
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1988

A Formalism for Describing Data Distribution A Formalism for Describing Data Distribution

Charles Koelbel

Report Number:
88-803

Koelbel, Charles, "A Formalism for Describing Data Distribution" (1988). Department of Computer Science
Technical Reports. Paper 685.
https://docs.lib.purdue.edu/cstech/685

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A FORMALISM FOR DESCRIDING
DATA DISTRIDUTION

Charles Koelbel

CSD TR·803
August 1988

A Formalism for Describing Data
Distribution

Charles Koelbel
Department of Computer Sciences

Purdue University

Abstract

In many existing and planned parallel machines, memory cannot
be considered as a single homogeneous resource. Instead, each pro
cessor has a "local" section of memory which is more accessible than
others. Because of this ease of access, it is necessary to distribute the
data. across the system so that most references are made to local data.
In this paper, we give a. mathematical description of data distribution
in parallel machines. We then show its application to strip mining,
a common transformation for converting sequential programs to run
on parallel hardware. Strip mining using data distribution informa
tion enhances the locality of reference in the resulting program, thus
speeding performance.

1 Introduction

An important recent development in computer science has been the ad
vent of parallel computer architectures. Because sequential computers are
approaching fundamental physical limits on their performance, parallel ma
chines are seen as the next major advance in high-performance computing
machinery. This has led to work both in constructing parallel hardware
and writing parallel software.

Many parallel machines have been designed and built. One fundamen
tal design decision in these machines has been the memory structure used

1

in each. Current parallel machines can be roughly grouped into three cat~

egories:

• (Pure) shared memory architectures

• Non-shared memory architectures

• Hybrid architectures

Pure shaxed memory architectures are conceptually the simplest class. They
have a single region of memory which can be accessed equally quickly from
all processors. Generally, this is implemented by a bus cOIUlecting the
processors to the shared memory. Examples of this architecture include
machines from Encore [1] and Sequent [11J corporations. Non-shared mem
ory machines represent the opposite extreme of the design space. In these
machines, each processor is connected. to a local memory which no other
processor can access. Processors coordinate activity by explicit messages
sent via a communications network. Examples of this class of architecture
include the Intel Hypercube [7] and Cosmic Cube [10] machines. Finally,
hybrid architectures bridge the gap between these two extremes. At least
some memory is shared by all processors, but it is not homogeneous. Each
section of memory is local to one processor, which enjoys faster access to
that section than to other sections. Two examples of this organization are
the University of Illinois Cedar [3J and IBM RP3 [8] architectures.

A major consideration in programming both the non-shared memory
and hybrid classes of machines is the placement of data. Because of the
difference in access times (or even the possibility of access), it is vital that
data be spread among the sections of memory so that most accesses are
made to local data. The problem of arranging this is called the data di8
tribution problem. The usual approach to data distribution is a static dis
tribution of the data. A data di8tribution pattern is chosen for each array
to be distributed which describes where each element will be stored. The
computation is then structured. so that each processor does as much com
putation with its local data as possible. In the next section, we give a
mathematical description of data distribution and apply our description to
several common distribution patterns. The following section shows an ap
plication of this formalism to transforming sequential programs for parallel
execution. There, we try to restructure the computation to use local data
as much as possible.

2

2 The Model

We describe a data distribuion by giving the set of elements stored on
each processor. Mathematically, this can be modeled as a function from
processors to sets of array elements. For Proc the set of processors and
Elem the set of elements of an array A, we define the function

local: Procs --+ 2E1em

by
local(p) = {a E Elem I a is stored locally on p}

In the examples that follow, we will represent Proc and Elem by their index
sets, which will be tuples of small integers. Also, if there is an ambiguity
as to the identity of the array, we will use the array name as a subscript.

Other approaches to data distribution [9,4] have taken a different path
toward formalizing the distribution. Generally, these approaches define a
function

proe : Elem --+ Proe

which gives the processor storing each element. If every element is stored
on exactly one processor, then the two methods are equivalent. (In this
case, local is simply proc- l .) If an element can be stored on several pro
cessors, however, the two methods lead to different results. Some theoreti
cal methods for converting shared-memory programs to nonshared-memory
programs lead to several copies of shared data. In practice, it is also com
mon to have some "overlap)) between the regions stored on neighboring
processors to reduce communication. It is not obvious how such a distribu
tion scheme could be modeled using a single-valued proc function. Using
the above local function, no problem arises from such distribution schemesj
the only consequence is that the local sets of distinct processors are not
disjoint. Because of this added generality, we prefer the local function
approach given here.

2.1 One-Dimensional Distribution Patterns

In this section, we assume that the array to be distributed has N elements
and there are P processors available. We also use O-based indexing for both

3

Processor 0 Processor 1 Processor 2 Processor 3

Figure 1: Block distribution of one-dimensional array

arrays and processors, making the index sets

Proc
Elem

- {O,I,2, ,P-I}
{O,I,2, ,f{ - I}

To avoid unnecessary complication of the formulas, we will asswne that N
is divisible by P.

The most common distribution pattern for one-dimensional arrays is
block distribution. This pattern groups the array elements into contiguous
subsets, storing each subset on a single processor. For example, if N = 1000
and P = 10, then processor awould store elements athrough 99j processor 1
would store elements 100 through 199j and so on. Figure 1 illustrates this
for N = 16 and P = 4. The corresponding local function is

local(p)={i I~ ·P5,i<~ ·(P+I)}

Storing contiguous groups of elements together in this way tends to reduce
communication if many references are made to "neighboring" elements.

Cyclic distribution stores every Pth element on the same processor. For
example, if N = 1000 and P = 10, then processor a would store elements 0,
10, 20, and so onj and processor 1 would store elements 1, 11, 21, etc.
Figure 2 illustrates this for N = 16 and P = 4. Processors in that figure
are labeled as ('PO," etc.j notice that each processor appears several times.
The local function is defined as

local(p) = {i Ii =p (mod PH

~[92]~~~~~~~[illJ[@][@]~~~[@]
PO PI P2 P3 PO PI P2 P3 PO PI P2 P3 PO PI P2 P3

Figure 2: Cyclic distribution of one-dimensional array

4

I® CDII® ®II@ ®II® ®II® ®II@ @II@ @11®l @I
ProeD Proel Proc2 Proc3 ProeD Proel Proc2 Proc3

Figure 3: Block~cyclic distribution of one-dimensional array

This pattern is often useful if only a subrange of the original array will be
used. Cyclic distribution then distributes the workload relatively evenly,
while a block pattern would leave some processors idle.

Finally, the above patterns can be combined using a block-cyclic scheme.
This pattern uses a parameter J(. The array is divided into contiguous
blocks of size K which are then distributed cyclically among the proces
sors. For example, if N = 1000, P = 10, and K = 200 then processor 0
would store elements 0-19, 200-219, 400-419, 600-619, and 800-819. Other
processors would have similar sets of elements. Figure 3 illustrates this
pattern for N = 16, P = 4, and J(= 2. The processors there are labeled
"ProcO," etc.; note that each processor occurs twice. The corresponding
local function is

local(p) = {i IU(j =p (mod P)}

This pattern is a compromise between block and cyclic patterns, and has
performance intennediate between them. In fact, block and cyclic distribu
tions can be considered as special cases of block-cyclic distribution. When
J(= 1, the distribution is simple cyclic distribution, while block distribu
tion occurs when I(= N / P.

2.2 Multi-Dimensional Distribution Patterns

In this section, we examine distributions for multi-dimensional arrays. We
assume that dimension i of the array has O-based indexing of Ni elements.
Thus, a two-dimensional matrix would have an index set of

Elem = {a, 1, ... ,N,-l} X {a, 1, ... ,N, -I}

Similar assumptions hold for the processor index set. As before, we will
assume that quantities are divisible when it simplifies the fonnulas.

5

10 0 0 0 0 0 0 01 Processor a

10 0 0 0 0 0 0 01 Processor 1

10 0 0 0 0 0 0 01 Processor 2

10 0 0 0 0 0 0 01 Processor 3

10 0 0 0 0 0 0 01 Processor 0

10 0 0 0 0 0 0 01 Processor 1

10 0 0 0 0 0 0 01 Processor 2

10 0 0 0 0 0 0 01 Processor 3

Figure 4: Cyclic distribution of rows

The simplest distribution patterns for multi-dimensional arrays are ob
tained by applying one-dimensional distribution patterns to a single dimen
sion and not distributing any other dimension. For example, the rows of a
matrix could be cyclically distributed using the function

local(p) = {(i,j) Ii =p (mod P)}

Figure 4 shows this distribution pattern for N l = 8 and P = 4; note
that each processor stores two rows of the matrix. A generalization of
this approach is to distribute several dimensions independently on a multi
dimensional processor set. An example of this is the two-dimensional
blocked distribution shown in Figure 5 for N l = N 2 = 8 and PI = P2 = 4.
The local fWletion in this case is

local(p"p,) = {(i,j) I

6

Processor 0 1Processor 0 0, ,
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
Processor 1,0 Processor 1,1

Figure 5: Two~dimensional blocked distribution

7

'<5',,'0·'0" .", .''.""' .""
':1?-~<91 0

o
o

o
o

o
o

o

'0' '0"'",." "... .', .""'." ,."
." .",

'0" ':(0'. ," ~ ~

o

Processor 0

1-----------1
I Processor 2 IL l

Figure 6: Skewed distribution

The skewed distribution pattern is often used to pipeline computations
on a two-dimensional matrix. The basic idea is to give each processor sev
eral "slices" of the array parallel to the main diagonal. Figure 6 illustrates
this idea for N1 = N2 = 8 and P = 4. Processor 0 stores the elements
contained in the solid ovals while processor 2 stores those in the dashed
ovals. The elements stored on processors 1 and 3 are not distinguished
in the figure; they are the elements not in any oval. The relevant local
function is

local(p) = {(i,j) I i - j '" p (mod PH

This is an effective organization when the elements in the antidiagonal
strips (for example, the dotted box in Figure 6) can be computed indepen
dently.

8

for i in range(A) loop
Al i] := sin(Bli]) * cos(Cli]);

end;

(a)

coprocess p in l ..P on Proc[pJ do
for i in range(A,Proclp]) loop

AI i I := sin(Bli]) * cos(Cli]);
endj

endj

(b)

Figure 7: Simple loop (a) before and (b) after strip mining

3 An Application of the Formalism

In this section, we present strip mining as an application of the local func
tion formalism. Strip mining is a common transformation in converting
sequential programs for use on parallel architectures [12]. The basic idea
is to divide the iteration space of a loop into a number of "strips" and to
schedule one such strip on each processor. Figure 7 shows a simple example
of this transformation.1

Data distribution can be used in two ways in strip mining. If data
are distributed among processor memories then it is advantageous to strip
mine according to that distribution. Such a scheme allows more references
to be made to local data than would be made by an arbitrary stripping
scheme. Some references must still be made to non-local data, howeverj
these must be copied to local temporary storage. The local function can
be used. both to guide the strip-mining itself and to generate the needed
copying instructions.

We now describe strip mining for the loop shown in Figure 8. This is

lThroughout this section, we use the BLAZE language as a basiB for our examples.
The coprocess statement initiates a set of parallel processes; range gives the subscript
range of an array with one argument and the subrange stored on a particular processor
with two argumentsj other constructs should be self-explanatory. More details about the
language can be found in [6].

9

a generalization of the loop shown in Figure 7a. The analysis shown here
assumes that each element is stored on only one processor (that is, p =f. q
implies ker(p) l' ker(q)). Only minor additions to the analysis would be
needed if this were not true. At one point we will also make the standard
assumption that f is a linear function. This is by far the most common
case in real programs, and is generally assumed by researchers working on
parallelizing sequential code.

3.1 Strip Mining

The performance of a strip-mined program depends on choosing a "good"
collection of strips. To enhance locality of reference, we will choose strips
so that any storing of values can be done locally. If the loop contains only
a single assignment to an array A, as does the pseudocode loop of Figure 8,
this can be accomplished by using the set

ref(p) = r ' (localA(p))

as the strip. (To allow for loops which do not access all elements of ar
ray A, this strip must be intersected with the original loop range.) Given
that the loop accesses A[f(i)], restricting processor p to iterate over the set
ref(p) ensures tbat the set of array elements assigned to will be f(ref(p)) =
f(r ' (localA(p))) = localA(p). The loop resulting from strip mining Fig
ure 8 in this way is shown in Figure 9. This locality rule clearly is not
sufficient for all loops; we will generalize it later.

Before accepting this transformation, we must ensure that the strip
mined loop computes the same results as the original sequential loop. This
can be guaranteed if there is no interaction between two strips scheduled on
separate processors. This type of independence is captured by the notion
of data dependence, as defined by Allen [21 and Wolfe [12]. Their theses
showed how data dependence could be checked by the compiler; we give
only an overview of that analysis here.

Data dependence analysis recognizes situations in which a memory loca
tion is referenced by two separate statements (or by one statement executed
repeatedly, as in a loop). If one statement assigns to a memory location
while a second uses the location's value, there is said to be a data depen
dence between the two statements. Two statements can be executed in

10

for i E Range loop
A[j(i)):= ... A[f(i)] .

... A[g(i)) .

... B[h(i)] .
endj

Figure 8: Example loop for strip mining

coprocess p E ProGS do
for i E Range n f-l(localA(p)) loop

A[f(i)]:= ... A[j(i)] .
... A[g(i)] .
... B[h(i)] .

endj
endj

Figure 9: Example loop after strip mining

11

parallel when there are no dependences between them. If the statements
of a data dependence are in a loop, there are two possibilities: the refer
ences causing the dependence can be made during the same loop iteration
or during different iterations. If the references are made during different
iterations, the dependence is loop-carriedj otherwise, it is loop.independent.
In general, a loop can be executed in parallel without introducing synchro
nization iIlBtructions if and only if it does not carry any dependence.

For loop-carried dependences, the concept of distance vectors is impor
tant. For a single loop, if the first reference causing a dependence occurs
on iteration i l and the second reference on iteration i 2l then the distance
vector associated with the dependence is i 2-i l • In the case of nested loops,
this idea is extended to the vectors of the loop indices, with the convention
that the index of the outermost loop is first in the vector. Thus, if the first
reference comes on iteration (iI, il) and the second on iteration (i2, j2), then
the distance vector is (i 2 - iI, j2 - il).

From the above discussion, we see that strip mining will be valid if there
are no data dependences between two sets ref(p) and ref(q) where p ¥: q.
This can be stated more formally as

Strip mining according to data distribution is valid if, for any
data dependence from iteration i to iteration j in the origi
nal loop and any processor p, i E j-l(local(p» implies i E
j-l(local(p)).

Note that if both iterations i and j are in the same strip, then the depen
dence is satisfied by sequential execution on processor p.

If f is a completely general function, then the above condition is all
that can be said about validity, and theorem proving will be necessary to
validate the transformation. Since f is linear, however, we can make a
stronger statement. To do this, we define the kernel ker of a distribution
as the set of vectors which "don't change the processor" when added to an
array subscript. That is, for each processor p,

ker(p) = {d I 'Ii E local(p), i + d E local(p)}

where the + operator represents vector addition, if appropriate. The most
intuitive example of such a kernel is the set of dimensions which are not

12

distributed in a multi-dimensional array. For example, if an array is dis
tributed by blocks of rows using the distribution function

/oca/(p) = {(i,j) Ii· p:S i < i .(p+ I)}
then changing the column of a reference has no bearing on the processor
storing the reference. Thus, the vector (O,j) E ker(p) for any jar p.

We can now restate the validity condition for strip mining according to
the distribution pattern.

Strip mining is valid if, for all distance vectors d of data depen
dences in the original loop and all processors p in the processor
array, f(d) E ker(p).

Intuitively, this says that if no loop over a distributed dimension of the array
carries a data dependence, then the nested loop can be strip mined. As
proof of the condition, consider a dependence from iteration i to iteration i+
d. If processor p executes iteration i, then f(i) E local(p) by the definition
of ref(p)· Since f(d) E ker(p), we have f(i) + f(d) E /oca/(p). But since
f is linear, f(i) + f(d) = f(i + d), so i + d E f-l(/oca/(p)). Thus, the new
condition implies the old one.

Figure 10 shows two loops which can be strip mined using this condition.
Let C be distributed by blocks of rows, as given by the locale function in
part (a). In both loops, the only dependence d is carried by the "column"
loop. Since the array is distributed by rows, such "colunm" dependences
do not prevent strip mining. Loop (c) presents a particularly interesting
case. The usual condition on strip mining a set of nested loops is that
the outermost loop may carry no dependence. In Figure IDe, the outer
loop does carry a dependence, preventing ordinary strip mining. Strip
mining according to data distribution allows the transformation, however,
since the dependence will be satisfied. on each sequential processor after the
transformation.

The basic strip mining strategy given at the beginning of this sec
tion can be generalized in several ways. If the loop has several assign
ments to arrays with the same distribution patterns and subscript ex
pressions then the new loop bounds can be calculated based on any of
the assignment statements. These calculations will clearly give the same

13

loealc(p)

kerc(p)

- {(i,j) I~ op~i< ~ o(P+1)}

{(i,j) I i = O}

(a)
for i in 1..N loop

for j in l..N loop
C[ij] := C[i,j] + C[i,j-1);

endj
end;

d = (0,1) f(i,j) = (i,j)

(b)

f(d) = (0,1) E kerc(p)

for j in l..N loop
for i in l..N loop

C[ij] := C[i,j] + C[i,j-1);
end;

endj

d = (1,0) f(j,i) = (i,j)

(e)

f(tfJ = (0, 1) E kerc(p)

Figure 10: (a) Array distribution and (b), (e) two loops to strip mine

14

ref(p) sets. Similarly, if there are assignments to A[f,(i») and B[f,(i)] and
f,-I(localA(p)) = f,-'(localB(p», then the loop can be strip mined using
either h or 12· This often occurs when fl(i)- f2(i) E ker(p) for all i and Pi
for example, when two arrays are distributed by rows, and the subscripts
differ only in the column entries. Furthermore, these cases can easily be
extended from the single for loop shown here to nested loops by consider
ing i in the formulas to be a vector. More complex cases, in which arrays
with different distribution patterns or subscript expressions are updated,
are being studied.

3.2 Copying

By strip mining according to the left-hand side of assignments in the original
loop, we have ensured that any store will be to a local location. The
possibility of reading from non-local storage still exists, however. In the
loop of Figure 9, for example, the references to A[g(i)] and B[h(i)] could
reference non-local memory. In order to correctly and efficiently execute
the program} such non-local references must be copied to local storage. Our
local fonnalism can be used to guide this copying.

Consider the reference A[g(i)] in Figure 9. For each processor p there
will be an set

loc(p) = g-I(localA(p»

containing the indices for which A[g(i)] will be a local reference on that
processor. If ref(p) ~ loe(p) for all P, then the reference will always be
satisfied locally in the strip-mined loop. This will be true in the common
case when f = g. Iff(i)-g(i) E ker(p) foralli andp, then ref(p) = loc(p)
and the condition is again satisfied. This occurs when the subscripts are
the same for all distributed dimensions, but differ in the undistributed
dimensions. If ref(p) !I: loc(p), then any index i E ref(p)-loc(p) will cause
a non-local reference by processor p in the strip-mined loop. (Processor p
will execute loop iterations in ref(p) and reference local memory during
loc(p); other iterations will cause non-local accesses.) This element must
be brought into local memory. A similar analysis can be made for B[h(i)],
using the sets loc(p) = h-I(locaIB(p».

Up to now, all of our analysis has been the same for hybrid shared
memory and non-shared memory architectures. At this point, however, we

15

coprocess p E ProC8 do
for i E g(Range nU-1(localA(p)) - g-l(localA{p)))) loop

TempA[i] := A[i];
endj
for i E h(Range nU-1(localA(p)) - h-1 (locaIB(p)))) loop

TempB[i] := E[i];
endj

(main loop)
endj

Figure 11: Shared memory copying for Figure 9

must make a distinction between the two. The fundamental distinction
between anonymous copying and message passing must be addressed when
the copying transformation is formulated. We first consider shared mem
ory copying, then the more complex case of non-shared memory message
passing.

For shared memory architectures, it suffices to determine which non
local elements of an array may be accessed. A straightforward copying
operation can then move these elements to local storage. If a given non-local
array element will only be accessed once, then there is no need to allocate
temporary storage for itj the element may simply be accessed directly, and
discarded after use. This is often the case for "border" elements when
an array is shifted in storage. If the non-local element will be accessed
frequently, however, it is better to copy it once from non-local to temporary
local storage and then use only the local copy. This minimizes non-local
references and improves performance. An example of such a situation is
the pivot row in Gaussian elimination; every processor must access this
row once for each row it eliminates.

To perform the copying, it is only necessary to determine which non
local elements may be accessed. For a particular reference like A[g(i)] in
Figure 9, processor p will reference non-local elements on loop indices in
reJ(p)-loc(p). The elements accessed on these iterations will be g(ref(p)
loc(p)). Thus, those elements should be copied to temporary storage. The
copying instructions are shown in Figure 11. The main loop body has
been omitted. from that figure for brevity. Note that the loop indices apply

16

coprocess p E Procs do
send(p-l,

A[g(Range n f-l(localA(p - 1» n g-l(localACp»)J);
send(p -1,

A[g(Range n f-l(localA(p -1» n h-1(localB(p»)]);
TempA[g(Range n f-l(localACp» n g-l(localACp + 1»))J

:= recv(p +1);
TempB[g(Range n f-l(localACp» n h-1(localB(p+ 1»)J

:= recv(p + 1);

(main loop)
end,,

Figure 12: Non-shared memory message passing for Figure 9

the subscript functions 9 and h to the range to be copiedj this eliminates
multiple indices which map to the same array element.

To generate the message passing needed for copying on non-shared mem
ory architectures, a finer-grained analysis is needed. Not only must non
local references be identified, but the processor storing the needed values
must also be known. Thus, the analysis must find, for each pair of pro
cessors p and q, the set ref(p) n loc(q). This is the set of loop iterations
performed by processor p which reference an array element on processor q.
1£ PI' q and ref(p) n loc(q) # 0 then any element of g(ref(p) n loc(q»
must be passed from q to p as a message. Note that this requires code
to be generated for both processors p (for receiving) and q (for sending).
In practice, a processor will often need to exchange messages with only a
few other processors. An important exception to this rule occurs when a
single datum is needed by many or all processors, as the pivot row is in
Gaussian elimination. When this occurs, a broadcast operation is of great
benefit. Figure 12 shows the message passing code generated for the loop
of Figure 9, under the assumption that each processor need only receive
data from its neighbor to the right. Again, we omit the main loop body
from the figure.

In either the shared memory or non-shared memory case, once the copy
ing is done, the body of the loop must be rewritten to test the index before
reference A[g(i)] and satisfy the reference from either the original array or

17

coprocess p E Procs do

(copying code)
for i E localA(p) loop

TempA[i] := Ali];
end;
for i E localB(p) loop

TempB[i] := B[i];
endj
for i E Range n r1(localACp)) loop

A[f(i)]:= ... A[J(i)] ...
... TempA[g(i)] .
... TempB[h(i)] .

end;
end;

Figure 13: Copying arrays to temporary storage

the temporary, as appropriate. This test can be eliminated in either of two
ways. Either the local section of the array can be copied to the temporary
as well as the non-local elements, or the loop can be split into two loops,
one always using the temporary and one always using the original array.
Copying the original array is always valid, but adds a large overhead. On
the other hand, data dependences may prevent loop splitting. Figures 13
and 14 show the copying and loop-splitting versions of the final program.
The copying code has been omitted from these versions; the code of either
Figure 11 or 12 could be used.

4 Conclusion

Our goal in this paper has been to develop a formalism for describing the
distribution of data on parallel machines. The idea of a local function giv
ing, for each processor p, the set of elements stored on p, captures the data
distribution concisely. This approach is more general than the alternative
formalism of relating each element to the processor. We have also demon
strated that the local function can be used in at least one application)

18

coprocess p E Procs do

(copying code)
Let IndexSet = Range n f-'(loeaIACp))

loeA = g-'{loealA(p))
loeB = h-'{loeaIB(p))

for i E IndexSei n lOCA n lOCB loop
A[f(i)]:= ... A[f(i)] .

... A[g(i)J .

... B[h(i)] .
end;
for i E IndexSei n lOCA - IOCB loop

A[f(i)]:= ... A[f(i)) .
... A[g(i)] .
... TempB[h(i)] ...

end;
for i E IndexSei n IOCB - IOCA loop

A[f(i)]:= ... A[f(i)] ...
... TempA[g(i)] ...
... B[h(i)] ...

endj
for i E IndexSet -IOCA - IOCB loop

A[f(i)):= ... A[f(i)] ...
... TempA[g(i)] .
... TempB[h(i)] .

end-,
end;

Figure 14: Loop splitting

19

namely strip mining sequential loops. Other applications are also possible,
and will be examined in future papers.

The discussion of strip mining in this paper has been somewhat abstract,
and the reader may question its practical value. Closed~form formulas de
scribing the sets ref(p), ker(p), and loc(p) may be obtained, however, for
many common distribution patterns and subscript functions. These formu
las are simple enough to be used. in a compiler to automate the transfor
mation. More details of this may be found in [5].

Our plans for future research on this topic include

• Using the local function in other parallelism-extracting transforma
tions on sequential programs

• Developing heuristics for choosing a distribution pattern for an array
guided by properties of possible local functions

• Extending the local function to cases where data distribution is not
static, such as cache memory schemes

References

[1] Multima:c Multiproce330r Sy3tem. Encore Computer Corporation,
Marlboro, MA.

[2] J. R. Allen. Dependence AnalY3i3 for Sub3cripted Variable3 and It3
Application to Program Tran3formations. PhD thesis, Rice University,
Houston, TX, April 1983.

{3] E. Davidson, D. Kuck, D. Lawrie, and A. Sameh. Supercomputing
Tradeoffs and the Cedar System. CSRD Report 577, Center for Super
computing Research and Development, University of Illinois, Urbana,
IL, May 1986.

[4] K. Gallivan, W. Jalby, and D. Gannon. On the problem of optimizing
data transfers for complex memory systems. In Conference Proceed.
ing3 of thelnternational Conference on Supercomputing, pages 238
253, ACM Press, July 1988.

20

[5] C. Koelbel and P. Mehrotra. Semi~automatic Proce33 Decomp03ition
for Non-3hared Memory Machine3. Technical Report CSD-TR 802,
Purdue University, West Lafayette, IN, August 16 1988.

[6] P. Mehrotra and J. V. Rosendale. The BLAZE language: a parallel
language for scientific programming. Parallel Computing, 5:339-361,
1987.

[7] Douglas Pase and Allan Larrabee. Programming Parallel Proce330r3,
chapter Intel iPSC Concurrent Computer, pages 105-124. Addison
Wesley Publishing Company, 1988.

[8] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kle
infelder, K. P. McAuliffe, E. A. Melton, V. A. Norton, and J. Weiss.
The IBM research parallel processor prototype (RP3): introduction
and architecture. In D. Degroot, editor, Proceeding3 of the 1985 Inter
national Conference on Parallel Proce33ing, pages 764-771, Computer
Society Press, August 1985.

[9] D. Reed, L. Adams, and M. Patrick. Stencils and problem partition~

ing: their influence on performance of multiprocessor systems. IEEE
TranJaction3 on ComputerJ, C-36(7):845-858, July 1987.

[10] C. L. Seitz. The Cosmic Cube. CommunicationJ of the A CM,
28(1):22-32, January 1985.

[11) S. Thakkar, P. Gifford, and G. Fielland. Balance: a shared memory
multiprocessor. In Proceeding3 of the Second International Conference
on Supercomputing, Santa Clara, CA, May 1987.

[12] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. PhD
thesis, University of Illinois, Urbana, IL, October 1982.

21

	A Formalism for Describing Data Distribution
	Report Number:
	

	tmp.1307986960.pdf.eJrNq

