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ABSTRACT

This paper presents a method for evaluating the perfonnability of repairable
degradable systems based upon combining Generalized Stochastic Petri Nets
and product-form queueing network models. The method takes into con­
sideration the transient behavior during a change in the system structure. To
reduce the computational effort for the solution a hierarchical decomposition
method is employed. Since it is assumed that all tasks in the system belong
to a single class, the aggregation of a submodel to a flow-equivalent transi­
tion leads to an exact solution.

1. INTRODUCTION

The evaluation of systems with degradable performance (e.g. communication net­

works, distributed systems, etc.) requires unified performance-reliability measures

because such systems are able to operate at varying degrees of performance. We follow

the tenninology introduced by Meyer [12] and call these different perfonnance out­

comes accomplishment levels. The performability of a system S is defined as the proba­

bility measure

Ps(B) = the probability that the system performs at a level in B

In this general definition B denotes a measurable subset of the - eventually uncountable

- set of accomplishment levels A. Performability unifies the usual notions of perfor­

mance and reliability, and contains both of them as special cases. To evaluate non­

repairable systems Meyer has defined a two-dimensional discrete stochastic process. He

determined the state probabilities by an aggregation over the state space [12]. This

approach assumes that the system is nearly completely decomposible in the sense of

Courtois [8] and neglects the transient behavior during a change in the system

configuration caused by the occurrence of a failure. Meyer, Movaghar. and Sanders

have defined stochastic activity networks (SANs) which allow the description of a sys­

tem at a level higher than the underlying stochastic process [13]. As in Generalized

Stochastic Petri Nets, GSPNs [1], there exist two different types of transitions in a SAN

model (there called activities), timed activities and instantaneous activities.
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Additionally, cases and gates may be associated with activities of a Stochastic Activity

Network. Therefore, SAN models provide more flexibility than GSPNs, but by the

same token their solution process is more complex and thus requires more computa­

tional effort.

This paper presents an approach for determining the perfonnability of repairable

degradable systems based upon combining Generalized Stochastic Pelli Net and

product-fonn queueing network, PFQN, models. The proposed modeling technique

represents explicitly the transient behavior during the reconfiguration process. The bulk

arrival of tasks at a fault-free processor is modeled by enabling a single intennediate

transition. We employ a hierarchical decomposition method to reduce the computa­

tional effort for the solution. A compact GSPN model is defined in which the processor

subsystem and the structure process is represented in detail. The VO subsystems which

have already been evaluated separately are represented in this GSPN model by one

flow-equivalent transition with a marking dependent firing rate. The organization of

this paper is as follows. Section 2 provides a general description of the decomposition

method. The approach for evaluating the perfonnability is introduced in section 3. Sec­

tion 4 illustrates this approach by considering a system consisting of two processors and

three VO subsystems. It is shown how to derive the perfonnability of this system from

the steady-state solution of the compact GSPN model.

2. DESCRIPfION OF THE HIERARCHICAL DECOMPOSITION METHOD

Balbo, Bruell, and Ghanla have introduced a method for combining GSPN and

PFQN models for systems with several job classes. They have presented approximate

models for priority queueing schemes, software blocking phenomena, and other com­

plex system behavior [2], [3], [4]. We follow a similar idea, but restrict ourselves to

single-class queueing networks which do not possess a product-fonn solution. In partic­

ular, we consider models possessing one or more parts which can be represented by a

PFQN. We assume that these submodels which satisfy the BCMP conditions can be

identified. Each of these submodels is then represented by means of a PFQN and stu­

died in isolation. The throughput is determined for each feasible number of customers

that may use it A compact GSPN model is defined in which each part of the model

already analyzed separately is replaced by a flow-equivalent transition with a marking

dependent firing rate. Due to the existence of user-friendly software tools the solution

process can be completely automated. We have employed the packages GreatSPN [7]

and RESQ [11] for solving GSPN and PFQN models, respectively.
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This decomposition method introduces some error into the solution, only if there

exists an interaction between a flow-equivalent transition and the complementary subnet

of the compact GSPN. Such a case is given for instance when the firing rate of a flow­

equivalent transition is defined using the number of tokens in two or more places [2],

[3]. If it is assumed that all tasks belong to a single class, the firing rate of the flow­

equivalent transition can be defined by using only the number of tokens of its single

input place. In this case there is no interaction between a flow-equivalent transition and

the complementary subnet of the compact GSPN. Thus, the aggregation of a GSPN

subnet to a flow-equivalent transition leads here to an exact solution. A semi-fonnal

proof for this observation is given in [10].

3. THE MODELING APPROACH FOR EVALUATING THE PERFORMABIL·

ITY

We consider a class of systems consisting of N processors and L different

Input/Output subsystems, and model a system as a central server network [9]. To con­

struct the perfonnability model the following assumptions are made:

(a) The fault-tolerance is achieved by reconfiguration of a system with multiple

functional units of the same type.

(b) This reconfiguration process can be done in zero time,

(c) Only processor failures are considered,

(d) At least one processor is available, total breakdown cannot be tolerated,

(e) All tasks processed by the system belong to a single class, they have the

same distribution of service time and the same I/O routing probabilities,

(f) Service times as well as the failure/repair times have an exponential distribu­

tion.

Thus, each processor is modeled as a MIMI! system and each I/O subsystem is

represented by a MIMIm system. A task enters the queue of the i-th processor with

probability Pi (i =1,2, ..,N). After a task has obtained a CPU burst, it continues its exe­

cution at one of the I/O subsystems with probability qj U=1,2, .. ,L) or its execution is

completed and the task exits the system with probability PN+l' In the latter case it is

assumed that this task is immediately replaced by a new arriving task at one of the pro­

cessors. Tasks which h<l;ve obtained service from an 110 subsystem are returning to one

of the processors and the whole process repeats itself. Since we consider systems with

graceful degradation the model has additionally to represent the structure process which

is particular to such systems [12]. Hence, the routing probabilities PI ,P2•..•PN change
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dynamically due to processor failures or completed repairs. This feature violates against

the conditions of the BCMP theorem [5]. Therefore, the entire system cannot be

modeled by means of a PFQN. Since the nonproduct-forrn properties of the model are

restricted to the subsystem comprised of the processors, we propose to employ the

decomposition method described in the previous section. Since the part of the model

which is comprised of the L Input/Output subsystems satisfies the conditions of the

BC:MP theorem, it is solved in isolation (off-line analysis [9]) using a PFQN. The

objective of this off-line analysis lies in the construction of a flow-equivalent server [6].

This flow-equivalent server will be encoded in a compact GSPN mooel by a single

timed transition with a marking dependent firing rate. As a result of this aggregation the

GSPN must only provide a detailed description of the processor subsystem and the

structure process.

4. AN EXAMPLE: A TWO-PROCESSOR SYSTEM

In this section the feasibility of our approach is illustrated by an application. We

consider a gracefully degradable system comprised of two processors and three different

I/O subsystems with two similar devices each. It is shown how to derive the perfonna­

bility from the steady-state solution of the compact GSPN.

4.1 THE PFQN PART OF THE MODEL

Each of the three I/O subsystems is modeled as a MlM/2 queueing system (see

Figure 1). The throughput of this submodel is detennined for each feasible number of

tasks k that may use it (k = 1,2, ... ,P). For this purpose a dummy station is intro­

duced to the queueing network. As a result a P-dimensional throughput vector is

defined which determines the marking dependent firing rate of a flow-equivalent transi­

tion. A compact GSPN is defined in which all the I/O subsystems are represented by

this flow-equivalent transition.

4.2 THE COMPACf GSPN MODEL

The GSPN model depicted in Figure 2 provides a detailed description of the pro­

cessor subsystem. The I/O subsystems already evaluated separately are represented by

the flow-equivalent transition T 14. Its marking dependent firing rate is defined using the

throughput vector of the PFQN submodel The subnet which represents the structure

process is suitable for both symmetric and asymmetric two-processor systems. This

means, this subnet distinguishes between a failure of the first processor and a failure of

the second one. The repair times of the processors are also represented by different
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timed transitions in the GSPN.

The task control flow as well as the appropriate routing probabilities are

represented in the GSPN model by the decision places PI and P 8. The routing proba­

bilities are defined using a random switch for the corresponding immediate transitions

(e.g. (p 1; pz) for the transitions t 1 and t2)' Each of the P tokens depicted in Figure 2

in place PI represents a task in the system. In each tangible state these P tokens are

distributed among the places Pz, P3 and P9 modeling service requests at the

corresponding resources. The initial structure state of the system. namely that both pro­

cessors are working fault-free, is represented by a token in place P4. The presence of

this token enables the timed transition Ts. Its firing rate is given by the cumulative life­

time of both processors. The failure of a processor is modeled by the firing of this tran­

sition. This event causes the moving of the token from the place P4 to Ps. In this van­

ishing state only the immediate transitions 16 and h are enabled. The one that fires is

detennined by the specific processor which fails. We will discuss only one alternative

because the other behaves correspondingly. Say, the first processor fails and thus, the

transition t6 fires. Now, only the immediate transition 18 is enabled. It fires so often

until the place P 2 contains no more token. This course of events models explicitly the

bulk arrival of tasks at the other fault-free processor during the reconfiguration process

of the system. The transition tl is then disabled by the inhibitor arc from place P 6.

Therefore, tasks requesting service at a processor (tokens in place PI) are forced to the

ready queue of the second processor (place P3). In the current structure state of the

system the repair time of processor I is represented by the firing delay of the timed

transition T 10. Its firing moves the token from place P6 to P4 and lenninates the di§a­

bUng of transition 'I' Thus, the system is brought back to its original structure state in

which both processors are working fault-free and the whole process starts over.

The model description reveals that the method described in this paper provides a

complete description of the system. It considers not only the task control flow in a fixed

structure state, but also the transient behavior during a reconfiguration period of the sys­

tem. The bulk arrival of tasks at the other fault-free processor is modeled by enabling

the single immediate transition t8 or t9. respectively, and so moving all the tokens

currently located in place P 2 to P3 or vice-versa

The computational complexity for solving a GSPN model depends only on the

number of its tangible states because they detennine the number of states of the under­

lying Markov chain [I], [7]. The stale space cardinality of the compact GSPN can be

derived using a well-known fonnula from combinatorics which determines the number

of ways to distribute P tokens among N places [14].



- 6-

In the compact GSPN exists only a quadratic dependence between the number of tangi­

ble states and the marking parameter P. A detailed GSPN representation of the entire

system would lead to a state space cardinality of order O(P') [10]. Thus, the

decomposition/aggregation method yields to a significant reduction of the state space.

4.3 DERIVAnON OF THE PERFORMABILITY

We define the accomplishment levels as the configurations in which the system

can operate. Thus, the set of accomplishment levels A is defined as A = {ok, f 1, f2}

where:

ok = System is working fault-free

f 1 = Processor! has failed

f 2 = ProcessorZ has failed

To define the perfonnability model one has to consider the following values asso­

ciated with each accomplishment level:

(a) The probability that the system operates at this particular configuration

(b) The reward rate associated with this configuration.

The probabilities of the structure states are directly obtained from the steady-state solu­

tion of the GSPN. They are given by the following fonnulas:

Pok =P(UP4= I)

Pf1=P(UP6=1)

P/2 =P(UP7= I)

The reward rate associated with an accomplishment level is defined as the

throughput of the system assuming that it is working in the appropriate configuration.

In other methods proposed earlier these reward rates were determined by computing

separately the throughput of each feasible configuration of the system [IZ], [13]. A

major advantage of the method described in this paper lies in that both the reward rales

and the perfonnability are directly obtained from the steady-state solution of the com­

pact GSPN. The utilization of a processor in a specific structure state is determined by a

conditional marking probability which can be computed by GreatSPN [7]. Each reward

rate is derived by the product of the corresponding utilization of a processor with its

service rate.

Uok1 =P(UPZ> 0 I UP4=1)
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Uok2 =P(#P3 > 0 I #P4= 1)

Ufl =P(#P2> 0 I #P7= 1)

Uf2 =P (#P 3> 0 I #P 6 =1)

Dfl =Ufl*Sl

Df2 = Uf2*S2

The combination of the probabilities for the structure states with the corresponding

reward rates defines the effectivity of the system eff (S) [12].

eff (S) = Dok*Pok + Dfl*Pfl + Df2*Pf2

4.4 NUMERICAL RESULTS

To illustrate the technique presented in this paper we give a numerical example.

Suppose both processors have a service rate of 100 requests/sec. a failure rate of

O.OO5/h and a repair rate of O.3/h. The service rates of the I/O subsystems are 40

requests/sec. 25 requests/sec and 20 requests/sec, respectively. The routing probabilities

are assumed as P 1 = P2 = 0.5, P, = 0.1, q 1 = 0.4, q2 = 0.3, and q, = 0.2

The difference in the order of magnitude between the values for the service rates
and the values for the failure/repair rates may cause stiffness. We overcome this prob­

lem by employing the Gauss elimination algorithm for solving the linear system defined

by the global balance equations of the underlying Markov chain. The version of this

algorithm provided by GreatSPN still yields a good numerical accuracy for solving

GSPN models in which the firing rates are differing up to eight orders of magnitude [7].

Since this method requires subtantially more computation time than the iterative

Gauss-Seidel method, the Gauss elimination method can only be employed in practise

for solving GSPN models with a small state space. The following results are obtained

for the probabilities of the structure states:

Pok = 0.96774

Pfl = 0.01613

Pf2 = 0.01613

Since the routing probabilities P I and P2 are equal and both processors have the same

service rate, the corresponding reward rates associated with the accomplishment levels

f I and f 2 are equal. Therefore, the reward rates for the accomplishment level f 2 are
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omitted in Table 1.

P Do. Dfl effCS)

1 23.810 23.807 23.810

2 46.306 45.058 46.270

3 65.764 61.727 65.640
4 81.668 73.725 81.418

5 94.438 82.078 94.047

6 104.728 87.827 104.187

7 113.102 91.769 112.433

8 120.012 94.454 119.195

9 125.782 96.272 124.838

10 130.652 97.484 129.590

Table 1. Numerical results
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Figure 1. PFQN part of the model
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Figure 2. The compact GSPN model
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