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Local Parameterization, Implicitization and Inversion
of Real Algebraic Curves

Chanderjit L. Bajal
Computer Science Department,

Purdue University

1 Introduction

Preliminaries

An algebraic plane curve of degree n is implicitly defined by a single polynomial equation

I(x, y) :;:: 0 of degree n. A rational algebraic curve of degree n can additionally be defined by

rational parametric equations which are given as (x = G1(-u),y = Gz(u», where G1 and O2 are

rational functions in 'It of degree n, i.e., each is a quotient of polynomials in 'It of ma;dmum degree

n. An algebraic space curve, defined by the intersection of two algebraic surfaces l can be given

either as a pair of polynomial equations (h(x,y,z) :;:: 0 and h(x,y,z) :;:: 0) or as two sets of

parametric equations ex = CU ( 'lLh vd, y :;:: GZ,l( 'ILl, Vl),Z :;:: 03,1 ('Ul,'l11» and (x :;:: G1,z('UZ I tI2), y :;::

GZ,2(UZ,'V2),Z = G3,2(U2,'V2)). where the Gi,;' i = 1,2,3, j = 1,2, are rational functions. Rational

algebraic space curves are additionally representable as (x = G1(u),y = G2 (u),z = G3(u)), where

Gl, G2 and G3 are rational functions in u.

Rational curves are only a subset of implicit algebraic curves of the same degree. While all

degree two curves (conics) are rational, only a subset of degree three (cubics) and higher degree

curves are rational. In general, a necessary and sufficient condition for the global rationality of an

algebraic curve of arbitrary degree is given by the Cayley-Riemann criterion: a curve is rational

if and only if g = 0, where g, the genus of the curve is a measure of the deficiency of the curve's

singularities from its ma.xlmum allowable limit [18].

·Supported ill part. by NSF grallt. DMS 8816286, ARO Contract DAAG29-85-C0018 and ONR contract. NOOOI4-88­

K-0402
lIn modeling the boundary of physical objecls it suffices t.o consider only space curves defined by t.he intersection o£
two surfaces. Space CUCIICS in genera.l can be defined by scveral surfaces, however this rcpresenta.t.iOIl is difficult to
llalldle equatiolla.lly. General space curves is a. topic witb va.rious unresolved issues of ma.themat.ical and computational

iut.eresL and an a.rea. of fut.ure research.
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The Problem

Here we wish to consider all algebraic curves, and specifically of genus higher than zero. For

all these curves we wish to compute rational parameterizations in the local neighborhood of a

point on the curve. This is always possible. At simple points of the curve a straighforward Taylor

series e..xpansion, followed by a truncation or a rational Pade approximation, proves sufficient. At

a curve's singular point the problem is slighlty more complex, as the Taylor series is not defined.

Nevertheless, the curve can be factored into a finite number of power series at the singular point,

and rational approximations can be constructed from those.

In particular then our problems are:

• For an implicilty defined algebraic plane curve, compute an approximate rational parametric

representation (x = HI(t), y = H2(t)), for each real branch incident at a point p = (ao, bo)

on the curve, where HI(t), H2(t) are rational functions over the Reals.

• For a parameterically defined algebraic plane curve, compute an approximate implicit repre­

sentation f(x, y) = 0, and an inverse relation t = F(x, y) valid about a point p = (ao,bo) on

the curve, where I(x, y) is a polynomial and F(x, y) s a rational function over the Reals.

• For an implicitly defined algebraic space curve, compute an approximate rational parametric

representation (x = HI(t), Y = H2(t), Z = H3(t)), for each real branch incident at a point

p = (ao, bo, co) on the curve, where Hl(t), H2(t), H3 (t) are rational functions over the Reals.

• For a parameterically defined algebraic space curve, compute an approximate implicit repre­

sentation (h(x,y,z) = O,h(x,y,z) = 0), and an inverse relation t = F(x,y,z) valid about a

point p = (ao, bo, co) on the curve, where (11 (x, y, z) = 0, hex, y, z) = 0) is a polynomial and

F(x,y,z) is a rational function over the Reals.

Applications:

Rationality of the algebraic curve or surface is a restriction where advantages are obtained

from having both the implicit and rational parametric representations [5], [15J. While the rational

parametric form of representing a curve or surface allows greater ease for transformation and shape

control, the implicit form is preferred for testing whether a point is on the given curve or surface

and is further conducive to the direct application of algebraic techniques. Simpler algorithms are

possible when both representations are availa.ble. For example, a straightforward method exists for
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computing curve - curve and surface - surface intersections when one of the curves, respectively

surfaces, is in its implicit form and the other in its parametric form. Global parameterization

algorithms for plane curves of genus zero, are presented in [1].

There are also numerous applications where explicit local parameterizations, implicitizations,

and inversion formulas, which we present here, prove useful in an essential way:

1. Determining the topological type of a real algebraic curve, see for e.g. [3,11].

2. Adaptive stepping, for curve tracing through singularities, see for e.g [6].

3. Local intersection representation, see for e.g. [14J.

4. Piecewise rational approximation for non-rational algebraic curves, i.e., curves of positive

genus, see for e.g. [16, 17].

Prior Work

In [6, 14}, power series are constructed to locally approximate plane algebraic curves and surface

intersections. The method of [14] technically relies on the Implicit Function Theorem, seeking to

represent a curve branch e.'{plicitly in one coordinate as function of the other coordinate(s), while [6]

uses a Taylor series expansion. Both these methods however do not seem to have a natural extension

that handles singular points. Further, [16,17] also present techniques for curve approximation which

work only for special cases.

Methods for computing local branch parameterizations at singular points have been presented in

[10,11,12], both based on the Newton polygon, see for e.g., [18]. 'We instead use the iterative lifting

technique of Hensel together with the fast univariate Pade algorithm of [7]. Local implicitization is

considered in [9J extending the technique of [14] of reducing it to solving a linear system of equations.

Our techniques are much more direct, requiring only the efficient power series composition and

reversion of [8, 13] and straightforward rational function simplification.

Results:

In this paper we present a combination of both algebraic and numerical techniques to achieve

local parameterizations about singular points of algebraic curves. We show how to obtain real

Weierstrass and Newton power series factorizations using the technique of Hensel lifting. These,

together with rational Pade approximations, arc used to efficiently construct locally approximate,
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rational parametric representations for all real branches of an algebraic plane curve about its singu­

larities. Next we use power series composition and reversion techniques together with rational Pade

approximations to efficiently construct locally approximate implicit and inverse representations for

parametric algebraic plane curves. Extensions are then given to construct locally approximate, ra­

tional parameterizations, implicitizations and inversions for branches of surface intersection space

curves. Implementations of these methods and our experiences with them are also discussed.

2 Power Series Computations

2.1 Hensel Lifting

Consider l(x,y) of degree n. Assume it is monic in y . Otherwise, factor out the largest common

power of x amongst the terms of f.

f(x, y) = fo(Y) + h(y)x + ... + My)x' +

'We wish to compute real power series factors g(x,y) and h(x,y) where f(x,y) g(x,y)h(x,y).

The technique of Hensel lifting allows one to reconstruct the power series factors

9(X,y)

h(x,y)

9o(Y) + 9'(Y)X + + 9o(Y)X' + .

ho(Y) + h,(y)x + + h;(y)x; + . (1)

from initial factors /(0, y) = fo(Y) = 9o(y)ho(Y).

Consider the factorization of f(O,y) = fo(Y) as the base case of k = O. Assume fo(Y) is of

degree n. Choose real coprime factors go(Y) of degree p and ho(Y) of degree q satisfying: p + q = n.

Real coprimeness is achieved by ensuring that go and ho contain distinct real roots of fa and that

complex conjugate pairs are not split up. For the case n = 2 however, it may arise that the only

coprime factors of fa are complex, i.e., the distinct roots are complex conjugates. In that case

there only exist complex power series solutions. Since GCD(go(y),ho(y)) = 1 using the fast GCD

algorithm we can also compute a:(y) and {ley) such that a:(y)go(Y) + {l(y)ho(Y) = 1

In the iterative Case of k ~ 1, we compute 9k(Y) and hk(y) of the desired factorization (1),

with degree of 9k(Y) < p and degree of hk(Y) < q, as follows. We note from (1) that

My) = L: g,(y)h;(y)
i+i=k



and additionally

Hence,

My) - L g;(y)h;(y)
i<kAi<k

go(y)h'(Y) + ho(y)g.(y) (2)

g'(y) = ,8(y)[I>(y)

h'(y) = a(y)[I>(Y) L g,(y)h;(y)]
i<kl\i<k

L g;(y)h;(y)]
i<kl\i<k

If degree h'(y) 2: q then compute h.(y) = h'(y) mod ho(y) and set g.(y)

(3)
i<kl\i<k

Clearly degree hk(Y) is < q. Additionally in (3) the degree of 9k(Y) must also be < p. This is so

because in (3) the degree of the LHS is < n and since degree 9o(y)hk(Y) is < n and degree ho(Y) is

= q, it must be that degree gk(Y) 15 < p.

Similarly if degreeg'(y) 2: p then computeg.(y) = g'(y) mod gory) and set h.(y) = o(y)ho(Y)+

hk(y) where 9;(Y) = 6(Y)90(Y) + 9k(Y). Again, from similar degree ar~ments as above, is easily

seen that the degree bounds of hk(Y) and 9k(Y) are met.

2.2 Weierstrass Factorization

Consider f(x,y) with degree nand ordy f(O,y) = d < 00. An ordy f(O,v) = 00 corresponds

to [(0, y) = O. This can easily be rectifid by a simple linear transformation of f(x, y), which yields

a nonzero f(O,y) and hence a finite ordy f(O,y). We wish to compute a power series factorization

of the form [(x,y) = g(x,y)(yd + ad_l(x)yd-l + ... + ao(x)) where g(x,y) is a unit power
, .. '

h(:z:,y)
series, Le., 9(0,0) f. awhile h(x,y) is a polynomial in y with coefficients ai(:t), i = 0 ... n -1 being

non-unit power series, Le., a;(O) = O. Such a factorization is known as a vVeierstrass preparation

and is always possible as we now show.

The Weierstr;u;s prepamtion can efficiently be achieved via Hensel Lifting. Given

f(x, y) = fo(Y) + My)x + .. , + I>(y)x' + ...

with

fro, y) fo(Y)

5



in general for k ~ 1, we wish to compute hJ;(Y) and gk(Y) using Hensel, yielding factors similar to

to (1) such that

!key) L:
i<kAj<k

g,(y)h;(y) = go(y)h.(y) + ydg.(y)

with degree hk(Y) < d.

To achieve this we compute A(y) fr.(,,) - Li < I<~; < k9i(y)hj(Y) d th t h () T= 90(y) an en se k Y = erms

of A(y) with degree < d and gk(Y) = Terms of A(y) with degree 2: d.

2.3 Newton Factorization

Consider f(x, y), a monic polynomial in Y of degree n, with coefficients polynomial or power series

or meromorphic series in x

f(x,y) = y' + O._l(X)y·-l + ... + oo(x)

Then it is possible to factor f(x, y) into linear factors

f(x, y) = lIi~l (y - ~,(t))

with x tm and m a positive integer and 17j(t) power series or meromorphic series. This

factorization can also be achieved via Hensel lifting. We precondition the curve so that it admits

a non-trivial base factorization, i.e. having at least two coprime factors which can be lifted.

Step 1: Make an_l(x) = 0 via substitution fJ = y + a" ~(:z:)

Step 2: Ensure some an_i(D) #- 0 for i 2: 2 via substitution jj = ~ with A = min(2)i>n)g!..:z: _ _ I

and OJ = ord",On_i(X). Then f(O,y) = fo(Y) has at least two distinct roots.

Step 3: Now use Hensel lifting to lift the factorization [oCfI) = go(y)ho(Y) to f(x, y)

Repeat Steps 1-3 until all factors are linear or all real factors are obtained.

3 Local Parameterization

g( x, ij)h(x, ij).

Consider an implicit plane algebraic curve [(x,y) = 0, with a singularity at the origin. (A singu­

larity can be translated to the origin by a straightforward linear transformation). To compute a

local parametric approximation of each of the curve's branches incident at the origin, we execute

the following steps:
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1. Compute a 'Weierstrass power series factorization of f(x,y) into f:::; gh, where g«x,y)) is a

unit power series and h«x))(y) is a polynomialln y with coefficients non-unit power series

in x. The equation h :::; 0 corresponds to the curve's branches at the origin while the power

eries equation g :::; 0 corresponds to the portion of the plane curve away from the origin.

2. Recursively apply the Newton factorization to h«x))(y) till all factors are linear in y or

all real factors are obtained. Each of these power series factors represent a local branch

parameterization of the type x:::; tk and y:::; bi«t)) where hi is a power series. The minimum

of k and ordt(bi), say d, is known as the order of the branch, with d > 1 implying a singular

branch or "place" of the curve.

3. For each distinct branch power series parameterization y :::; bi«t)), compute a Pade rational

function approximation.

Consider next an algebraic space curve C, defined implicitly by two equations (fl(X,y,Z) :::; 0

and h(x,y,z) :::; 0), and having a singularity at the origin. To compute a local parametric

approximation of each of the curve's branches incident at the origin, we e.'Cecute the following

steps:

1. Using birational projection techniques of [4]' construct a projected plane curve P : f3(x,y)

and an inverse rational map z:::; F(x,y) from points on P to points on C.

2. Apply the steps 1., 2., and 3., of the plane curve parameterization algorithm above, to P, to

compute all branch parameterizations and local rational Pade approxlmants. Next use the

inverse rational map to yield the local parameterizations of all branches of the space curve at

the origin.

4 Local Implicitization

Consider a rational parametric plane curve given by (x :::; H1(t), Y = H';!:(t)) where HI and

H'}: are rational functions over the Reals. To compute a local implicit approximation of the curve

around the origin, we execute the following steps:

1. Let r k :::; x :::; HI(t) where k :::; ordc(Ht}:::; power of the lowest degree term of the power

series expansion of the rational function. ("WIg we assume ordtHl :::; k 2: ordcH'}::::; e, for

otherwise we can switch the roles of x and y ).
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2. Compute T = (H1)1/k = 91((t)) :::: power series of order 1.

3. Next invert the power series equation T ::;: 91((t)) to yield t ::;: 9i1((T)). This yields

(x ; Tk, y ; H,(g,'(T))); g,«(T)), whe,. ord,g,; ord,H,; i.

4. Now if l = 1 then invert y = 92((T)) to yield T = 9;1((y)), and construct a suitable

Pade rational function approximant T = Ha(y). The local implicit approximation is then

x - H~(y); o.
Ii mIl

5. When l > 1 then let m = least common multiple of land k, and compute tr:'/i = 9;m
= K. = (1 + CIT + .. ..)m/l = Ba((T)), a power series of order 1. N~te T and Tare

both integers. Next, compute the inverse power series, T = 93"1((,0;;)), followed by the

rational Pade approximant computation to yield T :::: G(K.) = G(ym/I jxm/k
) where G is a.

rational function. The local implicit approximation is then the polynomial simplification of

the e.'{pression x - Gk(x) = O.

Ne."d, consider a rational parametric space curve given by (x = H1(t), y = H2 (t), z = Ha(t))

where HI, H2 and Ha are rational. functions over the Reals. To compute a local implicit approx­

imation of the curve around the origin, we e.'{ecute the steps 1. to 5. of the above algorithm for

the plane curve case, twice. Once for (x = H1(t), Y = H2 (t)) to yield a local implicit equation

h(x, y) = 0, and then for (x = H1(t), Z :::: H3(t)) to yield a local implicit equation h(x,z) = O.

Of course steps 1. and 2. are not repeated. The implicit equations It = 0 and h = 0 are cylinders,

containing the space curve C, locally about the origin.

5 Local Inversion

To locally invert a parameterization (x ::;: HI (t), y

following:

H2(t)) about the origin we compute the

1. First execute steps 1., 2. and 3. of the last section. Then, as before,let (x ,1., Y :::: H2(91
1
((T)))

= 92(('))) represent a branch of the curve through the origin and let e = ord,.92((T)).

2. Now if e :::: 1 then invert y = 92((T)) to yield T = 9;1((y)) :::: 9a((Y))· Furthermore,

T = x9j((y)) = xG4(y), where g'I((Y)) is the reciprocal power series of 93, and G.I(y) an

appropriate Pade approximant of 9~' Now, from step 3. of the last section we know that
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t g11((T)), from which we construct a suitable Pade rational function approximant

t Gl(T). The local inversion formula is then t = Gl (G4(X,y)) = G(x,y), where G is a

rational function.

mIl mIl

3. When £ > 1 then let m :::: least common multiple of £ and k, and compute~ 9~mx-,· T

= K. :::: (1 + CIT + .. .. )m/l = g3((T)), a power series of order 1. Note T and Tare

both integers. Next, compute the inverse powe_r series, T = gsl((K.)), as well as construct

t = g11(9s1((K.))). This is followed by the rational Pade approximant computation to yield

the local inversion formula t = G(K) :::: G(ym/I jxm/k) where G is a rational function.

Ne.'l:t, consider a rational parametric space curve given by (x = Hl(t), y :::: H2(t), z = H3(t))

where HI, H2 and H3 are rational functions over the Reals. To compute a 10caIinversion formula of

the curve around the origin, we execute the steps 1. to 3. of the above algorithm for the plane curve

case, twice, without repeating any identical substeps. Once for (x = Hl(t), y :::: H2 (t)) to yield a

local inversion formula t = Ga(x, y), and then for (x = Hl(t), z :::: H3(t)) to yield a local inversion

formula t = Gb(x,y). A local inversion formula for the space curve then is t = g:.:::: G(x,y).

6 Implementation Issues

The algorithms of sections 3, 4, and 5 have been implemented as part of an interactive algebraic

geometry package, on a Symbolics Lisp machine using Common Lisp and C. The Hensel power

series computations of section 2.1, as well as its use in sections 2.2, and 2.3 are based on a robust

implementation of the fast euclidean HGCD algorithm [2,7]. Rational Pade approximants are also

computed based on the same HGCD algorithm, [7]. Power Series are stored as truncated sparse

polynomials, as are the original algebraic curves, viz., a list of degree, variable list and term list,

with nonzero terms stored as coefficient and exponents. Floating point coefficients are allowed

in the input curve representations, which are then converted to rational numbers for the GCD

and power series computations. In Newton factorizations, user options are provided to compute

only real branch factorizations. This is achieved by not allowing complex conjugate roots of the

appropriate univariate polynomial, to split in the base case of the Henselian computation.

Examples from the software implementation, are shown in Figures 1. 2. and 3. at the end of

thp. paper. Figure 1.1 shows an implicitly defined quartic plane curve with a tacnodal singularity at

the origin. The corresponding Figure 1.2 shows the local parameterization of the two real branches
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at the origin, as well as a (2,3) Pade approximations. Figures 2.1 and 2.2 and Figures 3.1 and 3.2

are other similar examples of quartic and sextic curves.

7 Conclusions and Future Research

The results of this paper are being extended to deal with power series computations in two or more

variables. These would yield a faster solution to the branch factorizations and local parameteriza­

tion of space curves, since the power series expansions of an implicit algebraic surface, about a point

of interest, can then be directly substituted into the other implicit surface equation of the implicitly

defined space curve. Note, that the methods of section 2. work even if the input equations are

power series, as would be the case then.

In. particular then, our future goals are to efficiently compute

1. Power series expansions about singular points and curves on surfaces, to yield bivariate local

parameterization, implicitization and inversion algorithms.

2. Generate suitable expansion points and curves for a piecewise rational surface approximation.

Acknowledgements: I wish to thank Professor Abhyankar for many useful explanations on singu­

larities and Insung Thm for all the time he spent on the software implementation.
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",. ,
"

..
n

SUS Iolould you like to cCJ\tlrllJc?
(Vea or No) Ve~

The eorrc"ponding (2.3) Pade appro"tnanta arc

" , 1.1I'T~2

9,5 '2.9'T~2

K~ I.Btl

,. , 1.BtT~2

1.9 -~.9tl~2

K" 1.9tT

'"

lu..d ~ Oct 9:01:21] baJIIJ CL USER I ~cr I"put

Figure 1.2
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(x' + y')' +3x'y - y3; 0

Figure 2.1



'"....

Ih~ d'atlnoUlah~d palynanilll ar ~h~ given palynanilll
1.O_V"~ _1.9_VAS +2.0lIolA2U"'2 +S.Ollol"'2.V +1.0_1ol-~

"1.00V"'S -5.0'1ol"'2lVA2 _1.01IolA~'VA2 -S.011ol"'2'V -1.0
'IolA~U _1.0'IolA~

RAT replllced -S.O by -S'l = -S.O

RAT replllced 1.0 by 1'1 = 1.0

RAT l"epll1eed -3.0 by -3/1 = -s.o

RRI replaced 1.9 by 111 a 1.0

A given palynenilll -1.0'V"'S +1.0'1ol~~ +2.0'IolA2'VA2 _
1.00VA~ +S.0_1ol"'2.V
"0 he' S reetadlll IIraund the erl0ln In r"al apee

o.

Ih~ fallaulng ill II ""t of lIpprollinll~ed feetods) ora
und ~he origin'

1. V = -9.S333332s01~2 -1I.1I96~194s01A~

11 = 1.1101

2. V = -1.1S20509U +2.6666661'T~2 -1.828216'
lAS +0.54S2091SUA~ _0.S661896U"'S

Iol = 1.001

3. V" 1,132858811 +2.666666111 A2 +1.8282160
1"3 .0.S~320913.T...~ -0.3661896U~5

Iol a 1.0.1

SUS Ileuld you like to centlnue?
(Veo ar ria) V~a

Ih~ carr~spandlng (2,3) Pad~ appralllnan~a ar~

___ 'X =::::::::: 7' II

L , 1.9U"2

-S.0000001 +0.1111153_1~2

Iol = LOU

2. V a 1.0'1 _0.56652391H A2

-0.5113593 -0.56199614.T -0.255531820T
~2 +0.01953999901"3

Iol" 1.001

S. V = LOU _0.56652391'r2

0.5113503 -0.5610961~01 '0.255531132_'
~2 +0.010538808""3

Iol" 1.9"

rUL
Q

[lied" Oct S,52:SS] boJoJ Cl USER I !:!!.e~ Input

Figure 2.2
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indo" S

Figure 3.1



, . 1.0< T

,. , . -1.~1~21351T '0.5303300611"3 '8.165129
1411"5 , . 1.1101"2

•• , . 1.411213511 -1l.5393311r1S.'-a -9.165128
I1s1"5 , . 1.11"1"2

,. , . -1.1142135"1 '8.5383300611"3 _8,165728
I11T"5 , . -l,a.r"2

,. ,. 1.111'213SH -11.53113311116'1"3 -11.165728
lolUA'S ,. -1.11'1"2

~2.9

II = I.OtT

UU lIouId you like to continul!?
(V'" Dr tio) VO!!

The co...."cpondtng (3.3) Pad" cpprDKI""ntc arc

1. y a 1,0_T"2

'-:> I .",..-= •

1.1111 -0.68749994>1"3

,.,
ll" 1.11"

2. V = 1.Bor2

,. ,
~

-11.711711168 '8.2289788511"2
II = 1.11"1"2.. , I.SoT -9.6871999401"3

B.7071068 -8.22997985>1"2
101.. 1.11'1"2

S. V.. 1.eU -1I.68749994U"S

-9.71111868 +0.2211')798511"2
H = 1.01r"2

-1.11

Eo. V" 1.811 -11.6871999111"3

B.loness -11.2209788511"2
II = 1.811"2

-1.11

""o

nfi:~-iJc:t:i;S8;19] Keyboard CL USER, !:!!cr Input

Figure 3.2
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