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QUADRATIC SPLINE COLLOCATION METHODS

FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Christina C. Chrisfara

Department of Computer Sciences

University aCTOTonto

Toronto. Ontario, Canada, M5S IA4

Summary. We consider Quadratic Spline Collocation (QSC) methods for linear second order elliptic Partial

Differential Equations (PDEs). The standard Cannulation of these methods leads to non-optimal approxima­

tions. In order (0 derive optimal QSC approximations, high order perturbations of the PDE problem arc gen­

erated. These perturbations can be applied either to die POE problem operators or to the right sides, thus lead­

ing 10 two different fonnulations of optimal QSC methods. The convergence properties of the QSC methods

arc studied. Optimal 0 (h J-j) global error estimates for the j.th partial derivative are obtained for a certain

class of problems. Moreover, O(h4-j ) error bounds for the j-th partial derivative are obtained at certain sets of

points. Results from numerical experiments verify the theoretical behaviour of Lhe QSC methods. Performance

results also show that the QSC methods arc very effective from the computational point of view. The QSC

methods have been implemented efficiently on parallel machines.

Key words. spline collocation, elliptic partial differential equations, second order boundary value problems.

AMS(MOS) subject classifications. 65N35, 65N15.

Abbreviated title.Quadratic spline collocation methods for elliptic PDEs.

1. Introduction

In this paper we consider the numerical solution of a second order linear elliptic Partial Differential Equa­

Lion (PDE)
Lu := au.o; + hllX). + Cll})' + dux + ell)' + fll = g

in 0:= (ax,hx) x (ay,hy)
subject to mixed boundary conditions

BII := au + pll" =Y on an=: boundary of n

(1.1)

(1.2)

where u, (I, h, C, d, e, J. g, a, p, y are functions of x and y, and II" denotes the normal derivative of II.

Throughout we assume that the operator L satisfies the ellipticity condition h2
_ 4ac < O. Specifically, we for­

mulate and study optimal piecewise biquadratic polynomial collocation methods for solving the PDE problem
(1.1)--(1.2), with the piecewise polynomial approximation in C l (0). The term 'optimal' refers to the fact that

the methods we formulate have the same order of convergence as point interpolation in the same approximation

space.

In the standard fonnulation of collocation methods the approximate solution makes the residual of the

differential and boundary operator equations (R:= Lu - g, r:= BII - y) zero al certain collocation points

depending on the selected space of the approximate solution. The method of smooth spline collocation has not

been extensively used, since its straightforward formulation leads to non-optimal convergence methods

[Russ72], [Cave72] and [Ahlb75], in the sense that these methods have lower order of convergence than point
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interpolation. For odd degree splines, [Fyfe68], [Arch?3], [Dani75], [IrodS8] and [PapaS?] derived and

analyzed optimal nodal collocation methods, using high order collocation residual expansions for one­

dimensional boundary value problems. For lwo-dimensional problems, [IrodS?] and [Hous88a], derived

optimal nodal collocation methods based on tensor product of odd degree splines, and high order perturbations

of the PDE problem. In the case of even degree splines me related work is very limited. Some results arc given

in [Russ72], [deBo?3] and [Kamm74]. [Khal82] and [SakaS3] fonnulated and analyzed 0(11 2) midpoint collo­

calion melhods based on quadratic splines for various second order boundary value problems. In [HOllS88b] we

fonnulate and analyze optimal midpoint quadratic spline collocation methods for two-point boundary value

problems.

In order to derive optimal biquadraLic spline collocation methods on uniform meshes, we genera!e high

order perturbations of the residuals (R, r), and force the collocation approximation to satisfy the perturbed resi­

duals (R', r') exaclly at the collocation points of the biquadratic spline mesh. These perturbations can be

applied either to the POE problem operators or to the right sides. Thus we can have two different formulations,

the extrapolated (one-step) ones and lhe deferred correction (two-step) ones. Furthermore, whenever we can

assume that the approximate space satisfies exactly the boundary conditions, we obtain more efficient formula­

tions.

Optimal quadratic spline collocation is challenging, due to the superconvergence, i.e. convergence

equivalent to that of cubic spline collocation, obtained locally on certain points. In addition, the deferred

correction biquadratic spline collocation methods, when formulated for the POE (1.1) with general boundary

conditions (1.2), give rise to a block tridiagonal system, with nine nonzero bands, unlike the respective bicubic

spline collocation methods, which give rise to such a system, only when applied to the PDE (1.1) with Dirichlet

or (exclusively) Neumann conditions.

In Section 2, we presem a number of biquadratic spline interpolation results. The formulation of the

biquadratic spline collocation methods for the POE problem (1.1)-(1.2) is derived in Section 3. In Section 4,

the existence and uniqueness of the collocation approximation is studied in the case of homogeneous Dirichlet

or Neumann boundary conditions and a (11 4) convergence is proved for Helmholtz equations. Finally, Section

5 contains the results of various numerical experiments, that verify the theoretical behaviour of the method. An

experimental verification of its computational behaviour is given in [ChriRBa].

2. Biquadratic spline interpolation results

Consider the rectangle n =: n u an =: [ax,bxI x [ay,by] and let

6.)"= {ay=yo <Yl <

< X,\l=bx},

be uniform partitions of the in~rvals [ax,bx], [ay,by] with mesh sizes IIx' II}' respectively. Then 6 =:6.x x 6}' is

the induced grid partition of Q. Throughout we denote by t1, i = I , ... ,M the midpoints of 6x and by 't]',

j = 1, ... ,N lhe midpoints of 6)". For convenience, we extend the notation so that'tQ =:xo, 't~~1 =:X,\l, 'to =:Yo,

'tN+1 =:YN. For later use we define the following sets of points: the set of collocation points of n

T=: (('tf,'t]), i =0, ... ,M+L j = 0, ... ,N+l}.

the subset of interior collocation points in.Q

T;=:(('tf,'t]'), i=2, ... ,M-I, j=2, ... ,N-1}cT,

lhe subset of four interior-corner collocation points of n
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the sel of boundary collocation points on an.

and the sel of interior-boundary collocation points of n.
Tiil aT- (T; uTic u Til)'

Figure 2.1 displays the collocation points for a 5 X4 grid.

T= {I, 2, 3, ... , 3D}

T;=113,18}
T;, = {7, 9, 22, 24}
Til = (1, 2, 3, 4, 5, 6, 10, 11, 15, 16.20,21,25.26,27.28,29. 30)
Tit) = {B, 12, 14, 17, 19, 23}

10 15 20 25 30

y,

y,

,.
'1

4 9 14 19 24
0 0 0 0

3 8 13 18 23
0 0 0 0

('t3,t~D

2 7 12 17 22
0 0 0 0

I 6 11 16 21

x,

29

28

27

26

Yo::::'t'o

Figure 2.1. The collocalion points for M = 4, N = 3.

Throughout. we denote by P Z,6.' PZ,j.\, lhc space of piecewise quadratic polynomials with respect (0 parti­

tions .8.... , !!.). respectively, by Pz,.o ;: lP2A. i&I PZA, the space of piecewise biquadratic polynomials with respect

(0 partition 6. of Q and by S24 :;: p u • n c len) the space of piecewise biquadratic polynomials in n: with con­

tinuous first derivative with respect La x and y. The ll-lh derivative operator wilh respect to lhe variable z is

denoted by D~. If S E S2,A' lhen we define the second derivative of S on the points of discontinuity as follows.

D;S(xo,.) = D;S('ti,.), D;S(x;,.) = ~ (D;S('tf,.) + D;S('tf+1 I.)} for j = 1.... ,M-l, D;S(xJ\f •. ) =D;S('t1,.).

The second derivative with respect to y is defined in a similar way.
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A basis for SVl can be constructed by forming the tensor product of basis elements of lhc spaces

SZA :=PZA• nC'([ax,bx]) and S2".., =PZ,lI., nC1([ay,by]). A set of basis functions for lhe one-dimensional

quadratic spline space S21> are the functions $i(X) :::::: 1. ",[x -ax -i+.,l for i = 0 , ... ,M+ I where me qua-
. 3 ~ 1

dratic spline function 'IV is defined by

'V(x)=x2
, O:5x:5l; -3+6x-2x2, l:5x:52; 9-6x+x 2, 2:5x:53

and 0 elsewhere. The basis functions {/jlj(y)JfJJ' for SZ/J., are constructed in a similar way.

Let S E Su" be the biquadratic spline interpolant of the true solution It of the PDE problem (1.1)-(1.2)

defined by the interpolation relations

S('tj,'t})=U('ti.'t}) O:S;i,SM+L O:5j:5N+1.

Throughout we adopt the following representation of S

M+I N+!

S =:E :E a'j~,(x)M)')
;=0 j;Q

and denote by I.r the one-dimensional quadratic spline interpolation operator

Ix: C([ax,bx]) --+ Su•.

defined by the interpolation conditions

(I"Il)('t"f)=II('tf) for i=O, ... ,M+1.

(2.1)

(2.2)

(2.3.)

(2.3b)

The y-direction quadratic spline interpolation operator I}' is defined in a similor way.

The following lemma indicates the relation between the one-dimensional interpolation operators and thc

two-dimensional operator defined by (2.1).

Lemma 2.1. Let I.I}' be the two-dimensional interpolation operator defined by the equatio1/s (2.1), and Ix. I y be

the one-dimensional interpolation operators defined ill (2.3), then I.I}' = Ix €I .llr

Based on the one-dimensional quadratic spline interpolation results obtained in [Mars74] and [Kamm74]

we can prove the following theorem.

Theorem 2.1. The interpolant S E S 2, .... of II defilled by the interpolation relations (2.1) exists and is uniquely

defined. Moreover. if U E ~(n). then the interpolation error e(x.y) = S(x,y) - u(x,)') satisfies the following
bounds

Assuming lhe representation (2.2) for S, then the

le(x;,Yj)l =0(h 4
),

Ie(x;,'t"}) I =0(h 4),

le(-r"y) I =0(h 4
),

IDxe(xj-'JJlx,')[ =0(h 3
),

IDye(. ,yj-'JJly)1 =0(h 3 ),

ID.I},e(xi - 'JJlx' Yj - Ally) I = 0(11 3),

IDie('tj,.)1 =0(h 2),

ID~e(. ,'t}) I =0(h2),

3 +.,J3
where 11 =max(lIx.lIy), and A=~.
Proof: We first prove lhe cxistcncc and uniqueness of S.

11'11_

IID,'II_
IID,'II_
IID~., 11_
[IDie II~

IID~e I[~

= 0 (11 2)

=0(11 2)

= 0(11 2)

=0(1<)

=0(11)

(2.4a)

(2.4b)

(2.4c)

(2.4d)

(2Ae)

(2.4f)
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interpolation conditions can be written as:

G8=u

where G ={(rid(T, 6T, 7), with Gil = GN+2.N+2=T. T = (trid(l,6, 1), with Til = TM+2.M+2 = I},
-a [a )M+I N+l= ij' ;=0]=0'

Ii = (kij . 1l('t"J, 't]')) ?~I f--t' where kij are appropriate conslants.

In the above, trid(p,q,r) denotes a (block) tridiagonal malrix, in which the subdiagonal elements (blocks) are

all equallo P, the diagonal ones are equal to q. and the superdiagonaI ones are equal to r. The first and la"t row

diagonal clements (blocks) may be defined differently. We also adopt the notation diag (q) to denole a (block)

diagonal matrix, with all diagonal elements (blocks) equal 10 q.

We observe that G can be wriHen as lhe product of two matrices P and Q, where P = (trid(r, 61,1), with

P II = PN+2.N+2 =1), and Q ;=: diag (7) with I being the identity matrix of size M+2. The existcnce and unique­

ness of S is a direct consequence of the diagonal dominance of matrices P and Q. Moreover IIP-J II and

II Q-l II are both bounded by ~, since P and Q can be lransformed by replacing the first row by a linear com­

bination of the first and second row and the last row by a lincar combinalion of the last row and the row before

the last, 10 the sU"ictly diagonally dominant malrices

51 o -/ T' 5 o -1

/ 6/ / T' 1 6 1
P'= and Q' = where T' =

/ 6/ / T' 1 6 1
-/ 051 T' -1 0 5

We now provc the a priori bounds (2.4b). The rest of the error bounds (2.4) can be provcd similarly.

We first observe !.hat

DxIX).u - Dxu = DxIx(][y It-It) + DxIxll - Dxll = Dxl.r(][y It-It) - D.r(Hy U-II) + D.r(][y It-u) + DxIxll - Dxll.
According to the one-dimensional interpolation resulls obtained in [Mars74], [Kamm74] III).II-ull .. = 0 (II~).

From the previous relalion we obtain

I IDxI,l).IL - Dxllll .. = O(II;IJ~) + O(IIf.) + 0(11;) = 0(11 2)

where Ii = max(lJx,lJy). Furthermore at the points (Xi - 'J.Jz;x, • )~!l we have

[DxI-'),u - Dxltl = O(IJ~IJ~) + O(lJt) + 0(11;) = O(IJ J ).

This concludes !.he proof of Theorem 2.1.

o
In order 10 formulate the 0(1J4) biquadratic spline collocation approx.imalion Lo u, we define a biquadratic

spline interpolant S' E S 2.11 of Il such that

for i=O.M+L j=I, ... ,N

S'('tj,'tJ)=u('tf.'t]') for i= I, .. . ,M, j=I, ... ,N,

h'
S'(' ')- (rl ") -' D' (' ')'tj,'tj -It j,'tJ - 128 ;xu't;,'tj

and

j=O,N+1.

(2.5a)

(2.5b)

(2.5,)

Al each one of the fOUf corners of n, S' satisfies one of the interpolation relations
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h'
S'(rl ,[X) = u(rl "[X) - -'- D'u(rl 'tI) 0'

" J .' J 128 ~ I' J

h'
S'('tf ") - (' ") }' D 4 X)')i.'tJ -II 't;,'tj - 128 )·Il('ti,'tj

wherei=O, M+l andj=O, N+I.

The behaviour of this modified interpolant is described in lhe following lemma.

(2.5d)

Lemma 2.2. The biquadratic .spline illterpolam S' defined by equations (2.5) exists alld i~' uniquely defined.

Moreover, if It E C4(Q). then the illterpolatioll error e(x,y) = S'(x,y) - lI(x,y) satisfies the a priori error boullds

(2.4).

Proof: The existence and uniqueness of S' defined by (2.5) can be proved in the same way as that of S defined

by (2.1). Moreover, from the boundcdness of I JC- I II. we obtain II 8ij - e;j II = 0(11 4) where Sij and e;j are

the degrees of freedom of Sand S' respectively following the representation (2.2). This observation implies

that 5' satisfies the a priori bounds (2.4).

o
In the rest of the paper, we denote by S the intcrpolant defined by (2.5), and extend the definition of

1.1)" 1..- and R}' so that they satisfy the modificd end-conditions. We adopt the notation Sij, Ilij to denote the value

of S. u respectively at the collocaLion point ('ti, 'C}).

Theorem 2.2. If II E C6(.o.) then the follOlVillg asymptotic relations hold at the midpoints (Tf. 'CD/'!I j~J of ti,e

partition 11

Il; 3 4
D..-Sjj ::: D..-Ilij + 24 D..-Uij + 0(11..-)

II;' 3 4
DySij ::: Dyllij + 24 Dyllij + O(ll}')

11;3 lz;'3 4
D.l),Sij :::D.l)'Uij + 24 D..-Dyllij + 24 D)"D..-Ilij + 0(11 )

2 2 Il; 4 4
D..-Sjj ::: D..-tl'j - 24 D..-llij + 0(11..-)

22 1l;'4 4
D)'Sij::: D}'Uij - 24 D).llij + O(hy )

(2.6b)

(2.60)

(2.6d)

(2.6e)

Proof: We give the proof of (2.6c) and (2.6d). The rest of the relations (2.6) can be proved similarly. Accord­

ing to the definition of I.l)' and Lemma 2.1, we conclude that

D.I).I.I)'I.I. D.I).Il::: D..-I..-D)"n)"1l - D..-Dyll::: D..-R..-(D).R).II - Dyll) + D..-:U:...(D),Il) - D..-(Dyu):::

D..-I..-w - D..-w + D..-(D,.R,.II - D).u) + D..-I..-(D).II) - D..-(Dyu) where w :=; D}'I}'1l - Dyll.

Il~
From the one-dimensional interpolation results [Chri88a], [Hous88bJ we have wij = 2~ D~llij + 0(1l:) and

D.l).R..-yllij - D.l).lIij = D..-I..-wij - D..-wij + D..-(Dylyllij - Dytljj) + D..-R..-(Dyll)jj - D..-(D,.u)ij

_ Il; 11;' 3 3 2 4 4 2 4 4
- 24 24 D..-D,.ujj + 0(11..-11,.) + O(h..-h}') + 0(1l..-"}')

lz;'3 4";3 4
+ D..- 24 D).lIij + O(lIy ) + 24 D..-Dyltij + O(h..-)

at the points ('Cf, 'CD for i = 1 , ... 1M, j = I , ... IN. which verifies the asymptotic relation (2.6c).
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The derivation of (2.6d) follows from the relation D;H,l}'u- Diu =0;1..(1)' ll-l~) + D;n..u- 0;11 =
D;I... (][y II-II) - D;(Iy u-u) + D;CIy U-IL) + n;I;rfl - D;II, and the facL that 1)'11;1 -/lij = 0 and,,'
D;nxujj - D;uij = - 2~ D~ujj + O("~) aL the points ('tJ ,'tJ), i = 1 , ... ,M, j = I , ... ,N. This concludes the

proof of (2.6d).

o
In order to derive high order approximations of the derivatives of II at the points in T j , we use the rela­

tions of Theorem 2.2 and prove the following.

Theorem 2.3. Let S be the biquadratic spline i/lterpo/allt of II E [;6(Q) defined by equatio1ls (2.5). Then at

{('tf, 't})} f;21~21 the following relations lIold:

4 DiSi I,f - 2D;S;j + D;Si+l.j 2
DXUij = + O(!I;rJ (2.7a)h;

3 D;Si+1.j - Dis,
D:xJ1ij = 211;[

(2.7c)

(2.7d)

(2.7c)

(2.7Q

Similar rela/io1ls hold for the values of tile derivatives of S and II with respect to the variable y at the sallie

points. For the vallies of the cm.s.s derivative.s ofS alld II at the same poil/t::: tile following relation.s hold:

3 DX},S,_I,j - 2D;1;)'S;j + D~}'S'+I.j
D x D),II;j "" 2 + 0(11;)

".
(2.7g)

(2.7h)

wllere h = max:(JI~,1I)').

Proof: Relation (2.7a) follows from (2.6d) and !.he . 4 .D",;:"",",,,.i_-...:2D:::o;;,,,ijC+:...:DC;C:""'+:'c''i..j 2relaUon D~Uij = - 2 + O(h~).".
Relation (2.7d) is a direcl consequence of (2.6d) and (2.7a). Similarly relations

3 Dxll, I j - 2D,,;ll ij + Dxlli+! j :2
D~Uij = . 2 . + O(hx ) and (2.6a) imply relation (2.7c). From (2.60.) and (2.7c), we".

3 D;Il,+t j - Dilli I j 2
obtain (2.7e). In order lo prove (2.7b), we use relation D;rllij = . . + O(h~) and (2.6d). The

2h;r

relations (2.7f)-(2.7h) can be proved in a simllar way. This concludes the proof of the theorem.

o
For !.he abbreviation of !.he various asymptotic relations we introduce the following notalion. We define

the difference opernlor Ax by
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and A)' by

A)'Wij = (Wij_1 - 2wij + Wii+lYh;

at the points ('Cf, 'Cj')f;z!'f="il , Then the relations (2.7a) and (2.7c) can be written as

n:llij = AzD;Sij + 0(11;), D~flij = A,DzSij + 0(11;)

for i = 2, ...• M -1, j = 2 I ••. ,N-I and similarly for the derivative willi respect [0 y

Diu;] = AyD;Sij + Dell;), D~llij = AyDySij + O(h;)

for i = 2 •... ,M-l, j = 2, ... IN-I. The relations (2.7f) and (2.7g) can be written as

(2.8)

(2.9)

(2.10)

for i =2 •... 1M-I,) =2, ... ,N-I.

For the derivation of high order approximations of the derivatives of II at Ta. Ticl Tit! we make use of the
relations

3D~/lI.j - D~1I.2.j 2
= 2 +O(h",),

= 2D~IlM_I,j - D~UM_2,j + 0(11;),

(2.ll)

(2.12)
D' - 2' S(I:-2) ~ S(I;-2) 0(1')"UM.j - a" M-I,j - a" M-2.j + '",

for j = 0 •...• N+l and for k = 3,4 and similar relations for the derivative wilh respect to y, and lhc cross
derivatives. Relations (2.11) follow directly from Taylor's Theorem. Using (2,8) we obtain the following
approximations for j = a, .. ,,N+1 and k = 3,4

SA S~I:-:2) _ 3A S~k-:2)

D~llo,j = ",J 2 ".oJ + O(h;), D~III,j = 2A"S~~T2) - A"S~~T2) + O(h;)

5A S~k-2) 3A S(I;-2)
Dk .t f-I.j - "M-2,j + O(I,~)

"IlM+l.j = 2 ~

and similar approximations for the derivatives with respect to y, and the cross derivatives, The above resulls

are summarized in the following corollary,

(2.13)

Corollary 2.1. Under the hypotheses o/Theorem 2.3, we have the following relatioll,~ at the points Tw• Tic:

2 26D;S I,j - SD;S2,j + 4D;SJ,j - D;S4j 4
D"II I,j = 24 + O(h,,)

2 26D;SM.j - 5D;SM I,) + 4D;SM_2,j - D;SM_J.j 4
D"IlM.j = 24 + O(Il,,)

22D"S l,j + 5D"S2,j - 4D"SJ,j + D"S4j

24

for j = I ,. , . •N. Similar relations holdfor the derivatives lVilh respect to y, and the cross derivative,

In order to obtain a high order approximation of the first derivatives of II at the poinls of Ta and the knols

of the partilion .1., we first prove !.he following theorem:
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Theorem 2.4. Let S be the biquadratic spline ill1erpolant of It E CSCQ) defined by equations (2.5). Theil at the

poims (x;,'t]') , (-rf ,Yj) the following relatiolls hold.

)" _ \' h;D~Il(Xi' 't"D 4
D~S(Xi,'t"j) - DxU(Xi,'tj) - 12 + G(llx) (2.14a)

/ori=O, ... ,M.i=O, ...• N+l and

x _ h;D~u(Tj,yj) 4
D,.s('t; ,Yj) - Dyu('tj'Yj) - 12 + O(h,.)

fori=O, ... ,M+l,j=O, ... ,N.

Proor: In order to prove (2.14a), we first observe thal DxI..l:).1l -Dxll =DrI;r(I}' Il-II) + D.~or.Tll) -Dxll. At me

poinls (Xj:t]') we have that:H,. /1-/1 = 0 and from [Chri88a], [Hous8SbJ (DxR"). It - Dxll)(Xi''tj') =
h'

= 1; Diu (Xi''!]') + 0(11:). The proof of (2.14b) follows similarly. This concludes the proof of lhe theorem.

o
Similar relalions to (2.14) can be proved for the derivatives of the interpolam on me knots (Xi'Yj) of the

partition 11 for i = 0 , ... ,M and j = a , ...• N. Using the previous theorem and relations (2.12), we can obtain

high order approximations of the derivatives of Ii at the boundary collocation points. The results are summar­

ized in the following corollary.

Corollary 2.2. Under the hypotheses ofTheorem 2.4, the following relariolls hold all the poi"t~· ofTa

\. 24D-<S(xo,'tj') + 5D-<S('tf ,'tj') - 13D..S('r1,'tj') + IID-<S('tj, 'tj') - 3D"S('t4".'tj') ..
D..Il(xo.'ty) = 24 + O(h,,)

(2.15)

for j = 0, ... ,M+l. Simi/or relations holdfor Dyll('tf,yo) alld D)"U('tj'YN)'

3. Formulation of Ute biquadratic spline collocation meUtod for elliptic partial differential equations

In this section we derive the various perturbations of the residuals Rand r and use them to fonnulate the

collocation equations. From the relations (2.6), (2.14) and the differential equation (1.1), we observe that the

interpolant S satisfies the relations

h;.. II; ..
LSij = gil - aij 24 D .. Il;/ - e,j 24 Dylljj

h; 3 h; )
+ bij 24 D"Dyllij + bij 24 D yD"Il;j

(3.1b)
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BS - R h;' D' 0(1 ') h . [(' ))M+I Nij-Yij-Pij 12 ),lIij+ J alt epomts 'ti'Yj i;Qj=O'

Due to relations (2.8), (2.9), (2.10) and (2.12) the relations (3.1a) at {('tf. 'tJ)} ~21j~2J lake the Conn

h;2 h~2
LSij = gij - aii 24 AxPxSij - cij 24 A),DyS'j

h; hi
+ hij 24 AxD:r,.sij + hij 24 AyD:rJ,Sij

h; h;
+ d'j 24 AxDxSij + eij 24 A},D)'Sij

At lhe collocalion points in Tiil the relations (3.1 a) take the fonn:

11; :2 2 hJ 2
-ak.i 24 (2A;,eDx Sj,j - AxDxSm) - Ct,} 24 AyDySk,j

1/; h;
+ bk,i 24 (2A;rDAJSf,) - A;,P:r,Sm,,)+ bk.j 24 A,.DI}'sJ;,j

II; II;
+ dk,j 24 (2Ax DxS j •j - AxDxSm.j )+ Ct,] 24 A),DySt.;

(3.2,)

(3.2b)

(3.2d)

where (k,t ,m)=(1,2.3) or (M,M-I,M-2) at {('ti,'!}), (orM,'tl)lf=2[ and similarly at {('tf,ti'), ('tf,'t~f)}1;21.

At lhe interior-comer collocation points the relations (3.la) take the form

11; 2 2 It; 2 :2
LSI,I =gl,1 -u1.1

24
(2A,PrS 2,1 -A,rD-<S3.1)-CI.1 24 (2AyD),SI.2 -AyDyS l.3)

1/; h;
+bl.l 24 (2A-<O-"}'s2.1 -A-<D-"}'s3,I}+bl,J 24 (2A)'O-"},SI,2 -A)'D-"},SI.3) (3.2c)

11; Ii;
+d1,1 24 (2A-<O;rS2,1 - A;rD;rS3,1)+el,1 24 (2AyOySI.2 -AyD"SI,3)

+ O(h')

for ('tf;rD nnd similarly for ('rf,'t'];,), ('t'l,,'t1'), ('tl,,'t];,). The boundary operator residual equations (3.1h) al the
boundary collocation points take the form:

h'
BS1:,i =Y1:,i - !31:,i 2~ (5A-<D,rSI.i - 3A;rO;rSm,i)

where (k,l,m)=(O.2,3) or (M+LM-l,M-2) al the points {(xo,'t'j'), (xM,'t'J')}f~1 and similarly at the points

{('ti ,Yo), ('tf,YN)}~I .
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A more compact form of relations (3.2) is the following;

LS=g+O(}'z) on T-T(j

BS=y+O(h 2
) on Ta

LS=g-PL S+0(},4) on T-Ta

BS=r-PmS+O(1J4) on Ta

where PLS and PBS are 0(h2) perlurbation terms defined by the following slencils.

tion point in Ti , PLS is defined by the 3 x 3 stencil

(3.3)

(3.4)

For each interior colloca-

I
24

-b D,Py Si,i+1, D' Si,i+J,
-, D, Si,i+l, D. Si-I,i 2a D. ,. , D. Si+l.i,.,

-b D:<D}. Sj-I,i ->4, DzDy ,.. -b D:<Dy Sj+l.i
"

-2, D' ,.., ,.,
-<1 D. Sj-l,i +2d D. , -<1 D. SJ+I,i'.'+2, D, Sj,)

-b D:<D). Si,i-J, D' Si,i-I,
~ D, Sj.j_1

Further, PLS is defined at the inlerior-comer collocation point (Tl", 't"n by lhe 4 x 4 stencil

I
24

, D:<Dy S1,4
~ D' SI,4,.. D, SI,4

-4, DzDy SI,3
->4, D' 5J.],
-4, D, SI.]

+" D:<Dy SI,2

-5, D' SJ,2,
+5, D, SJ,2

2a D. Sl,l 5" D. S2,1 ->4" D. S3,I ~ D. S4,I

-4, D:<Dy Sl,l +" D:<Dy S2,J -4, DzDy S3,J +' DzD). S4,I

+2, D' SI,I,
-2d D. SI,I +5d D. 52,1 -4d D. 53.1 +d D. 5~,1
-2, D,. SI,I

Then PLS is defined by similar stencils at the rest of the interior-corner collocation poinls. For each intcrior­

boundary collocation point on.r = 't"1, PLS is defined by the 3 x 4 stencil
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I
24

-b D~D, .'1 1,1+1
+c D' .'1 1,/+1,
~ D, .'1 1,1+1

2a D, .'1 1,1 5" D, S2,} 4a D- .'13,; ~ D, .'14,1,
+5b D~D, .'12,) -4b D~D). S3,j +b D~Dy .'14,1

-2. D' .'11,1,
-2d D, .'1 1,1 +5d D, S. -4d D, .'13,1 +d D, S4,j-.,
+2, D, .'1 1,1

-b D",D), .'1 1,;_1

+' D; .'11,;-1

-, D, .'11./_1

Then PLS is defined by similar stencils at the rest of the interior-boundary collocation points in Tii) correspond­

ing to x = 't1-, Y = 't{ and y = 'tN. Finally, for the boundary collocation points on lhe boundary line x = ax, PmS

is defined by the I x 4 stencil

Similar stencils define PmS in the rest of the boundary collocation points corresponding to the boundary lines

x = bx, y =ay and y = by.

Moving the perturbation tenns in (3.4) to the left, we define lhe perturbed operators (L', B') and we have

the relations

L'S=g +0(11 4
) on T-Til

B'S=y+O(h4) on Ta.
(3.5)

The relations (3,3)-(3.5) lead to three different formulations of the (bi)Quadratic Spline Collocation

(QSC) method. Throughout, they are referred to with the acronyms P2CICOL, P2ClCL2 and P2CICLl.

nCICOL Lv=g on T-Ta, (3.6)

Bv=y on Ta.

P2CI CL2: (1st step) Lv=g anT-Til, (3.7a)

Bv=y on T'l>

P2CICL2: (2nd step) LIlt. =g -PLY anT-Til, (3.7b)

Bllt. =y-Pmv on Til.

nCICn L'z=g onT-Til' (3.8)

B'z=y on Til.

Figures 3.1. 3.2 show the structure of the collocation matrices corresponding 10 equations (3.6) (or 3.7)

and (3.8), respectively. The linear equations in (3,6) have at most 9 non-zero elements per row and lower and

upper bandwidth M+3, while equations (3,8) have at most 27 non-zero elements per row and lower and upper

bandwidth 5M + 11, assuming a natural ordering (bottom-up then left to right) of the points in T and of the

corrcsponding collocation equations and unknowns.
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Figure 3.1. Structure of the matrix of collocation equations corresponding to P2CICOL for N = M = 5. x

denotes a non-zero off-diagonal clement, d a non-zero diagonal one, while all zero entries are
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Figure 3.2. Structure of the matrix: of collocation equations corresponding to P2C1CLl for N =M = 5. The

notation of Figure 3.1 is used here.
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Next, we describe the formulation of a variation of the QSC method. Whenever the boundary conditions

(1.2) of the problem are homogeneous Dirichlet or Neumann, that is, II = 0 or Un = O. on each of the boundary

subintervals of partition .1. of n. we can assume that the approximate space satisfies exactly the boundary condi­

tions. A basis for such a space is the tensor product of the sets {$i(x)}f;1 and {$j(Y»)f=J where

~, (x) =~I (x) ± ~o(x),

$;(x)=$;(x), i=2"."M-l,

ljIM(X) = ljIM(X) ± $M+I (x)

- -
and ljIj(y) , j = 1, ...,N are defined in a similar way. The sign ('+' or '-') in the definition of ljIi is chosen accord-

ing to the type of boundary conditions on the respective i-th boundary subinterval. The '-' corresponds to Diri­

chlet conditions, while the '+' corresponds Lo Neumann conditions. This implementation of the QSC methorl

produces a smaller size system and can silll be formulated as an one-step collocation or as a two-step colloca­

tion. Throughout the rest of the paper, we will refer to this formulation as illteriorcollocation method.

4. Existence, uniqueness, convergence analysis and error bounds

4.1. The case of constant coefficients

In this section we will show that in lhe case of a Helmholtz problem with Dirichlet or Neumann boundary

conditions. the biquadratic spline collocation approximation defined by equations (3.7) exists and is uniquely

defined. Moreover, error bounds similar to those in (2.4) are derived. For this reason we first consider the

Helmholtz equation

Lu := au.a + CIl}). + fll = g in n

subjecL to homogeneous Dirichlet boundary conditions

u=O on an

(4.1,)

(4.1b)

(4.2)

where a. C and fare constants.

The application of the interior Lwo-step collocation method to the PDE problem (4.1) generates the fol­

lowing discrete equations

K8== [a -+~ @If+c-4-rr@r!2+'!'JTt @ ~8=g
h;ro 11), 8 ~6J

where ~~, -rt. r!2' TZ are tridiagonal matrices. The superscripts Nand M denote the order of the matrices.

The matrices ~, r!2 and 'Yt, 71 are defined in terms of the generic matrices L 2 and T6.

-3 1
[ -2

1 -2 1

1 -3

5 1
1 6

6 [
1 5

In the first step of the Lwo-slep quadratic spline collocation method, the right side gof the equations (4.2) is a

vector of values of g on the collocation points multiplied by appropriate factors. More spccilically,

g (i-I)N + j == ~ g ('tf, 't}') for i = I, ... ,M, j = I, ....N. In lhe second step, the right side is an 0 (II 2) perturbation of
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the right side of me firsl slep. (fhe perturbation is shown in (3.7b).)

We first study the properties of the eigenvalues and eigenvectors of T-2 and T6 .

Lemma 4.1. The eigenvalues A/. I = I , ... ,N OfT!2 are given by

t...1 =-4sin2 ~

alld its eigenvectors lil • I = I , ...• N are

(4.3a)

, . (2j-l)f.u,· =1C/ SIR, 2N

where le/ are COT/stams.
Proof: By definition we have

j=! .... ,N (4.3b)

0'

with

010=-011 and OIN+I=-OIN for I =I •... ,N

The characteristic equation of (4.4) is

and a solution of (4.4) has the form

(4.4)

(4.5)

(4.6)

where PI 1' PI2 are lhe zeros of (4.5) and c/ I, c/2 are constants detennined by assuming lhat lhe eigenvectors

are normalized (0/ I = 1 and 0/0 = -I for l = 1 •... ,N) and PI 1 '* P12. The constants c/ 1 and C/2 are given by

P/2 + I PI I + I
01=- • 02= .

PI2-P/J PI2-PII

Using the end condition lil N+l = -lil N, (l = 1, ...,N) we gel [p"JN = 1 and from this
p"

PI I 211t. . 211t--=COS--+1SIR--
PI2 N N

where i is the square root of -1. From (4.7) and the relalions

(4.7)

PIIPI2=1

PII +PI2=2+A/

we obtain (4.30.). The formula (4.3b) is a direct consequence of (4.3a) and (4.6). This concludes the proof of

Lemma 4. I.

o
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Lemma 4.2. The eigellvalues ll/, 1 = I , ... ,No/If are given by

4 . Z L1i. 8
III =- Sin 2N +

and irs eigenvectors 01, 1 = I •... ,N are rhe same as ojT!z.

Proof: It is easy to note that If = T!z + 8/ where J is the identity matrix of size N. Then if ').., is an eigenvalue

of Tiz and 01 • the corresponding eigenvector, If 01 = CT!.z + S1) 01 = A/ 0/ + So/ = (')../ + 8)01 which proves
Lemma 4.2.

o
We observe that the matrix K of the coefficients of collocation equaLions (4.2) has eigenvalues

1 =1, ... ,M. m=l, ...•N

and eigenvectors 0, @ om where ')../ and ')..m are the eigenvalues of~ and T!z respectively, given by (4.3a)

and 01 and Om the eigenvectors of~ and T!z respectively, given by (4.3b). Since~ and T!z are symmetric,

with distinct eigenvalues, their eigenvectors are linearly independent, and so are the eigenvecLors of K.

Without loss of generality we can assume that a > O. Furthermore, from lhe ellipticity condition ac > 0
of the operator L of problem (4.1) wc can safely assume thal c > O. Undcr these assumptions we distinguish

two cases:

Case 1: j:::;; O. We then observe that

(J/m 5a[ M jZ'')..I'C')..N+8)+C[b N jZ'(')..M+S)'')..I+-S'/'(')..M+S)(')..N+S)
bx-ax y-ay

=-4n'[ a , + c ,J+2/+0ChZ)=-E<O
(bx -ax) (by -ay)

whereE > 0, II =max{h", h).} and whenh", -)0, h)' -)0, M -)00, N -)00.

Case 2: / > O. We then observe that

(Jlm 5a [b M jZ'!...I'(AN+8)+C[b N jZ'(')..M+S)'')..I+ SI/·(')..I +8)(')..1 +8)
x-ax y-ay

=-41tz [ a z + C 2J +81+0(lI z)
(bx-ax) (by-ay)

Moreover, if

for some positive number E, then

n'[ a c j Ef<- + --
- 2 (bx-ax? (by_ay)z S

(4.S)

where II =max{IJ"" hy ) and when h", ---l-O, h}' ---l- 0, M ---l-oo, N ---l-c:<>.

From this, we come to the conclusion, that if f:::;; 0 or else (4.8) holds, the eigenvalues of K arc bounded

and negative, as II", ---l- O. II)' ---l- 0:

(Jlm:::;;-E<O, L =1, ...•M,III=I, ... ,N.
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This shows that K-1exists and the eigenvalues _1_ of K- l satisfy the following bounds for sufficiently small
crt nI

0< 1_1_1 ~..!.., 1 = I •... ,M, til = 1, ... ,N.cr, nJ €

Note !.hat the elliptic operator Lu := Il;a; + II)). + u, in the unit square, satisfies the above conditions. Note also

thal (4.8) holds in case 1. This proves the following theorem:

Theorem 4.1. Under the assumptions tllar a, C> 0 alldJ < 1t
2

[ a 2+ C 2J. the spectral norm
2 (bx-ax) (by-ay)

ofthe ill'r'erse ofthe matrix ofinterior nvo-srep colloeatioll equations ill the case of the Helmholtz problem (4.1)

is bounded, as h;r --7 0, II)' --7 O.

Note thaL by the equivalence of norms II K-1 I I~ is also bounded. A consequence of Theorem 4.1 is the fol­

lowing theorem.

Theorem 4.2. Under the assumptions a/Theorem 4.1, the collocatioll approximations v and Uil in Sz,t,. ofrhe

true solution II E C6(Q) of the PDE problem (4.1) exist and are ulliquely defined by equatiol/s (3.6) and (3.7)

respectively. Moreover, ifw = v - /I CJnd e = lin. -II are ti,e errors for the collocation approximations v and Elt,.

respectively, the following a priori bounds lIold:

IW(Xi'Yj) I
Iw('i,Yj) I
Iw(x;.tj') I
Iw(tf,t]') I
ID",w(Xi -AlI",,·)1
IDyw(. ,Yj - Ally) I
IDl).w(Xj - M""Yj - Ally) I
ID;w(tf,t}') I
ID~w('Cf. 'C}) I

=0(/12)

=0(11 2
)

= O(h')

=0(h 2)

=O(h')

=0(h 2
)

=0(h 2
)

= 0(h 2
)

=0(11 2
)

Ilwll.

IIDxwIJ..
IID)'w II ..
I IDl)'1I' II ...
I ID;II' I I...
I ID;,wl I...

=0(h2)

= 0 (h 2)

= 0 (II 2)

=0(1.)

=0(11)

(4.9)

(4.10)=0(11 2)

= 0(11 2)

= O(h z)
=0(1.)

=0(1.)

IID,'II.
liD" II.
IID~., II.
liD), II.
IID;'e II ..

= 0(h 4)

=0(h 4
)

=0(11 4
)

=0(h 4)

= 0 (h 3)

=0(11 3 )

=0(11 2)

=0(h 2)

= 0(11 2
)

Ie (Xi,Yj) I
le(tf,Yj)I
Ie (Xi> 'C}) I
Ie {'tf,t}') I
ID",e(x; - '}Jl"" • ) I
IDye( , Sj - My) I
ID;r)'e(xi - M""Yj - My) I
ID;e(tf,t}')]
ID;'e('tf,t}') I

3±.,J3
where 11 = max(II""h).), and A. = --6-'

M N M N
Proof: Let S = L L st$i(x)<My) and v =L L Sij$;(x)$j(Y) be the representalions of S and v with respect

;=1 j=1 ;=1 j=1

to the basis funclions. The existence and uniqueness of v and El t,. follow from the existence of K- l and the

boundedness of II K-l II .... Moreover by subtracting (3.6) from (3.4), we get
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which is equivalent toK(rl- aV

) = 0(h 2). This means Ibat

-S-v I -s-v
118 -8 11_<llr 11_'0("') => 118 -811_=0(1,').

This resull and the bounde<lness of the basis functions prove that

IIS-vll_=O("'),
IID")'s-D"),vll~=0(h2),

IID,S-D,vll_=O("'),

IID;S -D;v II~ =0(h 2),

IID)"S -D)"v II~ = 0(h 2
) ,

IID;'S -D;'v II~ = 0(h 2
).

(4.11)

The error bounds (4.9) now follow from (4.11), (2.4) and the use of triangular inequality.
M N

Similarly, ]elllt.:=: L L 8ij'ljl;(X)¢!j(Y) be Ibe representations of UIJ with respecl to the basis functions.
;=J j=J

We subtract (3.7b) from (3.4) and gel

L(S-u~)=PL(S-v)+0(1I4), B(S-uIJ)=Pm(S-v)+0(h 4).

Since II S- v II~ = 0(h2) and PI. and Pm are 0(h 2) perturbation operators, assuming Ibe coefficients of the

expansion of S - v are sufficiently smoolb, we get

L(S -II~) = 0(11 4 ) , B(S - uL\) = 0(11 4)

which can be equivalently written in matrix form

K(rl _aU,) = 0(h 4)

from which we obtain

119' -9"')11.=0("').

lhis result and the boundcdness of the basis functions prove that

liS - u... ll_ =0(11 4), IID,rS -DxuL\ 11_ =0(h 3
) , II D)'s -Dyll,d l~ =0(h 3),

IID"),S -D"),uL\ 11_ = 0(11 2), J JD;S -D;u ... lloO = 0(11 2), IID;'S -D;'II ... II~ = 0(h2), (4.12)

The error bounds (4.10) follow now from (4.12), (2.4) and the use of triangular inequality. Note that the 0 (h 2 )

bound proven for the cross derivative error ID"),e(x; - 'JJ1;t.'Yj - 'JJ1)') 1 in (4.10) is not oplimal. Our numerical

experiments though indicate that ID;t.)'e(x; - 'JJlx,Yj - 'JJly) I = 0(h 3). This concludes the proof of lhe theorem.

o
We next consider the case of Neumann conditions, i.e., the problem

Lll=all;n+CII,J,+fil=g in n

=0 on an
(4.13a)

(4.J3b)

where Un denotes the normal derivative of II, For simplicity we assume thal N =M. In this case the matrix of

collocation equations becomes

Kf'I.= [a ~~ @7f +c~ T~ ® ~ +.!..f71' @ T~l (4.14)
k" h)" 8 J

where T!1, T~ are lfidiagonal malfices of size N.

-I 1 7 1

1 -2 1 1 6 1

T~= T~ =
1 -2 1 6 1

1 1 1 7
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Using the same argumenls as in Lemmas 4.1 and 4.2 we can prove the following Icmmas.

Lemma 4.3. TIle eigellvalues ",r l = I , ... ,N of~ are given by

(I - I).
2N

(4.15a)

und the eigenvecrors Sr I = 1 , ... ,N ofT!J. by

" (2j - 1)(1 - 1).
~j=~c~ W j=l, ... ,N

where lei is a constant for each I = 1 , ... ,N.

(4.15b)

Lemma 4.4. The eigenvalues Ilf' 1 = I , ... ,N ofTF; are givell by

"N=-4sin2 (l-1)1t +8
1""1 2N

and its eigenvecrors Sr I = 1 , ... ,N are the same as ofT!;. givell in (4.15b).

Combining the above lemmas, we conclude that the malrix KIN of collocation equations in the case of

Neumann conditions has eigenvalues

IN lININ lIN NIIN IN
atnr=a-zlll (Ilm+ 8)+C 2 (1J.1 +8)lJ.m+-f(lJ.t +8)(lJ.m+8)

h h 8

Furthermore, we observe that all = 0 if f = O. Similarly as for the Dirichlet conditions case, we assume that

a > 0 and so c > O. Then, iff:S; -f12 for some positive number E, we have 01 .m :s; -£ < 0, which means that the

eigenvalues of K"N are bounded and negative. This shows thal the inverse of KIN exists and ils eigenvalues

+ exist and satisfy the following bounds:
01 nr

o<I-k-!:s;..!...forl =l, ... ,M,m=l, ... ,N
01 m E

The above observations can be summarized as follows.

Theorem 4.3. Under the assumptions that a, C > 0 and f < O. the spectral norm of the inverse of the matrix of

interior two-step coflocation eqllutiollS ill ti,e case of Helmholtz problem (4.13) is bOlil/ded illdepelldemly ofhr

and 11,..

Using the above thcorem, the existence and uniqueness of the collocation approximations v and lit>. for

the case of Neumann conditions can be shown similarly as in the case of Dirichlet conditions (Theorem 4.2).

Error bounds similar to (4.9) and (4.10) hold also in this case.

Finally we consider the general second order elliptic operator equation with constant coefficienls

Lu := allD" + Cll)). + dll;x + eu). + fll = g in n

subject to Dirichlet or Neumann boundary conditions

Bll:=U =OonaQor

Bll := Un =0 on an.

(4. I6a)

(4. 16b)

In this case the coeflicienl matrix of lhe interior lwo-step quadralic spline collocation equalions can be

written in a tcnsor product fonn

[
1 1 1 1 1 ~K= u 2 L z l8I T6 +c 2'" T6 0 L z +d -,- To 0 T6 +e -,- T6 0 To + -SfT'6@T6
h~ hy ~ ~
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for Dirichlet conditions and

K~ =[a -\- T~ 0 Tr + c ~ Tr @ ~ + + d _1_ Tr@Tr+e-
1
-rr0TIr+ .!.rrr ~ T~j

IIx h,. hx 11)' 8

for Neumann conditions, where To and Tg' are tridiagonal matrices of size N, and we have assumed for simpli­

city that M = N. More specifically,

To =

1 1
-1 0

-1 0 1
-1 -1

rg'=

-1 1
-I 0 I

-1 0

-1

Il is wonh noticing that K and KIN can be written in !.he form

K= [a --\-[Lz + d IIxT~ 0 T6 +c~ T6 181 [Lz + !...-II)'T~ + l..P6 &J T)
hx II h). C 8 1

KIN::: [a --\-[T~ +!!.. hxTr:j ® T~ + C~ Tr ® [~+ !...-11j'TWj + .!.jTr ® Trj.
hx a h). c 8

In order to study their properties we observe the asymptotic behaviour of their eigenvalues.

Lemma 4.5. The eigellvalues ofLz +!!.. hxTo rend to AI, alld the eigenvalues ofT'!Jz + d hxTIr relld (0 Ar,
a a

forl =1, ... , Nash =max{lJx,h)'l-70.

Proof: First, we show that II Tol), I I,., is bounded. From the definition, we have

Tol)[::: -l), i-I + l)/ i+!

For each of the components 1-0/ i-I + 0, ;+1 I, i = 2 •... ,N-I we obtain the bounds

I [ . (2i-3)lo . (2;+I)loJI
I-O/i_I+O'i+ll=KI-sm 2N + Sin 2N =

I
. 210 (2H)IOI21C1 Sin N eos N < 21K, I.

Similarly we derive

10/1 + 0lzl = IKI [Sin ~~ +sin 3;:JI = 12K1 sin 2~1t cos 1:1 < 21K[ I.

This implies the bound J ITol), II"" < 2[ leI I.

Now, if A/ is an eigenvalue of T-z and 0, the corresponding eigenvector, then we have

II [L' +~ Io,To]Bl = IIL'B' +~ Io,roB, II. = IIA, B, +0(10,)11. -7 IIA, B, II •.
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Similarly we can prove that

which concludes the proof of the lemma.

o
The above observation suggests that the PDE problem (4.16) behaves asymptotically like the correspond­

ing Helmholtz problem (4.1) or (4.13).

4.2. The general case

In this section we study the existence and uniqueness of the collocation approximation defined by equa­

tions (3.7) for a general operator equation with Dirichlet or Neumann boundary condition~. For this reason we

consider a general second order linear elliptic PDE

Lu =: auxx + bll~. + Clly;, + dllx + ell)' + fit = g in n. =: (ax,bx) x (uy,by)

subjecl to homogeneous Dirichlet boundary conditions

It =0 on an.,

(4.17a)

(4.17b)

where a, b, c, d, e, f, g arc functions of x and y. Let K be the matrix of collocation equations arising from the

application of the interior lwo-slep collocation method to lhc PDE problem (4.17a), (4.17b). The following

lemma summarizes the diagonal dominance properties of lhe matrix K.

Lemma 4.6. The matrix K of the inrerior col/oearioll eqltar;olls ill the case of DiriclIlet bOllndary conditions is

diagonally dominant for sufficiently small hx' h)', provided rhat

1 ell;
-<-:2 :53 (4.18a)
3 ah)"

2Iblh;ch).:5all~+cI/; (4.18b)

or all points i1l T;, alld

/<0

1 ch;
-<--,57
7 all)"

(4.18c)

(4.[3d)

or all points;/I Tia,

Proof: Throughout the proof we use the following notalion. For any collocation point (x,y) let A = a (x;y) ,
I"

B = b(x,y) , C= C(Xl) , D = d(x,Y) and E= e(x,y). Similarly as in the case of constant coefficients
IIx lly II). h;c h)'

without loss of generality we can assume a,e > 0, so A,C > 0 as well. It is worth noticing that the ellipticity

condition b:2-4ae < 0 of the operator L of (4.17a) is equivalent lo B 2-4AC < 0, from which we easily gel

IE I <A+C.

We first consider the equations corresponding lo collocations points in T j • The diagonal dominance con­

dition for a poinl (x,y) =: (Ti, 'tJ') is written as
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-24A -24C +9/ > -4A +12C

+ -4A +l2C

+ 12A +4C -60
+ 12A +4C +60
+ 2A +2C -0
+ 2A +2C +0
+ 2A +2C -0
+ 2A +2C +D

-6E
+6E

+E
-E
+E
-E

+312f

+312f

+312f

+312f

+114 f -4B

+1/4/ -4B
+I/4f +4B

+114 f +4B

(4.19)

Il is worth noticing that for 1I;r, h}' sufficiently small the tenns in (4.19) involving D,E and fwill be dominated

by me lenns involving A,C and B. Then, if ~ =:;:; ~ =:;:; 3, IB I =:;:; A;C andf:5" 0 the diagonal dominance condi­

tion (4.19) is satisfied. We also nOlC that (4. IS) are the necessary conditions for diagonal dominance of colloca­

lion equations on Ti , since if one at least oflhem is nol satisfied, (4.19) is false.

We neXl consider the collocalion equations corresponding to interior-boundary collocation points. The

diagonal dominance condition for a poinl (x,y)::;: ('Cf ,'tJ) is written as

-72A -40C +11D +l5f I > -12A +20C +20 -IOE +512f -8B
+ -12A +20C +20 +IOE +512/ +8B
+ 4A +4C +20 -2E +112/ -8B (4.20)

+ 4A +4C +2D +2E +ll2f +8B
+ 24A -8C +12D +3/

For 11,,,, h}' sufficiently small, the diagonal dominance condition (4.20) is satisfied, iff ~ :5"7. The case of

interior-boundary collocalion points (x,y) =- ('t;l:I' 't"J') is handled similarly. The diagonal dominance of the equa­

tions corresponding to collocation points (x,y) =- ('tf, t1') and (x,y)::;: ('tf, 'tN) is guaranteed iff!2 ~ ~.
A 7

Finally we consider lhe collocation equalions corresponding [0 interior-corner collocation points. The

diagonal dominance condition for the point (x,y) =- (tt" ,'t1') is written as

I -60A -60C +IOD +1OE +2512f +SB I ~

+
+

-12A
20A

4A

+20C +2D

-12C +lOD

+4C +2D

+IOE +512f +S8

+2E +512f +SB

+2E +1/2f +SB

(4.21)

It is easy to see that for h;r, II}' sufficiently small (4.21) is always satisfied, and the inequality is strict. The equa­

lions corresponding to the rest of the interior-comer collocation points are handled similarly.

The condition ~ =:;:; ~ =:;:;3 is equivalent [0 (4.18a), whilc IB IS;: A;C is equivalenllO (4.18b), and

~ :::;; ~ :::;; 7 is cquivalenllo (4.ISd). This concludes the proof of the lemma.

o
A consequence of Lemma 4.6 is the following theorem.

Theorem 4.4. If(4.18a, b, c) !/Old at aU poims;/I Ti , alld (4.1Sd) holds at all poill1s ill Tj<J' thell the system of

interior two-step collocatioll equations for Dirichlet boundary cOllditio1ls is lIniquely solvable for II"" h}'

sufficielltly small.

A similar analysis of the properties of the matrix of intcrior two-stcp collocation equations lakes place in

the case of homogeneous Neumann conditions. Theorem 4.5 summarizes the results.
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Theorem 4.5. If(4.18a) holdj,' at allpoims in TiuT;a, (4.18b, c) hold at all poims ill T;uTjauT;c alld ill addi­
tion

(4.22)

and f < 0 on at feast one of the collocatioll poi1/fS, thell the system of il/terior nvo·.'itep collocation equariolls ill

the case ofNeumann boundary conditions is ulliquely salvable for /zx' II)" sufficiently sma/{.

We should notc that (4.22) holds if we extend (4.18a) to be lrue at allinterior-eomer collocation points.

5. Numerical results

In this section, we present a number of numerical results to demonstrate the convergencc and computa­
tional complexiLy of lhe QSC method.

5.1. Convergence test

In lhe first experiment, five formulations of the QSC melhod were tested. They are referred to by General

P2C1CLl, General P2CICOL, General P2CICL2, Interior P2C1COL and Interior P2CICL2. The Lerms Gen­

eral and Interior distinguish between the formulations, which can be applied to any boundary conditions includ­

ing mixed ones (case General) or to homogeneous Dirichlet or Neumann conditions only (case Interior). The

ending -COL refcrs Lo the standard second order (non-optimal) formulations, while the ending -CLI refers to

the one-slep fourth order (optimal) formulations and the ending -CL2 refers to the two-step fourth order

(optimal) formulations. For brevity, in the rest of the section the term 'method' will be used in place of the

term 'formulation of method'. All computations of Sections 5.1-3 were carried out on a VAX 8600 in double
precision.

The results exhibit the various optimal error bounds obtained in Theorem 4.2 and indicate complete

agreement between the analytical and numerical behaviour of the method. The only exception is the case of the

error bound for the xy-derivative on the sel of points {(Xi-h1Jx,Yj-]JI)")} g,] f,,1 with A. = 3-/3,in which the

experimentally computed bound is optimal (0 (h))). while the a priori bound proven in Theorem 4.2 is O(!J 2).

The lesl problem is chosen to lest the convergence of General P2ClCLl, General P2C1COL, General

P2CICL2, Interior P2C1COL and Interior P2CICL2 on various sets of points and various grid sizes, with the

same number of grid points in both directions, i.e. N =M. The order of convergence on a set of points {Pi}!,,1
max I(II - u(k»)(Pi) I

is eslimaled by order = log j (/) lIog (Ilk) where k. l are two different grid sizes and Il(k), u(l)
max I(u -/I )(Pj) I
•

are the respective QSC approximations to lhe solution II of the problem. The compuled errors of the approxi­

mations and the respective orders of convergence for five QSC methods and quadratic spline interpolation are

found in Tables 5.1-7. The estimated orders of convergence are the same as those predicted from Theorem 4.2

for lhe Helmholtz problem. It is important to note that the conditions of Theorem 4.2 arc sufficient but not

necessary to obtain the error bounds (4.9) and (4.10). Figure 5.1 shows graphically some of the data listed in

Tables 5.1,5.4,5.6 and 5.7. In Figure 5.1, we note that the two-step QSC approximation (General P2C1CL2) is

of similar order as the quadratic spline interpolation, while the first step QSC approximation (General
P2CICOL) is of lower order.

In this experimenl, the system of linear equations were solved by Gauss elimination using the ELLPACK

routines q5bnfa, q5bnsl, which are modified versions of the UNPACK general band solvers sgbfa. sgbsl, with

the main difference of nol using pivoting. It is important to note, that we found experimentally, thal Lhe QSC
equalions do not require pivoting.
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