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QUADRATIC SPLINE COLLOCATION METHODS
FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Christina C, Chnistara
Department of Computer Sciences
University of Toronto
Toronto, Ontario, Canada, M55 1A4

Summary. We consider Quadratic Spline Collocation (QSC) methods for linear second order elliptic Partial
Differential Equations (PDEs). The standard formulation of these methods leads to non-oplimal approxima-
tions. In order to derive optimal QSC approximations, high order periurbations of the PDE problem are gen-
erated. These perturbations can be applied either to the PDE problem operators or (o the right sides, thus lead-
ing Lo two different formulations of optimal QSC methods. The convergence properties of the QSC methods
are studied. Optimal O (h*) global error estimates for the j-th partial derivative are obtained for a certain
class of problems. Moreover, O (#*~) error bounds for the j-th partial derivative are obtained at certain scts of
points. Resulls from numerical experiments verify the theoretical behaviour of the QSC methods, Performance
results alse show that the QSC methods are very ellective [rom the computational point of view. The QSC
methods have been implemented efficiently on parallel machines.

Key words. spline collocation, elliptic partial differential equations, second order boundary value problems.
AMS(MOS) subject classifications. 65N35, 65N15.

Abbreviated title.Quadratic spline collocation metheds for elliptic PDEs.

1. Iniroduction

In this paper we consider the numerical solution of a second order linear elliptic Partial Differential Equa-
tion (PDE)
Lu=aug + by +cuy, +du, + e, + fu=g

in Q={ax,bx} x (ay.by) (1.1)
subject to mixed boundary conditions

Bu = our + P, =y on dQ = boundary of Q (1.2)

where u, a, b, ¢, d, e, f, g, o, B, ¥ are functions of x and y, and u, denotes the normal derivative of &,
Throughout we assume that the operator L satisfies the ellipticity condition #2— 4ac < 0. Specifically, we for-
mulate and study optimal piecewise biquadratic polynomial collocation methods for solving the PDE problem
(1.1)~(1.2), with the piecewise polynomial approximation in €'(Q). The term ‘optimal’ refers to the fact that
the methods we formulate have the same order of convergence as poiat interpoelation in the same approximation

space.

In the standard formulation of collocation methods the approximate solution makes the residual of the
differential and boundary operator equations (R =L« —g, r=Bu —1) zero al ceriain collocation points
depending on the selecled space of the approximate selution. The method of smooth spline collocation has not
been exiensively used, since its stmightforward formulation leads to non-optimal convergence mcthods
[Russ72], [Cave72] and [Ahlb75], in the sense that these methods have lower order of convergence than point




interpolation. For odd degree splines, [Fyfe68], [Arch73], [Dani75], [Irod88] and [Papa87] derived and
analyzed optimal necdal cellocation methods, using high order collocation residual expansions for one-
dimensional boundary value problems. For two-dimensional problems, [Irod87] and [Hous88a], derived
oplimal nodal collocation methods based on tensor product of odd degree splines, and high order perturbations
of the PDE problem. In the case of even degree splines the related work is very limited. Some resulis are given
in [Russ72], [deBo73] and [Kamm74]. [Khal82] and [Saka83] formulaled and analyzed O (2%} midpoint collo-
cation methods based on quadralic splines for various second order boundary value problems. In [Hous88b] we
formulate and analyze oplimal midpoint quadratic spline collocation methods for two-point boundary value
problems.

In order o derive oplimal biquadratic spline collocation methods on uniform meshes, we generate high
order perturbations of the residuals (R, r), and force the collocation approximation to satisfy the perturbed resi-
duals (R’, r"} exaclly al the collocation points of the biquadratic spline mesh. These perturbations can bhe
applied either to the PDE problem operators or to the right sides. Thus we can have two different formulations,
the extrapolated (one-siep) ones and the deferred correction (two-step) ones. Furthermore, whenever we can
assume thal the approximale space satisfies exactly the boundary conditions, we obtain more efficient formula-
tions.

Optimal quadratic spline collocation is challenging, dee (o the superconvergence, i.e. convergence
equivalent to that of cubic spline collocation, obtained locally on certain points. In addition, the delerred
comection biquadratic spline collocation methods, when formulated for the PDE (1.1) with general boundary
conditions (1.2}, give rise lo a block tridiagonal system, with nine nonzero bands, unlike the respective bicubic
spline collocation methods, which give rise to such a sysiem, only when applied to the PDE (1.1) with Dirichlet
or {exclusively) Neumann condilions.

In Section 2, we present a number of biquadratic spline interpolation results. The [ormuiation of the
biquadratic spline collocation methods for the PDE problem (1.1)—(1.2) is derived in Section 3. In Section 4,
the existence and uniqueness of the collocation approximatien is studied in the case of homogeneous Dirichlet
or Neumann boundary conditions and O (h*) convergence is proved for Helmholrz equations. Finally, Scction
5 conlains the results of various numerical experiments, that verify the theoretical behaviour of the method. An
experimental verification of its compuiational behaviour is given in [Chri88a].

2. Biguadratic spline interpolation results
Consider the reclangle Q=0udQ= [eex,bx] % [ay,by] and let
Ar={ax=xg<x, <+ <xy=bx},
Ay=lay=yo<y; < - <yy=by}

be uniform partitions of the intervals [ax,bx], [ay,by] with mesh sizes I, k; respectively. Then A=A XA, is
the induced grid partition of Q. Throughout we denote by t7, i=1,...,M the midpoints of A, and by 1%,
j=1,...,N the midpoints of A,. For convenience, we extend the notation so that Ty = xg, Tiss =X, 6 =Yo,
T+ = yy- For later use we define the following sets of points: the set of collocation points of Q

T=(@ft), i=0,....M+], j=0,... N+1},
the subset of interior collocation points in £2
Ti= (x5, 1), i=2,....M~-1, j=2,...,N-1}cT,

the subset of four interior-corner collocation points of £2
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T = {(z1, 1), (The ™) 1T, () T
the set of boundary collocation points on 302
Tz =TNaQ2
and the set of interior-boundary collocation points of £
Ta=T—(T; v T, wT;).

Figure 2.1 displays the coliocation points for a 5 x 4 grid.

T={1,2, 3 .., 30}
T, =(13, 18}

T = {7, 9, 22, 24}

Ty=(1,2 34,56, 10, 11, I5, 16, 20, 21, 25, 26, 27, 28, 29, 30}
T = {8, 12, 14, 17, 19, 23}

=T
Ya=ti 5 g0 15 20 25 30
. 4 0 14 19 24 29
"I:'}; [} o o o o [}
Y2
y 3 8 13 18 23 28
T ¢ ] o o o 1]
(13, 13)
1
e | 2 7 12 17 22 27
T © o o o o @
1 6 11 16 21 26

Xo=T5 3 X 3 X3 ™ X3 3 X4=T5
Yo=Ty

Figure 2.1. The collocation points for M =4, N =3.

Throughout, we denote by P, 4 , P 4 the space of piecewise quadratic polynomials with respect to parti-
tions A,, A, respectively, by Py, =P 4, ® P; 4 the space of piccewise biquadratic polynomials with respect
to partition A of Q and by Saa=Paa ATHQ) the space of piecewise biquadratic polynomials in Q with con-
tinuous first derivative with respect to x and y. The n-th derivative operator with respect 1o the variable z is
denoted by D. If § € §, 4, then we define the second derivative of S on the points of disconlinuity as follows.
DIS(xq..) = PZS(t},.), D2S(x;,.)= %{DES&?..) +DI8(t5,)) for i=1...M—1, DiS(xy.)=DiS(t3..).

The second derivative with respect to y is defined in a similar way.




4.

A basis for §54 can be constructed by forming the tensor product of basis elements of the spaces
S24 =Pay, NTC([ax,bx]) and S24 =Pz5 NT'([ay,by]). A set of basis functions for the onc-dimensional

quadratic spline space S, are the functions ¢;(x) = % Wy .r}_a.r - i+7} fori=0,...,M+| where the qua-
x

dratic spline function v is defined by
wx)=x?, 0Sx<1; 3+6x—2x% 1<x<2; 9-6r+x2 2<x<3
and 0 elsewhere. The basis functions {¢;(y)}}}/ for S, are construcied in a similar way.

Let § € §2.4 be the biquadratic spline interpolant of the true solution « of the PDE problem ¢1.1)—(1.2)
defined by the interpolation relations

SR ) =u(tht) 0<i <M+, 0<j<N+1. (2.1)

Throughout we adopt the following representation of §

M+l N+l
S=3 X 0;%i)d;0) (2.2)
-0 j=0
and denote by L. the one-dimensional quadratic spline interpolation operator
L: C([ax,bx]) > Sa4, (2.3a)
delincd by the interpolation conditions
(M)t =n(1f) for i=0,...,M+1, (2.3b)
The y-direction quadratic spline interpolation operator K, is defined in a similar way,
The following lemma indicates the relation between the one-dimensional interpolation operators and the
two-dimensional operator defined by (2.1).
Lemma 2.1. Ler Ly be the two-dimensional interpolation operator defined by the equations (2.1), and I, T, be
the one-dimensional interpolation operators defined in (2.3), then I, =1, @ I,.
Based on the one-dimensicnal quadratic spline interpolation results obtained in [Mars74] and [Kamm74]

we can prove the following theorem.

Theorem 2.1. The interpolant § € §, 5 of u defined by the interpolation relations (2.1) exists and is uniguely
defined. Moreover, if u € TNQ), then the interpolation error e(x,y) = S(x,y) — u(x.y) satisfies the following
bounds

leCx v =0(*), el =00 (2.42)
le(xne)| =0 ("),
le(t.y)| =0 ("),
| Deex; = My, )| =0(h), 11D [« =0 (%) (2.4b)
| Dye(. , y; — M)l =0 (%), 1D,e] | =0(h?) (2.4¢c)
| Dyye(x; — Mg, y; — M)l =0, [[Dye o =0{h%) (2.4d)
| D2e(tf, . )] =0, [1D2e | o =0 (h) (2.4¢)
|Dle(. . =0(h?), | [D}e || =0 (h) (2.45)
3E3

where h = max(h, n1,), and A = G

Proof: We first prove the cxistence and uniqueness of S. Assuming the representation (2.2) for S, then the




interpolation conditions can be written as:
Go==u

where G = {rrid(T, 6T, T), with Gy = Gyao iz =T, T ={trid (1,6,1), with T}) = Ty 2 g2 = 1},

0= {6y, J13' 15,

u = {k; - u(ef, ) M5 5! where k;; are appropriate constants.
In the above, trid(p,q,r) denotes a (block) tridiagonal matrix, in which the subdiagonal elements (blocks) are
all equal to p, the diagonal ones are equal 10 g, and the superdiagonal ones are equal to r. The first and last row
diagonal elements (blocks) may be defined differently. We also adopt the notation diag (g) to denote a (block)
diagonal matrix, with all diagonal elements (blocks) equal to 4.

We observe that G can be wrilten as the product of lwo matrices P and (0, where P = (¢rid (1, 61,1), with
P = Py nez =1), and Q = diag (T) with I being the identity matrix of size M+2. The existcnce and unique-
ness of §' is a direct consequence of the diagonal dominance of matrices P and Q. Moreover | ||| and

1@~ are both bounded by %, since P and @ can be transformed by replacing the first row by a linear com-

bination of the first and second row and the last row by a lincar combination of the last row and the row before
the last, (o the strictly diagonally dominant matrices

5 0 - T 50 -1
rer 1 T 1 6 1
P= S and @'= - where T' = - |
165 I T 161
-1 0 5] T -1 035

We now prove the a priori bounds (2.4b). The rest of the error bounds (2.4) can be proved similarly.

We first observe that
D yu — Doe=D X (I, u—u) + D Mot —Dou= DXy w—u) - De(ly te-u) + D (W, =t + D T — Dy
According to the one-dimensional interpolation results obtained in [Mars74], [Kamm74] | | Lt~z ] jo. = O (h;).
From the previous relation we obtain

| |IDLyte = Dyte] o0 = ORZR) + O(h3) + O(h2) = O(h?)
where s = max{#,,A,). Furthermore at the poinis (x; — Ak,, . ¥, we have
[Dlgu — Dot | = O3} + O(h}) + O3y = O(R*).

This concludes the proof of Theorem 2.1.
a

In order to formulate the O(/*) biquadratic spline collocation approximation Lo &, we define a biquadratic
spline interpolant §* € §; 4 of 1 such that

S'h ) =n(@@ht) for i=1,....M, j=1,...,N, (2.52)
n
$' (x5, 1) =n(ef,2d) - ﬁ Diu(tf, @) for i=0M+1, j=1,....N (2.5b)
and
) . h'}‘. ) .
S'('l:}‘,'l:})=:¢(T;-‘,T})—ED;H(T}‘,'I::}) for i=1,...,M, j=0,N+l. (2.5¢)

Al each one of the four corners of £, S’ satisfies one of the interpolation relations
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S =ult, 1) - 128 wu(ti, 1)) or

.\"14 (2.5d)
S’(fo-T )_"(Tl'! J)—ED“H(T”T))

where i =0, M+1 and j =0, N+1.
The behaviour of this modified interpolant is described in the following lemma.

Lemma 2.2. The biquadratic spline interpolamt ' defined by equations (2.5) exisis and is uniquely defined.
Moreover, if u € TN, then the interpolation error e(x,y) = S'(x,y) ~ u(x,y) satisfies the a priori error bounds

2.4.
Proof: The existence and uniqueness of S defined by (2.5) can be proved in the same way as that of S defined
by (2.1). Moreover, from the boundedness of ] |G™'| |, we obtain | 16; —B:-jl | =0h?) where 8;; and B:-_,— are

the degrees of freedom of S and §” respectively following the representation (2.2). This observation implies
that $’ satisfies the a priori bounds (2.4).
O

In the rest of the paper, we denote by S the interpolant defined by (2.5), and cxtend the definition of
L, I and I so that they satisfy the modified end-conditions. We adopt the notation S, «;; to denoie the value
of S, u respectively at the collocation point (z],1}).

Theorem 2.2. If u € T5(Q) then the following asymptotic relations hold at the midpoints (T} .1::}'),-"':’1 _,-":, of the
partition A
2

hr s 4

D Sij = Do + 24 Dy +0(hy) (2.6a)
; 2

DSy =Dyt + - >4 2 D3y + O0) (2.6b)

I n?
DyyS;j =Dyt + o — DDy + 2; D}D.u; + O(h*) (2.6¢)
2 2 - 4
D:S; =Dy — — Dlug + 0O(hD) (2.6d)
¥ [} 24 1

I 2

D2S; =D, - ’ % Diuy+ O(h) (2.6¢)

Proof: We give the proof of (2.6c) and (2.6d). The rest of the relations (2.6) can be proved similarly. Accord-
ing to the definition of I, and Lemma 2.1, we conclude that
Dylyut - Dou = DL Due - D Dyow = DL (DIt — Dyu) + DA (Dyu) - D(Dyae) =

D Lw-Dw+ D(DLu — Dou) + DX (Dyut) - D (Dyre) where w = D Lu — Dy,
2

hy
From the one-dimensional interpolation results [Chri88a], [Hous88b} we have w;; = D3u, T O(h") and
Doy Ly tizj = Doyityy = DeXewy; — Dyowyp + Do (DKt — Do) + DD )5 — DDyt

h: o"l') 2 444
=7 24 DDy + O(2R3) + OUh) + O(hin))

i h?
+D, 24 —= Dduy; + O )+—D3D t; + O(ht)

at the points (7f,7)) fori=1,... M, j=1,... N, which verifies the asymplotic relation (2.6¢c).
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The derivation of (2.6d) follows from the relation D2Lyu — DZu = DL, u—u) + DL — Diu=

D,IEI:(I). u—n)— Df(ll). U—n)+ Df(ly w—u)+ DILu—D2u, aund the fact that Xpu;5— ;=0 and
4
DE]I;u,-j —Dfu,-j = —ﬁ Diu,-_,— + Oy at the points (T}, 1} i=1,...,M, j=1,...,N. This concludes the
proof of (2.6d).
O

In order (o derive high order approximations of the derivatives of « at (he points in T;, we use the rela-
tions of Theorem 2.2 and prove the following. '
Theorem 2.3. Let S be the biguadratic spline interpolant of &t € T defined by equations (2.5). Then at
(55, TG IS the following relarions hold:

D28, ;~2D2S; + DS ;

Diuy = " + O(2) (2.72)
D3uy; = DES""";; DSt o) (2.7b)

_ DySioj~ 21;;3;} + D541 + 00 @70
D= DZS; 1 ; +22£2)§s,-,- +D%Sia; +0uh @70
Dyu; = - DuSicny = 26;)23,-; ¥ DeSinnj | o). (2.7¢)

Similar relations hold for the values of the derivatives of S and « with respect to the variable y at the same
points. For the values of the cross derivatives of S and u at the same points tie following relations hold:

DDy = 2 + 0k 2.7
1y
DyySio1 — 2D Sy + DS
D3D gy = —2 S L+ o) 2.78)
I).
DoSiotj+DyS; i1 #20D,8: + D Si s + D800
Doty =—2l o 2 - o R . o(h?) (2.7h)

24
where h = max(li., Ay ).
DEH,-_,J- - 2D§H,-j + Dfu,-ﬁd-
h?
Relation (2.7d) is a direct consequence of (2.6d) and (2.7a)  Similarly relations
Dx“r‘-l.j - 2Dxu,-j + D,u,-ﬂ_}-
h?

+OWhd).

Proof: Relation (2.7a) follows from (2.6d) and the relation Diu,-j=

+O(h?) and (2.6a) imply relation (2.7c). From (2.6a) and (2.7c), we

3 =
D:H"j =

Ditpu;j—Dluiy
21,
relations (2.7)-(2.7h) can be proved in a similar way. This concludes the proof of the theorem.

obtain (2.7¢). In order (o prove (2.7b), we use relalion Din,-j = + O(hf) and (2.6d). The

O

For the abbreviation of (he various asymptotic relations we introduce the [ollowing notation. We define
the difference operator A, by
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l\x‘ij = (wl'-l.f - ZW,)- + W||-+|Ij)ﬂl_%
and A, by

= 2
Aywii = (Wi = 2wy + wi g Vi

at the points (t7, T})ﬂi}"’-‘;}l. Then (he relations (2.7a) and {2.7c) can be wrilten as

Diuy=ADES; +0(2) , Diuy=AD,S;+0WY) (2.8)
fori=2,...,M-1,j=2,...,N-1 and similarly for the derivative with respect to y

Dju;; = AD2S;+ Oy . Diuy=AD,S;+ 0% (2.9)

fori=2,...,M-1,j=2,...,N-1. The relations (2.7f) and (2.7g) can be written as
DiDyty; = A DSy + O | D3Day; = A,D,S; + 002) (2.10)
fori=2,... . M-1,j=2,...,N-1

For the derivation of high order approximations of the derivatives of 1 at T3, T;., T;3 we make use of the
relations
3D§H Li™ Dil’lzlj
2

+ 0%, Dty ; = 2Dk ;— Dy + O02)

I

k
Drug

3Diuﬂrf,j - Di“.ﬂf—l_j (2.1 1)

3 + 02

k — & k 2 k —
D.r"M.j = 2Dx"M-l,j_Dxu.’.f—z.j"'o(hx)n D;”M+l,j—

for j=0,...,N+] and for k =3,4 and similar relations for the derivative with respect to y, and the cross

derivatives. Relations (2.11) follow directly from Taylor's Theorem. Using (2.8) we obtain the following

approximations for j=0,... ,N+land k=34

SA.S%;D — 30,582
2

Diug; = +O0), Diuy; = 20852 - ASEY + 0rd)
_ . 2.12
SA.SHD; ~ 3055, N

~I.f

5 +03?)

2ASETD - ASER 0y,  Dhuyyy ;=

k

DxuM.j

and similar approximations for the derivatives with respect to y, and the cross derivatives. The above results
are summarized in the following corollary.

Corollary 2.1. Under the hypotheses of Theorem 2.3, we have the following relations at the points Ty, T,

26D25 | ; — 5D2S4; +4D2S; ; - D2Sy;

Dlu ;= ) +00i3)
Dy = 26D28S)y; — SDSy ;. jZ: 4DISy_5; ~ DSy s ; +0u) @)
Doy = 22D.5,;+ SDxS2‘2j4— 4083+ DSy +OUY
Dyt = 22D Sy ; + 5D, Sy, jQ; D Sy_2,; + DiSpr-s +OUY
Jorj=1,....N. Similar relations hold for the derivatives with respect to y, and the cross derivative.

In order 1o obtain a high order approximation of the first derivatives of « at the points of T, and the knots
of the partition A, we first prove the following theorem;
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Theorem 2.4. Let S be the biquadratic spline interpolant of n € T° (ST).) defined by equations (2.5). Then at the
points (x;,v) , (T.y;) the following relations hold.

D3 >

D,S(x;,t}) = Do (x;, 1) — o + O(h) (2.14a)
Jori=0,... M j=0,... N+l and
K2D2u(l,y;
DyS(t5y;) = Dyu(eh,y) — I DTy | Okhd) (2.14b)

12

Jori=0,... M+1,j=0,... N
Proof: In order to prove (2.14a), we first observe that D X i — Dou = DX (K, u—u)+ D (L) — D, Atthe
points (x;,7}) we have that I -1 =0 and from [Chri88a], [Hous&8b] (Dl 0 — Dy )(xy 1) =

2

hz
SRt Diu et + O(hd). The proof of (2.14b) follows similarly. This concludes the proof of the theorem,

O

Similar relations to (2.14) can be proved for the derivatives of the interpolant on the knols {(x;,y;) of the

partition A for i =0,... ., Mand j =0, ... ,N. Using the previous theorem and relations (2.12), we can obtain

high order approximations of the derivatives of  at the boundary collocation points. The results are summar-
ized in the following corollary.

Corollary 2.2, Under the hypotheses of Theorem 2.4, the following relations hold on the points of Ty

24D,5(x,7}) + 5D,8(t§, 1) — 13D,8(t3, 1) + 11D, S(1},7) - 3D,S(t3,7))

4
24 +O3)

Don(xg, 1)) =
(2.15)

24D, S(ip ™) + 5D, S(Th T) — 13D, 8(Tfy—1, T + 11D S(Tiy_2,T) — 3D, 8(fy_3,7)
24

Jorj=0,...,M+L Similar relations hold for D u(1i,yo) and Dyu(%],yy).

+ 0

D:H(IMIT"}I) =

3.  Formulation of the biquadratic spline collocation method for elliptic partial differential equations

In this section we derive the various perturbations of the residuals R and r and use them to formulate the
colloeation equations. From the relations (2.6), (2.14) and the differential equaticn (1.1), we observe hat the
interpolant S satisfies the relations

i} 4 !1)5': s
LSy =gij —a;; 24 Diwg — oy EY3 Dluy
2 !2
+ oy g Dbyt + oy 2a D3Dxtij la
5 3 '? 3
+ d,-j a DJ:“r'j + €ij E D)'"ij

+ O(ir*) at the points {(tf, 7))} 5,

h'%
BS; =v; — By > D}u; + O(h") at the points {(x;, T} %% (3.1b)
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n2
and BS;=v;—B; ]JE Djuy; + O(h*) at the points {(t3,y))} #3';%.

Duc to relations (2.8), (2.9), (2.10) and (2.12) the relations (3.1a) at {(tf,1})}}3' %3 (ake the form
2 2

— A D?. ’) 2
LSy=gy—a; —— 24 i~ Cj o 24 ADLSy

by i ADL S+ b; ”2 AD S

+ .
i 24 0 24 (3.22)

hZ 2
+t!f,JI 24 A D, S + ey E AJ.D).S,-J-
+o0h.

At the collocation points in T;; the relations (3.1a) take the form:

h? .‘12
LSe;=8k; ~ar; 5o QADIS) ;= ADIS, ) — ey, T D2,
IIE h)z.
+ bk.j _é? (ZAIDIJ,S; g A,DI_‘.SmJ)+ bk.j g AJ'D-I)'S-'-'J (3.2b)

h? K2
+dy; ﬁ (2A.D,S; j— AD. S, v ey ﬁ AD,S,

+ 00

where (k,[,m)=(1,2,3) or (M,M—-1,M-2) at {(¢}. 7)), (Th, ) ¥5' and similacly at {(1],1}), =5, T4} 5.
At the interior-commer collocation points the relations (3.1a) take the form

h3 2 2 hy 2 v]
LS\ y=gu1—ay, 24 (2AD782,) — ADRS3,) -1 24 (2A D08 2 — ADYS | 3)

e hZ
+bit 5y QADGSs) = ADyS3 1 b1y oo RADS 12 = ADLS) 3) (3.20)

2 ;2

I I
+dy, 2 (CADSy | — AD:S3 )t ey i (RAD S 2 — ADS 3)

+0tY

for (7, 7]) and similarly for (t§,t%), (T}, 7)), (ti,Th). The boundary operator residual equations (3.1b) at the
boundary collocation points take the form:

h2
BSy ;= Ye; = Pr.j ﬁ (5ADS; ;= 3A:D:Sp ) (3.2d)

+ 0

where (£,{ ,m)=(0,2,3) or (M+1,M—1,M-2) at the points {(x0,T)), (xag T )}N‘”l and similarly at the points
[(Tr -}'0) ( yN)}MH
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A more compact form of relations (3.2) is the following:
LS=g+0th* on T-T)
BS =y+0(h%) on Tj @-3)

or
LS=g-P;S+0("h*) on T-T;
BS=v—PpS+ 00" on T, 3.4

where Py.S and PgS are O(h%) perturbation terms defined by the following siencils. For each interior colloca-
tion point in T;, Py S is defined by the 3 x 3 stencil

-+ D Dy S el
¢ Dy Sijn
- Dy Siin

@« D} Siaj|-2a DF 5; |a DI Sy

| - DA—D}- S,'_]J +ib DID). Sl'.j b Dny SI+1.j
e -2¢ D} 5
—~ Dy S Dy S | D Sy
+2e D;r S J
~b DDy S;j
c D). S;.j_]
—-£ D}- S,'_J'_].

Further, Py S is defined at the interior-comner collocation point (17,7}) by the 4 x 4 stencil

b DD, Sy
— D; S]..q
+e Dy S14
-46 DD, 53
+c D} 513
e D_\, S|'3
L |4 b, 5
24 =y -2
~5¢ D} 82
+58 D). Sz
2a D? 8.1 |-5a D S0 |+a DI $a.|a D Sai
—Ab DDy 5y, |¥5b6 DDy S| DDy Sy f+p DuDy gy
+2c D} 811
=24 Dy Sl.l +54 DI Sg.| - D, 53_] +d DI S.u
—2e DJ. Sl.l

Then Py S is defined by similar stencils at the rest of the interior-corner collocation points. For each interior-

boundary collocation point on x =1f, Py § is defined by the 3 X 4 steneil
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-b DD, S1ju

L Siin

-« Dy 8141
2% DZ 51; |Sa DI 814 42 D; Syil-a DT sy
+3b D‘D_.r S;J -4k D‘D,- S;_j +b D:D). Sq_)'

l 2

2 | 2 D3 Sy
=2d D, SIJ +5d Dy Sg_j—‘ld D S3J+d Dy S4,j

+le D)‘ S“.

Then Py S is defined by similar stencils at (he rest of the interior-boundary collocation points in T;; correspond-
ing 1o x =T}, y=1{ and y =1}. Finally, for the boundary collocation points on the boundary line x = ax, PgS
is defined by the ! X 4 stencil

1
g Sﬂ Dy Sl,j —|3ﬁ D, Sg_).- ||B b, S:;J —3|3 D, S”

Similar stencils definc PpS in the rest of the boundary collocation points corresponding to the boundary lines
x=bx,y=ayand y =by.
Moeving he perturbation terms in (3.4) to the left, we define the perturbed operators (L', B’) and we have
the relations
L'S=g+00:" on T-T;

CB'S=y+ 0% on T, 3:3)

The relations (3.3)-(3.5) lead to three different formulations of the (bi)Quadratic Spline Collocation
(QSC) method. Throughout, they are referred to with the acronyms P2C1COL, P2C1CL2 and P2C1CL1.

P2CICOL.: Lv=g on T —T,, (3.6)
Bv=y on Tj.

P2CICL2: (1t step) Lv=g¢ onT-Ts, (3.72)
Bv=xy on Ty,

P2C1CL2: (2nd step) Liug=g—Prv on T—-T;, (3.7b)
By =Y—Ppv on Tj.

P2CICLI: L'z=g onT-T,, (3.8)
Bz=y on T;.

Figures 3.1, 3.2 show the structure of the collocation matrices corresponding to equations (3.6} (or 3.7)
and (3.8), respectlively. The linear equations in (3.6) have al most 9 non-zero elements per row and lower and
upper bandwidth M +3, while equations (3.8) have at most 27 non-zero elements per row and lower and upper
bandwidth 5M + 11, assuming a natural ordering (bottom-up then left to right) of the points in T and of the
comresponding collocation equations and unknowns.
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Next, we describe the formulation of a variation of the QSC method. Whenever the boundary conditions
{1.2) of the problem are homogeneous Dirichlet or Neurnann, that is, « =0 or &, =0, on each of the boundary
subintervals of partition A of £2, we can assume that (he approximatc space satisfies exactly the boundary condi-
tions. A basis for such a space is the tensor product of the sets {6,-(.1:)}‘?.’_., and {&J'_,-(y)]j-"':, where

6,(x) = & (x) £ do(x),
G =), i=2,..., M1,
Op(x) = Gar(x) £ bpra (x)

and E)j(y) . J = 1,...N are defined in a similar way. The sign '+ or *=’) in the definition of EJ,- is chosen accord-
ing to the type of boundary conditions on the respective i-th boundary subinterval. The “~’ corresponds to Diri-
chlet conditions, while the “+’ corresponds o Neumann conditions. This implementation of the QSC method
produces a smaller size system and can still be formulated as an one-step collocation or as a two-step colloca-
tion. Throughout the rest of the paper, we will refer to this formulation as inferior collocation method.

4, Existence, uniqueness, convergence analysis and error bounds

4.1. The case of constant coefficients

In this section we will show (hat in the case of a Helmholtz problem with Dirichlet or Neurnann boundary
conditions, the biquadratic spline collocation approximation defined by cquations (3.7) exists and is uniquely
defined. Morcover, error bounds similar to those in (2.4) are derived. For this rcason we frst consider the

Helmhollz equation
Lu=aug +cuy+fu=g in £ (4.1a)
subject to homogeneous Dirichlet boundary conditions

#=0 on dQ2 (4.1b)

where a, ¢ and fare conslants.

The application of the interior two-step collocation method to the PDE problem (4.1) generales the fol-
lIowing discrele equaticns

Késa?'i‘rfz®7€+chi2rg’®rfz+%ﬁg‘®rg]§=§ 4.2)
2

I

where T, T, 7%, T¥ are ridiagonal matrices. The superscripts N and M denote the order of the matrices.
The matrices T%, T% and TY, 7¥ are defined in terms of the generic malrices 7_, and T.

-3 1 531
1 -2 | 1 61
T o= .. , Te=
1 -2 1 I 6 1
1-3 15
In the first step of the twe-step quadratic spline collocation method, the right side g of the equations (4.2) is a
vector of values of g on the collocalion poinis multiplied by appropriate factors. Mare specifically,

B(-UN+j = —gg (7, ) fori=1,..,M, j=1,..,N. In the second step, the right side is an O (#?%) perturbation of
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the right side of the first siep. (The perturbation is shown in (3.7b).)

We first study the properies of the eigenvalues and eigenvectors of T_; and T.

Lemma 4.1. The eigenvaluesdy, | =1,... ,Nof T are given by
ca W
Ay =4 sin? o (4.3a)
and its eigenvectors §;, 1 =1,... Nare
&=t sin DT oy (4.3b)

where X; are constanis.
Proof: By definition we have

6 =N& for I =1,....N
or
B1jot =28+ 8, =N&; for j=1,...,N (4.4)
with
Sog=—98;, and &y =y for I =1,,.,,N

The characteristic cquation of (4.4) is

pf —@+X)p +1=0 4.5)
and a solution of (4.4) has the form
8 j=cripfi +c2pf2 4.6
where p; ;. py2 are the zeros of (4.5) and ¢; |, ¢;7 are constants determined by assuming that the eigenvectors
are normalized (§;| =1 and §;p=—1 for! =1,...,N) and p;| # p;2. The constants ¢;; and ¢; 5 are given by
Prat | Pry+ ]
C1=——T . L=
Pra—pn Pr2—Pri
b N
Using the end condition & py ==& 4, (I =1,..,N) we get [ﬁ} = | and [rom this
12
LB =cos Am + 7 sin 2An 4.7
Pt2

where i is the square root of —1. From (4.7) and the relations
Priprz=1
Pritpra=2+X

we obtain (4.3a). The formula (4.3b) is a direct consequence of (4.3a) and {4.6). This concludes the proof of

Lemmad.l.
0O
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Lemma 4.2. The eigenvaluesy,, ! =1,... ,Nof Tg are given by
In
=—4sin> — +8
Wy N
and its eigenvectors 8,1 =1,. .. N are the same as of T%.

Proof: It is casy (o note that T§ = %, + 87 where / is the identity matrix of size N, Then if A; is an eigenvalue
of T% and §;, the corresponding eigenvector, T & =(T% +81) §, =X 6; + 83, =(X +8)8; which proves
Lemma 4.2.

a

We observe (hat the matrix X of the coefficients of collocation equations (4.2) has eigenvalues

O m=a ’%l, o, +8)+c ]Lz(l, +B)l,,,+%f(l; + 8)(A,, + 8)
Ix 1,

l=1,... M, m=1,....N

and eigenvectors §; ® &, where A; and A, are the eigenvalues of 7% and 7%, respectively, given by (4.3a)
and & and 8, the eigenvectors of 7% and T%, respectively, given by (4.3b). Since 7% and 7% are symmetric,
with distinct eigenvalues, their eigenvectors are linearly independent, and so are the eigenveclors of K.

Without loss of generality we can assume that @ > 0. Furthermore, from the ellipticity condition ac » 0
of the operator L of problem (4.1) we can safely assume that ¢ > 0. Under these assumptions we distinguish
lwo cases:

Case I: f (0. We then observe that

2 2
] 'll'(lN+8)+C[ N ] (1M+8)7L]+‘l—f(lu+8)(l‘v+8}
by —ay 8

G;mgﬂ[bx_ax

= 2 a [ ] !2 = _ 0
—4r l(bx—ar)z + (by—ay)QJ +2f+0h)=-t<

where € > 0, b =max{h, i,) and when b, 50,5, 50, M o0, N - 0a.
Case 2: f > 0. We Lhen observe that

2 2
c,,,,Sa[ M ] -xl-(x,,,+8)+.:[ N } g 8) Ay + o f e (A +8) (A +8)
bx — ax b B

y —ay

2 a c ] n
—4n [(bx—a.r)z + (by—ay)2J+8f+O(J }

Morcover, if

?'Cz a c ] E
L + = 4.8

for some posilive number g, then
Oim<—£<0

where ## = max{h,, &} and when /2y 50, h, 20, M 5 e, N = co.

From this, we come to the conclusion, that if £ <0 or else (4.8) holds, the eigenvalues of K are bounded
and negative, as i, — 0, h). -0

C,<—e<0,I=1,... M, m=1,... N




[

This shows that K~! exists and the eigenvalues of K™! satisly the following bounds for sufficiently small

Im

he By

0«

s—=I=1,...M, m=1,... N

Ot m

Note that the elliptic operator Lu = i1 + ity + ¢, in the unit square, satisfies the above conditions. Note also
that (4.8) holds in case 1. This proves the following theorem:

2
Theorem 4.1. Under the assumptions that a, ¢ > 0 and f < r 4 7+ < 2
2 | (x—ax)*  (by —ay)

of the inverse of the matrix of interior swo-srep collocation equations in the case of the Helmholtz problem (4.1)
is bounded, as h, — 0, hy = 0.
Note that by the equivalence of norms | [X~'| | is also bounded. A consequence of Theorem 4.1 is the lol-

J, the spectral norm

lowing heorem.

Theorem 4.2, Under the assumptions of Theorem 4.1, the collocation approximations v and up in S, 5 of the
trie solution e Cﬁ(ﬁ) of the PDE problent (4.1) exist and are uniguely defined by equations (3.6) and (3.7)
respectively. Moreover, if w=v — 1 and e = n, — u are the errors for the collocation approximations v and u 5
respectively, the following a priori bounds hold:

Jw eyl =0(h?) lwlle =0(h?)
[w(tiy)l =0"?)
Iw (x,Th) =0(*h?)
[w (T}, 1) =0W?)
[Dewlx; Ay, )] =0 (%) [HDewv | | =0h? 4.9)
| Dyw(.,y; —Ahy)| =0h*) [1Dw | =0 %
| Dyw(x; ~ M,y ~A) | =0(R?) [1Dgwll. =00YH
| DEw(Th, )| =0(k?) DAl — =0@D)
| D3w (e, )] =0(h?) [ D3w ] | =0(h)
le Gyl =0 [le]le =0 ()
le{ti.y)l =0Hh")
le(x;, e =0(h%)
letf, I =0(r%)
| Dee(x; — Mg, . ) =0 (") I Dee ] =0{n% 4.10)
|Dye( . y; — Ayl =0 Dyell.  =0@?)
| Dyye(xi = Mig,y; — M| =0 (%) [1Dye | 1o =0(h?%)
| D2e(t}, )] =0 (k%) [1D3e]]le  =0(h)
| D2e(tf, )] =0 (k%) [1D%e] | =0(h)
3443

where h =max(h,h,), and k=

6
M N MON
Proof: Let S=3’, 3 9;—5- {(x);() and v = z;, 21 0356;(x)9; () be the representations of S and v with respect
i=l j=I i= j=
to the basis functions. The existence and uniqueness of v and «, follow from the existence of K~! and the

boundedness of | [K~'[[... Moreover by subtracting (3.6) from (3.4), we get
LS -v)=0(?) , B -v)=0({?),
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which is equivalent to K(as - é“) = O(h?). This means that
118 =8 1w 1K |- O => |18 0[] = 0(2).
This result and the boundedness of the basis functions prove that
1S —v]|o=00?), DS =Dy ||e=00%, |IDS-Dyw|l.=0@0",
|1DyS =Dy | |o=0(2), [ID2S-Dv|[, =00, ||D3S-D¥||, =0w. *1D

The errvor bounds (4.9) now follow from (4.11), (2.4) and the use of triangular inequality.
Similarly, let 1y = § % B:-}“qJ,-(x)cbj(y) be the representations of «, with respect 1o the basis functions.
We subtract (3.7b) from (l3:.11)Jz:1:1d gel
L(S—up)=Pr(S—v)+O(*) , B(S—ua)=Pp(S —v)+ 00,

Since | |S =v||.= 02 and Py, and Py are O(h%) perturbation cperaters, assuming the coefficients of the
expansion of § — v are sufficiently smooth, we get

L(S—nua)=0W* , B(S-uy)=0(%
which can be equivalently written in matrix form
K@ -8“)y=0@"
from which we oblain
[18 —8") 1. = O(h*.

This result and the boundedness of the basis functions prove that

118 ~uall.=00"), |10:8 = Detal = O(),  [1D,S —Dyusl I = OU7),

| 1DgS ~Dgits |1a = O, |1D2S —D2ugl 1= 0D, ||D2S -Dlug||n=0G?. *1?

The error bounds (4.10) follow now [rom (4.12}, (2.4) and the use of triangular inequality. Note that the O ()
bound proven for the cross derivative error [ Dye(x; —My,y; — M| in (4.10) is not optimal. Qur numerical
experiments though indicate that | Dye(x; — Ahy,y; — A )| =0 3). This concludes the proof of the theorem.

a

We next consider the case of Neumann conditions, i.e., the problem
Lt =aug +cug +fu=g in Q (4.13a)
Bu=u, =0 on £} (4.13b)

where i, denotes the normal derivative of #. For simplicity we assume that ¥ =M. In this case the matrix of
collocation equations becomes

K“=ahi275®rg“+chizrg‘®rﬂ+%ﬂ?®rg“ (4.14)
x ¥

where 7%, TN are tridiagonal matrices of size N.

-1 1 7
1-21 1

T = v . TE‘=
1-21 1 61

11 1 7
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Using the same arguments as in Lemmas 4.1 and 4.2 we can prove the following lemmas.

Lemma 4.3. The eigenvalues \f [ =1,... ,Nof T} are given by
. I —Dn
l]N =—4 2 (
] sin’ === (4.152)
and the eigenvectors 871 =1,... N of T% by
8?}=K; Cosw);:l’_“,jv (4.15b)
2N
where ¥; is a constant foreach =1,... N.
Lemma 4.4. The eigenvalues A\ I =1,... ,Nof TY are given by
N 2 (4 —1)m
=—4sin® ~——+8§
T sin N
and its eigenvectors SN | =1, ..., N are the same as of TS given in (4.15h).

Combining the above lemmas, we conclude that the matrix K N 5f colloeation equations in the casc ol
Neumann conditions has eigenvalues

1 1 i
Olw=a pey pRER +8)+c el (uf + 8l + Ef(u}” + B)(1 + 8)

Furthermore, we observe that ¢ =0 if f=0. Similarly as for the Dirichlet conditions case, we assume that
a > 0 and 5o ¢ > 0. Then, if f £ —&/2 for some positive number g, we have o; ,, € —& < 0, which means that the
eigenvalues of K™ are bounded and negative. This shows thal the inverse of K™ exists and its eigenvalues

exist and satisfy the following bounds:

Gim
1 1

0< — «£—,fori=1,... M, m=1,...,N
O m E

The above observations can be summarized as lollows.

Theorem 4.3. Under the assumptions that a, ¢ > B and f < 0, the spectral norm of the inverse of the matrix of
interior rtwo-step collocation equations in the case of Helmholtz problem (4.13) is bounded independently of h,
and hy.

Using the above theorem, the existence and uniqueness of the collocation approximations v and u, for
the case of Neumann condilions can be shown similarly as in the case of Dirichlet conditions (Theorem 4.2).
Error bounds similar to (4.9} and (4.10) hold also in this case.

Finally we consider the general second order elliptic operator equation with constant coefficients
Lu=aug tcu, +du +eu, +fu=g in Q (4.16a)

subject to Dirichlet or Neumann boundary conditions

Bu=u =0 on 98 or

Bu=u,=0 on 9} (4.16b)

In this case the coefficient matrix of the interior two-step guadratic spline collocation equations can be

written in a tensor product form

1 1 1 1 1
K= GI—ZT_2® Tﬁ+cI_ZTE®T_2+d-E:TD®TG+8ET6®TO+Eﬂ6®T6

X ¥
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for Dirichlet condilions and

1 i
KN = ah—zTE®T£‘+ch—2Tﬁm®Tﬁ++dT:-Té“®TE"+e%TE"®T0N+%fT£"®TE‘
: ¥ X )

for Neumann conditions, where Ty and TY are tridiagonal matrices of size N, and we have assumed for simpli-
city that M = N. More specifically,

11 -1 1
-1 0 1 -1 0 1
= - - | TH-
-1 0 1 -~ 01
-1 -1 -1 1

It is worth noticing that X and K™ can be written in the form

x a iy

K= [ﬂ %[T._z + i }le(J R Teg+c }L?. Te® [T_2+%JIJ.TD] + %ﬂs@ TﬁJ

K'N=[a %[TE+£!:IT§‘ ®@TN +c—- TN ® [TE%+"—;:J.T5“‘]+lﬂ?® ™.
fiy a f c 3

Iy

In erder to study their properties we observe the asympioetic behaviour of their eigenvalues.

Lemma 4.5. The eigenvalues of T_3 + % h.To tend to Ny, and the eigenvalues of TS, + 4 B T8 tend 1o A},
a

fort =1,..., Nash=max{h,h] >0
Proof: First, we show that | | Tp8; | |- is bounded. From the definition, we have

Tod = | =bri1 + 8 11

For each of the components |—8; ;_, +8; ;431,i=2,...,N—I we oblain the bounds

L @idm Qi+) 7}
KJ[ 5N N + 51n IN J

[=8im) + 80| =

un __ @i-hin|

N N |(2|'Iq|.

2Ky sin

Similarly we derive

2K, sinﬂ—n cos f—n
g N N

<2|x%; |.

18, + 8,21 =

K |sin j'r—-"r+sinﬂ
! 2N 2N

This implies the bound | | T8 | | < 21%; |.

Now, if &; is an eigenvalue of T_, and &, the corresponding eigenvector, then we have
d
T8 + ;'thoar =108 +OU) e = 1248 | |

T_z + i h;Tﬂ] 81'
a

oa o
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Similarly we can prove that

= AN |

[Tﬂ + % kITE“] &N

which concludes the proof of the lemma.
O

The above observation suggests that the PDE problem (4.16) behaves asymptotically like the correspond-
ing Helmholtz problem (4.1} or (4.13).

4.2. The general case

In this section we study the existence and uniqueness of the collocation approximation defined by cqua-
tons (3.7) for a general operator equation with Dirichlet or Nenmann boundary conditions. For this reason we
consider a general second order linear elliptic PDE

Lu = auy + bty + ctyy +dliy + ey + fu =g in Q= (ax,bx) X (ay,by) (4.17a)
subject 1o homogeneous Dirichlet boundary conditions
w=0 on d03, (4.17b)

where @, b, ¢, d, ¢, f, g are [unctions of x and y. Let K be the matrix of collocation equations arising from the
application of the interior (wo-step collocation method to (he PDE problem (4.17a), (4.17b). The lollowing
lemma summarizes the diagonal dominance properties of the matrix K.

Lemma 4.6. The matrix K of the interior collocarion equations in the case of Dirichiet boundary conditions is
diagonally dominant for sufficiently small h,, h,, provided that

Lok, (4.18a)
—=< < 18a
3 ah_:_‘:
21b | hchy < altk + ch? (4.18b)
f=s0 {4.18c)
at atl points in T;, and
1 = d!i <7 {4.18d}
7 ah_% )
at all points in Tj,
Proof: Throughout the proof we use the following notation. For any collocalion point {x,3) let A = %,
lI
B= b}():,y)’ C= c(:éy), D= d(x.y) and £ = if"ﬂ. Similarly as in the casc of constant coellicients
(/5 = e Iy

without loss of generality we can assume a,c > 0, so A,C > 0 as well. It is worth nolicing that the cllipticity
condition #2—4ac < 0 of the operator L of (4.17a) is equivalent o B>—4AC < 0, from which we easily get

|B| < A+C.
We first consider the equations corresponding Lo collocations points in T;. The diagonal dominance con-
didon for a point (x,y) = (7},7}) is written as
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| —24A -24C +9f | —4A  +12C —6E +372f
—4A  +12C +6E 4372 f
124 +4C —6D W32 f

24 +2C -D +E +lAf —4B
24 12C +D -E +lIAf -4B
24 42C -D +E +IAf +4B
24 +2C +D -E +lIAf +4B

+ + + + + + + v

| I
| I
I |
| 124 HC +6D +3/2 f | (4.19)
I |
| |
I |
I I

It is worth noticing that for /,, A, sufficiently small the terms in (4.19) involving D, E and f will be dominated

by the terms involving A,C and B. Then, if —,l,— < i?— <13, |B| < A3E

and f <0 the diagonal dominance condi-

tion (4.19) is satisfied. We also note that (4.18) are the necessary conditions for diagonal dominance of colloca-
ticn equations on T;, since if one at least of them is not satisfied, (4.19) is false.

We next consider the collocation equations commesponding to interior-boundary collocation points. The
diagonal dominance condition for a point (x,y) = (t],7]) is written as

| 724 —40C +12D +15f | = | —I24 +20C 2D —-10E +52f -8B |
+ | -124 420C +2D +10E 452 f +8B |
+ | 4A +4C 42D -2E +I2f -8B | (4.20)
+ | 44 +4C +2D +2E +12f 488 |
+ | 24A -8C +12D H3f I

For I, ky sufficiently small, the diagonal dominance condition (4.20) is satisfied, iff %57. The case of

interior-boundary collocation points (x,y) = (T4, 7}) is handled similarly. The diagonal dominance of the equa-
I

tions corresponding (o cellecation points (x,y) = (17,1)) and (x,y} = (t],t%) is guaranteed iff -‘i—‘ z 7

Finally we consider the collocation equations corresponding to interior-corner collocation points. The
diagonal dominance condition for the point (x,y) = (11,7}) is wrillen as

| =604 —60C +10D +10E 4252 f +8B | = | —124 +20C +2D +10E +52f +88 |
+ | 204 —12C +10D +2E +5°2f +8B | (4.21)
+ | 4A HAC 2D +2E +121 +8B |

It is casy to see that for Ay, iy, sufficiently small (4.21) is always satisfied, and the inequality is strict. The equa-
tions corresponding to Lhe rest of the interior-comer collocation points are handled similarly.

The condition %S %SB is equivaleni to (4.18a), while |B| < A+C is equivalent to {4.18b), and

% < % <7 is equivalent to (4.18d). This concludes the proof of the lemma.
0

A consequence of Lemma 4.6 is the lollowing theorem.

Theorem 4.4. If (4.18a, b, c) hold ar all peints in T;, and (4.18d) holds at all peints in T;y, then the system of
interior two-step collocation equasions for Dirichler boundary conditions is uniquely solvable for I, Iy
sufficiently smail.

A similar analysis of Lhe propertics of the matrix of interior two-step collocation equations lakes place in
the case of homogeneous Neumann conditions. Theorem 4.5 summarizes (he results.
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Theorem 4.5, If (4.18a) holds at all points in TAJT;,, (4.18b, c) hold ar ail points in T UTUT;. and in addi-
tion
216 lihy < min{Tah} —ch, Teh? —ah?} at all points in T, 4.22)

and f < 0 on at least one of the collocation points, then the systent of interior two-step collocation equations in
the case of Neumann boundary conditions is uniquely solvable for Iy, hy sufficiently smallf.
We should note that (4.22) holds if we extend (4.18a) to be true at all interior-corner collocation points.

5. Numerical results

In this section, we present a number of numerical results to demonstrate the convergence and computa-
tional complexity of the QSC method.

5.1. Convergence test

In the first experiment, five formulations of the QSC method were tested. They are referred to by General
P2CICL1, General P2ZCICOL, General P2CICL2, Interior P2C1COL and Interior P2C1CL2. The lerms Gen-
eral and Interior distinguish between the formulations, which can be applied to any boundary conditions includ-
ing mixed ones (case General) or 1o homogeneous Dirichlet or Neumann conditions only (case Interior). The
ending -COL refers to the standard second order (non-optimal) formulations, while the ending -CL1 refers to
the one-step fourth order (optimal} formulations and the ending -CL2 refers to the two-step fourth order
{optimal) formulations. For brevity, in the rest of the section the lerm ‘methed’ will be used in place of the
term ‘formulation of methed'. All computations of Sections 5.1-3 were carried out on a VAX 8600 in double
precision,

The results exhibit the various optimal error bounds obtained in Theorem 4.2 and indicate complete

agreement between the analytical and numerical behaviour of the method. The only exception is the case of the
3-\3

crror bound for the xy-derivative on the set of points {(x;-Ak,y;—Ad) M ?f__l with A= , in which the

experimentally computed bound is optimal (O (h*)), while the a priori bound proven in Theorem 4.2 is O (12).

The iest problem is chosen to test the convergence of General P2CICLI, General P2C1COL, General
P2C1CL2, Interier P2C1COL and Interior P2C1CL2 on various sets of points and various grid sizes, with the
same number of grid points in both directions, i.e. ¥ =M. The order of convergence on a set of points {p;}7_

max | (e — ®)p;)|

max |(u —u)(p)|

are the respective QSC approximations to (he solution # of the problem. The computed errors of the approxi-
malions and the respective orders of convergence for five QSC methods and quadratic spline interpolation are

Aog ({/k) where k, [ are two different grid sizes and #®, n®

is estimated by order = log

found in Tables 5.1-7. The estimated orders of convergence are the same as those predicicd from Thecorem 4.2
for the Helmholtz preblem. It is important o note that the conditions of Theorem 4.2 are sufficient but not
necessary [o oblain the error bounds (4.9} and (4.10). Figure 5.1 shows graphically some of the data listed in
Tables 5.1, 5.4, 5.6 and 5.7. In Figure 5.1, we note that the two-step QSC approximation (General P2C1CL2) is
of similar order as the quadratic spline interpolation, while the first step QSC approximation (General
P2CICOL) is of lower order.

In this experiment, the system of linear equations were solved by Gauss climination using the ELLPACK
routines g3bnfa, g5bnsl, which are modified versions of the LINPACK general band solvers sghfa, sgbsl, with
the main difference of not using pivoting. It is important to nole, that we found experimentally, (hat the QSC
equations do not require pivoling.
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