
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1989

Efficient Heap Implementation with a Fixed-Size Linear Systolic Efficient Heap Implementation with a Fixed-Size Linear Systolic

Array Array

Jyh-Jong Tsay

Report Number:
89-911

Tsay, Jyh-Jong, "Efficient Heap Implementation with a Fixed-Size Linear Systolic Array" (1989).
Department of Computer Science Technical Reports. Paper 777.
https://docs.lib.purdue.edu/cstech/777

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

(j 1\

Efficient Heap Implementation With A Fixed-Size Linear

Systolic Array

Jyh-Jong Tsay

Department of Computer Science

Purdue University

West Lafayette, IN 47907.

Abstract

The heap is a data strudure used in many applications and provides a funfamen

tal technique to solve many problems efficiently. In this paper I we show that a se

quence of n INSERT and EXTRACT..MIN heap operations can be performed in time

O(nlogmjlogp) with space Oem) on a random access machine to ,vhich a linear sys

tolic array of p processors is attached, provided that, at any time instance, there are at

most m (m ~ n) data elements in the heap. The algorithm can be easily to modified

to handle DELETE operation with time O(n log nj logp) and space O(n).

1

RAM~···~I
Linear sysEOlic array

Figure 1: The Machine Model

1 Introduction

The machine model used in this paper consists of a random access machine to which a linear

systolic array of p processing elements is attached (see Figure 1). Each of the p processing

elements has only 0(1) local memory. The same machine model has been considered for

sorting [3, 8J and geometric problems [4] and optimal algorithms have been given. In this

paper, we consider the problem of performing a sequence of n INSERT, EXTRACT....MIN

operations on this machine model. We present an algorithm which takes O(Iog mflogp}

amortized time for each operation and O(m) space, provided that, at any time instance,

there are at most m (m ~ n) data elements existing. The algorithm can be easily modified

to handle DELETE operation with time O(log nj logp) and space O(n). The time bound

is optimal since sorting can be reduced to a sequence of n INSERT operations followed

by n EXTRACT....MIN operations and the time performance of O(nlognj logp) is the best

possible for sorting [1].

Section 2 outlines our algorithm, Section 3 and 4 gives details and analysis, and Section

,) concludes.

We assume throughout that n = pk and m = pI for some positive integers k, 1. Our

scheme can be easily modified to handle the case of arbitrary nand m.

2 Outline of the algorithm

It is known that a linear systolic array of p processing elements can be used to store 2p data

elements such that each INSERT and EXTRCAT....MIN operation can be performed in 0(1)

time [7]. OUf algorithm is mainly based on a way, which will be described later, to store

2

most of the m data elements (except no more than p ones) in the random access machine

such that their minimum can be obtained and deleted efficiently. Only a small portion

(no more than 2p) of the m data elements are stored in the linear systolic array. The

condition maintained throughout our algorithm is that the smallest one is always stored in

the linear systolic array. We then use the algorithm in [7] for INSERT and EXTRACT..lvIIN

operations to insert a data element into or extract the minimum from the linear systolic

array in 0(1) time. We next explain how the data elements are stored in the random access

machine.

We store the data elements in the random access machine in p log mj log p sorted lists

as follows. View the memory of the random access machine as consisting of p log mj log p

blocks bl , b2 , ••• , bplogm{logp, such that the size of block bj is pfi/pl. Each block consists

of consecutive memory locations. The data elements are stored in blocks and each block

contains an increasing sorted sequence.

The plogmjlogp blocks are grouped into p groups GIl G2 , ••• , Gp , according to their

indices, such that group Gj consists of k(= logmflogp) blocks bU-I)k+h b(i-tjk+2'" " bik·

For any group G j , define the group minimum of Gi to be the smallest one among those which

are stored in blocks of Gi. If there is no data element stored in Gi, the group minimum

of Gi is defined to be 00. The data elements stored in the linear systolic array are the p

group minimums and no more than p most recently inserted ones (which will be clear from

the details of INSERT operation). We next outline our algothms and review some previous

results which will used in our algorithms later.

Define level Ci to be the set of blocks of size pi, i.e. Ci = {b(i_l)p+!,b(i_t)p+2'" .,bip}.

When a data element is inserted, it will be first inserted into the linear systolic array until

the linear array holds 2p data elements. (At that time, p of them are group minimums and

p of them are from INSERT operations.) Those p ones which are not group minimums are

then moved to a block of Ct. When all the blocks in C. are occupied, we then move all the

data elements stored in blocks of C 1 to a block of C2 • This needs to merge the p sorted lists

of size no more than p, which are stored in C 1 , into a sorted list of size no more than p2.

We call such a merge level-merge. The level·merge will be performed on any level Ci if all

the blocks of Ci are occupied. To report and delete the smallest element, we first extract

the smallest element from the linear systolic array and report it. If the extracted element

is a group minimum of some Gi, we then delete that element from Gi, find and insert the

3

new group minimum of Gi into the linear systolic array.

It is easy to verify that the space of the algorithm outlined as above is O(n). We adopt

the following strategy to reduce the space to Oem): for each level Ci, at most one of its

occupied blocks is allowed to contain less than pi /2 data elements. If there are two blocks

in C; containing less than pi /2 elements, we then merge them into one sorted list. We call

such a merge local-merge. It is well known that a local-merge takes linear time.

Lemma 2.1 Tile space complexity of above ol.lUined algorithm is Oem) if in each level Ci,

at most one of its occupied block contains less than pi /2 data elements.

Proof: To count the space, we count the number of data elements stored in the random

access machine when a block b in C; is first used as follows. Suppose there are w < pother

blocks in Cj used before b. Note that b will be used to store at least (p - 2)pi-t /2 data

elements as b is used to store the result of a level-merge on Ci_l. Since b is used first time,

all the blocks in Cj for j > i have not yet been used. Thus, the space used up to now is

O((w +2)pi) (including b). Since there may be at most one used blocks other than b in Ci

containing less than pi/2 data elements, the total number of data elements stored in the

random access machine is at least (w - 1)pi/2 +(p - 2)pi-l/2, which is O(wpi). Thus, the

space is Oem). 0

We next review a lemma which is given in [3).

Lemma 2.2 A level-merge on Ci can be performed in time linear to the number of data

elements stored in C j on our machine model.

Proof: In [3], Atallah, Frederickson and Kosaraju show that, given p sorted lists, we can

merge them into one sorted lists in time linear to the number of data elements involved all

our machine model by doing the following steps: (i) select the pth element from the p sorted

lists (each list is in one block) in O(p) time, using the selection algorithm of Frederickson

and Johnson [6]. (ii) identify and delete the group of the first p elements from the p sorted

lists in O(p) time by examining each sorted list, (iii) sort the identified group of the first p

elements in O(p) time by use of the linear systolic array, (iv) if the p sorted lists are not all

empty, repeat (i), (ii) and (iii). 0

We next give details of INSERT and EXTRACT...M:IN operations.

4

3 The INSERT operation

OUf algorithm for INSERT operation consists of the following steps.

1. Insert the new data element into the linear systolic array.

2. If there are less than 2p data elements stored in the lineM systolic array, then stop.

Otherwise go to Step 3.

3. Read the data elements from the linear systolic array in sorted order. Identify those p

ones wh.ich are not group minimums and store them in a block of C1 . All can be done

in O(p) time. (The implementation of element identification and block allocation is

simple and omitted.)

4. If now aU the blocks in C1 are occupied, then perform a level-merge on C1 and stoce

the result in a block of C2 • This level-merge process will be continued on G2 , C3 ,

... , up to Cit where i is the smallest integer such that there are still some blocks in

Ci+1 not occupied after the result of level-merge on Ci is stored. Now, if there are

two blocks in Ci+l containing less than pi+! /2 data elements, then do a local-merge

to merge them into one sorted list.

5. Regroup blocks into G I , G2 , ••• , Gp according to m. Find the group minimum of each

Gi, and insert it into the linear systolic array. The linear systolic array now contains

p data elements in increasing sorted order. The group minimun of each Gi is obtained

by examining the first element of each occupied block in Gi.

The correctness of above algorithm is established as follows. Step 1 inserts the new

data element into the linear systolic array and ensures that the data elements which are

not in the memory of the random access machine are in the linear systolic array. Step 3

and 4 ensures that the data elements stored in each block are in increasing sorted order and

that, for each Ci, at most one of its occupied blocks contains less than pi /2 data elements.

Step 5 ensures that the p group minimums are stored in the linear systolic array. Thus,

the minimum of the data elements stored in the linear systolic array is the minimum of the

current data. This gives the correctness of above algorithm.

To establish that the total time for all the INSERT operations is O(nlogm/logp), we

count the time as follows. It is obvious that the time for Step 1 and 2 is 0(1) [7J. We

5

analyze the time for Step 3, 4 and 5 with an amortized scheme. We charge the cost of

Step 3 and 5 to the p INSERT operations which insert those p elements which are stored

in the linear systolic array but not group minimums. Since the space is O(m) (hence the

number of blocks is O(plog m/ logp)), Step 5 takes O(plog m/ log p) time to regroup the

blocks and find the group minimums. It is easy to perform Step 3 in O(p) time. Thns, the

time charged to each INSERT operations due to Step 3 and 5 is O(logm/ logp).

To analyze the time for Step 4, we count the time to do level-merges and the time to

do local-merges separately. We charge the time of each level-merge to the data elements

involved. Since each level-merge can be performed in time linear to the number of data

elements involved (Lemma 2.2), the time charged to each data element due to level-merges

in Step 4 is O(log m/ logp) as each element can be involved in one level-merge while in each

[('vel. We now count the time for local-merges. Consider a local-merge of Step 4 which is to

merge two sorted lists stored in blocks bh and bj2 of Ci+l. We know that one of bh and bh

is used to store the result of the level-merge on Ci. Let it be bjl' We charge the cost of the

local-merge to the data elements stored in bit. Since biJ contains at least (p - 2)pi /2 data

elements and the local-merge takes O(pi+I) time, the time charged to each element due to

local-merges in Step 4 1s O(logmflogp) (0(1) while in each level). Since there are only

O(n) INSERT operations and hence O(n) data elements, the total time for all the INSERT

operations is therefore O(nlogmflogp). We then have the following lemma.

Lemma 3.1 Above algorithm performs all the INSERT operations in O(n logmflogp)

lime.

4 The EXTRACT...MIN operation

The details of EXTRACT.MIN operations are as follows.

1. Extract the minimum from the linear systolic array and report it.

2. If the minimum is not a group minimum then stop. Otherwise, go to Step 3.

3. Let the minimum be in bj E G,.. Delete it from bj. If there are two blocks in G,.

containing less than pi /2 data elements, then do a local-merge to merge them into

one sorted list. Find the new group minimum of Gi and insert it into the linear systolic

array.

6

The correctness of above algorithm js straightforward. We only analyze its time com

plexity as follows. Step 1 and Step 2 take 0(1) time. For Step 3, deletion of the minimum

from a block can be done in 0(1) time by changing the index of the first element in that

block, and finding the group minimum of G, can be done in O(logmjlogp) time since Gi

has only such many blocks. We next count the time to do local-merges of Step 3.

Consider a forest which records the history of local-merges in Step 3. Each occupied

block hj is associated with a history tree Tj, and each node v of Tj is associated with a

sorted list I(v) which is a result of some local-merge or level-merge. Assume hj is in C,.

Tree Tj is formed as follows. If block bj is used to stored the result of a local-merge on

hit and hj'l1 then Tj is a tree with the roots of Tjl and Tj~ as the only children of its root.

For any tree T, let root(T) denote the root of T. List I(root(Tj)) is then the result of the

local-merge on bj] and bj'l' After the local-merge on bj] and bh , trees Til and Th are cleared

to be empty. Otherwise, block bj is used to store the result of a level-merge on Ci-l> and

Tj is a tree with only one node and I(root(Tj» is the result of that level-merge. After a

level-merge on C._I, the p history trees associated blocks of Ci are cleared to be empty. We

then have the following simple lemma.

Lemma 4.1 Let bj be a block of C j • Then,

1. Jor any node v oj Tj, II(v)1 ~ (p - 2)p'-1 /2, and

2. if VI and V2 are two children of v, and Vt,l, Vi,2 and V2,l, V2,2 are children of VI and

V2, then 1([(V",) U I(V,,2) U I(V2,,), UI(V2,2)) - I(v)1 ~ (p - 4)pi-l.

Based on above lemma, we then count the cost of local-merges in Step 3 with an amor

tized scheme as follows. Consider a local-merge of Step 3 which is to merge blocks hi! and bh

of Ci. If one of root(Tjl) or root(Tj'l)' say root(Tj]), is a leaf, we then charge the cost of the

local-merge to the data elements which are in I(root(Tit)). Since II(root(Tjl)[~ (p_2)pi-l,

the cost so charged to each element is O(log mj logp) (0(1) while in each level). Otherwise,

let vit,I1 Vj],2 be the two children of root(Tit) and Vj'l,1' Vj'l,2 be the two children of Toot(Tj2)'

We then chage the cost to the data elements in (I(vil,J U I(vh,2) U I(vh,l) U I(vh,'l))

I(root(Tj)). Since I([(v",) U I(Vl,2) U I(V2,1) U I(v2,2)) - I(v)1 ~ (p - 4)pi-l and each el

ement is charged at most twice while in each level, the cost so charged to each element is

O(logmflogp) (0(1) while in each level). Since there are no more than n data elements,

the time to perform all the EXTRACT...MIN operations is O(nlogm/logp).

7

Lemma 4.2 Above algorithm performs all the EXTRACT...MIN opemlions in time O(nlog mjlogp).

Therefore, we have the following theorem.

Theorem 4.1 A sequence ofn INSERT and EXTRACTJlfIN opemtion.<; can be performed

in time O(nlogmjlogp) with space Oem) on a random access machine to which a linear

systolic array of p processing elements is attached, provided that, at any time instance, there

are no more than m data elements existing.

5 Conclusion

We have shown that a sequence of n INSERT and EXTRACT...MIN operations can be per

formed in time O(nlogmflogp) with space Oem) an a random access machine to which

a linear systolic array of p processing elements is attached. The algorithm can be easily

modified to handle DELETE operations with time bound O(nlognjlogp) and space O(n).

The idea is to view each DELETE as an INSERT but mark the data element as "deleted".

Deletions are performed only when a deleted element meets an inserted element with the

same value. This gives a general scheme to obtain O(nlognflogp) solutions for many

problems which can be reduced to a sequence of INSERT, DELETE and EXTRACT....MIN

operations. One of such problems is to schedule n unit·length jobs on q identical processors

to meet deadlines [5].

Acknowledgment

The author would like to thank M.J. Atallah for his support and helpful comments of

this work.

References

[1] A. Aggarwal and J .5. Vitter, The Input/Output Complexity of Sorting and Related Prob-

lema, Comm. ACM 31, pp. 1116-1127, Sept. 1988.

[2] A. v. Aho and J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer

Algorithms, Addison-Wesley, Reading, Mass., 1974.

[3] M.J. Atallah and G.N. Frederickson and S.R. Kosaraju, Sorting With Efficient Use of

Special-Purpose Sorters, Info. Process. Lett., 27, pp. 13·15, 1988.

8

[4] M.J. Atallah and J.-J. Tsay, On the Parallel-Decomposability of Geometric Problems,

A CM Proceedings of the fifth annual symposIUm on Computational Geometry, pp. 104

113, June 1989.

[5] ,J. Blazewicz, Simple algorithm for multiprocessor scheduling to meet deadlines, Info.

Proce". LeU., 21, pp. 162-164, 1977.

[6] G.N. Frederickson and D.B. Johnson, The Complexity of Selection and Ranking in X +Y

and Matrices with Sorted Columns, J. of Computer and System Science 24{1982} 197-208.

[7] D.T. Lee and H. Chang and C.K. Wong, An on~chip compare steer bubble sorter, IEEE

lrans. Computers, Vol. 6, c-30, pp. 396-405, 1981.

[8] H. Mueller, Sorting Numbers Using Limited Systolic Coprocessors, Info. Process. Lett.,

24, pp. 351-354,1987.

9

	Efficient Heap Implementation with a Fixed-Size Linear Systolic Array
	Report Number:
	

	tmp.1307986960.pdf.p3OoK

