
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1988

Semi-automatic Process Decomposition for Non-shared Memory Semi-automatic Process Decomposition for Non-shared Memory

Machines Machines

Charles Koelbel

Piyush Mehrotra

Report Number:
88-802

Koelbel, Charles and Mehrotra, Piyush, "Semi-automatic Process Decomposition for Non-shared Memory
Machines" (1988). Department of Computer Science Technical Reports. Paper 684.
https://docs.lib.purdue.edu/cstech/684

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SEMI-AUTOMATIC PROCESS DECOMPosmON
FOR NON-SHARED MEMORY MACHINES

Charles Koelbcl
Piyush Mchrotra

CSD-1R-B02
AuguSl1988

Semi-automatic Process Decomposition for
Non-shared Memory Machines

Charles Koelbel Piyush Mehrotra
Department of Computer Sciences

Purdue University

Abstract

To achieve high performance on non·shared memory machines one
must carefully distribute the data and the work so as to keep the work­
load balanced while minimizing the access to non-local data. Process
decomposition is the operation of writing an algorithm as a collec­
tion of tasks, each operating primarily on its own portion of the data,
to carry out the computation in parallel. In this paper we consider
a semi-automatic approach to process decomposition in which the
compiler, guided by advice from the user, automatically transforms
sequential programs into such a set of interacting tasks. This ap­
proach is illustrated with a Gaussian elimination example which is
transformed into a task system maximizing locality of memory refer­
ence.

1 Introduction

Parallel computer architectures have the potential to supply the computing
power needed for large scientific computations. Unfortunately, methods of
programming these machines are still in their infancy. This is especially
true for non-shared. memory machines, where user programs must manage
processes and cOIIUnUIlication between processes.

Currently there are two major approaches to programming parallel ma~
chines. The first requires the programmer to explicitly manage all of the

1

parallel activities in the program, usually by using a language with conw

structs for parallelism. Such languages include Ada [1], Force {7], and
Pisces [14]. Unfortunately, explicitly parallel programs seem to be much
harder to write than sequential ones. The alternate approach is to allow the
programmer to write sequential code and transfer the burden of extracting
parallelism onto the compiler. Work in this direction includes new lan­
guages such as ParAIfI [6J, SISAL [l1J, and BLAZE [121 and restructuring
compiler efforts [2,4,13] which target conventional languages such as FOR­
TRAN. The implicit parallelism approach has only been applied to shared
memory architectures, however, making it unclear whether it is appropriate
for non-shared memory machines.

An important consideration when implementing a program using ei­
ther programming paradigm is the distribution of data across the processor
memories of the system. Because processors may only reference data stored
locally, it is vital that each processor do as much computation as possible
on the data which it stores. To do this, the program is decomposed into
a set of parallel tasks, each of which operates mainly on its local data.
If non-local data is needed, it is received as a message and a copy stored
locally. A good choice of data distribution patterns allows the workload
to be evenly balanced among processors while minimizing communication
between processors. If either of these goals is not met, performance will
suffer. An unbalanced workload implies that part of the machine is idle,
and thus parallelism is reduced. On the other hand, excessive cormnunica­
tion adds a great deal of overhead to the system. Balancing these goals is
often a difficult task, but vitally important in non-shared memory systems.

In this paper we take the first step toward automatically rewriting se­
quential code for execution on non-shared memory parallel architectures.
We present a method of transforming a sequential loop into a task system
with message passing between the tasks, using data partitioning concepts.
Previously this was done by hand; our method transforms the program au­
tomatically, given a very small amount of extra input. Our method is an
extension of the region of locality method introduced in [8,9j.

2

2 The Region of Locality Method

The region of locality method of transforming a sequential loop has five
steps:

1. Data distribution decides how the program's data will be divided
among the processors. As we discussed earlier, this choice determines
the efficiency of the resulting program.

2. Strip mining converts the sequential loop into a set of parallel pro­
cesses. This gives the rough form of the final program, but non-local
references make this version unsuitable for direct execution on non­
shared memory machines.

3. Subscript analysis identifies the array references which may access
non-local data. No program transformation is done at this stage, but
the information is used in the next two steps.

4. Message generation creates the message-passing statements needed to
correctly implement the non-local references.

5. Loop decomposition breaks the strip mined loops into subloops with
the same pattern of non-local references in order to optimize those
references.

The next five sections of this paper present the region of locality method.
Each section explains one step of the process, illustrating it on a local exam­
ple. The step is then applied to the program of Figure I, the factorization
phase of Gaussian elimination without pivoting written in the BLAZE lan­
guage. By the end of the discussion, we will have converted that program
into a explicitly parallel program with primitives for non-shared memory
execution.

Throughout this paper, all example programs will be written in BLAZE,
a high-level language for scientific computation [12]. Although the language
has no parallel tasking or communication constructs, it has been designed
to allow compiler transformations to extract implicit parallelism. Trans­
formation of a BLAZE program introduces explicit parallelism into the
program. We use E-BLAZE, an extension of BLAZE, to express such ex­
plicitly parallel constructs. Thus, E-BLAZE provides a virtual architecture

3

var a: array[l..n, l..n 1ofrealj --$dist [*,cyclic}

for k in l..n-l loop

for i in k+l .. n loop
for j in k+l .. n loop

a[ij] += - a[kjJ * a[i,k] / a[k,k];
end;

end;

end;

Figure 1: Gaussian elimination program for transformation

for the BLAZE transformation system. E-BLAZE uses the SPMD (Sin­
gle Program Multiple Data) model of parallel computation, in which each
processor executes the same program but may do so asynchronously from
the other processors. The sequential features of BLAZE and E-BLAZE
are fairly standard; we will introduce parallel features as they are needed
throughout the paper. We emphasize that, although we use BLAZE as a
platform for these transformations, our work is language-independent.

3 Data Distribution

The :first step in our method is to choose the distribution patterns to be
used for the arrays in the program. Subsection 3.1 below formally defines
these distribution patterns. Using those definitions, Subsection 3.2 tells
how the distribution patterns for a particular program may be chosen.

3.1 Defining a Distribution Pattern

Mathematically, the distribution pattern of an array can be defined as a
function from processors to sets of array elements. If P is the set of pro­
cessors and A the set of array elements, then we define

local : P --+ 2A

4

processors Proes : array [l..P] with P in l..max..proesj
var A : array[1..N] of real by [block] on Proes;

B : array[l..N, 1..M] of real by [cyclic, *] on Proesj

Figure 2: Distribution patterns in E-BLAZE

as the function giving, for each processor p, the set of elements of A which
p stores locally. In this paper we will assume that the sets of local elements
are disjoint; that is, if p::f q then local(p) n local(q) = 4J. This reflects the
practice of storing only one copy of each array element. We also make the
convention that collections of processors and array elements are represented
by their index sets, which we take to be vectors of integers.

E-BLAZE provides notations for the most common distribution pat­
terns. First, the available processors must be declared via a processors
declaration as in Figure 2. This allocates P processors, where 1 :5 P :5
maX_Foes. Given this declaration, the E-BLAZE nUl-time environment
dynamically chooses the largest feasible value for P. Once the processor
array is declared, data arrays can be distributed across it using by clauses
in the array declarations, also shown in Figure 2. Array A is distributed
by blocks, giving it a local function of

local(p) = {i I (p-l)· r;1 + 1 ~ i~p' r;n
This assigns a contiguous block of array elements to each processor. Ar­
ray B has its rows cyclically distributed; its local is

local(p) = {(i,j) Ii'" p (mod P)}

Here, if P were 10 processor 1 would store elements in rows I, 11, 21, and
so on, while processor 10 would store rows which were multiples of 10.

3.2 Choosing a Distribution Pattern

The goal of choosing data distribution patterns is to minimize references to
non-local array elements. Unfortunately, it seems unlikely that a compiler
could make an optimal decision based solely on analysis of the program.

5

processors Praes : array{ l..NP] with NP in l..nj
var a. : array[l..n, l..n] of real by [\ cyclic] on Pracsj

Figure 3: E-BLAZE declarations for Gaussian elimination program

Mace [10] has shown that at least one form of the data distribution problem
is NP~complete. Approximate methods must therefore be used to find dis­
tribution patterns that, while not necessarily optimal, produce reasonable
results. Finding such heuristics is an important open research problem.

In our current system, we require the programmer to provide annota­
tions describing the patterns desired, which appear as comments in the
original program. In our system, the E-BLAZE processors declaration is
generated based on the description of the target architecture and the distri­
bution pattern. The BLAZE program annotation in Figure 1 is translated
directly into an. E-BLAZE array distribution pattern. In the Gaussian elim~

ination example, the columns of a will be distributed cyclically across the
processors. The corresponding local fWlction is similar to that for B in Fig­
ure 2. The E-BLAZE declarations generated for the Gaussian elimination
program are shown in Figure 3.

4 Strip Mining

Once the distribution patterns for the arrays in the program have been cho­
sen, the loops in the program can be converted to parallel form. The trans­
formation to do this is called 3trip mining, after a similar transformation
in vectorizing compilers [15]. The fWldamental idea of the transformation
is to break the range of a for loop into subranges ("strips" in the original
formulation). If the subranges are independent of each other, they may
be executed in parallel. The strip mining transformation simply creates a
parallel loop which runs over these subranges. The transformation is not
valid if the subranges are not independent, since then they cannot safely
be run in parallel.

The type of independence between subranges needed for strip mining is
captured by data dependence. As shown in [3,15] data dependence analysis
in the compiler can be used to check for independence of subranges. checked

6

by the compiler using data dependence analysis. We give only an overview
of this analysis here.

Data dependence analysis recognizes situations in which a memory loca­
tion is referenced by two separate statements (or by one statement executed
repeatedly, as in a loop). If one statement assigns to a memory location
while a second uses the location's value, there is said to be a data depen­
dence between the two statements. Two statements can be executed in
parallel when there are no dependences between them. If the statements of
a data dependence are in a loop, there are two possibilities: the references
causing the dependence can be made during the same loop iteration or
during different iterations. Dependences in which the references are made
during the same iteration are called loop-independent; if the references are
made during different iterations, the dependence is loop-carried. A loop can
be executed in parallel without introducing synchronization instructions if
and only if it does not carry any dependence. In the case of strip mining,
this means that the loop may be executed in parallel only if there are no
dependences from statements in one subrange to statements in another.

For loop~carrieddependences, the concept of distance vectors is impor­
tant. For a single loop, if the first reference causing a dependence occurs
on iteration i l and the second reference on iteration i 21 then the distance
vector associated with the dependence is i 2 -i l • In the case of nested loops,
this idea is extended to the vectors of the loop indices, with the conven­
tion that the index of the outermost loop is first in the vector. Thus, if
the first reference comes on iteration (il ,jl) and the second on iteration
(i21 i2), then the distance vector is (i2- illh - iI). We will use this concept
in formulating an exact validity condition for strip mining.

Strip mining is accomplished in a BLAZE program by using the E­
BLAZE coprocess construct. This is an explicitly parallel loop which
creates a process on each processor declared in a program. Each process
executes one iteration of the coprocess and finishes by performing a barrier
synchronization with all other processes. To strip mine a loop, a coprocess
is created around the original for loop, and the loop bounds of the original
for loop are modified to run over only a subrange. The new bounds are
parameterized with respect to the coprocess index so that each coprocess
iteration will execute one of the chosen subranges.

The subranges of the strip mined for loop must be chosen so that as
many array accesses as possible are made to local data. In our work, we

7

for i E range loop
A[f(i)] := ...

endj

(a)

coprocess p E Procs do
for i E range n f-l(loca/(p)) loop

A[f(i) I := ...
end;

endj

(b)

Figure 4: Simple loop before and after strip mining

choose these subranges so that any storing of values can be done locally. If
the loop contains only a single assignment to an array, as does the pseu­
docode loop of Figure 4a, the strip mining transformation produces the
nested construct of Figure 4b. Given that the loop accesses A[f(i)], restrict­
ing processor p to iterate over a subset of the set f-l(local(p)) ensures that
the set of array elements assigned to will be f(r'(loca/(p))) = /oca/(p).
For notational convenience, we refer to the set f-l(local(p)) as ref(p).

In order for the transformation of Figure 4 to be valid, we must ensure
that the subranges formed by ref(p) are independent. To do this, we define
the kernel ker of a distribution as the set of vectors which "don't change the
processor" when added to an array subscript. That is, for each processor p,

ker(p) = {d IVi E /oca/(p) , i + d E /oca/(p)}

where the + operator represents vector addition, if appropriate. The most
intuitive example of such a kernel is the set of dimensions which are not
distributed in a multi-dimensional array. For example, if an array is dis­
tributed by blocks of rows, as in the E-BLAZE declaration

var A : array! l..N, l..N] of real by [block, * I on Proc;

then changing the column of a reference has no bearing on the processor
storing the reference. Thus, the vector (0, x) is in ker(p) for any x or p.

8

We can now state the validity conditions for strip mining according to
the distribution pattern.

Strip mining is valid if, for all distance vectors d of data depen­
dences in the original loop and all processors p in the processor
array, fed) E ker(p).

Under this condition, all dependences have both their beginning and ending
on the same processorj thus, the original order of the execution is always
preserved. Intuitively, this says that if no loop over a distributed dimension
of the array carries a data dependence, then the nested loop can be strip
mined.

The loop of Figure 4 can easily be generalized to the case when the
loop has several assignments to arrays with the same distribution patterns
and subscript expressions. The new loop bounds can then be calculated.
based on any of the assignment statements, since these will clearly give the
same set. This is also true if the difference between any two subscripts is
an element of ker(p). For example, if the only two assignments in a loop
are to Alfl(i)] and A[f,(i)] and Mi) - f,Ci) E ker(p) for all i and p, then
the loop can be strip mined using either 11 or 12. Furthermore, these cases
can easily be extended from the single for loop shown here to nested loops.
More complex cases, in which arrays with different distribution patterns or
subscript expressions are updated, are being studied.

Applying this transformation to the Gaussian elimination program of
Figure 1 produces the program of Figure 5. The for k loop caIUlot be strip
mined, because it carries data dependences between columns of the ma­
trix. For example, the references to a[i,iJ and a[i, kJ produce a dependence
with distance vector (k,i,j) = (1,0,-1). In this case, I(k,i,j) = (i,;"),
so f(l, 0, -1) = (0, -1) '!- ker(p). The for i and for j loops may be strip
mined as shown, however. 'While transforming the inner loop, dependences
carried by the outer loop may be ignored, as discussed in (3]. Two nota­
tional conveniences in the program should be explained. The E-BLAZE
range primitive gives the range of indices of an array stored on a given
processor. The intersection operator'" takes the intersection of two ranges.
The bounds of the resulting range can be easily computed, but are nota­
tionally complex. We therefore show only the intersected version.

9

processors Proes : array[l..NP] with NP in l..n;
var a : array[l..n, l..n J of real by [*, cyclic] on Proes;

for k in l..n-lloop

coprocess p in l..NP on Proes[pJ do

for i in k+l .. n loop
for j in k+1..n ~ range(a[,*],Procs{p]) loop

ali,j] ,= a[i,j] - alk,j) * a[i,k] I alk,k];
end;

end;

endj

endj

Figure 5: Strip-mined Gaussian elimination program

10

coprocess p in 1..NP on Procs[p] do
for (i"i,) E range"" n f-'(local(p)) loop

... R1 ···

... R, ...

... R" ...
endj

endj

Figure 6: Pseudocode loop for subscript analysis

5 Subscript Analysis

Once the parallelism of the program has been expressed as explicit copro­
cess constructs, the question of memory locality can be addressed. This
entails an analysis of the subscripts of array references to determine which
ones may cause access to non-local elements. We will describe such an
analysis in this section. The information gained will be used in the next
two sections to transform the program to bring the non-local references
together and make local copies of the non-local data.

The type of loop we are considering has the form shown in Figure 6.
Each Rk represents an array reference, which may occur either on the right
or left of an assigmnent. For simplicity, we will assume that only one array
A is referenced. The general case of multiple arrays does not alter the
goals of the analysis, although it may complicate the analysis itself if the
arrays have different distribution patterns. We restrict the subscripts in
the references to be linear functions of the loop indices. Thus, a reference
to a two-dimensional array A will have the form

R = A[g(i" ;,)]

where 9 is defined as

g(i"i,) = (g,(i"i,),g,(i"i,))

and the 9j functions have the form

9j(i1, iz) = Cj,O + cj,li1 + cj,ziz

11

The ci.o terms may contain loop invariants, but the coefficients of the in­
dices must be compile-time constants. These restrictions are the same as
those usually imposed by data dependence analysis [15], and cover the most
common cases found in real programs.

For each processor p and reference R the set g-l(local(p)) defines a sub­
set of the iteration space such that R is always a local reference. Because 9
is linear, these sets may be calculated easily. If g-l(/oca/(p» c; ref(p) for
all p then the reference R can always be satisfied locally. Otherwise, anyel­
ement a such that a E g-l(/oca/(p) but a ¢ ref(p) must be communicated
to processor p via messages. The goal of subscript analysis is to find the
appropriate sets g-l(local(p)) for each p and determine how they intersect
with the loop range sets ref(p).

This process can be visualized easily for block distributions in two di­
mensions, as shown in Figure 7. The local(p) sets are rectangles in the
iteration space. Linear transformations of these such as j-l(local(p)) be­
come parallelograms in the same space. In the common special case of
ci,i = 1 for j =f 0 the parallelograms are rectangles. These are represented
by the large solid and dashed rectangles in the figure. Intersections be­
tween the sets are represented as overlapping regions. Thus, B[i - I, j + 3]
is a non-local reference in areas I, 2, and 3. Our subscript analysis would
identify these regions using simple formulas.

Applying a similar analysis to the Gaussian elimination example pro­
duces the results in Figure 8. The analysis itself is harder to visualize, since
the local(p) sets no longer form contiguous regions in the iteration space.
The formulas, however, can still be put in closed form to give the desired
results. Note that only the references ali, k] and a[k, k] can cause non-local
references.

6 Message Generation

Using the information from subscript analysis, it is possible to determine
which array elements must be moved into local memory. In non-shared
memory machines, this means generating message-passing statements to
send and receive non-local data. The basic idea is, for each array reference
that may be non-local, to generate a pair of send and recv statements
which communicates the appropriate array elements.

12

var A, B : array[l..N, l..N] of real by [block, block) on Procs;
coprocess pI in I..NP, p2 in l..NP on Procs[p] do

for i in range(A[*,],Procs[pl,p2J) loop
for j in range(A[,*],Procs[pl,p2J) loop

A[i, j] := A[i, j] - B[i-I, j+3];
end;

end;
endj

g-l(local(pl, p2))

I g-1(local(pl,p2 + 1))
_______t , t _

local(pl,p2)

area 1,
, " ,,

L---.tr-~I-'---4-~-_-_-~i_-_-_--=-:"'-:::J_---------------~~~-- area 2

f
1

-:-,----------'--- area 3,,,,,

g~,~;O~:;(!: ~-:,~~~)c------r------,
g-l(local(pl - 1, p2 + 1))

J •

Figure 7: Visualizing subscript analysis

13

Reference g-'(Iocal(p)) When Local
a[iJ) {(i,j) Ij-p (mod NP)} Always
alk,ij {(i,j)lj-p (mod NP)) Always
a[i,kJ {(i,j)lk-p (mod NP)) When k_p (mod NP)
alk,kJ {(i,j) I L p (mod NP)) When k_p (mod NP)

Figure 8: Subscript analysis summary for Gaussian elimination example

The major factor in generating the message passing instnIetions is to
decide whether the reference may access a non-local element of the array.
This will occur whenever ref(p) S1: g-·(Iocal(p)). This matching works
in two ways. An iteration in ref(p) - g-l(local(p)) will make a non-local
reference on the current processor when it accesses A[g(i)Ji this reference
must be received as a message. In this case there must be a processor q
which "owns" the element. Therefore, an equivalent condition is that any
nonempty set g(ref(p) n g-'(local(q))) represents elements which must be
sent from q to p. Similarly, an iteration in g-l(local(p)) -ref(p) produces a
reference on another processor which is local to the current processor; this
reference must be sent out. The alternate formulation is that if g(ref(q) n
g-l(local(p))) is nonempty then that set must be sent from p to q. In the
alternate formulations of these equations, there may be more than one q
for a given p. VV'hen this is true, there must be one message generated for
each q.

Once the non-local references have been identified, the message passing
statements can be generated easily. In the Gaussian elimination example,
there are two messages generated. Both are broadcasts of elements in the
pivot row. The elements broadcast and the conditions for sending can
be taken directly from the descriptions of the sets g-l(local(p)) given in
Figure 8 and the bounds of the for j loop. The resulting send and recv
statements are shown in Figure 9.

7 Loop Decomposition

After data is moved into local memory, the strip mined loop must be de­
composed to isolate non-local references. Since these references are satis­
fied from the original array and from temporary arrays at various times,

14

-- from reference a{i,k]
- - from reference a{kj k]

var tmpl : array[l..n] of realj
tmp2 : real;

if(k mod NP = p mod NP) then
send(Proe,[l..NP], a[k+l..n,k]);
send(Proes[l..NP], a[k,k]);

end;
tmpl[k+l..n] := reeve Proe,[(k-l) mod NP + 1]);
tmp2 := reeve Proes[(k-l) mod NP + 1]);

Figure 9: Message passing in Gaussian elimination example

the same reference in the original program is mapped into references to
two variables. If the loop is not split, each reference to the array must be
preceded by a test to determine which variable to use. Decomposing the
loop removes these tests, increasing run-time efficiency.

Figure 10 shows the results of loop decomposition on the Gaussian elim­
ination example. The index range of the strip mined loop is divided into
subranges such that an array reference is local for one subrange value if and
only if it is local for all subrange values. The subranges used are exactly
the sets used to generate the recv statements in the last section. New
loops are then created running over each of these subranges. The bodies
of the new loops are identical to the bodies of the old loops except for the
non-local references, which are replaced by references to the appropriate
arrays. For the Gaussian elimination example, no subranges are necessary,
but this is a rare occurrence. The simple program in Figure 7, for exam­
ple, decomposes into four loops corresponding to the four partitions of the
local(p1,p2) region.

8 Conclusions

In this paper we have shown how some loops written in a sequential lan­
guage can be converted to nUl in parallel on a non-shared memory archi­
tecture. Our method is conceptually very simple, but we believe it is quite

15

-- from reference a[i,kj
-- from reference a{k,kj

processors Procs : array[l..NP 1with NP in l..nj
var a: array[l..n, l..n] of real by [*, cyclic] on Proesj

for k in l..n-1 loop

coprocess p in l..NP on Proes[p] do

var tmpl : array[l..n] of real;
tmp2 : realj

1f(k mod NP = p mod NP) then
send(Procs[l..NPI, a[k+l..n,kl);
send(Procs[l..NP], a[k,kl);

endj
tmpl[k+l..n] := recv(Procs[(k-l) mod NP + 1 J);
trnp2 := recv(Procs[(k-l) mod NP + 1]);

for i in k+l .. n loop
for j in k+l..n ~ range(a[,*),Procs[p]) loop

a[iJ] := ali,)] - a[kJI * tmpl[i] f tmp2;
endj

end;

end;

endj

Figure 10: Final form of Gaussian elimination example

16

general and easily implementable. As evidence for its generality, we have
used it to hand-translate several important algorithms, such as the Gaus­
sian elimination example in this paper and picture smoothing algorithms.
We are currently working on implementing om method in the BLAZE com­
piler being developed at Purduej we will report on the results of this work
at the conference.

Our work shares much with other work on automatic parallelization of
sequential code. Two of the more prominent groups working in this area
are the Cedar group headed by David Kuck at the University of Illinois
[13] and Ken Kennedy at Rice University [4]. Our contribution to this has
been to extend that work to include distributing the data. We have fmther
extended the work by considering non-shared memory systems, where the
techniques of automatic parallelization had not been brought to bear.

It is admittedly a shortcoming of this work that users must supply this
information. We justify using program annotations on two grounds. First,
the extra input required is very small. This seems to be an acceptable bur­
den to place on the user, especially in light of some of the other annotations
required by advanced compilers. Kennedy [5] has suggested that compilers
in the future will become much more interactive to allow just this type of
user input. The other justification is that our system is a useful back end
to any new methods of choosing these patterns. Many groups are work­
ing on heuristics for pattern selection, and our method will be useful for
implementing any of their ideas.

References

[1] Reference Manual for the Ada Programming Language. American Na­
tional Standards Institute, Inc., ANSIJMIL-STD-1815A-1983 edition,
February 1983.

{2] F. Allen, M. Burke, P. Charles, R. CytroD, and J. Ferrante. An
Overview of the PTRAN A nalyJiJ SYJtem for MultiproceJsing. Re­
search Report RC 13115 (#56866), IBM T. J. Watson Research Cen­
ter, Yorktown Heights, NY, September 1987.

17

[3] J. R. Allen. Dependence Analysis for Subscripted Variables and Its
Application to Program Tran8formations. PhD thesis, Rice University,
Houston, TX, April 1983.

[4] J. R. Allen and K. Kennedy. Automatic Translation of Fortran Pro­
grams to Vector Form. Technical Report 476-029-4, Rice University,
Houston, TX, October 1980.

[5] R. Allen, D. Callahan, and K. Kennedy. Automatic Decomposition of
Scientific Programs for Parallel Execution. Computer Science Techni­
cal Report TR86-42, Rice University, Houston, TX, November 1986.

[6] P. Hudak. Parafunctional programming. IEEE Computer, 19:60-71,
1986.

[7] H. Jordan. Structuring parallel algorithms in an MIMD, shared memw
ory environment. Parallel Computing, 3(2):93-110, May 1986.

[8] C. Koelbel, P. Mehrotra, and J. V. Rosendale. Semi-automatic domain
decomposition in BLAZE. In Sartaj K. Sahni, editor, Proceedings of
the 1981 International Conference on Parallel Processing, pages 521­
524, Pennsylvania State University Press, August 1987.

[9] C. Koelbel, P. Mehrotra, and J. V. Rosendale. Semi-automatic process
partitioning for parallel computation. International Journal of Parallel
Processing, to appear.

[10] M. Mace. Globally Optimal Selection of Memory Storage Patterns.
PhD thesis, Duke University, Durham, NO, May 1983.

[11] J. McGraw, S. Skedzielewski, S. Allan, R. Oldenhoeft, J. Glauert, C.
Kirkham, W. Noyce, and R. Thomas. SISAL: Streams and Iteration
in a Single Assignment Language: Language Reference Manual. Re­
port M-146, Lawrence Livermore National Laboratory, March 1985.

[121 P. Mehrotra and J. V. Rosendale. The BLAZE language: a parallel
language for scientific programming. Parallel Computing, 5:339-361,
1987.

18

[13] D. A. Padua, D. J. Kuck, and D. H. Lawrie. High-speed multiproces­
sors and compilation techniques. IEEE Transactions on Computers,
C-29(9):763-776, September 1980.

[14] T. W. Pratt. Pisces: an environment for paralle scientific computation.
IEEE Software, 2:7-20, 1985.

(15] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. PhD
thesis, University of Illinois, Urbana, IL, October 1982.

19

	Semi-automatic Process Decomposition for Non-shared Memory Machines
	Report Number:
	

	tmp.1307986960.pdf.nZQ3n

