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1. INTRODUCTION

In this paper we shall be concerned with the region of convergence of the block

Symmetric Successive Overrelaxation (SSOR) method for solving linear systems of

equations Ax = b, where A is a block nonsingular matrix

o

o o

o

At,p_k+l 0

o A Z,p-k+2

o

o

A = 0

Ak + I •1

o

o
o

o Ap,p -k

o

o

o
o

o

Akp

o
(1.1)

where each diagonal block is square and nonsingular. Let D be the block diagonal

matrix given by D := diag (A 110 A 22•... , App ). Then the block Jacobi iteration matrix

associated with A is given by J~ := 1- n-1 A and has the form

o

o

o

o

o

o

Ct,p-k+l 0

o CZ,p-k+2 ...

o

o

J3 = 0 0

Gk + l,p a
o o

o
Ckp . (1.2)

o 0... Cp,p-k o o o

In the language of Varga [14] we say that J~ is a weakly eye/ie matrix of index p and A



-2-

is p-cyclic. In the language of Young [16] A is a generalized consistenIly ordered

(GCO) (k, p - k)-matrix.

Let L and U be strictly lower and strictly upper triangular matrices respectively

such that

~=L+U . (1~

Then the block SSOR iteration method for solving the system Ax = b has the block

SSOR iteration matrix associated with A given by

s~ = (I - 0) UrI [(1 - 0)) I + 0) LJ (1- 0) L)-1 [(1 - 0))1 + 0) UJ, 0);< 0, 2 . (1.4)

Since a necessary condition for the SSOR method to converge (see e.g., Varga [14] and

Young [16]) is that (0 E (0, 2) we shall restrict ourselves to considering values of co in

this interval only.

Recently Chong and Cai [3] have extended a previous result due to Varga, Niet

hammer and Cai [15] about the functional relationship between the eigenvalues of the

block Jacobi and the block SSOR matrices associated with p-cyclic matrices of the

form (1.1). Upon inspection the Chong and Cai result can be slightly strengthened to

read:

Lemma 1.1: Consider the equation

[ '!.. _ (0) - 1)2Y= '!..k [ '!.. - (0) - 1)] p -" (2 - 0))" of' Il" (1.5)

and asswne that co * 0, 2. Then

i) 0 = '!.. E "(S~) if and only if 0)= 1 and,

ii) 0 * A. E a(S~) if and only if ME a(J~), where a(') denotes the spectrum of a

matrix. 0

Let p(') denote the spectral radius of a matrix and put v := p (19). We raise here

the following question:

For which points (v. co) in the (v, co) - plane do all roots A. of (15) lie in the inte

rior of the unit circle (hereby guaranteeing that
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p (S~) < I ? (1.6)

In passing we comment as follows: i) For the case (P, k) = (2, 1) it can be

deduced from the works of D'Sylva and Miles [4] and Lynn [9] that (1.6) holds for all

points (v, co) satisfying 0::;; v < 1 and 0 < co < 2. ii) For the case

(P, k) = (P, I), P ;, 3, (1.6) holds provided that (v, co) E R(t), where R (t) is the region

in the (v, co)-plane given by (1.7) - (1.10) below with t;= kip and k = 1. The result

(1.7) - (1.10) for this case was obtained by the present authors in [8].

The first main result of this paper can be summarized in the following statement:

Theorem 1.1: Let A be a nonsingular GCO (k, P - k)-matrix, p ;, 3, k,. p/2,

whose diagonal blocks are square and nonsingular. Let JS and S~ be the block Jacobi

and the block SSOR iteration matrices associated with A and given in (12) - (1.3) and

(1.4), respeclively. Suppose Ihal p (J~) =v. Then p (S~) < I, provided that

(v, co) E R(t), where R (t) is the region in Ihe (v, col-plane defined by;

0<(0::';1,

• < 2OOl_OO<,

O:>v<I,

1+(CO-1)2
0:> v < =: Vl,,(CO),

(2 _ co)'lJ. co2 'lJ.

(co - 1)'12 ($(co) + I)' _ .
O:>v < (1 2l) 2 ,-. v2t (co),

CO (I - 21) I (21) ,

(1.7a)

(1.7b)

(l.7c)

where

t = kip, (1.8)

2("',' + 2)"2• • ---=-----=~~';,-:..=:~--:-:::- • •co := co, := ,$ := $, :=
($,' + 2)112 + ($,' _ 2)112

I + (9 - 161)112

2(1 - 21)
(1.9)

and

(1.10)oI
$ := $(co) := CO - I + I

co-

We prove Theorem (1.1) in Section 2. The main idea in the proof is to apply

Rouche's theorem, as in [8], for the location of the zeros of analytic functions to
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various factors of the equation in (1.5). In Section 3 we study in more details the pro

perties of the boundary of the region R (e) given in (1.7). The analysis there yields the

second main result of this paper:

Theorem 12: Under the conditions and notations of Theorem 1.1 and for any

numbers 1" 0. E (0, 1/2) we have,

if and only if

(I) 0 < 1, < 0. $ 3/8

or

(ii) 0 < 1, $1' < 3/8 < 0. < 1/2,

where e· is the unique real root in (0, 3/8) of the equation

Vu' (2) ~ V2 1/2 (2) ~ lim v2 t (2) ~ flt2
, . l-.(1I2r'

or

(iii) 0 < I' < 1, < 3/8 < 0. $1; (1,) < 112,

where e; eel) is the unique real root in (3/8, 1/2) of the equation

V2, t; (~) (2) ~ v2, ~ (2)

or

(iv) 0 < I' < I; (0.):;; II < 3/8 < 0. < 1/2,

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)
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wheree~ (f:2) is the unique real root in (e*, 3/8) aithe equation

(1.18)

For all other pairs of distinct numbers I" t,. E (0, 1/2) neither of R (II)' R (t,.) is a

proper subset of the other nor do they coincide. Moreover

1
0 < Ol < 2, 0 :;; v:;; 1/2

R:= (l R(/) := 2
le(O,1I2) 0<005: 1I2,1/2<v<1

1 + (2v - I)

o (1.19)

We remark the following:

(i) The analysis in Sections 2 and 3 will show that the region of convergence Ret) of

the SSOR method depends only on v, (0 and on the ratio e= kIp.

(ii) For IE (0,3/8] and IE (3/8, 1/2) the region R(/) is the (v, Ol)-plane which is

specified by (1.7) - (1.10) is illustrated in the sbaded region in Figures 1 and 2,

respectively. 'C' 1=1.' is I} 2

(iii) The region of intersection which (1.19) specifies is illustrated in Figure 3 and is

precisely the supremum of the convergence domain of the point SSOR method

associated with the nonsingular H-matrices A of all orders which satisfy the

p (I J: I) = v. Here J: denotes the point Jacobi matrix associated with A and F i. t· 3...
IB I denotes the matrix whose elements are the moduli of the corresponding ele-

ments of B. The latter region was essentially obtained by Neumaier and Varga

[11] and an open question concerning convergence along its curved boundary was

settled by Hadjidimos and Neumann [7].

(iv) We shall indeed show that as e~ 0+ the point of intersection of the curves

v, (Ol) := VI,' (Ol) and v2 (Ol) := v2,l (Ol), which turns out to be a point of

tangency between them, tends to the point (1/2, 2).

(v) For e= 1/2 the region R (1/2) is the whole rectangle shown in Figures I, 2, and 3

excluding its upper, lower and right boundaries. As was commented by Varga,

Niethammier and Cai [IS], in the special case (P,k) = (2, I), this result can be

concluded from earlier results of D'Sylva and Miles [4] and Lynn [9]. For

(p, k) = (2k, k), k > I, the result is new. Clearly R (I) c R (1/2), It I E (0, 1/2),
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so that we can sttengthen (1.19) as follows:

(} R(/) = (} R(/) =: R
te(O.1/2] te(O,1I2)

(1.20)

(vi) The case (P, k) = (P, I), P ;, 3, was studied in Hadjidimos and Neumann [8]. It

is a special case of the result in this paper since there t = 1/P .$; 1/3 < 3/8 < 1/2.

(vii) In this paper we restrict ourselves to considering rational values of the parameter

e= k/P. although our analysis covers all real values e, from the interval (0. 1/2).

Actually our analysis covers values of t from the entire interval (0. 1) as we can

readily ascertain that

A A'
(J (S",) = (J (SOl) , (1.21)

where AT is the transpose of A. Thus, if A is a GeO (k, p - k)-matrix with

I = kip e (112, I), then AT 1S a oeo (P - k, k)-manix with

t'=k' /p'= (P -k)/ p = l-/e(D, 1/2).

(viii) Finally we comment that in the case (P,k) = (2, 1), with A hennitian positive

definite matrix, the use of the SSOR splitting as a means for the preconditioning

of the system Ax = b is well known (see e.g., the survey paper by Axelsson [1]).

For non hermitian matrices the case (P, k) = (3, I) has arisen in an iterative

method for finding the least squares solution to a system with an m x n matrix

coefficient of full column rank (see Chen [2] and also Niethammer, de Pills and

Varga [12], Markham, Neumann and Ple=ons [10] and Freund [5]).

2. PROOF OF THEOREM 1.1

Recall the statement of Rouche's theorem (e.g., Tall [13]): Suppose g and fare

analytic functions in a domain containing the track and interior of a closed Jordan can·

tour 'Y described anticlockwise. If

1ft),,) - g(),,) I < Ig(),,) I

on the track y, then feA) and g(A.) have the same number of zeros inside y.
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Consider the equation (1.5). We wish to determine the locations of its roots A. as

functions of v = max I~ I = p(In). Our idea is this: Put
J.LE C1 (IS)

fO.) = [ A - (00- 1)2Y-').1 [ A - (00- I)] P - 2k (2 - 0l)2k of' ~p (2.1)

and

(2.2)

Since g(A.) has for any 00 E (0, 2) all its root in the interior of the unit circle and in

view of Rouchi's theorem we ask: Given an ro E (0, 2), for which ~ E (C'does it hold

thac

IA-(0l-lflp - 2k (2-0l)2k of' l~iP= If(A)-g(1..)1 < Ig(A) I

(2.3)

=IA-(0l-1)2iP,'IAEdQ,

where .Q denotes the unit disc?

As A. - (co - 1) ;r. 0 for A. E a.Q. to answer our question it suffices to detennine for

a given ro E (0, 2) those Jl E d' for which

lTIm
t..E an

IA-(0l-1)21

11.._ (00_1)1 ' -"
> (2-00)" 00 I~I (2.4)

with e= kip.

Let A. E an and represent A. as A= x + iy, x, Y E JR. Then the ratio appearing in

(2.4) admits the following expression

=:h(X,Ol) . (2.5)



- 8 -

Clearly the inequality in (2.4) holds if and only if

min h(x, CD) > (2-CD)" CDI~I
x e[-l, 1]

(2.6)

Thus for a fixed 00 E (0, 2) we shall investigate the behavior of h (x, co) as a function

of x in the interval [-1, 1]. It will be convenient to use the notation" - " to denote

equality of sign between two expressions.

Before beginning our investigation In earnest, we make the following simple

observation.

Observation 2.1: For 00= 1 a necessary and sufficient condition/or (2.3) to hold

is that I~ I < 1. Moreover, when I~ I = 1, a necessary and sufficient condition for

A. E aQ to be a root of (2.1) is that 1..k = ~p.

Proof: Because h(x, I) = I for all x E [-I, I], we easily see that (2.6) holds

when, and only when, I~ I < 1. Next observe that when CD = l,f (A.) = 1..P-< (1..k - ~P),

from which the remainder of the statement follows trivially. 0

In view of Observation 2.1 from now on we shall concern ourselves with

1 '* 00 E (0, 2). For such 00 define the functions

and

hI := hI (X, CD):= 1 + (CD-I)' - 2(CD- 1)2 X

h 2 := h2(X, CD) := 1 + (CD - 1)2 - 2(CD - 1) x

(2.7)

(2.8)

and note that by (2.5), hex) = hl /2 /hi 12-l and that both functions admit only positive

values. But then we have the following

ah(x, CD) / ax - - (CD - 1)2hl'2-! h1
112 + (CD - 1)(1 - 2t)h'i"2-! hl12 (2.9)

- (CD- 1)(x -'I!(CD)) ,

where



I
'I' (OJ):= 4l (OJ - I +
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I )_(1-21)
OJ-I 4l

I
[(OJ - I)' + 2

(OJ-I)
] . (2.10)

Now the function hex, 00) is well defined and differentiable in an interval which strictly

contains [-1, 1] and therefore in considering its critical points in the (closed) interval

[-1, 1] it suffices to consider those points in [-1, 1] at which the left expression on the

right hand side of (2.9) vanishes. Recall that for the moment we are assuming that

co E (0, 2)\{ I} [0 be fixed. However, our analysis of the behavior of h (x, co) requires

that we consider two possibilities.

Case I: 0 < OJ < 1. In this case ah(x, OJ) I ax -- (x -'I' (OJ)). Moreover

(OJ - I) + 1/ (OJ - I) < - 2 and (OJ - If + I I (OJ - If > 2 and so, by (2.10),

'I'(OJ) < - 1/21- (1-2I)/2t=-IIt+ I < - 2+ I =-1 (as t < 1/2). Whence

- (x - 'I'(OJ)) < 0 as x e [- I, I], showing that ahex, OJ) I ax < 0 for all such x. This

proves that

min hex, OJ) = h(l, OJ) = (2 _ OJ)" OJ
xe[-l,l]

(2.11)

Combining (2.11) with (2.10) leads to the following conclusions:

Lemma2.1: ForanYOJe(O, I):

(i) A necessary and sufficient condition/or (2.3) to hold is 1~1 < l.

(ii) When I~ I = 1 = vaCca), a necessary and sufficient condition for A E a.Q Eo

be a root of feA) is that A. = I and ~ = 1.

Proof The proof of (i) has been done in the arguments leading to the statement,

so we only need to prove (ii). The sufficiency of the condition is immediate on the

examination of (2.1). Conversely, suppose that A. = x + iy E aQ is a root of f(}..)·

Taking into account that 11l1:;:; 1 we obtain from (2.1) and (2.5) that

hex, OJ) = (2-OJ)" OJ. But then, as (2.6) holds for all 1111 < I, we must have that

x :;:; 1 so that A= 1. The remaining part of the proof now follows by setting f (1):;:; 0 in

(2.1). 0

Case 2: I < OJ < 2. Observe now that by (2.9), ah(x, OJ) I ax - ex - 'I' (OJ)).

Moreover on letting

I
$ (OJ) := OJ - I + ---'~

OJ-I
(2.12)
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we see that

~ (OJ) > 2

and

Substituting (2.12) aud (2.14) in (2.10) we have that

(2.13)

(2.14)

'I'(OJ) ~ ~ [- (I - 2!) ~2(OJ) + ~(OJ) + 2(1 - 21)] (2.15)

We proceed to investigate the sign of x - '0/(00) as x varies between - 1 and 1. For this

purpose we shall first consider the function 'VCro).

Lemma 2.2: For OJ E (1,2),

when

and

when

(i) 'I'(OJ) :;; 1 .

(ii) 'I'(OJ) :;; - 1

1 + (3 - 16t)112

2(1 - 2!)
:;; ~(OJ) < ~

(2.16)

(2.17)

(2.18)

(2.19)

•2 < ~(OJ):;;~ . (2.20)
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Proof: (i) The inequality (2.16) is equivalent, in view of (2.15), to

(1 - 21) $2 (co) - $(CO) - 2(1 - 4l) ;, 0 , (2.21)

which always holds when $(00) > 2. Moreover, we see that equality holds in (2.21) for

t = 3/8.

(ii) The inequality (2.17) holds if and only if

(1 - 21) $2(CO) - $ (co) - 2,; 0

and this inequality can be shown to hold. by arguments involving roots of quadratic

polynomials, whenever $(co) satisfies the condltions of (2.18). The validity of (2.19)

subject to the conditions in (2.20) follows along similar arguments. 0

Let us note from (2.12) that for CO E (1,2), the inverse function to $ := $(co) is

given by

In what follows for the value of 4l* in (2.18) we shall let

• •co=co($).

(2.22)

(2.23)

Notice that $(w) given in (2.12) is a strictly decreasing function of 0) in (1,2) and so

00($) is strictly decreasing in the interval (2, 00). Thus when

•l<oo~ro (2.24)

we have from (2.17) that for x E (- I, 1], x -'I'(co) > 0, so that in this interval

ahCx, co) / ax > 0 by (2.9). Hence hex, co) is strictly increasing in the entire interval

[- I, 1] and

. 1+(co-1)2
mm hex, co) =h (- I, OJ) = 1 2t

XE[-t,l] OJ
(2.25)
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Combining (2.25) with (2.6) shows that for any OJ E (1, OJ'], (2.3) holds if and only if

Next, when

1 + (OJ_I)2

(2-OJ)"
OJ2-11- =: VI,t (OJ) =: VI (OJ) . (2.26)

ro*~0)<2

we see from (2.16), (2.19) and (2.9) that for x E [- 1, 1]

ah(x, OJ) / ax :;; 0 when x :;; '!'(OJ)

with equality if and only if x = '!'(OJ) ( < I), while

ah(x, OJ) / ax > 0 when x > '!'(OJ) .

This means that

min hex, OJ) = h ('!'(OJ), OJ) ,
x E [- I, 1]

(2.27)

(2.28)

(2.29)

(2.30)

where, to remind ourselves, '!'(OJ) is given in (2.10). Combing (2.30) with (2.6) yields

that for any OJ E [OJ', 2), (2.3) holds if and only if

(2.31a)

or by making use of (2.15), (2.12) and (2.i4), we obtain the alternative expressions

($(OJ) + I)'-,--"''S'-;;;;-;ee-:.,..". =: V2,t (OJ) =: v2 (OJ) .
(l - 2IP 11-) / 2 (2I)t

(2.31b)
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We summarize the foregoing results in the following expanded statement:

Lemma 2.3: Let WE (I, 2) and consider w· of (223) obtained from (2.18) using

(222). Then:

(i) For WE (1, w'], (2.3) holds [fand only if IIlI < v,(w). Moreover for any

(() in this interval,

(2.32)

(ii) For WE [w', 2), (2.3) holds if and only if IIII < V2(W). Moreover for any

CO in this interval,

V2(W) < 1 . (2.33)

(iii) For wE(l, w'l and IIlI =v,(w), A.E an is a root of f(A.) [fand only if
A. =- 1 and ~ =(- 1)' [1 + (W- 1)2]' 1(2 - w)2k w2p-2k.

(iv) For W E (w', 2) and IIII = V2(W), if A. is a root of f(A.) then A. is not real.

Proof: (i) The initial part of the statement is our resuit (2.26). To show (2.32)

recall that for any IDE (1,00*], the function hex, (0) is strictly increasing in [-1, 1].

Thus from (2.5) we find that

max h(x, w) = h(l, w) = (2 - w)" W
x E [- I, 1]

Hence, from (2.25)

(2 - w)" W >
1 + (W- 1)2

rol- 21

Dividing both sides of this inequality by (2 - W)" w, (2.32) obtains.

(ii) The initiai part of the statement is simpiy (2.31). To show (2.33) recali that in

[00*,2), the function hex, (0) first strictly decreases until x :::;'I'Coo) and then strictly

increases. Therefore on utilizing (2.5) and (2.30) we see that
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h (1, 00) = (2 - 00)'1 00 > h(1JI(00), 00)

Dividing both sides of this inequality by (2 - 00)" 00, (2.33) obtains.

(iii) Assume that ro E (1,00*]. The "if" part of the claim is trivial so we prove the

"only if" part. Suppose then that A. E aQ is a root of f(A.). Then as A. = x + iy and

I~I =v,(oo), we see from (2.1) and (2.5) that hex, 00)=[1+(00-1)2]/00'-". But

then as (2.6) holds for all I~ I < v, (00), we must have that A. = - 1 (see (2.25)). The

remaiuder of the proof now follows by setting f(- 1) = 0 in (2.1).

(iv) Assume that 00 E (00", 2) and that A. E aQ is a root of (2.1). Then as

A. = x + iy and I~ I = v2 (00), we see from (2.1) and (2.5) that h (x, 00) = h(1JI(00), 00).

But then because (2.6) holds for all I~ I < V2(00), we must have (see (2.30)) that x lies

strictly between - 1 and 1 showing that A. = x + iy E a.Q can not be real. 0

The validity of Theorem 1.1 is now a consequence of Observation 2.1 and Lem

mas 2.1. 2.3 and 2.4. As we mentioned in the introduction, we devote the next section

to an investigation of some of the boundaries of the region Ret).

3. THE GEOMETRY OF THE CURVES VI(OO) AND V2(00)

Consider Figures 1 and 2. They illustrate that the curves VI (00) and V2(W) are

tangential at 0) = 00 "'. a fact we shall prove momentarily. We comment that from (2.26)

one readily sees that VI (00) is well defined in the entire interval (0,2) and not only in

the interval (I, 00"'] in which it was defined and used in Section 2. As for V2(00) it too

is well defined in 0, (0) and not only in the interval [00*, 2). This is readily seen from

(2.31 b).

Lemma 3.1: At the point 00 = 00 * given in (1.9) lhe curves VI (00) and V2 (ro) are

tangential.

Proof: Since VI (00*) =V2(00*) we see that

But then, because VI (ro*) "* 0, to prove our claim it suffices to show that (3.1) vanishes.

Now
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a
"'Coo):= aoo [vf Col) - vq Col)]

= 1 {C2 _ oo)2k 002p-2k P [1 + Col - 1)2]p-1 2Coo - 1)
C2 _ oo)4k OO'p-4k

_ [1 + Col - 1)2]p [- 2kC2 - OO)'k-1 002p-2k + C2p - 2k) C2 _ OO)2k 002P-2k-1}

1

oo2p C2 - oo)'k [1 + Col - 1)2 - 2Coo - 1) 'lfCOO)]P 2k

.{ 00' C2 - oo)'k [1 + Col - 1)2 - 2Coo - 1) 'lfCoo)]P 12-k i· C3.2)

. [1 + Col - 1)' - 2Coo - 1)2 'lfCOO)jP /2-1 [4Coo - 1)3 - 4Coo - 1) 'IfCOO) - 2(00 - 1)2 'JI'Coo)]

_ [1 + (00 - 1)4 - 2(00 - 1)2 'If(OO)]P /2 {Poo'-1 (2 - OO)2k [1 + (00 - 1)2 - 2(00 - 1) 'If(oo)]P /2-k

+ (l!.. _ k) oo'C2 - oo)2k [1 + (00 - 1)2 - 2Coo- 1) 'If(OO)]P /2-k-1
2

. [2C 00 - 1) - 2'1f(oo) - 2(00 - 1) 'If'COO)]} }

Now according to the analysis leading to (2.25), for each (J) E (1.00*], hex, (0) has an

absolute minimum which it attains uniquely at x = - 1. On the other hand according to

the analysis leading to (2.30), in [co", 2), hex, (0) has an absolute minimum which it

attains uniquely at x ="0/(00). Thus we must have 'f(00*) = - 1. But then a simple

inspection of the two fractional multipliers which appear in D,{ro) shows that, at co = CO".
their denominators become equal. their common value being (2 - ro*)4k (ro*)4p--4k:#. o.
Moreover, since

" 2 " • • 2[1 + (00 - 1) - 2(00 - 1) 'IfCoo )] = Col )

and

[1 + Col' -1)' - 2Coo' - 1)2 'If(oo')] = [1 + Col' _1)2), ,

one can obtain by inspection that

'" 00' _ [1 + Col' - 1)2]p-2
( ) - (2 _ 00 ,),k+1 (oo')2p 2k+2
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where

'" "'. *2 '" 2ll.1 (00 ) = 2p(2 - 00 ) (00 - 1) (00) [1 + (00 - 1) ]

- [l + (00' _1)21' [- 2k(Ol')2 + (2p - 2k) (2 - 00') 00']

- p(Ol? (2 - 00') (00' - 1) [2(00' - If + 2 - (00' - 1) '!"(Ol')] (3.3)

, 22{' "2 ""}+ [1 + (00 - 1)] pOl (2 - 00 ) - 2k(0l) + (p - 2k) (2 - 00 )[00 - (00 - 1) '1"(00 )]

, , { , 2 ' , 2 2} ,= (2 - 00 ) (00 - 1) p(Ol) (00 - 1) - (p - 2k)[1 + (00 - 1)] ,!,'(Ol).

Consider next the rightmost expression in (3.3). Since 00· :;!= I, it follows from (2.10)

that d\V(ro*) I dro is bounded. We shall finally show that the expression in the braces of

the extreme right hand side of (3.3) vanishes. Now

p(Ol')2 (00' -1) - (p - 2k) [1 + (00' _ 1)2]2

"'4 *2'" *2 '"= - (p - 2k) [1 + (00 - 1) + 2(00 - 1) 1 + p(Ol - 1)[(00 - 1) + 2(00 - 1) + IJ

= (00' - 1)2 { - (p - 2k)[ , 1 2 + (00' - 1)2 + 2] + P [(00' - 1) + ,I + 21}
(00 - 1) (00 - 1)

=P(Ol'-lf { -(I-2I)[($?-2+2]+($'+2)}

=P(Ol'-1){ -(l-2I)($?+$'+2I}=0

(see (2.12), (2.14) and (2.18». 0

We now focus our attention on the behavior of the curve VI (00). First we claim

that VI (00) has a unique turning point in (1,2). Note that

V'I (00) - (2 - 00)" 002-" 2(00- 1) - [1 + (00 - 1)2]

. [ _ 21(2 - 00)"-1 002-" + (2 - 00)" (2 - 21) 001-"] (3.4)

.- [(1- 21) 002 -4(1-1) 00+ 4(1-/)] .
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Now the zeros ID1 and 65:2 of the quadratic which appears on the extreme right

hand side of (3.4) are given by

2(1 - e)ll2 2(1 - e)'12
fil - --=o..:..,,~-;-;;;-, Ol,. = ----=-;'=-':::.;L--;-;;;-

, - (1 _ e)'12 + e'l2 (1 _ e)'12 _ e'12
(3.5)

and hence they satisfy: 1 < COl < 2 <~. The following table thus shows where

VI (0) increases and decreases:

v, (0))

o 1 fil, 2
(3.6)

It is easily concluded that m1 is the unique turning point of Vl (co) in the interval (1, 2).

We can now further deduce that:

Lemma 3.2: The turning point (Vl(Cj~I)' ffi1) of the curve Vl(ro) lies beneath the

point (v, (0)'), 0)') of tangency of v, (0)) and V2 (0)). That is fil, < fil2·

Proof: Recall the expression for 0)'" given in (1.9). We require to show that

or, equivalently, that

But that this holds

f = [1 + (9 - 161)"2] / 2(1 - 2/).

1 - e--<e

foHows
o

~' + 2
f -2

readily from the substitution

Until now we have essentially considered behavior of VI (00) (and V2(ro)) as a func

tion of ill only. Since. according to (2.26), VI (00) = vU(ro) depends also on t, let us now

investigate the dependency of vU(ro) on t.
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Lemma 3.3: For 0 < 11 < Iz < 1/2 thelollowing hold:

Vl.~ (ro) > vl,~ (ro), ro E (0, I)

vl,t,(I)=Vl.~(l) ,

vl,t, (ro < Vl.~(ro), ro E (1,2)

Moreover. lor all ro E (1,2),

(3.7a)

(3.7b)

(3.7c)

lim vl,t(ro) =
t --) 0+

Proof: From (2.26) we see that

1+ (ro-I)'

ro2
(3.8)

V,." (ro) = [ 2 _ ro ] 2(~-<,)

Vl,~(ro) ro

from which (3.7a) - (3.7c) follow. (3.8) follows by letting I --> 0+ in (2.26). 0

Let us denote the turning poim fill for vl,t(ro) ( = V1(ron in (3.5) by fill" and let us

denote by ro,' the point of tangency of Vl.'(ro) and v,.,(ro) ( = V2(ro)) given in (1.9). By

(3.5),

and so, as vl,t is a continuous function of both 00 and t E (0, 112), we have, by (3.8),

that

showing that, as e~ 0+. the turning points satisfy
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lim (v, ,(WI ,), W, ,) = (1/2,2) (3.9)
'-,to' ' , .

Consider now the behavior of the tangency points rot as e~ 0+. First we claim

that for 0 < I, < 10 < 1/2,

For this purpose we use (1.9) to show that drot / d<Pt < 0 and d¢l; I de > O. But then

dro,' I dl < 0 from which (3.10) follows. Secondly, it can be ascertained from (1.9)

that lim rot:::: 2 so that, on appealing once again to (3.8), we conclude that
t --) 0+

lim (v," (ro,'), ro,') = (1/2,2)
t --) 0"

(3.11)

Having considered in detail the behavior of the function vu(ro), we now analyze

the function V2l(ro) ( = V2 (ro)) first as a function of ro for an I fixed in (0,1/2) and then

as a function oft for an CO fixed in (1,2].

Lemma 3.4: Lere E (0,1/2). Then

(i) ForanyIE(0,3/8j,

(3.12)

(il) For any IE [3/8, 1/2) rhe following hold:

(3.13.)

and

(3.13h)

where
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2
OS'1 = ------''---,~

1 + (- 3 + 81)112

Proof (i) Because V2(0l) is defined for all Ol > 1, it follows by (2.31b) that

(3.14)

v'2(Ol) - Ol[.l(Ol - 1)-112 ($ + 1)' + (Ol- 1)112 1($ + 1)1-1 $'J
2

- (Ol- 1)112 ($ + 1)'

- Ol($ + 1) + 2tOl(0l- 1)$' - 2(0l- 1) ($ + 1)

= ($ + 1) (2 - Ol) + 2IAll(Ol- 1) $' (3.15)

1 1
= (Ol- 1 + + 1) (2 - Ol) + 2tOl(0l- 1)[1 - 2]

Ol - 1 (Ol - 1)

- (1 - 21) 012 - Ol + 1 .

For eE (0,3/8] the discriminant D = Sf - 3 of the quadratic in (3.15) is negative or zero,

hence our conclusion.

(ii) For eE[3/8,1/2), the real distinct zeros OS'1 and 0:5'2 of the quadratic in (3.15)

are given by

2
fiJ' 1 = ------''---,-",

1 + (- 3 + 81)112 '

2
1il'2 = ---"'----,e:;:

1 - (- 3 + 81)112

and satisfy: 1 < (O'l < 2 < OS'2. Consequently the following table shows where V2(OO)

increases and decreases

Ol

V2(0l)

1 1il']

max

2 1il'2 (3.16)

A careful study of the table in (3.16) yields our claims. 0

We remark that OS'1 is the unique turning point of V2(OO) in the interval (1,2].
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It can be further deduced that:

Lemma 3.5: The turning paim (v2(05'l). M't) of the curve V2(ro) lies above the

point (V2(ro'), ro') of tangency of V,(ro) and V2(ro). That is, for any fixed

te(3/8,1/2), ro' < til',.
Proof: Using the expression for 00* given in (1.9) we require to show that

This inequality is equivalent to

$' + 2 1< ----,"--,-
$'-2 -3+81

which follows from the substitution $' = [1 + (9 - 161)'12] / 2(1 - 21). D

Before we investigate the dependency of V2(ro) = V2.t(ro) on t we examine the

behavior of the limiting curve lim V2,t(ro) for all ro E 0,2]. From the expression
t ~ (tl2f

(2.31b) and recalling ,hat lim (1 - 21)1-21 = 1, we obtain that
t --,) (1/2f

Hence

lim V2,t(ro) =
t ~ (1/2f

(ro2 _ ro + 1)'12

m
\i m e (1,2] . (3.17)

V'2,1I2 (m) - m - 2'; 0 .

This implies that v2,112 (00) strictly decreases in (1,2] which concurs with the results of

Lemma 3.4 for the case eE (3/8, 112). It is also commented that as t ~ (ll2r all three

points (VI,1/2 CO'St), WI), (VI,lI2(OO*), 00*) and (VI, 112 (65'1), m'l) coincide with the point

(v,m) = (1,1). However, note that

lim lim v2,.(m) = 0 '" 1 = lim lim V2,t(m)!
l~ (ll2r ro~ 1+ ro~ 1+ l~(1/2r
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In the sequel two lemmas are given and proved which show very clearly the

dependency of V2 (00) on t.

Lemma 3.6: For 0 < I, < 0. ,; 318 thelollowing hold:

V2.'. (OJ) < V2.~ (OJ), 1 < OJ'; 2 . (3.18)

Proof From the expression (2.31b) for V2.l(ro) we have that each of its factors is

positive. Then V2.~(ro) is positive for any pair (t,ro). Now set

z := z(/,OJ):= env2.'(OJ)

(3.19)

(OJ - 1)"2 1
= In~-OJ"-'--- + len(~ + 1) - "2 tn(1 - 21) + etn(1 - 21) - I In (21)

Thus on differentiating with respect to ewe have that

(-2) -tn(2t)-1.2
(1 - 21) 21

(3.20)

=en[(1-2t)(~+ 1)/2~ .

As can be readily checked $(00) strictly decreases in the interval (1,2] and since

~(2) = 2, it follows that

(l - 21) (~+ 1)" 3(1 - 21)
21 21

(3.21)

But for all eE (0,318], 3(1~ 21) ,,1. This result, in view of (3.20) and (3.19), implies

that for a fixed 00 E (1,2l, V2,£(OO) strictly increases with ein the interval (0,3/8]. D

Lemma 3.7: As aftmction oft, V2,l(2) srricrly increases in the interval [0,3/8] and

strictly decreases in the interval [3/8,112].
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Proof: From the proof of the previous lemma and by virtue of (3.19), (3.20) and

(3.21) the behavior of the function v2.,(2) in the intervals (0,3/8J and [3/8,1/2) follows

. di I .d' h . . f h . d 3(1 - 2t) .Imme ate y on conSl enng t e posItIOn 0 t e magmtu e 2l with respect to 1.

The endpoints 0 and (1/2)- of the two intervals can be included by continuity argu

ments. by taking limits as t tends to 0+ and (112), respectively, and recalling that

lim t =I and lim (I - 2t)1-2l = I. 0
l ~ 0+ l-l (1/2r

A careful examination of the results of this section, particularly in Lemmas 3.1 

3.7, proves our claims in Theorem 1.2. Finally (1.19) readily follows from (3.8), (3.9),

(3.11), and the fact that for all 1 < co < 2 the limiting point lim (vl,t (00), 00) is the
l~ 0+

. [I +(0)- 1)2] 1+ (0)- 1)2
pomt 00

2
,(0. where v = ol is the inverse function of

0>= 2 forI!2<v<1.
I + (2v - 1)112
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