
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1988

An Optimal Parallel Algorithm for Preemptive Job Scheduling that An Optimal Parallel Algorithm for Preemptive Job Scheduling that

Minimizes Maximum Lateness Minimizes Maximum Lateness

Susan Rodger

Report Number:
88-798

Rodger, Susan, "An Optimal Parallel Algorithm for Preemptive Job Scheduling that Minimizes Maximum
Lateness" (1988). Department of Computer Science Technical Reports. Paper 681.
https://docs.lib.purdue.edu/cstech/681

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

AN OPTIMAL PARALLEL ALGORITHM FOR
PREEMPTIVE JOB SCHEDULING THAT

MINIMIZES MAXIMUM LATENESS

Susan Rodger

CSD-lR-798
August 1988

An Optimal Parallel Algorithm for Preemptive Job

Scheduling that Minimizes Maximum Lateness

Susan Rodger t

August 8, 1988

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907

ABSTRACT

In this paper we present the Preemptive Minimize Maximum Lateness algorithm, an
optimal parallel algorithm that schedules jobs for execution on a single processor machine
with preemption. Each job is described by a release time, a deadline and a processing time.
A job is considered late if it does not complete by its deadline and its lateness is defined as
the difference between its completion time and deadline. Using the CREW PRAM model,
our algorithm schedules n jobs for execution and minimizes the maximum lateness of the
jobs. Our algorithm runs in O(logn) time and uses O(n) processors, which is the first
optimal processor-time product algorithm for this problem. The technique we use can be
applied to other job scheduling problems, improving their results. We give faster parallel
algorithms for three additional scheduling problems.

t This research was partially supported by the Office of Naval Research on contract N
00014-86-K-0689.

An Optimal Parallel Algorithm for Preemptive Job

Scheduling that Minimizes Maximum Lateness

1. Introduction

In this paper we present an optimal parallel algorithm that preemptively schedules

jobs for execution on a single processor machine. Each job is described by a release time,

a deadline and a processing time. A job is considered late if it does not complete by

its deadline and its lateness is defined as the difference between its completion time and

deadline. Using the CREW PRAM model, our algorithm schedules n jobs for execution

and minimizes the maximwn lateness of the jobs. Our algorithm runs in O(log n) time and

uses O(n) processors, which is the first optimal processor-time product algorithm for this

problem. The technique we use can be applied to other job scheduling problems, resulting

in faster parallel algorithms for these problems.

There are efficient sequential algorithms for many scheduling problems, but few par­

allel algorithms for these problems. Sequential job scheduling algorithms that minimize

the maximum lateness have been studied extensively. If preemption is allowed, schedul­

ing jobs to run on one machine is solvable in polynomial time (Hor74]. If preemption is

not allowed, scheduling jobs to run on one machine is NP-hard [BLR77L but polynomial

time algorithms exist if all release times are equal [Jac55], all deadlines are equal [Jac55],

or all processing times are equal [Sim78] [GJST81]. Recently, parallel algorithms for job

scheduling problems are being studied ([DUW86], [DeS83a], [DeS83b], [DeS84], [HeM84],

and [Mar88)). In particular, Dekel and Sabni [DeS83a] give parallel algorithms for min­

imizing the maximum lateness of jobs scheduled to run on m identical machines. The

specific problems they examine are characterized by 1) the jobs have unit processing times

and integer release times, 2) the scheduling is on m = 1 machine and preemptions are

allowed, and 3) cases 1 and 2 with precedence constraints. In this paper, we improve on

their results for cases 1 and 2.

This paper concentrates on minimizing the maximum lateness for the case when jobs

are scheduled to run on one machine and preemption is allowed. For this problem, Dekel

and Sahni [DeS83a] give a parallel algorithm that is based on parallel divide-and-conquer.

1

The bottleneck in their algorithm is that it takes O(1og n) time to combine two subprob­

lems. There are logn levels of subproblems, so their algorithm takes O«(1ogn)2) time. Our

algorithm, the Preemptive Minimize Maximum Lateness algorithm, improves the running

time by pipelining the subproblems. It consists of two phases. In phase one we apply

the pipeline merge technique of Cole [CoI86] to the first part of Dekel and Sahni's algo­

rithm. Subproblems on all levels calculate their solutions at the same time, so phase one

completes in O(log n) time. The difficulty in pipelining the subproblems lies in determin­

ing preempted jobs at intermediate steps, since only a sample of the final solution set is

available. At the intermediate steps, the preempted job is estimated. As the algorithm

proceeds, the estimate improves and it converges on the exact job when all the jobs in

a subproblem are available. In phase two of our algorithm, we cannot directly apply the

pipeline merge teclmique to the second part of Dekel and Sahni's algorithm. Instead, we

design a new algorithm for this phase to which we can then apply Cole's pipeline merge

technique. Dekel and Sahni's algorithm runs in O((logn)2) time and uses O(n) processors.

Our algorithm reduces their running time by O(log n) while using the same number of

processors.

The Preemptive Minimize Maximum Lateness algorithm has an optimal processor­

time product. Let the fastest known sequential algorithm for a problem have a running

time of t8 (n) and a parallel algorithm for the same problem have a running time of tp(n)

and use pen) processors. The parallel algorithm is a fast parallel algorithm if O(t8 (n)) =

O((tp(n)) * (p(n))). Furthermore, if i.(n) is the lower bound for the problem, tben the

parallel algorithm is optimal. An adversary argument [FreSS] shows that the Preemptive

Minimize Maximum Lateness problem has n(n logn), so our parallel algorithm is optimal.

The model we use is the shared memory model (SMM) parallel RAM (PRAM). There

are n processors (PE's) indexed PE1 ,PE2 ••. PEn. Each PE knows its index and per­

forms simple, syncronized operations. All PE's access a common memory. In the CREW

(concurrent reads, exclusive writes) PRAM model, PE's can simultaneously read from the

same memory location, but writes exclude all accesses other than the PE performing the

write.

This paper is organized as follows. Section 2 reviews previous work that is relevant to

2

our algorithm. Section 3 presents the Preemptive Minimize Maximum Lateness algorithm.

Section 4 applies our approach to other job scheduling problems, improving their running

times. The problems in section 4 are 1) schedule n jobs with integer release times and

unit processing times to minimize maximum lateness, 2) schedule n jobs with release times

equal to zero and unit-processing times to minimize the sum of weights of tardy jobs, and

3) schedule n jobs with release times equal to zero and unit processing times to minimize

the number of tardy jobs.

2. Definitions and Previous Results

In this section we formally define the scheduling problem for minimizing the maximwn

lateness. Next, we review Dekel and Sahni's [DeS83a] parallel algorithm and then we

review Cole's [CoI86] sorting algorithm. In section 3, phase one of our algorithm applies

Cole's parallel merge technique to the first part of Dekel and Sahni's algorithm. and then

concentrates on estimating which jobs are preempted.

2.1. Definitions

Allowing preemption, we want to schedule n jobs to be processed on one machine so

that we minimize the maximum lateness of the jobs. Each job i has an associated release

time Ti, deadline di and processing time Pi. A job cannot start earlier than its release

time and it should finish by its deadline. By allowing preemption, jobs can run in time

slices, with the sum of the time slices equaling the job's processing time. A job is late if it

completes after its deadline. Let Cj be the completion time for job i, then the lateness of

job i is defined by Cj - dj • We want to schedule the jobs so that we minimize the maximum

Cj - dj over all jobs i.

A sequential algorithm for this problem runs in O(n logn) time [Hor74]. The algorithm

scans over ordered release times, selecting available jobs with minimtun deadlines for the

schedule. A job j is available at Ti if 1'j $ 1'i and j has not been selected. The algorithm

begins by sorting the jobs in nondecreasing order by release times and numbering them so

that 1'1 $ 1'2 :$... $ 1'n. Starting with 1'h scan over the ordered release times selecting

jobs for the schedule. At each ri, select available jobs with minimum deadlines until the

3

sum of the processing times of the selected jobs equals or exceeds Ti+l - Tj, or there are no

more available jobs. If the sum is exceeded, split the last job selected into two new jobs.

Its processing time is split so that one of the new jobs is selected, forcing the sum of the

processing times of the selected jobs to equal Ti+l - Ti. The other new job is available for

selection at larger release times. At the end of the algorithm, the jobs in the order they

were selected form the desired schedule.

2.2. Dekel And Sahni's Parallel Algorithm

Using the EREW (exclusive read, exclusive write) PRAM model, Dekel and Sahni

[DeS83a] give a parallel solution to the preemptive minimize maximum lateness problem.

In this section, we review Dekel and Sahni's algorithm. First, we give some definitions and

then we review the two phases of their algorithm.

Dekel and Sahni's algorithm uses parallel divide-and-conquer, dividing the problem

into subproblems, solving the subproblems in parallel, and then combining their results.

A complete binary tree is used to illustrate the order the subproblems are combined. The

jobs are ordered by nondecreasing release times and divided into groups that have jobs

with the same release time. The groups are assigned to the leaves of the binary tree, one

group per leaf, in the release time order.

An interval is associated with each node in the tree. This interval is based on release

times and it represents available time for scheduling jobs. If V is a leaf node that contains

jobs with release time Tj and the leaf node to its right contains jobs with release time Tj,

then the interval [TjlTj) is associated with V. We can schedule some of the jobs in V to

run during this interval such that the total time for processing the scheduled jobs is less

than or equal to Tj - Ti. The rightmost leaf, which has release time Tn', represents the

interval [Tn" 00). If V is an internal node, it is associated with the interval h, Tj) where

[Tj,Tk) is the interval associated with V's left child and [Tk,Tj) is the interval associated

with V's right child. The intervals are designed so that for any job z assigned to a leaf in

V's subtree, Tj :5 T z < Tj.

Phase one begins by assigDing one processor per job and in parallel sorting the n jobs

by nondecreasing release times. The jobs are then divided into groups by release times

4

and the groups are assigned to: the leaves of the tree. In parallel, the jobs within a group

are further sorted by nondecreasing deadlines. Each node V calculates two ordered lists

of jobs, SCHEDv and REMv . SCHEDv is the set of jobs, considering only those jobs

in V's subtree, that can be scheduled in the interval associated with V to minimize the

maximum lateness. REMv is the set of remaining jobs from V's subtree that are not

in SGHEDv . Both SCHEDv and REMv are in sorted order by deadlines, since their

solutions can be calculated quickly in log n time by merging sets sorted by deadlines. The

calculation does not produce the sets in their scheduled order. If V is a leaf node then all

its jobs have the same release time Ti and the jobs are sorted. by nondecreasing deadlines.

The interval associated with V is [Til rj). Let il,h, .. .jt be the jobs in V in sorted order.

The jobs in V are split into the two sets SGHEDv and REMv . The partial sums of the

processing times are calculated to determine where this split occurs. Let z be the index

such that
.+'

<_ r,' - r,' and '"'"' p,'
LJ '
h=1

The jobs jl,12, ... jz are placed into SCHEDv. If the first summation above does not

equal Tj - Ti and job jz+l exists, then jz+l is split into two new jobs. Its processing time

is split so that one of the new jobs can be added to SOHEDv , resulting in the sum of

the processing times of jobs in SOHEDv equal to Tj - rio The other new job and all the

remaining jobs not chosen are placed into REMv .

If V is an internal node, then SGHEDv and REMv are calculated using V's left child

and right child, left(V) and r'ght(V). V is associated with the interval [r;, rj), left(V)

with the interval [ri, r,) and right(V) with the interval [r" rj). Assume SCHED/.f.(v).

REM,e/C(v), SCHEDright(V), and REMright(V) have already been calculated. Every job

in right(V) has release time T z such that T z ;::: Tk, so REMright(V) C REMv. Similarly,

SCHEDie/f(V) C SGHEDv . Of the jobs in SCHEDrjght(V) and REMle/f(V)l choose the

jobs with minimum deadlines that use at most rj-rk total processing time. This is done as

follows. Let W = SGHEDright(V) UREMie/t(v) where U is a merge operation in order of

nondecreasing deadlines. Calculate the partial swns of the processing times in Wand using

these split W into the two sets SCHEDw and REMw . W is split in the same manner the

5

leaf nodes were split, so that the sum of the processing times of the jobs in SGHEDw is

less than or equal to rj -rk. This may involve splitting one job into two new jobs as before.

REMw will contain the remaining jobs. Then SCHEDv = SCHED'.r.(v) USCHEDw

and REMv = REMwUREMright(V)· SGHEDv will contain the set of jobs that minimize

the maximum lateness for V's interval, considering only the jobs in V's subtree. If ROOT

is the root of the tree, SGHEDRooT will contain all the jobs in nondecreasing sorted

order by deadlines and REMROOT will be empty. Note that the jobs in SGHEDRooT

are not necessarily in scheduled order, since each SGHED and REM set calculates the

jobs in the sets, but never the scheduled order of the jobs. At most one job per node is

split into two jobs, so there are O(n) jobs at the root.

In phase two, Dekel and Sahni calculate the solution set SGHED at each node so that

a solution at a node considers all the jobs, and not just the jobs in its subtree. They start

at the root of the tree and proceed downward by levels. Suppose a node V has an updated

SCHEDv set, call it NEWSCHEDv . V has a left child le/l(V) and a right child

Tight(V) and the interval associated with V is [Ti, Tj). To calculate NEW...sGHEDle/t(v) ,

they extract all the jobs from NEW-SGHEDv whose release times are smaller than Ti.

These are the jobs that canno~ be scheduled between [TIl Ti) and were not considered for

SGHEDle/t(v) in phase one. They merge these jobs with SCHED1e!t(V) , and then split

the resulting set so that the sum. of the processing times of the jobs in the left half of the

split is equal to Tj - Ti. Like the splits in phase one, this may involve job splitting. The

left half of the split forms NEWSCHED'.r'(V). NEWSCHED."hlCV) can be calculated

from the set NEWSCHEDv - NEWSCHED'.r,(v). The final schedule will appear in

the NEW...sCHED sets of the leaves. We give a different algorithm for phase two that

does not use extractions. Our algorithm is designed so that we can apply Cole's parallel

merge sort to it.

Dekel and Sahni's algorithm proceeds by levels, at each level merging sorted lists,

calculating partial sums ofpro'cessing times, or performing extractions, spending O(logn)

time per level and resulting in an overall time of O«logn)2). Our algorithm reduces the

total time to O(log n).

6

2.3. Cole's Sorting Algorithm

Tbis section reviews Cole's parallel algorithm for sorting n elements in O(logn) time

using O(n) processors. The key point in Cole's algorithm is that two sorted lists are merged

together by pipelining the merge of samples of the two lists, starling with samples of one

element and then doubling the sample size at each step in the pipeline. Each merge of

two sample lists uses information from the previous merge in the pipeline to calculate its

merge in constant time. Cole defines the sorting algorithm for a complete binary tree with

n a power of 2. In [ACG87] the sorting technique is generalized for an arbitrary binary

tree, where there is at most one element per leaf.

We begin with some definitions. Let Land J be sorted arrays of elements. Suppose

that f is an element in J and e and 9 are adjacent elements in L, e < g, such that f falls

between e and 9, i.e. e S f < g. Then the rank of f in L is defined to be the rank (or

position) of e in L. L is a c-cover of J if for any two adjacent items e and 9 in L, there

are at most c items in J whose rank is e.

Cole's algorithm works in the following way. The n elements are assigned to the leaves

of a complete binary tree, one element per leaf. For each node V we want to calculate

the sorted list of all the elements in its subtree. Merging together the sorted lists of its

children, left(V) and right(V), would take O(loglogn) time per level [VaI75]. Instead,

pipeline samples of the lists, starting with a sample of size one, and doubling the size of

the sample each time until the whole list is sent. Two sample lists are merged together

quickly by using the merged lists of the previous two sample lists in the pipeline as a guide.

Instead of processing the data one level at a time, all the levels pipeline merge their sample

lists at the same time.

Let V(s) be the current list for node V at stage s in the pipeline, fonned by merging

together sample lists of V's children. V(s + 1) is the next list to calculate at V at stage

s + 1, V(s -1) is the list at V one step earlier at stage s -1, and SAMP(L) is a sample of

list L. To merge the two lists SAMP(left(V)(s» and SAMP(right(V)(s» together to form

V(s + 1), each element in SAMP(left(V)(s») calculates its rank in SAMP(right(V)(s».

Then its rank in V(s + 1) is the sum of its rank in SAMP(left(V)(s)) and its rank in

SAMP(right(V)(s». Similarly, each element in SAMP(right(V)(s» calculates its rank in

7

SAMP(left(V)(s)) to determine its rank in V(s+1). Cole shows that for all lists V(s) and

V(s -1), V(s -1) is a 3-cover of V(s). Thus, V(s) is a 3-cover of SAMP(left(V)(s -1))

and SAMP(right(V)(s -1)), so an element in SAMP(left(V)(s)) can calculate its rank in

SAMP(right(V)(s)) in 0(1) time by using V(s) and SAMP(left(V)(s -1)).

To use a linear number of processors, the number of elements being merged together

at one time step must be O(n) elements. Cole achieves a linear number of processors by

defining a sample list as every fourth element of the current list in the pipeline. Thus,

when the algorithm starts, every node in the tree will begin constructing its sorted list of

elements as soon as one element arrives. Until the list is complete, the node will always

send to its parent a sample list of every fourth element of its current list. When a node

haB its complete sorted list, the node is external. In the next three time steps it will send

every fourth element, then every second element, and then every element. Cole shows that

every three time steps, another level becomes full, so that the root contains the complete

sorted list after 3 log n time steps.

3. A New Algorithm for Minimizing the Maximum Lateness

In this section we present the Preemptive Minimize Maximum Lateness algorithm.

Phase one of our algorithm applies Cole's pipeline merge technique to phase one of Dekel

and Sahni's parallel scheduling algorithm, maintaining partial sums of processing times

to estimate which jobs are preempted. Phase two uses the information calculated from

phese one to design an algorithm composed of merges to which we can apply Cole's parallel

merge technique. The merges in phase two are more complicated than the merges in phase

one, as phase two merges do not follow the binary tree structure and some lists may merge

with several lists at the same time.

Section 3.1 describes the merge operation, merging two sorted lists while estimating

preempted jobs at each intermediate step. Section 3.2 describes phase one of the algorithm

and section 3.3 de3cribes phase two.

3.1. The Merge with Parti;U Sums

In this section we show how to incorporate the partial sums into the merge operation.

8

The most common operation throughout the algorithm is the merging of two sorted sample

lists of jobs. While the merge is the same merge as that in Cole's sorting algorithm, we

are in addition calculating estimated partial sums of processing times for each job. The

estimated partial sums are used to estimate which jobs are preempted and then split a

sorted list at that job. This se'ction concentrates on the estimated partial swns. The next

section uses the estimated partial sums to calculate preempted jobs.

We estimate partial sums of processing times for jobs in an ordered list at node V

because the sample lists we merge together do not contain all the jobs that will be in the

final list at a node until the node becomes external. Let ej be the estimated partial sum

of processing times for job j, where j is in an ordered list. Suppose S is a complete sorted

list of jobs at a node, i.e. the node is external, then ej for j E S is defined as

i
ej = LPi

i=l

Here ej is not an estimate, but the exact value. When a list of jobs is complete, we can

easily calculate the partial sums of processing times. But in our algorithm, we merge

together larger and larger samples of jobs using a pipeline, with the lists doubling in size

from one stage to the next, until a list is complete. At intermediate stages, we estimate

the partial sums of processing times using the ej of the jobs in the sample lists.

Let SAMP(X) = {X"X2, ... Xh} be a sample list of jobs, and SAMPey)

{YI,Y2, .. ·Yk}, be another sample list of jobs, with both lists sorted by deadlines. We

sbow how to merge the two sorted sample lists into list Z (Z = SAMP(X) USAMPeY»~.

For each job Vi E SAMPey), calculate its rank in the list SAMP(X). Suppose Vi'S rank

in SAMP(X) is I, Le. vi's deadline falls between the deadlines of Xl and $1+1. Then vi's

position in list Z is i + 1. Estimate the partial sum by using the estimated partial sums in

the SAMP(X) and SAMPey) lists, eHi of ZHI is equal to el of x/ plus ej of Vi. Similarly,

each job in SAMP(X) can calculate its rank in SAMPey) and thus its position in Z. We

show in Lemma 4 that two sample lists of size at most k each can be merged together in

0(1) time using O(k) processors.

9

3.2. Phase One

Phase one of our algorithm calculates the set of jobs that can be scheduled, but does

not produce the jobs in their scheduled order. This problem is divided into logn levels of

subproblems. Each subproblem has a set of jobs and a time interval in which to schedule

the jobs. For each subproblem, phase one can quickly calculate the set of jobs that can

be scheduled to run in its associated interval, because the jobs are in sorted order by

deadlines. Solutions are calculated by merging and splitting ordered lists. Furthennore,

the algorithm is speeded up by pipelining the jobs through the subproblems, calculating

the solutions to all subproblems at the same time. Phase two uses the solutions of the

subproblems in phase one to calculate the schedule of the jobs.

Phase one begins by sorting in parallel the n jobs by release times, using Cole's [CoI86]

parallel merge sort. For those jobs with identical release times, it further sorts these jobs

by deadlines. We assign the jobs in their order to the leaves of a binary tree, assigning

one job per leaf. One processor is assigned to each job and it remains with the job as it

is pipelined to the root. An interval is associated with each node in the tree, as described

in section 2.2. We calculate the SCHEDv and REMv sets as defined in section 2.2, but

we calculate them using a pipeline. For each job i, ej = Pi. If V is a leaf node with job i

and interval [Ti, Ti+l), then job i is placed into SGHEDv if Ti+l - Ti ;:: ei, or it is placed

into REMv if THl - Tj = O. Otherwise job i is split into two jobs, i 1 and i 2 , such that i 1

has Pi1 = Ti+l - Tj and i 2 has Pi2 = Pi - Pit' Then i 1 is placed into SGHEDv and i 2 is

placed into REMv .

The algorithm runs in stages. At each stage, operations are perfonned at each

node V in the tree. Let SGH EDv (s) be the current solution set of jobs at node V

in stage s. SAMP(SCHEDv(s)) will be the sample list of SCHEDv at stage s. If

V is not external, SAMP(SCHEDv(s)) equals every fourth job of SCHEDv(s). If

V becomes external at stage s, then SAMP(SGHEDv(s)) equals every fourth job of

SCHEDv(s), SAMP(SCHEDv(s + 1)) equals every second job of SCHEDv(s) and

SAMP(SCHEDv(s + 2)) = SCHEDv(s). Note that there is no need to calculate

SAMP(SCHEDv(z)) for z > s + 2.., the parent of V now h.., its complete list. When

SGHEDv(s) becomes external at stage s, it is equivalent to the list SCHEDv in Dekel

10

v
SCHED REM

merge

w
split

merge

SCHED SCHED REM REM

left V

SCHED REM SCHED REM

FIGURE 1

and Sahni's algorithm.

To handle the splitting of lists, we create an intermediate level between every level

in the tree. Levels from the original tree will be called regular levels. Let V be a node

in the original tree with left child left(V) and right child right(V). On the interme­

diate level between V and its children, there will be three nodes W, inLlejt(V) and

int..right(V). W(.) will be estimated by samples sent up from REM,./,(v)(' - 1) and

SCHED,;gh'(V)(' -1) and then W(.) will be split into SCHEDw(.) and REMw (.).

lnLleft(V) will receive sample lists from SCHED,./t(v)(s - 1) and int..right(V) will

receive sample lists from REM,;gh'(V)(S - 1). Finally, SCHEDv (') and REMv(s)

can be calculated. Figure 1 shows the flow between two regular levels and the inter­

mediate level between them. Note that int.Jejt(V) and intJ"ight(V) are not neces­

sary. Instead of these two nodes, smaller samples of SCHEDle/t(v) and REMriglll(V)

11

could be defined, and SAMP(SCHED,./t(vJCs - 1)) would be sent to SCHEDv(s)

and SAMP(REMr,gh'(V)(S - 1)) would be sent to REMv(s). We use intJeft(V) and

int..:right(V) so that all the sample lists are defined the same, thus making it easier to

describe the algorithms and the proofs.

Here is a description of one stage in the algorithm. Let V I lejt(V), right(V) and W be

defined as above. The first step consists of calculating in parallel SAMP(SCHEDv(s -1))

and SAMP(REMv(s -1)) for all nodes V. In the second step, for all nodes oftype V, W,

intJeft(V) and intJ'ight(V) calculate in parallel the following (we abbreviate left by I and

right hy r): SCHEDv(s) = SAMP(SCHEDw(s -1)) U SAMP(SCHED'nt.1(V)(s -1)),

SCHED'nt.1(V)(s) = SAMP(SCHED/(v)(s -1)), REMv(s) = SAMP(REMw(s -1))

U SAMP(REM'nu(V)(s -1)), REM'nt..r(V)(s) = SAMP(REMr(v)(s -1)), and W(s) =

SAMP(REM/(v)(s -1)) U SAMP(SCHEDr(v)(s-I)). The third step consists of splitting

W(s) into SCHEDw(s) and REMw(s) for all W in parallel.

The most difficult part of this problem lies in splitting W(s) while using only O(n)

processors. W(s) must be split into SCHEDw(s) and REMw(s) using estimated partial

sums of processing times, so neither SCHEDw(s) nor REMw(s) is more than double

their size from stage 8 - 1. We give more detail on the sample lists and then explain how

the split is calculated.

As soon as a SCHED or REM list receives its first few jobs, it will approximately

double in size at each stage following, becoming external when it has received all its jobs.

The jobs start in the leaves of the tree with 0 or 1 jobs in each SCHED v and REMv

list, for V a leaf node. The jobs are pipelined up the tree level by level in sample lists.

Unlike Cole's algorithm, the SCHEDv and REMv lists can be different sizes throughout

the tree. The larger of the two will possibly receive jobs at an earlier stage. Both lists

on receiving jobs approximately double in size from one stage to the next, with both

lists becoming external (or complete) at the same time. For example, let V be a node

in the tree at stage s such that when V becomes external, jSCHEDv(s)1 = 49 and

IREMv(s)1 = 15. Assuming no splitting of jobs has occurred, the sizes of these lists at

previous stages are: ISCHEDv (s-I)[= 24, ISCHEDv (s-2)[= 11, [SCHED v (s-3)1 =

5, ISCHED v (s-4)1 = 2, ISCHED v (s-5)[= 0, IREMv (s-I)1 = 7, IREMv (s-2)1 = 3,

12

IREMv(s - 3)1 = 1, and IREMv(s - 4)1 = o.
When W(s) is external, splitting W(s) into SCHEDw(s) and REMw(s) is easy.

Let [Ti, Tk) be the interval associated with Wes), then SGHEDw(s) can choose jobs from

W(s) whose partial sum of processing times is at most Tk - rio When W(s) is external

we can calculate which job should be preempted and then split that job into two jobs. All

jobs j E W(s) with ej ::; Tk - 1'j are placed into SCHEDw(s). If there is no job j with

ej = Tk - Ti, then let x be the job with the smallest deadline that has e:z; > Tk - rio Then

x is split into two jobs, Xl and X2, so that

L Pi = Tk - 1'i

jESCHEDw(s)UZl

When we split job X, we split its processing time. Then P:t"l = Tk - 1'i - L Pi for all

j E SCHEDw(s) - xll eXt = rio - Ti, and PZ 2 = P:z; - PXl" We must update the partial

sums of all the jobs in REMw(s) since their partial sums in W(s) included those jobs that

are in SCHEDw(s). Let iL be the last job in SCHEDw(s). Then subtract eiL from ej

for all j E REMw(s). Note that at most one job is split at each leaf node and each W

node. Thus, there are at most 3n jobs at the root at the end of phase l.

Since We oS) does not have all its jobs until it becomes external, the partial sums for

jobs in W(s) are estimated for all stages .5 such that W(s) is not external. The split of

W(oS) at each stage will be an. estimate. We want to estimate the split of W(oS) so that

ISCHEDw(s)1 and IREMw(s)1 are at most double in size from one stage to the next.

One attempt at estimating the split is to split Wes) at the job with the estimated partial

sum of processing times that is closest to Tk - ri' All jobs j E W(s) with Cj < Tk - Tj

are placed into SCHEDw(s) and all remaining jobs are placed into REMw(s). Since

the partial sums of processing times are just estimates we don't need an exact fit into the

interval Wltil a node is external. Job splitting will occur only when nodes are external.

One problem with this estimate for the split is that we cannot guarantee that

ISCHEDw(s)1 and IREMw(s)1 will at most double in size from stage s -1 to stage s.

For example, let WI,W2, ..• W, be the jobs in W(s). Suppose the split is between W m and

W m+l. It is possible that many jobs in W(s) from one of the lists SAMP(SCHEDcight(V»)

or SAMP(REMle/t(v») are bunched together, i.e. wm _ p1 Wm_(p_l),'" W m are all from

13

a)

SCHEDW(s) REMW(s)

~p~

Xl Y1 Y2 YaY41 X 2 Xa X4

b)

/
merge

SCHEDW(s+l)
, REMW(s+l)

/
merge

\

FIGURE 2

SAMP(SGHEDright(V)(S - 1)). Then wm-(pH) and w m+l are adjacent jobs from

SAMP(REM1e/t(v)(s - 1)). If W m_(p+l) is small in comparison to wm+ll then at stage

s +1, the split position of W(s+ 1) could be shifted to the left 50 that IREMw(s +1)1 »
hIREMw(s)l·

Figure 2 illustrates why we cannot estimate the split of W(s) by splitting it at the job

with the estimated partial sum of processing times that is closest to the size of W'g interval.

The Xi'S and yi's in figure 2 are the sample lists of jobs that are merged together to form

14

a)

SCHEDW(s) REMW(s)

b)

r;!:-: =--\ ~
X11Yl Y2 Y3 y 4 1x 2 X3 X4

LC HC

'---y----J
region of uncertainty

SCHEDW(s+l) REMW(s+l)

~I""""-- .-A- _

r r\ """'\
XII Y1 Y21 X2 Y3 Y4 Y5 Y6 Y7 YS X3 X4 X5 X6 X7 Xs

LC HC

'-y-/
region of uncertainty

FIGURE 3

W, where Xi and Yi represent the ith element in their corresponding lists. Figure 2a shows

the merge at stage s, and figure 2b shows the merge one stage later. The split in lV(s +1)

is shifted far to the left of the split in W(s) causing IREMw(s + 1)1 »2 * IREMw(s)l.

To perform merges quickly, REMw cannot be more than double in size from one stage to

the next.

Now, we show how to split W(s). Instead of estimating the split in just one position,

estimate the split by a range of values. Make two cuts in W(s), a high cut He and a low

cut Le. Again, let W m be the job with the largest deadline that has CWm < Tk -rio Without

loss of generality, W m is from SAMP(SCHEDright(V)(S -1». Let Wj be the first job to

15

Wm's left that came from the other list SAMP(REM'.jt(v)(' -1)). Similarly let Wh be the

first job to wm's right that came from the other list SAMP(REM'.jt(v)(' -1)). Then the

jobs Wj+b··· I W m, ... I Wh_l all came from the same list SAMP(SCHEDright(V)(S -1»
and they define the region of uncertainty. The exact split falls somewhere in this region.

The low cut LO will be between jobs Wi and wj+l and the high cut He will be between

jobs Wh-l and Who All jobs in the region of uncertainty will be duplicated and placed into

both BCHEDw(.s) and REMw(s). In later stages as the interval of uncertainty shrinks,

the LO and He approach each other and will converge into one cut by the time this node

becomes external. So SCHEDw(s) = WllW2, ... Wh_l and REMw(s) = wi+ll"' w /.

Figure 3 shows the region of uncertainty and the He and LO cuts in W(s) and W(s + 1)

for the examples in fignre 2. Here IREMw(8 +1)1 s 2 * IREMw (8)1 + 4. By duplicating

jobs, we are increasing the number of jobs being processed at any stage, so we show in

lerruna 6 that there are still O(n) jobs being processed. at any time.

Lemma 1: Phase one completes after 610gn stages.

Proof: Whenever a node becomes external, its parent becomes external three stages

later. With the addition of the intermediate levels in the tree, there are now 210gn levels

in the tree. Thus, phase one completes after 6 log n stages. D.

Lemma 2: For each list of jobs L, L = SCHEDv,REMv , W,SCHEDw,REMw,

etc., IL(8)1 S 21L(8 -1)1 + 4.

Proof: The proof is by induction on stage 8. Basis (8 = 0): This is trivial.

Induction Step: Assume that IL(.)I S 21L(8 - 1)1 + 4 is true for stage.. Show

IL(8 + 1)1 s 2IL(.)1 + 4 is true at stage 8 +1.

16

[
2 * IREM"t,(V)(s -1)1 +4J [2 * ISCHEDr,gh«V)(s -1)1 +4J

s:; 4 + 4

=2*IW(s)I+4

Thus IW(s+I)1 s:; 2*IW(s)1 +4. SCHEDw (s+l) and REMw (s+l) are detennined

by the LC and He cuts. The position of He in W(s + 1) is less than or equal to twice

the position of He in W(s) + 4. The position of LC in W(s + 1) is greater than or equal

to twice the position ofLC in W(s) - 4. So ISCHEDw(s + 1)1 s:; 2< ISCHEDw(s)1 + 4

and IREMw(s + 1)1 < 2 * IREMw(s)1 + 4. As these cuts approach each other, the lists

SGH EDw and REMw are less than double in size from one stage to the next. It is easy to

show that this lemma also holds for SCHEDv(s+I), REMv(s+I), SCHED'ntJ't'eV)(s+

1) and REM,n'_r,gh<(V)(s + 1). So, for all lists L, IL(s + 1)1 s:; 2 * IL(s)l. D.

Lemma 3: For each list L, L = SCHEDv,REMv ,W,SCHEDw,REMw , etc.,

SAMP(L(s» i, a 3-cover of SAMP(L(s +1».

Proof: For the general merge problem, [ACG87] shows that if [a, b] intersects k + 1

elements in SAMP(L(s», then it intersect, at most 8k + 8 element, in L(s) for all k ~ 1

and s ~ 1. A similar proof using the size restrictions in Lemma 2 shows that if [a, b]

intersects k + 1 elements in SAMP(W(s)), then it intersects at most Bk + 8 elements in

W(s) for all k ~ 1 and s ~ 1. Thus, SAMP(W(s») is a 3·cover of SAMP(W(s + 1»),

SAMP(SCHEDw(s» is a 3-cover of SAMP(SCHEDw(s +1)), and SAMP(REMw(s»

is a 3-cover of SAMP(REMw(s + 1». Clearly, SAMP(SCHED'ntJ't'eV)(s) is a

3-cover of SAMP(SCHED'ntJ't'(v)(s + 1» and SAMP(REM'nLdgh«V)(S» is a 3­

cover of SAMP(REM,nu,gh«V)(s + 1). Thus, SAMP(SCHEDv(s» is a 3-cover of

17

SAMP(SCHEDv(s + 1)) and SAMP(REMv(s)) is a 3-cover of SAMP(REMv(s + 1)).

O.

Lemma 4: Given two sample lists of jobs of size at most k each, they can be merged

together in 0(1) time using O(k) processors.

Proof: There are tluee merges: SCHEDv (s) is the merge of SAMP(SCHEDw(s­

1)) and SAMP(SCHED;ntJ(V)(8 -1)), REMv(s) is the merge of SAMP(REMw(s -1))

and SAMP(REM;ntJ(V)(s -1)), and W(s) is the merge of SAMP(REM1(v)(8 - 1)) and

SAMP(SCHED,(v)(s -1)). Let L(8) be the current list of jobs for L at time s, L(8 + 1)

be the list of jobs at L at time s +1, and Z(s +1) = SAMP(X(s)) U SAMP(Y(s)) for lists

X, Y, and Z. From Lemma 3, L(8) is a c-cover of L(s + 1) for L = Z, SAMP(X), and

SAMPey) and c a constant. Thus, we show that each job y; E SAMP(Y(s)) can calculate

its rank in SAMP(X(s)) in 0(1) time.

Z(s) is a c-cover of Z(s + 1), so Z(8) is a c-cover of SAMP(Y(s)) and SAMP(X(s)).

For each element Vi E SAMP(Y(s» we calculate its rank in Z(s) by assigning one processor

to each job in Z(s). Between any two adjacent jobs f and h in Z(s), there are at most

c jobs in SAMP(Y(s», so each processor in Z(s) whose job f covers different jobs in

SAMP(Y(s)) than job h covers writes its rank to those c jobs in SAMP(Y(s)). Suppose

Vi'S rank in Z(s) is e, i.e. Yi is between elements e and g, e,9 E Z(s). Find e and g's

ranks in SAMP(X(s», say e' and g'. There will be at most c jobs between e' and g' in

SAMP(X(s)). So comparing y; to these jobs we can find yes rank in SAMP(X(s)) in 0(1)

time using only OCk) processors. D.

Lemma 5: Phase one takes O(Iog n) time.

Proof: There are at most 6 log n stages. Each stage consists of merging sample lists

and splitting W's, each of which are performed in 0(1) time. D.

Lemma 6: There are O(n) processors used at each stage in phase one.

Proof: We count the number of jobs that exist at stage s, since one processor is

assigned to each job. There may be more than n jobs at stage s due to job splitting and

18

job duplication, but not more than O(n) jobs. When a level becomes external, there are

no jobs on the levels below it, so we will focus on an external level and count the number

of jobs on this level and on the levels above it. There are six cases to consider since there

are two types of levels, regular and intermediate, and a different level becomes external

every three stages. We give the proof for the case when level x is a regular level and it

just became external. The other cases have similar proofs.

Suppose level x just became external at stage s, where x is a regular level. Level x

just became external so level x contains at most 3n jobs. To count the number of jobs on

some level y at stage s, we need to know the most recent level that was external whose

jobs are now at level y. For example, counting the number of jobs on levels x, x + 1, and

x + 2 at stage s depends on level x - 1. Level x-I became external at stage S - 3. This

level had at most 3n jobs at that time. At stage s - 2, level x-I sends at most 3n/4

jobs to level x. At stage s - 1, level x sends at most 3n/42 jobs to level x + 1. Level

x + 1 is an intermediate level. Splitting the W's on this level can increase the number of

jobs on this level. The worst case split is when IWI = k, the first k/2 elements are from

REMQ and the remaining k/2 are from SeHEDT. When splitting W, the low cut LO

will be at position 0 and the high cut He will be at position k/2. ISCHEDwl = k/2 and

IREMwl = k, an 3/2 increase in the number of jobs. Splitting W's can result in at most

(3/2) * (3n/42
) jobs at level x + 1 at stage s - 1. At stage s, level x + 1 sends at most

(3 2 n)/(43 *2) jobs to level x+2. Thus at stage s,levelsx, x+l and x +2 depend on level

x-I to calculate the maximum number of jobs on these levels. Level x contains at most

3n jobs, level x + 1 contains at most (3 2 n)/(4* 22) jobs and level x + 2 contains at most

(3
2 n)/(4' *2) jobs. In general at stage s, levels x + 3(i -1), x + 3(i -1) + I, x +3(i -1) +2

depend on level x - i for calculating the number of jobs on these levels.

The number of jobs at stage s equals the sum of the jobs on level x and all levels

above level x. So the number of jobs at stage s

19

00 3(4i-2) CO 3(4i-2) 00 3(4i)

= 3n +L 4(Bi 7)2(4i-2) +L 4(Bi 5)2(4i-3) +E 4(8i 4)2(4i
i=1 i=l i=1

00 3(4i+1) 00 3(4i+l)

+ 2:= 4(Si 1)2(4') + 2:= 4(Si)2(4')
i=l i=l

co 3(4i)

1) + 2:= 4(Si ')2(4')
i=l

= 3n + G)n *~ (D' = O(n)

D.

Theorem 1: Phase one of our algorithm that preemptively schedules jobs to run on

one machine while minimizing the maximum lateness of the jobs, runs in O(log n) time

using O(n) processors.

3.3. Phase Two

Phase two of our algorithm. calculates the schedule of jobs, using results from phase

one. In phase one, each node in the tree is given the set of jobs in its .mbtree and a time

interval. Using these, it calculates the solution set of jobs that can be scheduled in its

associated interval. Phase two updates the solution sets at nodes by considering all the

jobs in the tree when finding the schedule for a node's interval. Now, the nodes have

the exact set of jobs to schedule in their associated intervals, but the jobs are still not

in scheduled order. However, the schedule that minimizes the maximwn lateness can be

constructed by concatenating the NEW...sCHEDv lists in the leaves of the tree.

Our phase two uses the information calculated from phase one to avoid extractions.

In phase two of Dekel and Sahni's algorithm, they perform merges and extractions at

20

each node on a level. The parallel merging technique of Cole's does not apply to extract­

ing jobs from a set. To calculate NEW...sCHED1ejt(Vh Dekel and Sahni extract from

NEW..sOHEDv those jobs that were not considered in SCHEDle/t(v) in phase one. Us­

ing these extracted jobs and SCHEDle/l(v), they calculate NEW...sCHEDle/t(v). The

extractions are not necessary. All the jobs that are extracted from NEW..sCHEDv ap­

pear in REMu from phMe I, where U is the left sibling of left(V)'s closest ancestor that

is a right child. The leftmost jobs in Ru can be merged together with SCHEDle/t(v) and

used to calculate NEW..sCHEDle/t(v).

Eliminating extractions, OUI phase two consist of merges and splits of lists. To calcu­

late new solution sets, we can bypa.ss all right nodes (except right leaf nodes which are a

special case) and just work with the len nodes, calculating their new solution sets using

merges and splits. We discuss the beginning of phase two, give the algorithm for a general

node and then show how to apply Cole's parallel merge to our algorithm.

SOHED and REM sets were calculated in phase one. In phase two, we calculate

NEW..sCHED sets. Phase two begins as follows. Let V be the root of the tree. SCHEDv
contains all the jobs sorted by deadlines, the solution for its interval. So, NEW..sOHEDv
= SCHEDv . Let left(V) be the left child of V and right(V) be the right child of V.

SOHED1eft(V) contains the solution for left(V)'s interval when considering all the jobs

in left(V)'s subtree. Since all the jobs in right(V)'s subtree have larger release times

than the jobs in left(V)'s subtree, NEWSCHED',tl(V) = SCHED"tl(V). REM/,tlev)

contains all the jobs in left(V)'s subtree that did not fit into left(V)'s interval. These jobs

have release times less than any job in right(V)'s subtree, so they should be considered in

the new solution sets in right(V).

We do not need to calculate NEW..sCHEDright(V) to update the solution sets

III right(V)'s subtree. Suppose we merge together REMle/t(v) and SCHEDright(V)

forming NEW...sCHEDright(V)' The new information in NEW...sCHEDright(V) would

then be passed down through its subtree, but we would have to extract the jobs from

REM"t,eV) that are in NEWSCHEDdght(v). Let left(right(V» be right(V)'s left

child and right(right(V» be right(V)'s right child. NEWSCHEDdgh,eV) must be di­

vided into new solutions for NEW..sCHEDle/l(right(V)) and NEW..sOHEDrighl(right(V».

21

NEW..sCHED'e/l(right(V» needs to consider those jobs in NEW..sCHEDrighC(V) that

were not in SOHEDright(V) , which are those jobs whose release times are less than

the interval at right(V), which are just those jobs from REMle/t(v). So by merging

SOHEDle/t(right(V» and REMle/t(v) together, NEW ...sOHED'e/t(right(V)) can be cal­

culated by chosing the jobs with minimum deadlines whose sum of processing times fits

into left(right(V))'s interval. This will consist of one merge, SOHEDle/t(right(V)) U

REM",,(V), and then one split, splitting the list so that L;p; = left(right(V»'s in­

terval, for all i E NEW...sOHED'e/t(right(V)) .. Notice that we did not need to cal­

culate NEW...sCHEDright(V) to calculate NEW-.SCHEDle/t(right(V)) , we can bypass

NEW.sCHED,;ght(v).

Left(right(V))'s children consider some of the jobs from REM/e/l(v) in their

NEW.sCHED sets. Let left(left(right(V») be the left child of left(right(V» and

right(left(right(V))) be the rigbt child of left(right(V». (From now on we will abbre­

viate left by l and right by r.) NEW...sCHED1(r(V)) should be divided into new solu­

tions for NEW.sCHED'(I(,(V))) and NEW.sCHED,(I(,(V))). NEW.sCHED'(I('(v))) is

formed by considering jobs in SCHED/(I(r(V))) and those jobs in NEW.sCHED1(r(V»

that have a release time less than l(r(V))'s interval, which are some of the jobs from

REM1(v)' When REMI(v) and SCHED/(r(Y)) were merged together and then split,

REMI(y) is really split in half with those jobs in the left half, call these REMI~l~)1 going

into NEW-.SCHED1(r(V». REM~l~) is the set of jobs that have release time less than

1(I(r(V»)'s interval and which we want to consider for NEW.sCHED'(I(,(v))). Thus to

form NEW..sCHEDI(I(r(V))), merge together SCHED/(r(r(V))) and REMI?~)l and then

split the list to fit into 1(I(r(V»)'s interval. We do not need to extract any jobs from

NEW.sCHED,(,(V)).

The children of R(r(V» consider some of the jobs from REM,(v) and REM,(,(V)) in

their NEW.sCHED sets. Let l(r(r(V») be the left child of r(r(V)). We show how to

calculate NEW.sCHED,(,(,(V))) by bypassing r(r(V» and reV). NEW.sCHED,(,(v))

is equal to those jobs in NEW.sCHED,(v) that are not in NEW.sCHED,(,(v)). When

NEW.sCHED/(,(V)) was formed by merging together REM/(v) and SCHED,(,(V» and

then splitting the result, those jobs in the right half of the split were not chosen. So

22

v
NS R

1(Vr'--"""1""---,
NS R

r V)
S R

R

....----'~V))

l(r(r(V)))

S R
r(l(r(Vi-')~))'-t----,

R S

1(I(r(V)))

S

FIGURE 4

those jobs not chosen are merged together with the jobs in REM1(r(V» to form the set

of jobs not chosen at l(r(V)) but which should be considered in r(r(V))'s subtree, call

this REMA~(V)). All the jobs in REM/l~(V)) would appear in NEW.BCHEDc(c(v)) if we

calculated it. Instead, we can just bypass r(r(V» and calculate NEW.BCHED/(c(c(V)))

by merging together REMl~~(V)) and SGHED1(r(r(V») and then splitting this list. Figure

4 shows the flow of jobs in phase two starting with left(V). The abbreviations used in

23

(0)

REM
leV)

'----y-'
(1-1)

REM
leV)

~I)
REM

leV)

l(V).
1

SCHED REM

NS

FIGURE 5

(0)

REM
I(V),

1

this figure are S for SCHED, R for REM, and NS for NEW-SCHED.

Here is the algorithm for a general node in phase two. Let Iefi(V) be a node in the

tree with interval [Til Tj) and lists SGHEDie/t(v) and REM1ejt(v) calculated from phase

one. Assume that jobs in the tree to the left of lefi(V)'s subtree that have not been

selected yet are merged together with SGHED1e!t(v) and then split, the left half forming

NEW-SCHED',/t(v) and the right half merging with REM',/t(v) to form REM'~}t(v)'

Let right(V) be the right sibling of left(V). Right(V) is a right node so we will ignore it,

but note that the set of jobs in REMI~O]t(V) should be considered in right(V)'s subtree. Let

left(V), be right(V)'s left child, left(V), be left(V),'s left child, left(V), be left(V),'s

left child, etc. To form NEW..sCHEDle/t(V)i l merge SCHED/c/t(V)i and REMISift~~)

to form NEWJeft(V);. Split NEWJeft(V); into NEW-SCHED,,/.(v), and a right half

24

which is merged with REM/'ft(V); to form REM/~),(v),. When NEWJeft(V); is split, use

this split to split REM'~ft~~) so that REM1~}t(V) = REM1~ft(~)n NEW...sOHED,e/t(v)i'

Figure 5 shows the flow of jobs for a general node left(Vk

Right leaf nodes are a special case. Suppose left(V) is a left leaf node and right(V)

is its sibling right leaf node. REM~~]t(v) is the set of jobs whose release times are less

than right(V)'s interval and that have not been selected to run. So SCHEDrjght(V)

and REMI~O}t(V) are merged together and split with the left half of the split forming

NEW-SCHEDright(V)'

That is the general algorithm for phase two. If the algorithm proceeds by levels,

performing all the merges on each level before proceeding onward, the algorithm will spend

O(log log n) time on each level resulting in an O(log n log log n) time algorithm for phase

two. Instead, we organize phase two so that we can apply the pipeline merge technique

used in phase one by adding intermediate levels to the tree and setting up each list saved

from phase one so that it sends samples of lists to be merged, each merge perfonned in

0(1) time.

An intermediate level is added between every two levels in the tree. From the descrip­

tion of the general algoritlun, there are two merges and one split for each left node in the

original tree. At node lefi(V)i, SCHED,e/t(V)i and REM,~.ft~~) are merged together into

NEWJeft(V); and then split, with the left half of the split forming NEW-SCHED/.f,(v);.

The right half of the split is then merged with REM,e/t(V)i to form REM1~]t(V);. So

NEWJeft(V), is formed and split at the level where left(V), resides and REM'~)t(v); is

formed on the intermediate level directly below lefi(V)i's level. Similar to phase one, we

have alternating levelB performing merges and splits on one level and just merges on the

next level.

When merging two lists, it is possible that one or both lists Rre complete at the start

of the merge as they were calculated in phase one. To apply Cole's merging scheme, we

need. small samples of the complete lists which would double in size at each step. Let

SCHEDL be a complete list L of size k that was formed in phase one. SCHEDL(l)

in phase two is of size I, the kth element of SCHEDL . SCHEDL (2) is of size 2, the

k/2th and the kth elements of SCHEDL. Continuing in this manner, SCHEDdj) is

25

of size 2;-1 and contains the elements in position kj2;-I,2k/2i - 1 ,3kj2i - 1 , ••• k. The

elements in SCHEDL(j) can. be picked out of SCHEDL as they are needed. The number

of processors needed for SCHEDLU) to perform merges is ISCHEDLU)I·

At the end of phase one, we save the SOHED and REM lists at every left node and

leaf node. Not all the nodes begin calculating the NEW.sCHED lists at the beginning

of phase two, instead they must wait until they become active. Level two is the only

active level when phase two begins since the root is not needed in any calculations and

the intermediate level below the root is not defined. Level two which has one left node

left(V) calculates SCHED"t.(v)(l) and REM~].(VP) at stage one. Every third stage,

the highest nonactive level, either regular or intermediate, becomes active. Setting up

phase two this way, the algorithm behaves in a similar manner to the algorithm for phase

one.

Lemma 7: Phase two completes after 7logn stages.

Proof: Phase two begins by merging together REMISO}t(V) and SOHED1ett(right(V»,

where left(V) is the left child of the root and left(right(V» is the left child of left(V)'s

sibling. The two are merged together via samples in log n stages, becoming external at

the log nth stage. From that point on, every three stages another level becomes external.

There are 2 log n levels so the algorithm. takes at most 7 log n stages to complete. D.

Lemma 8: Phase two takes O(logn) time.

Proof: There are at most 710gn stages. Each stage consists of merging and splitting

lists in 0(1) time. D.

Lemma 9: There are O(n) processors used at each stage in phase two.

Proof: We COWlt the number of jobs that exist at stage 8, since one processor is

assigned to each job. Like lemma 6, we prove one of the six cases to consider. Assume

that a regular level x just became external at stage s. All the lists in the levels above x

became external at earlier stages except for those REMv (i) lists that are merging with

26

lists that are below level x. If we sum the sizes of all the lists formed at stage s, which are

those lists below and including level x, this will include the jobs in REMv(i) lists since

they form lists at levels below level x.

There will be at most 5n jobs in the leaves at the end of phase two. Phase 1 ended

with at most 3n jobs at the root and there will be at most n splits at internal nodes and

at most n splits in leaf nodes. We assume there are at most 5n jobs at level x, which has

just become external. Counting up the sizes of all lists below level x is similar to the proof

of Lemma 6.

5 * 3n 5 * 3n 5 * 33n
Number of jobs:S; 5n+ 2 + 4' + 44 , + ...

4*2 *2 *2

=5n+ ~(~n}) = O(n)

D.

Theorem 2: Phase two of our algorithm that preemptively schedules jobs to run

on one machine while minimizing the maximum lateness of the jobs, runs in O(log n) time

using O(n) processors.

4. Applications

The technique of pipelining the merges of subproblems to improve an algorithm's

running time can be applied to other job scheduling problems. In this section we apply

this technique to get faster parallel algorithms for three job scheduling problems. Dekel and

Salmi [DeS83a] [DeS83b] show that these problems are in NC and give parallel algorithms

27

for them that run in O«logn)2) time and use O(n) processors. Our algorithms are similar

to the algorithm in section 3 and run. in O(logn) time using O(n) processors.

4.1. Problem 1

In the first job scheduling problem we are given n jobs with integer release times,

deadlines and unit processing times. We want to minimize the maximum lateness when

scheduling the jobs to run on m identical machines. If m = 1, the algorithm from section

3 can be used to solve this problem. There is no preemption and thus no job splitting

due to the integer release times, so this is a simpler version of the problem in section 3.

'When m > 1, define interval (Ti,r;) to contain at most mer; - ri) jobs and again apply

the algorithm from section 3. In both cases, our algorithm runs in O(logn) time using

O(n) processors. Atallah et al. [AGK88] also give a parallel algorithm for this problem

that runa in O(logn) time and uses O(n) processors. This is not necessarily optimal as

Frederickson [Fre83] gives a linear sequential algorithm for this problem.

Corollary 1: Defining jobs by integer release times, deadlines and unit processing

times, there is an algorithm for the job scheduling problem of minimizing the maximum

lateness of jobs that schedules the jobs to run on m machines in O(logn) time using O(n)

processors.

4.2. Problem 2

In the second job scheduling problem we are given n jobs with the same release times

(rj = 0), integer deadlines, unit processing times, and a weight. A job is tardy if it

completes after its deadline. We want to minimize the sum of the weights of tardy jobs

when scheduling the jobs to run on one machine. In this case, sort the jobs by deadlines,

define the intervals using the deadlines and place the jobs in the leaves of the binary tree.

The algorithm is similar to phase 1 of the algorithm from section 3, at each node choosing

the jobs with largest weights to fit into the intervals. At the root r, SeHEDr contains the

nontardy jobs and REMr contains the tardy jobs. The schedule that minimizes the sum

28

of the weights of tardy jobs is obtained by sorting the jobs in saH ED r by nonincreasing

deadlines and then appending the REMr jobs to the end of the schedule. This algorithm

runs in O(logn) time using O(n) processors.

Corollary 2: Defining jobs by release times equal to zero, integer deadlines, unit

processing times, and weights, there is an algorithm for the job scheduling problem of

minimizing the sum of the weights of tardy jobs that schedules the jobs to run on one

machine in O(logn) time using O(n) processors.

4.3. Problem 3

In the third job scheduling problem we are given n jobs with the same release times

(Tj = 0), arbitrary deadlines and unit processing times. We want to minimize the number

of tardy jobs when scheduling the jobs to nm on one machine. Moruna [Mon82J gives a

sequential algorithm for solving this problem that runs in O(n) time. An algorithm similar

to the algorithm in section 3 gives an O(logn) time algorithm that uses O(n) processors.

Corollary 3: Defining jobs by release times equal to zero, integer deadlines, and

unit processing times, there is an algorithm for the job scheduling problem of minimizing

the number of tardy jobs that schedules the jobs to run on one machine in O(log n) time

using O(n) processors.

Acknowledgements: I would like to thank Greg Frederickson and Dah Jyh Guan for

discussions and comments.

5. References

[ACG87] Atallah, M. J., Cole, R., and Goodrich, M. T., Cascading Divide-and-Conquer: A

Technique for Designing Parallel Algorithms, Proc. of the 28th Annual Symp. on

Foundation3 of Computer Science (1987), 151-160.

29

[AGK88] Atallah, M. J., Goodrich, M. T., and Kosaraju, S. R., On the Parallel Complexity

of Evaluating Some Sequences for Set Manipulation Operations, 3rd International

Work'hop on Parallel Computation and VLSI Theory (AWOC) (1988).

[BLR77] Brucker, P., Riunooy Kan, A. H. G., and Lenstra, J. K., Complexity of Machine

Scheduling Problems, Ann. Di3erote Math. 1(1977),343-362.

[00186] Cole, R., Parallel Merge Sort, Proc. of the 27th Annual Symp. on Foundations of

ComputeT Science (1986), 511-516.

[DeS83a] Dekel, E., and Sahni, S., Binary Trees and Parallel Scheduling Algorithms, IEEE

Tran•. on ComputeT' C-32 (1983), 307-.'l15.

[DeS83b] Dekel, E., and Sahni, S., Parallel Scheduling Algorithms, Operations Research 31

(1983), 24-49.

[DeS84] Dekel, E. and Sahni, S., A Parallel Algorithm for Convex Bipartite Graphs and Ap­

plications to Scheduling, Journal of Parallel and Distributed Computing 1 (1984),

185-205.

[DUW86] Dolev, D., Upfal E. and Warmuth, M., The Parallel Complexity of Scheduling with

Precedence Constraints, Journal of Parallel and D~tributed Computing 9 (1986), 553­

576.

[Fre83] Frederickson, G. N. Scheduling Unit-Time T""ks With Integer Rel.""e Times and

Deadlines,Inf. Proe. Letter, 16 (1983), 171-173.

[FreS8] Frederickson, G. N. Private Communication.

[GJST81] Garey, M. R., Johnson, D. S., Simons, B. B., and Tarjan, R. E., Schedu1ingUnit~Time

Tasks with Arbitrary Release Times and Deadline, SIAM Journal of Computing 10

(1981), 256-269.

[HeM84] Hebnbold, D. and Mayr, E., F""t Scheduling Algorithms on Parallel Computers,

STAN-OS-84-1025, Department of Computer Science, Standford University (1984),

1-27.

[Hor74] Horn, W. A., Some Simple Scheduling Algorithms, Naval Research Logistics Quarterly

21 (1974), 177-185.

[Jac55] Jackson, J. K., Scheduling a Production Line to Minimize Tardiness, Management

Science Research Project, Univ. California, Los Angelos, CA, Res. Rep. 43, 1955.

30

[Mar88] Martel, C. U., A Parallel Algorithm for Preemptive Scheduling of Uniform Machines,

Technical Report, Computer Science Division, University of California at Davis,

(1988), 1-21.

[Mon82J Monma, C. L., Linear-Time Algorithms for Scheduling on Parallel Processors, Oper­

ations Research 30, (1982), 116-124.

[Sim78] Simons, B. B., A Fast Parallel Algorithm for Single Processor Scheduling, Proc. of

the 19th Annual Symp. on Foundatio1UJ of Computer Science (1978),246-252.

[Val75] Valiant, L. G., Parallelism in Comparison Problems, SIAM Journal of Computing 4,

(1975), 348-355.

31

	An Optimal Parallel Algorithm for Preemptive Job Scheduling that Minimizes Maximum Lateness
	Report Number:
	

	tmp.1307986960.pdf.G114B

