,+1.

The operations are now as follows:

• First, we select a region. Any region of 1l; which contains a nonhomogeneous face needs

to be further decomposed and must be eventually selected. The order in which such

regions are selected is arbitrary.

The ideal action is to select a region that has nonhomogeneous faces and not to select

a region that has homogeneous faces. However, distinguishing between such regions is

computationally expensive, and so it is not done. Instead, a region is selected unless it

is plainly obvious that all the faces it contains are homogeneous. The following function

checks four different conditions to determine the existence of respect within a given region

9



1 if FR(tt) = 0 and FR(T) = 0

2 if FR(tt) = 0 and FR(T) #: (2)

3 ;[ FR(T) ~ IZl and FR(u) l' IZl

4 II FR(U) ~ {f},FR(T) ~ if'} and
kOf = k°f' = kOR

o o~herwise

FRel checks ~he number of faces of bo~h fragmen~s in ~he region. Condi~ions one through

~hree hold when R is nonplanar and one or both of ~he fragments is emp~y. Condi~ion

four holds when R is planar and con~ains ~wo coplanar and equal faces, one face from

each solid. A zero value indica~es ~ha~ based on ~he four condl~ions, ~he ~wo fragmen~s

are no~ known to con~ain homogeneous faces .

• Nex~, we select a splitting plane for ~he chosen region. Any viola~ions of respec~ occur

along ~he boundaries of ei~her solid. Subdividing ~he faces of one solid by a plane ~ha~

con~ains a face of ~he o~her solid is a s~ep in ~he righ~ direction, and suggests a selection

s~rategy in which a face or either solid determines the splitting plane.

Because regions can be ei~her planar or nonplanar, the selection strategy mus~ accoun~

for the region planari~y. For a nonplanar region, a splitting plane should contain one of

~he faces. For a planar region, a splitting plane should be perpendicular to one of the

faces and pass through one of the edges. This in effect is analogous to cutting polygons

in 2D by splitting lines.

To achieve respect with a finite number of cuts requires a careful selection of a face. Some

faces in a region take priority over other faces. For example, faces that lie on the boundary

of a nonplanar region should not be chosen as long as other faces exist in the interior of

the region. Doing so would result in ill-formed regions that violate the correctness of this

method (this will be demonstrated). This shows that only a subset of the faces constitutes

a set of candidate faces from which a single candidate face can be chosen. Consequently,

four issues have to be considered in devising a splitting plane selection strategy:

1. Given a fragment, what are its candidate races?

2. Given that both fragments have nonempty sets of candidate faces, which fragmen~

should contribute a candidate face?

3. Given all the candidate faces, which is the most desirable face?

4. How should the splitting plane be oriented in relation to the candidate face?

To address ~hese issues, we must first establish the relationship between a face and its

containing region, and an edge and its containing region. We define five face-region

rela~ions Al through ..6.s , and ~wo edge-region relations Al and Az. The relations are

10



fll,R The face is inside the nonplanar region R although the edges of the face

lying on the convex hull of the face may lie on the boundary of the region.

fll,R The face lies on the border of the region, and the region is below the face.

fll,R The face lies on the border of the region, and the region is above the face.

jA4.R The face is in but not equal to the planar region; i.e., feR.
fll,R The face is equal to the planar region; i.e., kO! _ kOR.

eAIR The edge is inside the region; Le., e C iR.

eA'2 R The edge lies on the boundary of R; i.e., e ~ bOR. Note that fl:i.sR if and

only ifVe E E(J)eA2R, where E(f) are the edges adjacent to /.

Table 2: The face-region and edge-region relations.

defined in Table 2. The five race-region relations are pairwise disjoint, and so for any

region R and any face / in R, Jti.iR and f djR imply that i = j. The same holds for

the two edge-region relations. Let the face-region Index and the edge-region index be the

subscripts of di and Ai respectively. Using the face-region indices, the faces in a region

can be grouped into five sets. Similarly, the edges can be grouped into two sets based

on the edge-region indices. The value of IR(u,r) is then the smallest face-region index of

any face in that region, where

The subset of all the faces in R having the smallest face-region index is called the set of

candidate faces, CR(O',r), defined as;

(12)

With the set of candidate faces, the splitting plane selection function can now be stated.

The oriented splitting plane selected to split a region R containing the fragments FR(O')

and FR(r), not both empty, is

where

PI,,,(J)
-PI,n.(J)

Perp(f, e)

if ID.. 1R or fd 2R

if fLl3R

if Id"R and eA1R, for e E E(J),

(13)

1. ! E CR(u,r) is the candidate face,

2. Plane(f) is the plane containing I, and oriented so that the plane's normal vector

points away from the solid, and

3. Perp(!, e) is a plane perpendicular to Plane(f) where

11



(a) e is some edge of E(f), the set of edges adjacent to face I, and

(b) e does not lie on a boundary of R.

The orientation of the plane Perp(f, e) is arbitrary.

This finishes the discussion on two of the four issues, namely, what are the candidate faces

and how should the splitting plane be oriented in relation to the selected candidate face.

These two issues address correctness. The other two issues, namely, what fragment to

choose a face from and what is the best candidate face, address efficiency. In this paper,

only the correctness issue is dealt with. Details pertaining to efficiency can be found in

Vanecek's thesis[Van89].

• Finally, we partition the selected region and subdivide the faces of the region by the

selected splitting plane.

Given the plane P as the tuple (a, b, c, d), where the components are real,

P>={(x,y,Z)ER31 ax+by+cz+d>O}

is the open half-space above P, and P< is the open half-space below P. Analogously,

p?; = P> U P and PS = P< U P are the appropriate closed half-spaces.

A plane P that intersects a region R can partition R into regions R n p?;, and R n P<,

referred to as the region on or above, and the region below P, and labeled R?; and R<

respectively.

The subdividing is performed by a function

(14)

where Z' is a boundary description that respect the region R, and P is the selected split

ting plane intersecting R. Z" is the resulting boundary description that in addition to

respecting R also respects the regions R< = R n P< and R?: = R n P?:. That is,

The faces of F(Z") are those of F(x), except for the faces of R which are cut by P (a face

f of R that crosses P transversely is indicated by ftf!1P = (f n P and f ¢. P)). namely:

(F(x) - Fn(x))U

(JEFn(x) I fn7'=0}U

(J E Fn(x) I f c P}U

{I' c (f - P) I f E FR(Z), jJKfP, and f' is maximally connected}.

(15)

In the fragment FR(:C/), none of the faces cross P. The three sets indicated in Eq. (15)

are the faces of FR(X) that do not cross P, the faces that lie in P, Rnd the faces that

12



result from subdividing the faces that cross "P. Each face that crosses "P results in two or

more new subfaces in FR(X' ).

In addition to changing the face set of:2:, the edge and the vertex sets are also changed.

The edges that cross P and that are adjacent to the subdivided faces get cut and new

edges are created from the portions of the faces that lie on P. Let ER(X) be the subset

of the edge set E(x) with edges that are adjacent to the faces of F(x). The new edge set

E(x') is

(E(x) - ER(x)) U

{'EER(x) l,np=0o"cPju

{e' c (e-P) I e EER(:2:),Enp :f::Ql,e ¢'P and e' is maximally connected} U

{e C (f n P) I f E FR(x), jri!JP, and e is maximally connected}

The vertices of V(x') consist of the original vertices of V(x) and the vertices created by

subdividing the edges of ER(X), namely,

With the three operations, the ith triple of Sequence (11) can be mapped to the (i + 1)

triple by a function h, as follows:

where

( )) {
(U,T,n)

hUT n =
( , • (u' , T', n')

if(VRE n) (FR,I(FR(u),FR(T) oF 0)
otherwise

(16)

R E {R' E n I FR,I(FR(U),FR(T)) = OJ,

P Choo,,(FR(u), FR(T)),

u' Cut(u,R, "P),

T' == Cut(T,R,"P), and

n' (n-{R})U{R<,R2 }, d. R< =Rnp< andR2 =Rnp2 .

In term of the Function h, Respect is defined as the pair [un, Tnl corresponding to the triple

{un, Tn, "R.n}, with the smallest integer n for which all regions of 'Rn contain fragments that

have a nonzero FReJ value. That is,

Respect(u, T) = min {[Un, Tnll (un, Tn, 'Rn) = hn({u, T, {E3 }» and
0>'

(VR E no) (FR,I(FR(Uo),FR(To)) > OJ},

where hn(y) denotes n - 1 compositions of h.

We will now show that for all u and T there is an n at which Un and Tn respect each other.

13
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Figure 6: An example of an ill constructed region. (a) shows two solids A and B in a region
marked by dashes and cut by a plane P. (b) shows the region on and above P. (e) shows a
planar region lying both inside and outside B and containing the right face of solid A.

What needs to be shown first is that for any R E 'R; constructed by h, FR(u) = 121 implies

that R ~ is or R C cS almost everywhere. Given any region R that is not necessarily
constructed by h,

(FR(U) = 0) '" (Vf E F(u») (f n R = 0),

namely, an empty fragment means that none of the faces ofF(u) lie in R. However, FR(tT) = 0

implies nothing about the relation of R and is. One can contrive an R such that u respects

R, FRetT) = 0, and yet R lies both inside and outside S (recall that the faces are open sets).

Such an ill-formed region is constructed in Figure 6. The figure shows the projections of two

blocks A and B, and two cuts necessary to create the desired region (shown in Figure 6(c)).

The ill-formed region is a planar region that resulted from choosing splitting planes other than

those given by Choose.

Theorem 17 If h;; (0', T, {E3}}) = (O';, Ti, 'R.;) for any i > 1, then for any R E 'R.;;,

FR(u,)=@ '" (RCS-UF(u,») 0' (Rco·S-UF(u,») , and

FR(T,)=@ '" (RCT-UF(T'») 0' (RCo·T-UF(T'»).

Theorem 17 states that a region of 'R. that is constructed by h cannot be both inside and

outside a given solid if the solid's fragment in the region is empty. Once it is clear that an

empty fragment indicates that the region is entirely inside or outside a given solid, it is easy to

show the relation of the faces to the solids.

Corollary 18 If h; ({O', T, {E3
}}) = (O';;, T;;, 'R.;) for any i > 1, then for any R E 'R.i,

1. ;f FR(T) = @ and FR(U) # @ then (Vf E FR(U» flNT 0' (Vf E FR(U» fOUTT,

2. ;fFR(U) = @ and FR(T) # @then (Vf E FR(T» fINS 0' (Vf E FR(T») fOUTS.

14
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Figure 7: A child region R' that contains more faces than the parent region R.

For solids with coplanar and touching faces, a region containing the touching faces cannot

be completely decomposed into regions satisfying Corollary 18. Instead, h produces a planar

and convex region that contains two of the touching faces.

Lemma 19 If hi({u, T, {E3
})) = (O';,T;, ni) for any i > 1, then for any R E n" if FR(O') =

{f), FR(T) = {t'] and kO!=PjI then

(tWITHT and jlWITHS) or (fANTIT and j'ANTIS).

It remains to be shown that h converges, namely that,

At first thought, it appears that the size of a candidate-face set CR'(Ui+l, Ti+l) can be

larger than the candidate-face set CR(O'i,Ti) of its parent region R 2 R'. This suggests that

the child region R' can have more choices of splitting planes that the parent region R, and

that fragmentation increases not only the total number of faces but also the number of possible

splitting planes. However, this is not the case. CR'(Ui+l, Ti+l) may contain several faces that

belong to the same maximal face. The number of candidate splitting planes obtainable from

R' is bounded by the number of maximal faces that cross R' and not by the number of faces

in the region. The actual number of the unique planes obtainable from the candidate face set

is the same as the number of maximal faces that intersect the region, and is

if (3f E F) f ~ fm"r and fAIR(a,T)R

otherwise,

where F = FR(O') U FR(T) and the sum is over all maximal faces fm,,:s: of Sand T that also

intersect R.

In the case that R is a planar region, the splitting planes are taken to be perpendicular to

the region and are determined from the edges in the region rather than from the faces. As such

every face is a candidate face. The actual number of splitting planes is the number of maximal

edges that intersect the interior of the region. Thus, for planar regions,

if(3e E E)e £; em,,:." and e C iOR

otherwise,

15
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Figure 8: Fragmentation of a face fl. where h C 12 eft.

where E = ER(u) U ER('r) and the sum is over all maximal edges emll:t" of Sand T that also

intersect the interior of R.

It is important to note that a face witb a face-region index i resulting from the subdivision

of a face with a face-region index i implies that j :s i. This is portrayed in Figure 8 which

shows three regions R 1 , R2, and R:3, such that R:3 C R2 C R 1 , and three faces II, 12,/3. Given

that that faces have ft6..R1 , h6.jR2, and f3!::J./;R:3, their face-region indices are nondecreasing,

i:5i:5k.

Lemma 20 Let f E FR(U/;) and f' E FR'(Ul:+l) where R 2 R' and f 2 1', and where f!::J.iR

andf!::J.jR' . Then i:S i.

We can now show that as more and more regions are created, the amount of work reduces

in that the face-region indices increase, as the number of possible splitting planes decreases.

Theorem. 21 Given the sequence {Ul,Tl,n1),{U2,T2,n2), ... then fOT all i 2:: 1 and for all

R E ni, one of the following two conditions hold:

2. R ¢ n.+1 and 3Rt, R 2 E ni+l where R = R 1 U R 2, such that for x = 1,2 exactly one of

the following conditions hold:

(aJ FR~(Ui+.) = 0 and FR,,(T.+d = 0;

(bJ (In(u;,Ti) = IR~(Ui+I,T;+l) and NR(Ui,Ti) > NR,,(Ui+l' Ti+l»; or

(cJ IR(Ui,Ti) < IR.,(Ui+l,T;+l)'

Each region in ni either appears in ni+l in which case nothing changed (condition (1», or is

split (condition (2»). If the region R is split into R1 and R2 , three possibilities arise for each

R:t", where x = 1,2:

16
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Figure 9: Both figures show a cone and a block. In figure (a), the left face of the block is
merged with the apex of the cone. In figure (b), the left face is not.

2a) I4 contains no faces. Thus, R z E nj, for all subsequent j.

2b) The smallest face-region index in R z remains the same as in R. In this case, the number

of possible splitting planes diminished from that of R.

2c) The smallest face-region index in the R., is higher than in the R:r;-

This suggests that at some point, the splitting of regions must stop as the decomposition process

runs Qut of splitting planes and all regions become homogeneous. It follows, then, that from

any (1' and T, we can derive some O'nl and Tn that respect each other.

Theorem 22 Given (J' E 8(8) and T E BeT) for S, T EM,

The proof follows directly from Theorem 21.

5 Conclusion

This paper pre>ented the set operations as a four step problem, and focused on the first step,

namely, imposing respect. Respect is achieved by a method that can be described as a two-way,

input-directed, spatial decomposition method with four appealing properties:

1. The method is purely face-based. Only face sets need to be manipulated. This is a direct

consequence of partitioning a region into two subregions, called a two-way decomposition

method, rather than into three regions, called a three-way decomposition method.

The use of the two-way decomposition method provides only the weak form or respect

for which the obtained boundary descriptions contain faces that are homogeneous almost

everywhere in relation to the other solid. Thus, it cannot be consistently determined if an

edge or a vertex that touches the other solid is going to be incorporated into the touching

face or not. This is illustrated graphically in Figures 9(a) and (b). The two figures show

17
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Figure 10: Solid circles indicate where a vertex is merged into a face. An open circle indicates
where a vertex is not merged.

a cone touching a block. In (3), the splitting plane causes the left face of the block to

lie in the same region as the cone, and so the left face of the block is subsequently made

homogeneolls in relation to the cone. On the other hand, Figure (b) shows that a split

can cause the block and the cone to separate so that the left face of the block does not

merge with the apex of the cone.

The example of Figure 9 suggests that a more informed splitting plane selection strategy

that properly chooses a splitting plane can produce the strong form of respect. This,

however, is not possible. Consider the same type of example shown in Figure 10. Both

orientations of the splitting plane prevent one of the two faces lying in the splitting plane

to merge with the touching vertex. The open circles mark the vertices that are not merged

into the touching face.

As a consequence, the two-way decomposition method necessarily results in the weak form

ofresped, and requires 8. post-processing step to merge the four singular cases illustrated

in Figure 3. This post-processing step can be done efficiently by using the plane-sweep

method[PS85].

2. With the use of a nonmanifold boundary representation such as the fedge-based data

structure [Van89J, all solids are handled uniformly.

3. The eight-way classification allows the nondestructive construction of AU~ B, An~ B,

A _. B, and B _. A simultaneously without reclassifying for each operation.

4. The splitting plane selection strategy used in Choose can be augmented with a simple

regular-decomposition method. Initial cuts can be selected so that a minimal rectalinear

region enclosing both solids is successively cut in half without affecting the correctness of

the method. This is illustrated in Figure 11. Note that by itself, regular-decomposition
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Figure 11: The first four cuts performed by a. regula.r decomposition method.

is not sufficient for imposing respect. Nevertheless, mixing regular-decomposition with

the input-directed method in general reduces the number of generated regions. Paterson

and Yao demonstrated that while a binary partition that restricts every splitting plane

to contain a face can be quadratic in size a binary partition without the restriction may

exist that is only linear in size [PY89, Example II].

A solid modeler using the presented method has been implemented in Common Lisp and

runs on a Texas Instrument's Explorers and on Symbolics. It uses the fedge-based data structure

to represent the boundaries of solids and uses set operations to create complex solids rrom few

parameterized primitives.
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Appendix: Proofs

Proof: [of Theorem 17] The proof is given only for CT; since the proof for the second

implication (i.e., Ti) is identical.

Suppose by way of contradiction that the implication is false, and let F == UF(rri).

Then

~(FR(",)= °=> (R C S - F) V (R C ,.S - F))

=> ~(FR(,,)'<0V(RCS-F)V(RC"S-F»)

=> FR (.,) = °A (R <t S - F) A (R '1.0"S - F)

=> Fn R = °A(Rn (,SU F)) ,< °A (Rn (is UF)) ,< °
=> FnR=0A(Rn,S),<0A(RniS),<0.

That is, R does not contain any of the faces, but it is simultaneously inside and

outside S. This can hold only if R crosses the boundary of S (i.e., R n bS '# 0).

However, since F n R = 0, R can cross bS only through edges or vertices. Now,

since R is a convex region, it can only cross bS at only one vertex or at only one

edge. If R crosses bS at a vertex, R must be a subset of a line passing through the

point coincident with the vertex. If R crosses bS at an edge, R must be a subset of

a plane passing through the line containing that edge.

So suppose without loss of generality that R ~ 1li_l. Then there must exist some

region R' E 'R.i_l for which

• FRel(FR'(Ui_I), Fn'(7"i_I)) = 0; and

• R = R' n P< or R = R' n P~, where P = Choose([PR,(ui_I),FR'(7"i_I)J).

Now consider the two possible ways that R can cross bS:

1. R is a subset of a line. Clearly, R' is a subset of a plane (Le., a planar region)

since R' contains faces. Furthermore, a.t least one face in R' contains an edge e

for which eA1R' , since otherwise, every face f would be f.t:.sR' , and R' would

no longer be a candidate for decomposition. Since R' is planar, to get R to be

a subset of a line means that R = R' n Sp;', and P = Perp(f, e), where e lies

on the border of R' , namely, eA2 R'. But this is contradicts the condition of

Choose, and so R cannot be a subset of a line.

2. R is planar. Without loss of generality, assume that R' is non-planar. Clearly,

R is the result of R' n P~, and since R' is non-planar than the face

-region index of each face in R' is less than four. To get the desired region

R, the candidate face f in R' must have the face-region index equal to two
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or three, and there must be other faces lying in the interior of R' (i.e., with

a face-region index of one). However, this contradicts the definition of Choose

which uses a candidat~ face from the candidate face set consisting of faces with

the minimal Cace-region index.

The above two cases (based on the premise that the implication of the theorem is

false) derive contradictions thereby showing that the implications oC the theorem

are true.

Proof: [of Corollary 18] From Theorem 17,

o

Since FR(U) # 0, then all its faces must be contained entirely in R. So using

Property 8, consider in turn, the two disjuncts of the above consequent:

VfE Fn(u)(f'.;, R) => VfEFn(u)(fcT-UF(T»)

=> 'tIj E FR(u)jINT, or

Vf E Fn(u)(f '.;, R) => Vf E Fn(u)(f C ,"T- UF(T»)

=> Vf E Fn(u)fOUTT,

which completes the proof. 0

Proof: [of Lemm.a 19] Assume the antecedent. Since 1:0 j = kG!" then j ~ kOf', and

!' ~ kO j, which means that

VpE fnf'(Ns(p) = NT(p») , m

Vp E fn t'(N,.s(p) = NT(p)).

(23)

(24)

Now, if Eq. (23) holds, then jWITHT and !,WITHU,

then jANTIT and j'ANTIO".

Otherwise, if Eq. (24) holds,

o

Proof: (of Lemma 20] Since :l:l:+I = Cut(:l:,b R, P), FRI(:l:l:+I) is either FR(Zk+d np<

or FR(Zk+l) n P>.

Assume the former. From Definition 14, the region on or above P consists of the

faces of three sets, that are correspondingly the faces that do not cross P, that lie in

P, and that result from faces crossing P. Of these, only the faces lying on P change

their face-region index when they become part of R~. The others, not lying on P
are not affected, and so their face-region index does not change. Therefore, i = j.

For the faces that do lie on P, they migrated from the interior to the boundary.

Therefore, i < j.
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Assume the latter. The same line of reasoning follows as the former case with the

exception that there are no faces on P. Therefore, each face of the region below P
maintains the same face--region index. o

Proof: [of TheoreIll 21] Proof by strong induction on the regions of n;;.

Base Case: For i = 1, n1 = {E3
}. So, E 3 ~ n2, and E 3 = R< U R> for some

R<,R> E n2· Now, the candidate face j E CE 3(0"l,7t} has j6. t E 3 and lies on

P. This means that j, as well as all the other faces lying on P, fall in R?:. Now

assume, without loss of generality, that the candidate face f is in F(0"2}. It needs

to be shown that condition two holds for both regions R< and R2.

First, consider R<. Since S is a solid (with finite volume), SnR< '# 0, which means

that FR«0"2} '# QL According to Lemma 20 IE'(U1,T1) = IR«u2,72). However,

f is in R?:, so the candidate-face set for R< is smaller by at least one choice of

splitting plane. Therefore, condition two holds for R<.

Second, consider R?:. Since j 6.2 R?:, then according to Lemma 20, either I E3(U1' 71) =

In?; (0"2, 72) = 1 and so there are some faces that are not contained in P which

means that the candidate--face set for R?: is smaller by at least one choice of split

ting plane, or the face f (or other faces on P) is the only face in R?: and so

IE 3 (0"1 , 71) = 1 < IR ?; (0"2, 72) = 3. Therefore, condition two holds for R?:.

Inductive Hypothesis: Assume that for some k, k> I, and for all j, 1 ~ j < k, the

two conditions of the theorem hold.

Inductive Step: Given the sequence of triples {(O"", 7/;, n,,) }:=1' the next triple in the

sequence is defined by choosing some region R E n" for which FRel(FR(O'''), FR(Tk)) =
0, selecting some splitting plane P by Choose, and creating the regions R< = Rnp<

and R?; = R n P?: along with the appropriate fragments.

If there is no region R for which FRel is zero, nothing changes. That is, n"+1 = n",
and by the induction hypothesis condition one holds for all R E nl;.

So suppose that there is some region R E nJ:. for which FRel is zero.

All the other regions R' E (n" - R) appear unchanged in 1(.J:.+l so condition one

holds for each region R' .

Since R is split into R< and R?:, R ~ nk+1, so it remains to be shown that condition

two holds for R.

First, consider the region below P, namely R<, and take each of the three conditions

in turn:

(a) Since the candidate face lies on P, it belongs to R?: and not R<. If there all

other faces lie in R?:, the region R< is void of any faces.
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(b) Given that the region R< contains some faces, Lemma 20 states that each

face must have the same face-region index as its parent face in R. Thus,

[n(O"i,T.) = [R«U.+I, Ti+tl. Furthermore, since all the faces of R that lie on

P belong to R~, the maximally connected faces on P do not intersect R<.

Thus, NR(Ui,Ti) > NR«Ui+l,Ti+l).

(c) Lemma 20 shows that this condition cannot occur.

Second, consider the region on and above P, namely R~, and take each of the three

conditions in turn:

(a) Since the candidate face of R lies on P, the face belongs to R~, and so the

region contains at least one face. Therefore, this condition cannot occur.

(b) For this condition to hold, not all the faces with the smallest face-region index

(i.e., faces of CR(Ul:, Te» can be coplanar. Since if not, than no matter what

face is selected,

(c) For this condition to hold, all the faces in R with the smallest face-region index

(i.e., faces of CR(O"I:, 1l:» are coplanar and lie on P. All the other faces (i.e.,

those not in CR(O"I:, Te» must have a larger face-region index. The faces lying

on P all increase their face-region index in R~. Therefore, all the faces of R~

have a face-region index larger than [R(Uk,Te).

This proves that the two conditions hold for all i ~ 1 and for all R E 'R i . 0
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