View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1989

Design Considerations for Distributed Scientific Software
Systems

Paul E. Buis

Report Number:
89-909

Buis, Paul E., "Design Considerations for Distributed Scientific Software Systems" (1989). Department of
Computer Science Technical Reports. Paper 775.
https://docs.lib.purdue.edu/cstech/775

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.


https://core.ac.uk/display/4951669?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

DESIGN CONSIDERATIONS FOR
DISTRIBUTED SCIENTIFIC
SOFTWARE SYSTEMS

Paul E. Buis

CSD-TR-909
Seplember 1989



Design Considerations for Distributed Scientific
Software Systems

Paul E. Buis

Abstract

In this paper we enumerate the various design issues in distributed
computing systems. In particular, we look at the issues facing the
conversion of non-distributed scientific systems into distributed sys-
tems. The discussion focuses on interface specification, binding, and
protocols.

1 Introduction

In this paper we enumerate the various design issues in distributed comput-
ing systems and give examples of how they have been dealt with in existing
systems. We look at the issues facing the conversion of two particular types
of non-distributed scientific systems into distributed systems. We consider
systems based on libraries, such as IMSL, and systems based on software
parts technology, such as ELLPACK. The discussion focuses on interface
specification, the what of message passing; binding, the where of message
passing; and protocols, the how of message passing.

2 Interface Specification

In a subroutine library, the interfaces are specified by the subroutine param-
eters. When converting such systems for distributed use, the most natural
paradigm is remote procedure call (RPC). RPC is a common form of in-
terprocess communication (IPC) where input parameters are converted into
a message sent to a server and a client waits for output parameters to be
returned in a message. The most convenient form of interface specification
is one that can be compiled into code to do the message passing. Several
interface description languages (IDLs) have been built with associated code



generators for RPC. The code is generated as subroutines that replace com-
putation code with message passing code (called stub routines). Ideally, one
would like to use the parameter specifications in the original subroutine’s
source code as an interface specification for the RPC system. To the best of
my knowledge, no such compilers yet exist.

In a software parts technology based system, the interface between mod-
ules takes the form of structures located in global memory and subroutines
containing user-supplied functions. One would still like to have interface
specifications that are compilable into message-passing code even if the mes-
sage passing paradigm is not as simple as in the RPC case. Fortunately, one
should be able to use the tools developed for RPC since the set of input (or
output) parameters for a subroutine can be viewed as a structure and vice
versa.

Fortran 8X, currently a draft proposal for a replacement for FORTRAN,
includes a new piece of parameter description syntax called the “INTENT™
statement. With this new syntax, one can specify whether a parameter is
intended to be used as an input parameter and/or an output parameter.
This allows the compiler to do additional safety checking and optimization.
However, it will also allow Fortran 8X interface modules (another new piece
of syntax) to be used as RPC interface specifications. For example, to specify
a subroutine that adds two floating point numbers and returns their sum,
one could write:

interface
subroutine add(a, b, c)
real a, b, ¢

intent (in) a, b
intent (out) ¢
end interface

Xerox has developed an RPC system called Courier that contains an
IDL based on the Mesa language. To the best of my knowledge, the Courier
system does not support floating point numbers [15], but this has probably
been added by others since Xerox. This IDL was used at Cornell as the
basis for a C langnage stub generator under UNIX, and modified for use
with more heterogeneous systems at the University of Washington [11]. In
Courier, one could specify a routine to add two integers as follows:

Add : PROCEDURE[ a: LONG INTEGER, b: LONG INTEGER ]
RETURNS [ c: LONG INTEGER ] ;




Netwise has developed an RPC system called RPC TOOIL that uses
annotated ANSI C as its IDL. This system is targeted at inter-operating
system heterogeneity with support for MS-DOS, 0S/2, several flavors of
UNIX, and VMS [10,14]. With it, one could declare a procedure to add two
floating point numbers as:

add( float [in] a, float [in] b, float [out] *c);

Sun Microsystems has developed an RPC system with an IDL called
RPCL based on the C language. RPCL is used to specify the interface for
their Network File System (NFS) and Yellow Pages (YP) services [4,5,6,8].
This system would be particularly useful in software parts systems because
it uses the equivalence between structures and parameters lists. One could
specify the addition of two floating point numbers as follows:

struct add_in{ float a, b; };
struct add_out{ float c; };

PROGRAM {
VERSION {
add_out add(add_in) = 1;
}=1;

} = 0x20001234;

3 Binding

In a non-distributed system, binding is done by the compiler and the linker.
The compiler binds names to code and data, and the linker binds these to
addresses. In a distributed system, (machine name, program name) pairs
must be bound to (machine address, program address) pairs. The problem
of binding can be broken down into 5 issues: machine naming, program
naming, port determination, activation, and duration.

3.1 Machine Naming

Machine names need to be bound to network addresses. For BSD UNIX
systems this means Internet Protocol (IP) addresses. The most primitive
scheme for this binding is to simply have a file of all known (machine name,
machine address) pairs called /etc/hosts on every machine. This file is
accessed via the gethostent() system call. As machines are added to a net-
work, updating all these files becomes an administrative nightmare, so a



system to span a local network was developed by Sun Microsystems called
the Yellow Pages. It uses RPC to provide the functionality of the gethos-
tent() call (and similar administrative tasks). However, to be able to access
the huge number of machines on the entire Internet, even this is too simple
a scheme. More sophisticated protocols have been developed to cope with
this problem [21,22]. The binding of machine names to addresses need not
be a deep concern as long as one limits oneself to UNIX systems on the
Internet.

3.2 Program Naming

In a non-distributed environment, a program is typically referred to by the
name of the disk file which contains the executable form of the code for the
program. This may be inappropriate in the distributed case. If the dis-
tributed system is heterogeneous at the operating system level, the naming
of files may differ from one system to another and lead to confusion. The
entire name of a disk file may be quite long and/or not describe the use of
the program it contains.

One extreme solution to program naming is to avoid the issue by making
distributed programs accessible only by a priori knowledge of their program
addresses. SUNRPC uses a technique that is one step less crude: each
program is identified by a program number that is mapped directly to 2 port
number by a binding agent at run time. More sophisticated systems provide
a global namespace that is searched by a binding agent to determine both
machine and program addresses for servers. In such systems, the binding
agent may become a reliability problem and/or a performance bottleneck.

3.3 Port Determination

Once the namespace has been searched and a particular destination (ma-
chine, process) name pair for a message has been identified, one need further
refine the address beyond the machine name to a particular communication
port number.

One solution is to assume all port number assignments are well-known.
The file fetc/services contains well-known port numbers for UNIX sys-
tems. This technique leads to the same administrative difficulties as does
the use of /etc/hosts for machine addresses: as the set of servers grows
(or, heaven forbid, changes dynamically), updating the files on all machines
becomes an unmanageable chore.



Another solution is to use a single well-known port on all machines that
is attached to a process that either activates servers (such as inetd on BSD
UNIX systems) or forwards messages.

Finally, one can set up port determining agents (with well-known ad-
dresses) that know all (process name, port number) pairs for 2 machine
or set of machines. SUNRPC uses a program called the portmapper that
is told the port number of a server by the server when the server starts
up. However, its knowledge is limited to the local machine, so clients muss
know the name of the server’s machine a priori. Also, if the server dies, the
portmapper will incorrectly inform clients to use a port already claimed by
a process other than the server.

3.4 Activation

The activation of the program that is to receive input is an issue. The
questions are who and when will activate the program. I a program is
active ali the time, it will be consuming machine resources such as virtual
memory space. Il a program is not activated until bind-time, there will be
a delay while the program is activated. In SUNRPC it is assumed that the
program is already active. The UNIX programs listed in /otc/inetd.conf
are not activated until a message is sent to 2 daemon program (inetd) that
acts as an activation agent.

Also, in UNIX systems, security arrangements such as file access are
associated with the activator of programs. Hence, programs activated by
inetd have superuser privileges. In the SUPERSRYV system, each supplier
of a server activates an activation agent which must be contacted to activate
the server. Thus, each server runs with the privileges of its supplier.

The tradeoff is between the simplicity of leaving programs running all
the time and the complexity of using activation agents. Manually activating
programs (via rsh) is only suitable for the crudest systems.

3.5 Duration

The duration of the binding is also an issue. If the binding only lasts for
the duration of the receipt of a message (or a receive/reply), the overhead
of binding may be significant. However, if the binding is more permanent,
either the server must be constructed so it can communicate with multiple
clients simultaneously (via UDP for instance) or be limited to dealing with
one client at a time and denying/delaying service to others. The ISIS system



has a subsystem for lightweight processes to allow multiple simultaneous
clients within the same server process [13]. With such a system, one must
be careful that the multiple clients do not adversely interact.

4 Protocols

The question of how messages get from source to destination can be bro-
ken into three components: the transport protocol, the data representation
protocol, and the control protocol. The transport protocol is the lowest
level and deals with simply getting bytes from here to there. The data
representation protocol deals with the meaning of those bytes and how to
translate structures into byte strings. The control protocol deals with the
bookkeeping needed to be sure the bytes get where they are supposed to go.

4.1 Transport Protocols

The transport protocol provides a higher leve] interface to the physical com-
munication channel. Various physical communication channels can be used,
such as disk files, shared memory, ethernet, token-rings, or telephone lines.
The simplest transport protocols to use are those that are directly supported
by the operating system.

In UNIX, intermachine transport is provided by the TCP and UDP
protocols. TCP supplies a reliable ordered byte siream and UDP supplies
an unreliable, unordered packet stream. Thus TCP is usable as is, where
UDP requires a higher level transport protocol to obtain reliable, sequenced
packet streams. However, TCP can be inefficient due to the overhead needed
to provide reliable byte streams when reliable packet streams would suffice
[12]. Protocols based on UDP may also have potential advantages in that
they may not report failure when the network appears to have failed.

If the programs needing to communicate happen to be on the same ma-
chine, many systems provide interprocess communication facilities that can
be used instead of intermachine protocols. BSD UNIX provides named pipes,
and System V UNIX provides shared memory. On some UNIX derivatives,
both pipes and shared memory can be used as a transport protocol.

Other alternatives are to exchange data via disk files, which can be
convenient if all machines in the system share filespace. This may be the
only practical method if source and destination machines are not particularly
compatible. In this case, file exchange protocols such as FTP must be



invoked [20]. Some systems have even used electronic mail over 1200 baud
telephone lines in 2 file-exchange-based transport protocol.

4.2 Data Representation Protocol

The data representation protocol deals with how to convert language con-
structs to and from bytes sent via the transport protocol. The data rep-
resentation must be compatible with the transport protocol. For instance,
some transport protocols will only handle printable ASCII characters [25).
Or, if file transfer is used, an end-of-file character will need to be avoided
on some systems.

When in a heterogeneous hardware environment, it will not be practical
to use the internal representation of data in the transmitted byte stream.
Source and destination machines may use different internal representations
and it will be necessary for either the sender or receiver to do a conversion.
To simplify the conversions, all data can be transmitted in a common format.
The printed representations of values would suffice if all machines used the
same character set. Even if this were the case, printed representations are
not as compact as non-printable representations. Sun Microsystems’ XDR
standard [2] specifies use of IEEE encodings for basic data types.

The transmission of compound and abstract data types such as records
and lists also poses difficulties. Instances of compound data types can simply
be broken down into their basic components and transmitted one component
at a time. Transmission of instances of abstract data types is much more
complex. Objects such as lists contain references {pointers) to other objects
which also must be transmitted. Under some fairly reasonable assumptions,
this type of transmission can be done [17]. Abstractions such as continuous
functions that are represented as code rather than data are virtually impos-
sible to transmit. This can be dealt with either by transmitting a discrete
approximation to the function or by allowing the function to be accessed via
RPC.

Typing can be either explicit or implicit. In an explicitly typed system,
the transmission of each data value is preceded by a code for the type. In
an implicitly typed system, no type information is transmitted. This results
in a more compact encoding, but the receiver is required to anticipate the
type of each data value in order to convert it to the correct internal format.
Usually implicit typing suffices, and when one needs explicit typing, one can
emulate it with explicit tags in the data values. Both the Sun XDR and
Xerox Courier RPC data representation standards call for implicit typing,



An example of explicit typing is the National Bureau of Standards (NBS)
Computer Based Message System (CBMS) standard [15,24].

4.3 Control Protocol

The control protocol determines the reliability and flexibility of the overall
system. A message has not been reliably delivered simply by reliably trans-
mitting bytes from here to there. Another level of reliability is obtained
when there is an acknowledgment that the receiver has understood the mes-
sage and processed it. Flexibility is obtained by allowing for transmission of
the same message to a group of receivers. Additional flexibility is obtained
by giving control over when the message is to be delivered.

4.3.1 Reliability

In an RPC-based system, receipt of output parameters by the client also
serves as an indication that the server successfully processed the input mes-
sage. The difficult part of maintaining reliability in such a system is handling
the case of an error. Errors are signaled by the lack of receipt of the output
message. One may rely on a timeout mechanism. That is, if a response is
not received within a certain amount of time, then either an error is assumed
to have occurred, or the control protocol attempts to verify that the server
is still functioning. For less catastrophic errors, the client must be prepared
to receive a message indicating that the server was unable to process the
input.

The reliability of message delivery will affect the semantics of the message
passing system. Three different semantics can be provided: at-most-once
delivery, at-least-once delivery, and exactly-once delivery. At-most-once se-
mantics are the simplest to implement; the control protocol tries to deliver
the message to at most one server, and if this fails, simply gives up. At-
least-once delivery requires the control protocol to try to deliver the message
to any server that will accept it until one of them acknowledges a successful
delivery. Exactly-once delivery is difficult to implement, since it requires not
only the delivery of the message at least once, but also the cancellation of the
effects of any unacknowledged multiple receives. This implies a multi-stage
acknowledgment and the capacity of the receiver to roll back any effect of
undesired state changes.



4.3.2 Flexibility

Sometimes it will be useful to have the same message delivered to a set of
destinations rather than a single destination. If this set includes all ma-
chines on a network, this is called broadcasting. If this set is smaller but
contains more than one destination, this is called multicasting. Some trans-
port protocols may offer one or both of these options. For instance, on UNIX
systems the superuser may use UDP to do a broadcast to all machines on
the same physical network. Qtherwise, these actions are the responsibility
of the control protocol.

The timing of the delivery of a message relative to the end of the exe-
cution of the user-invoked subroutine can also vary. If the user code blocks
until the delivery is complete, the message passing is said to be synchronous.
If not, the message passing is said to be asynchronous. If the transport
protocol provides for asynchronous delivery, synchronous delivery can be
simulated by walting for an acknowledgment by the sender. If the transport
protocol does not provide for asynchronous delivery, it can be simulated by
sending the message to an intermediate delivery agent that is guaranteed
to receive the message virtually instantaneously. Some transport mecha-
nisms allow for only limited size messages to be delivered asynchronously,
and will lead to blocking if a message buffer becomes full. UNIX pipes are
an example of 2 mechanism with such limited asynchrony.

An extreme form of asynchrony is the provision for messages to be deliv-
ered when some event occurs. For instance, it may be useful for a server to
arrange for a message to be sent to a binding agent whenever the server dies.
This sort of arrangement requires a process external to the user’s process
to monitor such events and arrange for the message delivery. The ISIS sys-
tem includes a control protocol for this extremely flexible form of message
passing [13].

5 Conclusion

When building a distributed system, one must choose appropriate tools to
build the system. Different tools provide different degrees of integration.
Several systems offer integration on the language or operating system level
[9,18,19]. These are mostly inappropriate for our purposes since they re-
quire rewriting the entire system in a new language and/or investing in
hardware capable of supporting the operating system. Other systems sup-
ply distributed communication facilities as a “black-box” with no control



over how the communication is performed. Such systems may be acceptable

for prototyping, but for a finished product, we felt we wanted more con-

trol. Alternatively, one can implement a distributed system from scratch, a

project involving too much effort on issues that have no direct bearing on

the application at hand. The route we find most acceptable is a combination

of the last two: take “black-box” components, and combine them oneself.
The projects we are attempting have the following restrictions:

1. We are limited to BSD-like UNIX operating systems on a variety of
hardware types.

2. The application code we want to interface with is written in FOR-
TRAN on at least one of the endpoints of communication.

3. We have virtually no money to buy commercial software and for porta-
bility, we cannot use software without source code.

4. We do not require multicasting.

The first restriction is both a blessing and a curse. We need not accom-
modate operating system heterogeneity to the degree that the HRPC project
at the University of Washington does [11,23]. However, different BSD-like
systems have differing degrees of similarity. Since our environment has a
fair degree of homogeneity, we can do more sophisticated things.

Dealing with FORTRAN code means we need to interface FORTRAN
to C, as FORTRAN bindings to UNIX system calls are not widely avail-
able. However our communications interface need not be as general as the
multilanguage RPC stub generator of Gibbons [16]. Since FORTRAN does
not yet support a a pointer data type, we can avoid much of the difficulty
faced by Herlihy and Liskov [17]. To mass produce FORTRAN interfaces
for a RPC library, we are working on a stub generator that will accept such
Fortran 8X interface specifications as input and produce C code as output.
This will allow interfaces definitions to be constructed in a semi-automatic
manner.

Lack of funds and a desire for source code has made me fond of using
parts of the SUNRPC package. SUNRPC is available without charge from
Sun Microsystems in source code form. In addition, all of the parts needed
are already compiled and installed on most machines running Sun’s NFS
[1,3,7]. Hence, we can modify the parts we don’t like and can assume the
rest are installed and correct.
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The SUNPRC package has several weaknesses that require writing sub-
systems from scratch:

1. Lack of a global binding agent. I have been working on a program
to use with SUNRPC that will have knowledge of a set of machines.
However, the current version has no provision for redundancy if the
machine it resides on fails. This project may be abandoned if a work-
able pre-written binding/activation package is found.

2. Assumption that servers will be active all of the time and will only
support one client at a time. A compromise that I have used with
some of my SUNRPC programs is to instruct the server to fork() at
bind-time, creating multiple (heavyweight) processes that last as long
as the client requires. This ensures that the clients will not interact at
all, which may not be desired in all circumstances.

3. Overly simple control protocol based on timeouts. If the server takes
too long to compute results, the client will assume it has crashed.
Turning off the timeout mechanism will cause an RPC request to wait
forever if the server machine crashes while an RPC request is pending.

4. Lack of provision for a callback during an RPC request. The server
cannot call a procedure located in the client while processing an RPC
request from that client.

If multicasting were required, the control protocol would become suf-
ficiently complex as to mandate the use of a “black-box” control protocol
such as the one included in ISIS. However, the ISIS system has a different
set of weaknesses.
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