
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1988

Convex Decompositions of Simple Polyhedra Convex Decompositions of Simple Polyhedra

Chanderjit Bajaj

Tamal K. Dey

Report Number:
88-833

Bajaj, Chanderjit and Dey, Tamal K., "Convex Decompositions of Simple Polyhedra" (1988). Department of
Computer Science Technical Reports. Paper 711.
https://docs.lib.purdue.edu/cstech/711

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

CONVEX DECOMPOSITIONS OF
SIM:PLE POLYHEDRA

Chandrajit Bajaj
Tarnal K. Dey

CSD TR-833
December 1988

CONVEX DECOMPOSITIONS OF SIMPLE POLYHEDRA'

ChandeIjit Bajaj
Tarnal K. Dey

Computer Sciences Department
Purdue University

Technical Report CSD-TR-833
CAPO Report CER-87-44

December, 1988

Abstract

Chazelle in [3] established a worst-case, quadratic lower bound on the complexity
of the problem of partitioning a polyhedron into disjoint convex polyhedra and gave an
algorithm that procudes a worst-case, oplimal 0 (N 2) number of convex polyhedra. His
algorithm runs in 0 (nN3) time and 0 (nN 2) space, where n is the number of edges of
the polyhedron and N is the number of notches or reflex edges of the polyhedron. We
present an algorithm which produces the same number of convex polyhedra as [3], but
runs in only 0 «nN + N 3 log n)logN) dme and 0 (nN + N 3) space.

.. Supported in pan by NSF Grant MIP 85-21356. ARO Conlract DAAG29-85-e0018 under
Cornell NISI and ONR contract NOO014-88-K-0402.

1 Introduction

Motivation: The main purpose behind decomposition operations is to simplify a problem for com­

plex objects into a number of subproblems dealing with simple objects. In most cases a decom­

position, in terms of a finite union of disjoint convex pieces is useful and this is always possible

for polyhedral models [3]. Convex decompositions lead to efficient algorithms, for example, in ge­

ometric point location and intersection detection, see [4]. Our motivation stems from the use of

geometric models in a physical simulation system being developed at Purdue [1]. Specifically, a

disjoint conve.x decomposition of simple polyhedra allows for more efficient algorithms in collision

detection~ in convolution generation for planning of motion under contact, and in the computation

of volumetric properties.

Problem Statement: Given a simple polyhedron P in three dimensions, decompose it into pairwise

disjoint convex polyhedra, whose union is exactly P.

Related WorA:: The problem of partitioning a polyhedron into a minimum number of convex parts is

known to be NP·hard [6]. For the above problem however, Chazelle established a worst-case, O(n 2)

lower bound on the comple.tity of the problem and gave an algorithm that produces a worst·case,

optimal number, O(N 2
) of convex polyhedra in O(nN3) time and O(nN2) space, where n is the

number of edges of the polyhedron P and N is the number of notches or reflex edges of P.

Results: In this paper we present an algorithm which produces the same number of convex polyhedra

as [3], but runs in only O«nN + N 3 log n)logN) time and O(n N + N 3) space.

Algorithm Synopsis: Let P be a simple polyhedron, possibly with holes, and having n vertices :

Vl,'ll2,···,Vn , p edges: el,e2, ... ,ep and q faces: ft,h, ... ,/q. Assume that every edge of P has

e.,,<actly two incident faces. An edge 9 of P is a notch if the inner-angle "f between the two incident

faces of g, is greater than 1800
• Nonconvexity in P, is a result of the presence of these notches in

the polyhedron. Chazelle's algorithm proceeds in removing all notches of P, by repeatedly cutting

and splitting P with planes containing the notches, finally producing conve."< polyhedra Pi, with

Ui Pi = P. If edge g is a notch, with f9- , ft as its incident faces, then a plane T which contains the

notch 9 and subtends an inner-angle greater than 7 - 1800 with both /9- and ft, is a valid notch

plane for g. The chosen plane T is also called the notch plane of g. Clearly there are an infinity

of choices for T.

The notch plane T of 9 may intersect other notches in P, thereby producing subnotches. Sub­

notches are thus split reflex edges of the original polyhedron P, and which are still reflex for the

current polyhedra produced from the splitting of P. At a generic instant of time, after cutting

and splitting P with certain notch planes, there would be se'ieral polyhedra containing notches

and subnotches. The process is repeated until all the notches and subnotches are removed, thereby

yielding convex polyhedra.

2

By choosing to cut all the subnotches of a single notch with the same notch plane, [3] guarantees

an O(.N2
) number of convex polyhedra. We also follow this strategy of selecting notch planes,

yielding the same number of covex polyhedra as [3J. However, we present a more efficient procedure

for the actual polyhedron cutting and splitting operations, producing a. vastly improved time bound.

2 Preliminaries

We first define some of the terms and notation to be used later. The intersection between T and P

is in general, a set of simple polygons, possibly with holes. We call this set of polygons as the cutset

of T. See Figure 2.1. If G is a simple polygon with vertices VI, V2, ••. , Vn in clockwise order, a vertex

Vi is a notch of G if the inner angle between the edge (Vi_I, Vi) and (Vi, Vi+I) is > 1800 . Between

any two consecutive notches Vi, vi in the clockwise order, the sequence of vertices (V;,Vi+l, ...,Vj)

is called a convex polygonal.line. Each polygonal·line can be partitioned into convex-chains, which

are maximal pieces of a po~ygonal-line, with the property that its vertices form a convex polygon.

Each conve:.;:-chain can be further partitioned into at most 3 x-monotone maximal pieces called

subchains, i.e., vertices of a subchain have x-coordinates in either strictly increasing or decreasing

order. See Figure 2.2.

For the ne.xt section we also need the following Lemmas, from Chazelle's thesis [2]'

Lemma 1: Let G be a simple polygon with NG notches, then number of conve.'I(-chains CG in

G is bounded as CG $; 2(1 + NG).

Proof: See ([2}, page 22, Theorem 3). "

Lemma 2: Let G be a simple polygon with No notches, then number of subchains CSG in G

is bounded as CSG $; 6(1 + Na).

Proof: It is easy to see that there are atmost 3 subchains per conve.'I(·chain. This fact together

with Lemma 1 yields the bound....

Lemma 3: Let G be a simple polygon with NG notches. No lin~ can intersect G in more than

2NG segments.

Proof: See ([2], page 121, Lemma 18). '"

When ~VG is zero, one line can intersect G in at most one segment. We therefore modify the

above Lemma. to be

Lemma 4: Let G be a simple polygon with No notches. No line can intersect G in more than

max(1,2Nc) segments or max(2,2Na + 1) points.

3

3 Convex Decomposition

We represent the polyhedron with a compact data. structure described below. See also Figure

3.1. Each edge, between two vertices Vi, Vi+1 in the polyhedron, is represented by two directed

edges ejl ::; (Vi,'UiH) and ei2 ::; (Vi+l,'Ui). We assume for the present that each edge of the

polyhedron is adjacent to two faces. This simplification may be dropped with slight modifications

of our algorithm. We call Vi and Vi+1 as the start and end node reSpectively of the edge (Vi. 11;+1).

Data Structure

1. vertex-edge-face-list: Each verte.'<: node is connected to the set of vertex nodes adjacent to

it. Each edge (Vi,Vi+l) (represented by the link between two vertices) has an attribute, (the

faces associated with that edge) represented by a linear list called the face-list. Each entry for

a face in the face-list of (Vit Vi+l) is a pointer to a node representing Vi in a structure called

the fa.ce-structure corresponding to that face.

2. face-structure: Each subchain Cj in the face is represented by a 2-3 tree Tc; with leaves

representing the vertices. The leaves representing the vertices are sorted in the clockwise

direction around the face. Leaves are connected by doubly linked lists. Each leaf has a

pointer to the face list associated with the edge starting from that vertex. Each leaf also has

a pointer to the root of its tree.

Note that this data structure allows us to go in 0(1) time, from any verte-x in the face-structure

to an edge which starts from that verte-x and contained in the face. Once we reach the edge we can

reach the other face associated with that edge, also in 0(1) time.

The Algorithm

Since decomposing a polyhedron P with N notches consists of a sequence of intersections with

notch planes, we first descrjbe the method of cutting a polyhedron P by the notch plane T of a

notch g. Recall that the intersection of P and the notch plane T is a set of polygons S called T's

cutset. We determine the unique polygon Q from S called the polygon-cut, supporting the notch

g. After determining the polygon~cut Q, we need to split P along the cut Q. Actually splitting

P along the cut Q instead of cutset S, is sufficient to remove the notch 9 through P. Note that

because of tills, P may not get separated into two different pieces after the split. See also Figure

3.2.

• Step I: Determine Q. This calls for the following steps

- Step 1(0.): Determine the outer boundary of Q.

- Step I(b): Determine the inner boundary(s) of Q (if any).

4

• Step II: Separate P. While describing the algorithm we assume P is separated into two pieces

by cutset Q. We later describe how we handle the case where P is merely spliced by Q instead

of getting separated into two pieces.

Details of Step I

We first describe the method of determinlng any boundary of the set of polygons S. Suppose we

have an initial point alan the boundary B. We can determine other points on B in the following

way. Let al be on the edge UI of the face Ii. Let a2, ... , ak be other intersection points of Ii with

T on the edges U2,U2,··.,Uk. We need to determine a2, ... ,ak which will be on B. See Figure 3.3.

Since intersection of Ii and T is a line L, in general, determining a2, ... , ak requires nothing more

than determining the intersection points of L with the simple polygon representing Ii-

Since we store the subchains of faces in a 2-3 tree, the intersection point in each subchain Cj

can be determined in O(log Pi) time where Pi is the number of vertices in the subchain Ci. By

Lemma 4, k ~ max(2,2Nj + 1) where Nj is the number of notches in Ii- By Lemma 2, the

number of subchains hj in Ii is bounded by 6(1 + Nj). So, determination of a2, ...• ak takes at

most I:j~l log Pi! where hj ~ 6(1 + Ni). We sort ai'S on the line of intersection L. This takes

O(max(l,N; log Ni)) = 0(1 + Ni log Ni) time since k :::; max(2,2N; +1). We join aj and a2

and keep a3, a4, ... , ak in a list associated with I; for future use as described below. We examine U2

and get the face !i+l associated with U2 other than Ii- In our data structure we can find li+1 in

constant time. Now, in face 1;+1, all the intersection points might have been determined earlier.

vVe check the list of boundary points (intersection points) associated with 1;+1' If the list is empty,

we follow the above procedure to determine it, otherwise we join a2 with a~ in the list a;,a~, ...,a~

associated with /;+1' We delete a;, ai from this list. Note a; and a2 are the same point. See for

e.g., Figure 3.4. Now we proceed from a~ and go on following the above procedure, until we reach

the initial point aI, on the boundary B. Obviously, the time taken to determine all the points on

B is
k ,

O(L log p, + L(N, log N, + 1»,
;=1 i=1

where h is the total number of subchains in all the faces intersected by T and T is the number of

such faces. Note Pi is the number of vertices in the i/h such subchain.

Now, we describe how to determine the outer and imier boundary(s) of Q.

Step rea): The notch g will be on the outer boundar)' of Q. SO, we can take any vertex of 9

as the initial point to start with determining the outer boundary of Q by the above method.

Step I(b): Let Ii be any inner boundary of Q. Ii itself constitutes a simple polygon. Polygon

Ii will have at least one (actually at least three) vertex, which is not a notch. Since Ii is the inner

boundary of Q, the vertices which are not notches of polygon Ii are notches of Q. Definitely,notches

of Q lies on notches of P. This guarantees us that all inner boundaries of Q will have a point which

5

is the intersection point of T with a notch of P. So, we determine the set W of intersection

points of all notches of P with T. We take one such point as the initial point and determine

the corresponding boundary and delete all the intersection points from W, which appear on the

boundary. 'Ve determine all such boundaries until W becomes empty. Maintaining W as a sorted

list, we can determine whether a point belongs to W or not in O(log N) time since IWj = O(N).

If there are p' points on the boundaries of cutset S this membership checking takes O(p' log N)

time. Sorting of W takes O(N log N) time. Hence, this adds at most O(p' log N + N log N)

extra time, to boundary determination. Mter determining all such boundaries we can determine

the inner boundaries of Q in O(P' + N log N log P') time using the plane sweep technique, see

for e.g. [4]. Combining the comple.'City of Step I(a) and r(b), we conclude that the outer and inner

boundary(s) of Q can be determined in

h

O(L: log Pi + N log N + p' log N + N log N log p')
i=1

since ,
I: (N; log N, + 1) = O(N log N + p'),
;=1

r is the number of faces intersected by T. Obviously, r is O(p') since each such face contributes at

least one point on the boundary.

Details of Step II

Separation of P corresponding to the polygon-cut Q is carried out by updating the vertex-edge­

face-list and face-structure of P. Note that since each of these is dependent on the other, an update

performed on one affects the other indirectly and consequently allows us to avoid checking all edges

of P. Let Q separate P in PI and P2. Let the vertex x be to that side of Q which will be in Pl'

vVe can denote PI by the verte.'C x. Similarly, we can denote P2 by a vertex y which lies on the

other side of Q. We can determine whether any vertex (or face) belongs to PI (or Pz) by simply

checking whether it is to the same side of Q as x (or y). The face represented by Q will be present

, in both parts Pi and P2' See Figure 3.5.

From Q, we create the face-structure of Q by creating the tree structures for the subchains

in Q. We create two such structures IQI (for Pd and IQ2 for P2• From Q, we also create two

verte.x-edge-face-lists VQI' VQ2 corresponding to the vertices of Q in the following way. We traverse

the vertices of Q one after another as they appear on the boundaries of Q and for each edge (alo a2)

of Q,wecreate two edges 'Ill = (a~1,a~l)andu2 = (a~\a~1)''UIisputinVQlandu2inVQ2'

Since, with each such edge 'Ill (resp. 'U2), the face JQI (resp_ IQ2) has to be associated, we set one

face-list pointer of 'Ill (resp. 'U2) to point to a leaf node in IQI (resp. IQ2) wh.ich corresponds to al

in Q. 'VVe also set a pointer from that leaf node to the face-list of 'Ill (resp. 'U2). The other pointer

in the face-list is set later.

6

Now, we split the faces of P which were intersected by the notch plane T. The edges of Q lies

on these faces also. Suppose fi is such a face which is to be split at aI, a2, ... , ak which are on the

edges Ul , U2, ••• , Uk. The splitting of Ii consists of splitting the trees corresponding to the subchains

in which (aI, a2, ••. , ak) lies and inserting aI, a2, ... , ak in proper trees. Note that each of aI, a2, ... , Uk

has to be inserted. in two trees, since each edge (ai,aj) will be present in two new faces created by

splitting Ii. Let al be inserted in fiQI and fjQ2' For al in fiQll we actually insert a. pointer to

the face-list of (a~l ,a!jl) in VQt. For al in fjQ2 we insert a pointer to the face-list of (a~2,a~2) in

VQ2· One face-list pointer of the edge (a~J, a~l) in VQl is set to point to al in fiQl Similarly, one

pointer in the face-list of (a~2, a~2) in VQ2 is set to point to al in fiQ2. The effect of this is to set

the face-list pointers of the edges in VQl and VQ2.

"Ne omit further details of this splitting to avoid the complications. Each face-splitting will

not take more than OO=~~l log Pi) time where hi is the number of subchains in Ii and Pi is the

number of vertices in j-th subchain.

Now an e.'cisting vertex-edge-face-list of P has to be modified to incorporate VQl and VQ2.

Again, we traverse the vertices in Q one after another and for each vertex al we do the following.

Suppose al is on the edge of 1£1 of face It of P. Let two end points of 1£1 be m, n. We assume m

will be in PI and n in P2 • We link m and afI both ways. Similarly, we link n and af2 both ways.

Now, we have to associate face-list pointers with the edges (m, a~l), (aft, m) and (n, af2), (af2, n).

By the previous operations, the leaf corresponding to m in face structure of Ii has been properly

placed in some new faces. We need not change the face-list pointers which were associated with

(m, n). We keep it associated with (m,a~l). Similarly, we keep pointers with (n, af2) same as the

pointers which were associated with (n, m). Now, it is easy to set the face-list pointers of (afl, m)

and (af2,n) since al is adjacent to m(resp.n) in the faces pointed to by the face-list pointers of

(m, a~l) (resp. (n, a~:l)). This completes the separation process.

Note that we visit only the vertices on the boundaries ofQ and for each vertex we spend constant

time for setting relevant pointers and additional time for splitting and insertion operations in the

treeS corresponding to subchains in the faces. The latter is logarithmic in the number of vertices

contained in the subchain. Hence, the separation takes

o (p, + tr log Pi)

time where i is the number of vertices in Sand h is the total number of subchains contained in

the faces intersected by the notch plane T. Pi is the number of vertices in the i-th such subchain.

Note that p' is also the number of edges of P intersected by T. This yields

Lemm<l 5. A polyhedron P of genus 0, having N notches can be partitioned with a cut in

o (tr log Pi + N log N log p' + p' log N)

7

time and in O(p) storage, where P is the number of edges of P, p' being the number of edges of

P intersected by the plane T supporting the cut, h being the total number of subchains in all the

faces intersected by T, Pi being the number of vertices in the i-th such subchain.

vVe can generalize the above result for polyhedron of arbitrary genus. For this, as described in

[3]: we have to handle the situation when the cut does not separate P into two pieces, but only

creates two new faces supporting the cut at the same geometric location. In this case we can do

a depth-first search in the vertex-ed.ge-face list to determine whether the cut separates P into two

pieces or not. But as described later, in the sequence of cuts which removes all notches of P, we

actually do not check whether a cut breaks a polyhedron into two pieces and only when we remove

all notches from P, do we resolve this ambiguity as described later.

Lemma 6. Let PI, P2, ..., Pk be the polyhedra in the current decomposition which contians a

suhnotch of g to be resolved, and let vi be the total number of vertices in the cutset resulted from

intersection of Pi with a notch plane T, then since any notch can be intersected by at most (N -1)

notches, we have k = O(N) and Vi = 2:7=1 vi = O(n + N 2
), where v' is the total number of

vertices on all the cutsets of PllP2 , ••. ,Pk.

Proof Let pi be the number of edges of Pi intersected by T. Since each verte-x on a cutset is

the intersection point between one edge of Pi and T, we have ViI = ~. Let the notch plane T cut

the face /; in 3, segments. Then pi = 2:i~1 s, where Ti is the total number of faces of polyhedra

Pi cut by T. By Lemma (3), Si :5 2NJi + 1 where NJ; is the number of notches of face Ii. So,

f Sj = t 2Nli +
j=l j=l

;;

I:
j=1

where N; is the number of notches in Pi, hence

k k k

I: pi = I: 2N, + I: r, = O(N') + F
=1 =1 =1

where F is the total number of faces intersected by the notch plane T, summed over all the

polyhedra.

Now we prove F = O(n + N2). We divide the contribution to F into two classes, viz., C1 :=

the faces which do not lie on the faces of the original polyhedron, and C2:= the faces which lie on

the faces of the original polyhedron. The faces in class C2 are pieces of the faces of the original

polyhedron. Now, since each cut in a polyhedron Pj, generates at most two faces, which do not lie

on the faces of Pj, the number of C1 type faces can increase by at most one in each of the resulting

split pieces. Hence, each piece has at most O(N) faces which are in C1 • Finally, the total number

of faces Ft in C1 is given by F1 = Ef=l cN = O(N2
), since I(= O(N).

Now, let PF'2 be the total number of edges on the cutset which are created by the intersection

of notch plane with the faces of class C2. Obviously, these edges lie on the surface of the original

8

polyhedron. The number of faces F2 in class C2 is obviously bounded by PF2' i.e., F2 = O(PF2).

Actuall)', these edges are the parts of the edges of the cutset So generated by the intersection

of T with the original polyhedron. Parts of the edges of So are generated by other cuts. Obviously,

the number of edges on So is O(n). There are at most N planes or equivalently N lines, which

split boundaries of So. If a boundary Bi has Nj notches, by Lemma 4, each line intersects at most

2 . (2Ni + 1) edges of Bj and thus generates 2 . 2 (2Ni + 1) new parts of edges. If there are b

number of boundaries in So, N lines produces at most L~ 4 (2Ni + 1).N = O(N2) new parts of the

edges of So. So, PF, = O(N' + n), hence F, = O(N' + n), hence F, +F, = F = O(N' + n),
and

k

.'= L P; = O(N') + O(N' + n) = O(N' + n) ~
;=1

Lemma 7: The total number of edges in the final decomposition of P with N notches is

O(n N + N 3).

Proof Total number of edges in the final decomposition consists of newly generated edges by

the polygon-cuts, and the edges of P which are not intersected by any notch plane. Now since

the total number vertices in all the cutsets of a partial decomposition is O(n + N 2) as proved in

Lemma 6, the total number of newly generated edges by each notch plane is O(n +N2). Thus

N notch planes generate O(n N + N3) new edges. Hence, the total number of edges in the final

decomposition is O(n N + N3 +n) = O(n N + N 3) '"

Theorem 8: A polyhedron P of arbitrary genus having N notches and n edges can be de­

composed into O(N2) convex parts in O«nN + N 3 log n) log N) time and in O(n N + N3)

space.

Proof: Decomposition of a polyhedron consists of a sequence of cuts through the notches of P.

We can assign a notch plane for each notch in P in O(N) preprocessing time. Now, we remove each

notch by removing all of its subnotches by the cutting plane assigned to this notch. Each planar

cut to remove a subnotch in a polyhedra, can be carried out by the method described above. This

produces O(N 2) conve..x pieces at the end. Now a single cut may not produce separate pieces for a

polyhedron in the partial decomposition. We do not pay attention to this until we reach the end.

Recall that we recognize a polyhedron by one vertex in that polyhedron. We can keep all these

vertices in a separate sorted list Lp. At the end, we take one vertex from this list and do a depth

first search in the vertex-edge-face-list to determine all the vertices in that polyhedron and remove

all vertices from Lp which are encountered during this depth-first search. We do this until Lp

becomes empty. This has the effect of recognizing all the new polyhedra without any ambiguity.

Certainly, this takes O(p lQg D) time where P is the total number of edges in the final decomposition

and D is the total number of convex parts in the final decomposition. Since D = O(N2
), the

above method takes O(p log N) time.

9

Time analysis: At a generic instance of the algorithm, let PI, P2, ... , Pk be the k distinct (non­

conve.x) polyhedra in the current decomposition, which contains the subnotches of a notch g which

we are going to remove. Let pi be the number of edges in Pi intersected by the notch plane. Using

Lemma j, we can say the time ~ to remove the notch g is given by

(

' h,)
~ = 0 ~(I=l log p~ + Nj log Ni log pi + pi log N)

where hi is the total number of subchains in the faces intersected by the notch plane in Pi and plj/
is the number of vertices in the m th such subchain in Pj.

We can write :Lf=l :L~=l log p~ = O(:Lf=1 log Pi), where h is the total number of subchains

in the faces of PI, P2, ...,Pi: which are intersected by the notch plane. Now from Lemma 2, we

know any face with N p notches can not have more tha.n 6(1 + Np) subchains. This immediately

gives h = O(:Lf=1 Ti + :L7=1 Ni), where Tj is the number of faces intersected by notch plane in

Pi. Since Ti = O(pD we have h = O(2:7~1 (II; + Ni))'

Let p be the total number of edges in all the polyhedron PI, P2, ... , Pi: and v' be the total

number of vertices on all cutsets. Certainly :Lf=l p~ = Vi. Since any notch can be cut by

at most (N + 1) notch planes 2:7=1 Ni = O(N2). This gives h = O(v' + N 2). Now

since the log function is a. monotonic increasing and concave, and :Lf=l Pi = O(p) we can write

:L?=l log Pi = O(h log f). Furthermore, since h .::; p, h log f becomes maximum when h becomes

maximum and h = O(v' + N2), we can see that O(h log I) = O((v' + N 2) log(;} .: NJ)) and

:L7=1 Nj log Ni log p~ = O(N2 log N log Vi).

All this yields

~ = 0 ((v' + N
2) log (VI: N2) + N 2 log N log v' + v' log N)

In Lemma G, we prove that v' = O(n + N2) and in Lemma 7, we prove that the total number

edges in the final decomposition of Pis (n N + N 3). This gives p = O(nN + N 3) and

(nN + N
3

) . + N'»(l O«n + N
2) log n + N2 + N 2 log N log n (n

O((n + N 2) log N + N 2 log N log n)

O«n + N' log n) log N)

Since, we carry out removal of N notches, the total time complexity for polyhedron decomposition

is O«nN + N 3 10g n) log N).

Space Analysis: In Lemma 7, we prove that the total number of edges in the final decomposition

of P is O(n N + N3). Since, p = O(n N + N3), the space complexity of polyhedron decomposition

ca.n be seen to be also O(n N + N3). "

10

4 Conclusion

We have presented an efficient algorithm which produces a disjoint conve..x decompositions of simple

polyhedra. QUI' next goal is to achieve an implementation of this algorithm, together with a better

understanding of the important, underlying robustness issues. For robust computations which

always yield consistent boundary topologies, one needs to make specific topological decisions based

on imprecise numerical data, [5], [7]. The methodology we adopt is to live with uncertainity.

Namely, the choices that some evaluated quantity € is negative, zero or positive, are equally likely.

Decision points, where several choices may exist, are to be considered either "independent" or

"dependent". At independent decision points, any choice may be made from the finite set of

possibilities while the choice at dependent decision points ensures the invariant state of global

consistency. This consistency, for now, is to be achieved by means of topological reasoning.

References

[1] Bajaj, C., Dyksen, W., Hoffmann, C., Houstis, E., Korb, T., and Rice, J, (1988), "Computing

About Physical Objects", Proc. of the 12th IlvlACS World Congress, Paris, 642 - 645.

[2J Chazelle, B., (1980), "Computational Geometry and Convexity", Ph.D. Thesis, CMU-CS-80­

150, Computer Science, Carnegie-Mellon University.

[3] Chazelle, B., (1984), "Conve.x Partitions of Polyhedra: A Lower Bound and vVorst-case Opti­

mal Algorithm", SIAM J. on Computing, Vol. 13, No.3, pp. 488-507.

[4] Edelsbrunner, H., (1987), "Algorithms in Combinatorial Geometry", Springer Verlag.

[5J Hoffmann, C., Hopcroft, J., and Karasick, M., (1988), "Robust Operations for Polyhedral

Models", Proc. of the Fourth ACM Symposium on Computational Geometry, Urbana, Dlinois,

106-118.

[6J O'Rourke, J., and Supowit, Ie, (1983), "Some NP·hard Polygon Decomposition Problems",

IEEE Trans. Inform. Theory, 29, 181 - 190.

[7] Sugihara, K., and Iri, M., (1988), "Geometric Algorithms in Finite Precision Arithmetic",

Research Memorandum RMI 88-10, Department of Mathematical Engineering and Instrumen­

tation Physics, Tokyo University.

11

,
I /"

I I /
___ I I .("

--.l_ l I. "..
I __ ..-.I-..,.,Jt" I
I ".. (" ;:.., ...--.1
t.:::::-- r.:-: "..- - /.......... ../--. .;'

Vq

r;~. 1.. '). <P-l

VI''''J vII) Lo e:t Crn.l/I."'J- PG~10/'lol. <...uu.
'1'0)"" VI ~ a..r..~ CS"tIVI."'J. f'd~~6nJ.li-

s (~)

F,~ :2.1 (b)

F;l ... ,. (b)

VII' . "V1 'l.ol ~t.,()'n..it."1~
" ." I •"7)"" "ID lA a"..r..~ CD"1JJW/-~'

y

L.
",~--J

"5 ~

F"~ . !1-1{~)
V/)""Y3 U,
v ' -1_ U

/
_-I

Frif 3.1 (6)

We. .0M", oJ.l .8-.L

f'a- Uol; f";~

fn- Cl,yu. ~
.f-' 'I.VOCft-z:2. •

,,
",

J-------

p
Fi~. 3'.2. (b)

-"o+c.h pL""'<. T

no tc.~

I
1
I

).f-----.- -J--..J.

/

	Convex Decompositions of Simple Polyhedra
	Report Number:
	

	tmp.1307986960.pdf.c3bVm

