
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1988

XELLPACK: An Interactive Problem Solving Environment for XELLPACK: An Interactive Problem Solving Environment for

Elliptic Partial Differential Equations Elliptic Partial Differential Equations

Jophn P. Bonomo

Wayne R. Dyksen

Report Number:
88-839

Bonomo, Jophn P. and Dyksen, Wayne R., "XELLPACK: An Interactive Problem Solving Environment for
Elliptic Partial Differential Equations" (1988). Department of Computer Science Technical Reports. Paper
717.
https://docs.lib.purdue.edu/cstech/717

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

y

\ ",

"

XELLPACK: AN INTERACTIVE
PROBLEM-SOLVING ENVIRONMENT FOR

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

John P. Bonomo
Wayne R. Dyksen

CSD-lR-839
December 1988

XELLPACK:

An Interactive Problem-Solving Environment

for Elliptic Partial Differential Equations

John P. Bonomo t

Wayne R. Dyksen I

Purdue University

Department of Computer Sciences

CER-88-47, CSD-TR-839

1Snpported in part by National Science Foundation grant CCR-8619817

ISupported in part by National Science Foundation grants CCR-8612676 and DCR·8602385

1

XELLPACK:

An Interactive Problem-Solving Environment for

Elliptic Partial Differential Equations

John P. Bonomo t

Wayne R. Dyksen t

Abstract

ELLPACK is a very high-level language designed for solving second order, linear elliptic

partial differential equations in two and three dimensions with Dirichlet, Neumann, mixed or

periodic boundary conditions. The typical elliptic problem solving process is iterative; one

repeatedly computes a solution, anal;rzes the results and then modifies the solution process. To

better serve this process, we have developed XELLPACK, an e>..-tension of ELLPACK based on

the X windowing environment. XELLPACK provides graphics inpu t for constructing grids, pop­

up menus for selecting solution techniques, and color graphics output for analyzing solutions.

Using the X paradigm, a user can interface with XELLPACK from any X workstation while an

XELLPACK client solves an elliptic problem on any machine or machines on the network.

'Supported in part by National Science Foundation grant CCR·8619817

'Supported in part by National Science Foundation grants CCR-a612676 and DCR-8602385

1

1 Introduction

Over the last several years the amount of computer power available to the average scientific pro·

grammer has increased dramatically with the introduction of powerful parallel and vector machines

into the market. Problems that were previously considered intractable or unmanageable are now

being solved routinely on these machines in research and industrial. institutions around the world.

Similar advancements in scientific soft\\oare have also been achieved, although at a significantly

slower rate. Very High-Level Languages (VHLLs) have been developed to free scientists and engi­

neers from the low-level details of scientific programming. Typically VHLLs present to the user a

high-level interface which allows him to define his problem in a natural way and to access state of

the art equipment and algorithms.

Two prime examples of VHLLs are the ELLPACK and Interactive ELLPACK systems. ELL­

PACK [5] was developed as a VllLL to solve elliptic partial differential equations (PDEs). Though

designed initially as a testbed for elliptic algorithms, it also serves as a powerful problem solving

tool. To aid in both these uses of ELLPACK, Interactive ELLPACK [4] was developed to allow

run-time graphical interaction between the programmer and ELLPACK.

The advent of workstations and windowing software calls for a further advancement in scientific

software. The computing power made a....-ailable to the scientist has again increased enormously

as it is now possible to open one or more windows on a workstation, each which may be running

programs on other, more powerful machines. In order to take advantage of this increased access

to sophisticated hardware, as well as other features offered by a windowing environment, we have

developed XELLPACK, an elliptic problem solving environment based on the X Window System1 •

In this paper we describe the current state of XELLPACK. Sections 2 and 3 give brief summaries

of ELLPACK and Interactive ELLPACK. Section 4 describes the X Window System. In Section

5 we describe the main features of XELLPACK. We close in Section 6 with a discussion of future

modification and improvements planned for XELLPACK.

2 ELLPACK

The objective of ELLPACK was to develop an environment for evaluatiI!.g the performance of

algorithms and software for elliptic PDEs. Three major results of this effort are the following:

1. ELLPACK, a very hlgh-levellanguage for solving elliptic problems [5];

2. the Elliptic PDE Population, a population of 56+ parameterized elliptic problems (190+

instances) used by the Performance Evaluation System [6]; and,

1The X Wmdow System is a trademark of MIT

2

3. the Performance Evaluation System, a system for the generation, collection and analysis of

data on the performance of elliptic algorithms [1], [3].

ELLPACK can be used to solve a large class of elliptic problems: second-order, linear elliptic

PDEs in two and three dimensions with Dirichlet, Neumann, mlxed or periodic boundary conditions.

For example, the" simple elliptic problem

- '\72u - 20ii2 U 0

U = 0

(x,y) E (0,1) X (0,1)

:l: = 0,1, y = 0 (1)

U y 41i sin(2r.x) y = 1

can be solved by the ELLPACK program shown in Figure 1.

equation. uxx - uyy - (20*pi*2)u = 0

on x = 1

on y = 0

uy = 4*pi*sin(2*pi*x) on y = 1

boundary. u = 0 on x = 0

grid. 17 x points $ 17 Y points

discretization. 5 point star

indexing.

solution.

output.

end.

as is

linpack band

max(u) $ ploteu) $ max(residual) $ plot(residual)

Figure 1: Sample ELLPACK program.

An ELLPACK program consists of several segments. The elliptic problem is defined by the

equation and boundary segments. The boundary segment allows description of non-rectangular,

parameterized domains as well as simple rectangular ones. It also allows the placement of holes

and arcs within a domain.

ELLPACK contains four basic types of problem-solving modules. Discretization modules dis­

cretized the continuous problem by generating a system of linear equations. Indexing modules

are used to order the linear system, which is then solved by a solution module. Triple modules

incorporate all three of these steps into one module.

ELLPACK contains several. other segments and modules which are not explicitly involved in

the PDE solution process. Output modules allow the user to graph \-arious functions (computed

3

solution, true solution, residual, etc.) in either two or three dimensions. Procedure modules provide

routines which are useful in analyzing an elliptic problem or which assist in the solution process.

For example one procedure module prints out the non·zero pattern of the generated linear system

for a PDEj another initializes the unknowns if an iterative solution scheme is used. The fortran

and subroutine segments allow the inclusion of FORTRAN code into the ELLPACK program.

Fortran segments can appear anywhere after the declarative segments, while tile subroutine segment

contains user supplied FORTR•.o\N subroutines which can be called from the ELLPACK program.

Though ELLPACK was initially developed as an environment for evaluating the performance

of algorithms and software for elliptic PDEs, it is now recognized as a ver.}'" powerful tool for solving

a large class of problems. Its modular design allows it to be used to solve problems other than

second-order. linear elliptic problems. For examples, we have used ELLPACK to solve coupled

systems of elliptic equations, nonlinear elliptic problems and time-dependent problems.

3 Interactive ELLPACK

Solving PDEs with ELLPACK is typically an iterative process. One begins by computing an

initial solution using an arbitrary grid and solution method. This solution is then analyzed and an

estimation of its accuracy is determined. Once this is determined. a new grid may be constructed

by either adding new lines or moving existing linesj grids aTe constructed both computationally

and visually. The solution method may also be modified by adjusting module parameters, or a

totally new method may be chosen. A new solution is then computed, and the above procedure is

repeated until a satisfactory solution is obtained.

When using the batch oriented ELLPACK system, the above procedure is often unduly long

and tedious, resulting in much wasted time. To speed up this process, Interactive ELLPACK was

developed. Interactive ELLPACK [4] is an extension of ELLPACK which includes several. important

new features:

1. a menu segment to build user designed menus to allow the run time selection of ELLPACK

modules;

2. an interactive grid module which allows the user to view, specify and change grids via inter­

active graphical devices throughout the execution; and,

3. new two and three dimensional color graphics output modules.

These features greatly speedup the iterative solution process described above. The graphics outpu~

modu1es allow the user to instantly view the results of the current grid/solution combination. The

user-defined menus allow selection of multiple solution methods as well as allowing the run time

4

modification of parameterized modules. To aid in the modification of the grid, the interactive grid

module allows the current grid to be superimposed over any two dimensional graphics output such

as the residual or some other error estimating function.

4 The X Window System

X is a windowing system developed as part of the Athena project at MIT. It is network transparent

and designed to run under 4.3BSD UNIX2 and Ultnr Version 1.2. X runs on computers with

either monochrome or color bitmap displays. We give a brief overview here for readers uniamiliar

with the X Window System.

X uses the server-client paradigm. A set of screens for a single user with one keyboard and

one motion device (such as a mouse) is called a display. The display is managed by an X display

server which distributes user input to, and accepts output request from various client programs.

These client programs can be local to the server's machine or may reside elsewhere on a. computer

network connected to the server's machine. ?vfultiple clients connected to the same X server can

exist on any machine. Figure 2 illustrates an X server which has six clients connected to iti two of

these clients are local and four are located on remote machines: connected to the X server over a

network.

WORKSTATION WORKSTATION

@8 8servers
I I NETWORK

I I
PARALLEL MACHINE VECTOR MACHINE

8 8 8
Figure 2: An X server and six clients distributed over a network.

2UNIX is a trademark of AT&T Bell Labora.tories

3U1trix is a tra.demark of Digital Equipment Corpora.tion

5

An X server can handle multiple displays, with multiple, overlapping windows within each

display. The main window for each screen is called the root window and it covers the entire

screen. IvIultiple windows on the screen are stored as a tree structure, with the root window as

the root of the tree. This hierarchy is used to specify the inheritance of window properties and

the propagation of input events. Trees can be of arbitrary length and bushiness. Although a child

window can be defined to extend outside the extent of it's parent's window, output to that child

window is constrained to lie within the bounds of the parent. Any clipping necessary is performed

automatically by the server.

If several sibling windows overlap, one of them is considered to be on top a.nd is not obscured;

output to the other siblings is suppressed if it falls within the overla.p region. At any time one of

these lower sibling windows may be raised and brought to the top, in which case it's contents must

be restored. The X server does not retain the contents of windows and leaves the responsibility

of repainting the window contents to the client application. Vlhen any part of a window becomes

unobscured, the X server informs the client which part of the window needs to be repainted.

The X server provides some off screen resources to aid in repainting windows. Any window or

part of a. window may be stored as a pixmap in which the actual pixel values which make up the

designated area are saved off screen in the server's address space. Pixmaps also exist as entities of

there own apart from windows; for example, you can draw directly onto a pixmap a.nd then later

copy the contents of that pixmap to a window. Windows and pixmaps are both referred to as

drawables.

The X server communicates with its client applications in two ways; either through replies to

requests from a client (e.g. a query on window characteristics) or through events. Events are

generated asynchronoU5ly by the X server in response to device activity (e.g. moving a mouse or

pressing a key) or as side effects to clien t requests (e.g. raising or moving a window). Each window

has associated with it a set of events that it recognizes and responds to; these events are said to be

selected by the window. If an event is generated in some window which does not recognize it, it is

passed up through that window's ancestors until it finds a window which has selected that event,

or until it is eJ..-plicitly discarded by some window. The types of events generated by the X server

can be organized into several categoriesj for example keyboard events (KeyPress and KeyRelease

events), pointer motion events (But'tonPress. ButtonRelease. MotionNotify), window crossing

events (EnterNotify. Leavellotify), and e......."Posure events (Expose).

Client applications interface with the X server via routines from a C routine library called Xlib.

Xlib routines allow the client to con.nect to the X server via a stream connection and send and

receive information from it. In order to minimize the amount of network overhead, events ar~

queued until there is an eA-plicit request for them. Output requests generated by Xlib routines are

also queued in order to keep network requests to a minimum. \Yhile this queue can be explicitly

6

flushed with the XFlush routine such action is in practice rarely needed since this action is a side

effect whenever the client attempts to read any event or reply from the server.

The X server is started on a machine using the xinit command. A client application must also

be started up along with the X server; once this client terminates, zinit kills the server and then

terminates itself. By default, the initial. client application is xterm, a terminal emulator which starts

up a shell on the local. machine. Xterm emulates a DEC VTI02 terminal and provides labeling

of the window, scrolling, and cut and paste abilities. Once the server is running, more xterms (or

other clients) can be started, either locally or remotely. }J.so, an zte.nn can be instructed to execute

a command other than a shell; once this command is completed, the xte.rm terminates.

5 XELLPACK

5.1 Overview

XELLPACK is the result of applying the facilities of the X Window System to the methodology

of Interactive ELLPACK. Figure 3 shows an XELLPACK program to solve the elliptic problem

given in (1). XELLPACK is started by invoking an zlerm with a compiled XELLPACK program

as its argument. The resulting window is called the XELLPACK dialog window and is used for all

text input and output throughout the XELLPACK run. Keyboard input is focv.sed on the dialog

window so that the cursor does not have to be located in the window when typing. XELLPACK is

event drjven and does nothing until the user presses the left mouse button to get the first menu.

Figure 4 shows an example display of the XEL1PACK program in Figure 3.

5.2 Menus

There are two types of menus in any XELLPACK program: user-defined menus and built-in menus.

The syntax for an XELLPACK used·defined menu segment is:

menu. '<menu name>'

<menu item>

<menu item>

<menu item>

where each <menu item> is of the form:

I [<key>] : <label>' <item definition>

7

options.

max x points = 33 $ max y points = 33

interpolation = splines

equation. - uxx - uyy - (20*pi**2)u = 0

boundary. u = 0 on x = 0

on x = 1

on y = 0

on y = 1

menu. 'Solu"t;ion Menu'

'ig:interactive g~id'

'fd:ordinary finite differences J

'hf:hodie fft'

grid.

dis.

soL

trio

interactiva

5 point star

band ga

hodia ftt

menu. 'Dutput Menu'

'ct:contour true' out. plot (true)

'Cll: contour u' out. plot(u)

'ce:contour error' out. plot (error)

'ca:contour abserr = abs(error) , out. plot (abserr)

'gt:graph true' out. plot3d(true)

'gu:graph u' out. plot3d(u)

'ge:graph error' out. plot3d(error)

I ga:graph abserr = abs (error) , out. plot3d(abserr)

end.

FiguIe 3: An XELLPACK program to explore the use of different methods (5 point star and howe

fft) and grids in solving an Helmholtz problem.

8

, I I I

·I·~, w
:;~>, ,

~I~

811

,,
"

,

I,

,,,
i

! , •,, , , •

•

Figure 4: XELLPACK display showing dialog window (the black window), two interactiye grid

windows, three output windows and one menu.

9

The string <menu name> is used as a label for the menu. Each menu selection is identified by the

<label> field in the item specification (the optional <key> field is for compatibility with Interactive

ELLPACK and is not used by XELLPACK). Once the user selects a menu item, XELLPACK

executes the ELLPACK commands listed in <i'tem defini'tion>. This list can be of arbitrary

length and contain any (viable) combination of discretization, indexing, solution, triple, fortran,

procedure and output segments. The program in Figure 3 includes two user-defined menus. The

first allows selection of the interactive grid module and two solution procedures. Note that the first

solution method "ordinuy finite differences" is associated with two ELLPACK modules: a

5-point star discretization module and a band Gauss elimination solution module. XELLPACK

appends three e>..-tra menu selections to the end of every user- defined menu: "next menu", "prev

menu" and "quit". There is no limit to the number of menus allowed in an XELLPACK program.

An example of the two menus defined in the XELLPACK program in Figure 3 are shown in Figure

5.
Several built-in menus are incorporated into XELLPACK. The graphics utility menu (Figure

6) allows selection of routines which process XELLPACK graphics output window. Currently the

only selections are "put 'g"indo'g"", "get liindo.." and "delete ..indo..". The first two selections

allow the user to save and restore window graphics. FutUIe versions will allow the user to resize

windows as well. Two other built-in menus are produce by the interactive grid module (Figure 7).

They are discussed further in Section 5.4.

5.3 XELLPACK Output

XELLPACK contains several output modules which produce graphic plots of any user specified func­

tion. IT function is a FORTRAN function, then plot(function) produces a two-dimensional contour

plot of level curves, plot2d(funetion) produces a two-dimensional panel plot, and plot3d(function)

produces a three-dimensional rendering of function (see Bonomo and Dyksen [2] for a description of

the plot3d module for an earlier version of Interactive ELLPACK). The plotted functions can either

be user-defined (using the subroutine segment) or built-in. Examples of built-in functions are: ti,

the computed solution, ux, the :z: derivative of the computed solution, and residu, the residual of

the calculated solution. One other output module, plot domain, is used to output the boundary of

the domain (this is typically only of interest with non-rectangular domains).

Each output module open a new window and draws onto jt. The dimensions of the window are

scaled to the dimensions of the graphed fu.nction~ but once they are set they cannot be changed.

FutUIe versions of XELLPACK will allow rescaling of output windows. The initial placement of

the window and subsequent movement is controlled by the local v.indow manager. luter a module

ftnishes drawing onto the window, the pixel image in the window is stored by the X server as a

10

-Solution Menu
interactive grid
ordinary finit~ diff~rences

hodie f.f't
next menu
prev menu
quit

o ut Menu ..
contour true
contour u
contour error
contour abserr = abs(error)
graph true
graph u
graph error
graph abserr = abs(error)
next menu
prev menu
quit

Figure 5: XELLPACK user-de:fined menus c:reated from the XELLPACK program in Figure 3.

Note that three extra. selections are appended to the end of each menu.

Wl.ndcw Menu
Put Window
Get Window
Delete Window

Figure 6: Built-in XELLPACK window utility menu.

11

pixmap which is later used to restore window contents when all or part of the window is hidden and

then re-exposed. Since pixmaps are a limited resource in X, once a window is deleted, its pixmap

is also deleted. Entire windows can be saved and viewed later using the X client xwd (X window

dump) and xwud (X window undump).

Several ELLPACK output and procedure modules produce purely textual output; e.g., the

output module max(function). All tU1;ual output appears in the XELLPACK dialog window.

5.4 XELLPACK Input

There are two type of XELLPACK input: keyboard input in response to either a built-in or user·

defined menu selection, and interactive grid input. All keyboard input events are constrained to be

recognized by the XELLPACK dialog window (a process called focusing). This facilitates keyboard

input as otherwise the user would have to move the screen cursor onto the dialog window prior to

euh keystroke.

The interactive grid module requires both keyboard input (handled in the manner described

above) and mouse input. XELLPACK allows one or more grids to be defined at anyone time; the

current grid that is being used in solving the PDE is called the active grid. Interactive grid can

be used to create a new grid, or update an existing grid. "When creating a new grid, the module

first opens a window scaled to the size of the domain, copies the currently active grid onto the

new window and makes this liew grid the active grid. \Vhen an XELLPACK program starts up,

the default active grid is a 2 X 2 grid corresponding to the limits of the smallest rectangle which

encloses the domain. \Vhen updating a grid, the module raises the grid window and makes it the

active grid. The active grid is identified by the word ACTIVE printed in the upper left hand corner

of the grid window (see Figure 4).

Once a grid has been selected it can then be modified. Figure 7 shows the two built-in interactive

grid menus. The larger of the two is the main menu and allows selection of various routines to

modify or query the grid. The smaller menu is used to specify which dimension various routines

are to be applied. It pops up automatically when the user specifies interactive grid selections

"Crea1;e Uniform Gird", "Make Grid Uniform", "Clear Grid", "Print All Grid Lines" and

"Enter Grid Line Value".

Adding and deleting grid lines is performed by the mouse. When the cursor enters the grid

domain, it turns into a cross hair. At this point, clicking the left mouse button will insert an x grid

line at the current cross hair location; clicking the right mouse button inserts a y grid line; and

clicking the center button adds both and x and y grid lines. Deleting lines is done in an analogous

manner, but with the shift key pressed simultaneously with the mouse buttons. Grid lines may

also be added numerically using the "Enter Grid Line Values'" selection, 'with grid line "olues

12

IntEractive Gr~d Menu
Create Uniform Grid
Make Grid Uniform
Get Grid File
Save Grid rile
User Defined Grid
Clear Grid
Restore Initial Grld
Number of Grid Lines
Print Grid Line Value
Print All Grid Lines
Enter Grid Line Value
Enter New Grid Limits
EXit Interactive Grid

Both
X Only
Y Only
Cancel

Figure 7: Interactive grid built-in menus. The smaller menu is used to specify the dimension(s) in

which interactive grid routines are appli~d.

specified using the keyboard.

All the interactive grid sel.ectioIlS apply to both rectangular and non-rectangular domains except

the "En-:er Ne;i G:-id Limi'ts'" selection which applies only to non-rectangular domaiIlS. This

menu selection allows the user to speciiy and modify an enclosing rectangle over the domain. For

rectangular domains, the first and last grid lines are cOIlStrained to lie along the x and y limits of

the domain.

6 Future Plans for XELLPACK

"Vbile no major changes to XELLP.-\CK are planned in the near future, several modifications and

improvements are necessary to make XELlPACK more usable in a problem solving environment.

The ability to resize windows will be implemented, though it must be decided whether or not

to constrain the resized window to have the same aspect ratio as the original window. In order

. to interactively resize windows, XELLPACK must build and store graphic display lists for every

graphed function. Graphic display lists contain the contems of an output window in an intermediate

representation (such as POSTSCR.IPT";): once the size of a window is determined, the intermediate

description of the window is translated into the proper X \Vindow System graphic commands.

In the current implementation oi XELLPACK, the interactive grid windows are treated very

ciifferently from the output windows. In future version, we hope to reconcile some of these dif-

4POSTScRl?T is a trademouk of Adobe Systems Incorporated

13

ferences. In particular, we hope to be able to query output windows in the same manner that

one queries interactive grid windows. For example, given an output window, the user will be able

to find out the grid/solution combination that resulted in the function being plotted. Also under

investigation is the concept of l:updating" an output windowj for example, for a. three dimensional

output window this might mean allowing rotation of a function.

At the time XELLPACK was written, X10 was the latest version of the X "~indow System

available. However with the recent introduction of Xl! and its claims to being the new X standard,

XELLPACK will be re'WI"itten to conform to XU standards. It should be noted that in this paper

we have often used XU terminolog:y and concepts in anticipation of this planned update.

References

[1] R. F. Boisvert, E. N. Houstis, and J. R. Rice. A system for performing evaluation of partial

differential equations software. IEEE Trans. Softw. Eng., 5:418-425, 1979.

[2] J. P. Bonomo and \V. R. Dyksen. Three Dimensional Graphics Software in Interactive ELL­

PACK. Technical Report CSD-TR 674, Purdue University, 1987.

[3] J. P. Bonomo, \V. R. Dyksen, and J. R. Rice. The ELLP.4CK performance evaluation system.

Technical Report CSD-TR 569, Purdue University, 1986.

[4] W. R. DykseJl and C. J. Ribbens. Interactive ELLPACK: an interactive problem-solving envi­

ronment for elliptic partial differential equations. A CM Transactions on Mathematical Software,

13(2):113-132, June 1987.

[5] J. R. Rice and R. F. Boisvert. Solving Elliptic Problems Using ELLPACK. Springer-Verlag,

New York, 1985.

[6] J. R. Rice, E. N. Houstis, and W. R. DykseJl. A population of linear, second order, elliptic

partial differential equations on rectangular domains, Parts 1 and 2. Math. Camp., 36:475-484,

1981.

14

	XELLPACK: An Interactive Problem Solving Environment for Elliptic Partial Differential Equations
	Report Number:
	

	tmp.1307986960.pdf.psC0k

