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Abstract

Despite great advances in the analysis of time-varying images, implementing or
searching for correct and robust algorithms is still challenging and elusive. This paper
examines some of the reasons why the motion solution to a problem is sensitive to
small changes in the image data. We will discuss whether these sources of difficulty
are inherent, predictable, or avoidable. We will also present a computational procedure,
in contrast to previous techniques, based on a generate-and-test strategy as a first step
toward implementing robust visual motion computations.

The support of the National Science Foundation under gram IRl-8702053Al is gratefully ack­
nowledged.
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1. Introduction

Despite great advances in the analysis of time-varying images, implementing or

searching for correct and robust algorithms is still challenging and elusive. This paper
examines some of the reasons why motion algorithms are sensitive to small changes in
the image data. We will also present a generate-and-test computational procedure as a
first step toward implementing robust visual motion computations.

In measuring visual motion, it is common to distinguish two schemes. One, called
the flow-based method, is based. directly on local changes in light intensity. The other
one, called the featured-based method, is based on identifying features. The feature­
based method first segments each frame of the image sequence and marks the feature
points. Next, it establishs the correspondence of these points between the two frames.

Finally, it derives the motion parameters and object structure. This last step is called
the structure from motion problem or simply the motion problem. Our specific interest
and much of the discussion in this paper focus on the motion problem faced in the
feature-based approach. For a recent survey of flow-based methods, see [5].

Two different computational procedures for motion recovery are iterative search,
and linear computations followed by singular value decomposition of a mattix. In con­
trast to these, our proposed method adopts the generate-and-test strategy. This strategy

consists of two phases: the generation phase yields plausible solutions and the testing
phase selects the correct solution. In our scheme, the generation of plausible solutions
is based on a pair of three non-collinear feature points. The testing checks whether a

plausible solution correctly interprets the remaining features.

In the next section the problem of structure from motion is formulated and previ­
ous research is briefly reviewed: what results have been obtained, the computational
issues, and a discussion of generate-and-test strategy. Section 3 briefly presents a tech­
nique employed in the generation phase. This technique solves the structure from
motion for four coplanar points. A detailed discussion can be found in [13]. Section 4

discusses how a pair of sets of three points is extended to many pairs of sets of four
coplanar points. Once pairs of sets 0 four coplanar points are formed, the generating
technique described in section 3 can then be applied to derive plausible solutions. Sec­
tion 5 presents a teclmique to test whether these plausible solutions correctly interpret
the remaining points. Section 6 summarizes our scheme in a computational algorithm.

Section 7 describes a series of experiments to demonstrate the potential of this tech­
nique. The last section contains discussion and conclusions.
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2. The Problem of Structure from Motion

The problem of structure from motion in two views, to a certain degree, is well
understood in the theoretical aspect By the theoretical aspect we mean the number of
observable features needed in the input images to recover the motion uniquely. How­
ever, the computed solution, based on known techniques. is often quite sensitive to a
small amount of noise in the image data. This experience leads researchers, for
instance [9][12] to employ many frames for motion recovery. This line of research
represents a very promising alternative towards robust visual motion computations.
Instead of increasing number of frames we investigate this problem from a so-called
generate-and-test problem solving strategy. This new perspective appears to provide a
robust computational scheme.

2.1 Problem Formulation

We assume that the image plane is stationary and that two perspective views at
time tl and tz. respectively, are taken of a N-point rigid object moving in the 3-D
space. The task is to derive the motion and structure of the object in 3D space from the
two views.

We shall use the following notations. The focal length f will be assumed to be I,
Le., the image plane is at a distance one along positive z axis from the camera origin.
In fact one may use f instead of 1 for the derivation of technique. Let

= Object-space coordinates of a point Pi on the rigid object at II

Ai

Bi

= Object-space coorindates of the same point P j at IZ

= Image-space coordinates of the point Pi at II

= Image-space coordinates of the point Pi at tz

Notice that the third component of Ai and B j is 1. Then

Z/i Bi =R Zj Ai + T i =l, .. ,N

where

R = '21 r12'23 is a rotation matrix,
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and T :::: [tx ty lz]! is a translation vector.

The problem we are trying to solve is: Given N image point correspondences

Ai <~ B j i :::: I, 2, ... N

deternrine R, T. and Zj, Z';. i = I, .,. N.

If (R,T,Zi,Z';) is a solution, then (R,cT,cz;,cZ'j) is also a solution for any positive
scalar c. Thus one could at best derive Zit Z'; and T up to a scale factor. Figure 1 dep­
icts the imaging geometry and the problem. IT one interchanges the two frames. one
obtains the following.

Zi Aj :::: R t
Z'i B; - R'T i ::::l •..•N

We will use S to denote R'T. In other words, RS :::: T. The infonnation T and S,
derived in Section 3, plays an important role in the testing phase.

2.2 Previous Results: Iterative Search vs. Linear Computations

Roach and Aggarwal [2] show that five points in two views are sufficient to
recover the srructure and motion parameters. Their approach requires solving a system
of 18 nonlinear equations with 27 variables. This method requires iterative search and
a good initial guess of a solution. Nagel and Neuman [4] observe that the rotation
matrix can be separated from the translation matrix. The idea stems from the obseJVa­
tion that RzjA j x Z'iBi. if not zero, defines a vector normal to a plane containing T
,where x srands for vector product From this, a set of fotmh-order polynomial equa­
tions in three unknowns (parameters of rotation) can be derived. This technique requires
many fewer search dimensions than that in [2].

Tsai and Huang [14] have proposed a method to find the motion of a planar patch
(containing at least four points) from 2-D perspective views. This technique consists of
two steps: First, a set of eight "pure parameters" is defined. These parameters can be
determined uniquely from two successive image frames by solving a set of linear equa­

tions. Then, the actual motion parameters are detennined from these eight "pure
parameters" by solving a sixth-order polynomial or by computing the singular value

decomposition of a 3x3 matrix.

Tsai and Huang [1] investigated the problem of a curved surface patch in motion,
and established two main results concerning the existence and uniqueness of solutions
in the method referred to here as the 8-point algorithm. Given the image correspon­

dences of eight object points in general position, an E matrix can be determined by
solving eight linear equations. The actual 3-D motion parameters can be determined
uniquely from E. If E is unique, the 3-D motion parameters are unique. A similar algo­

rithm (not addressing the aspect of uniqueness) was also discovered independently by
Longuest-Higgins [6]. In [7], he enumerates inherent configurations that lead to
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singularities of E; hence 3D morion parameters are not necessarily unique, for instance,

if any six of the points lie on a conic, if any four of the points are collinear, or if any

seven of the points lie in a plane.

2.3 The Difficulty of Motion Computations

The computational aspect of the 8-point algorithm involves two major steps. The

first step involves solving a linear system of equations. The second step involves the

singular value decomposition of a matrix. It is well known that the stability of either of

these two steps depends on the condition of a matrix. Therefore, the behavior of the 8­

point algorithm depends on the dara and can be predicted. However, according to [16],

the experimental results are often sensitive to the data

Another difficulty lies in the usage of parameters. Consider the following exam­

ple: A rotation with parameters RA = (10°, 10 0, 10 j • where RA denotes (rotational

angle, tilt, slam), is applied to a set of eight points of which no four points are coplanar.

followed by the translation (2, 2, 8). Figure 2 depicts the two input images in a

512x512 screen. In this experiment, the focal length is one, the field of view is 60°,

and the spatial resolution for 1 pixel is thus about 0.00225. Since the screen coordinates

are used as input, any points within 0.5 pixel of the center of the picture element (pixel)

are regarded as coincident. In [15], three different solutions which match observable

input images perfectly (without tolerating any pixel difference) are found and described

in Table 1.

As these solutions are all perfectly correct with regard to finite resolution of an

image, there is no basis to favor one over the otherl (Le. anyone of them could be used

as reference parameters). The example actually raises the issue of robustness of any

potential motion algorithm. If one examines the motion parameters, then the relative
error in tilt might be as large as 400% and the relative error in slant might be 70%.

However. the use of relative error is quite mesleading because small angles will inevit­

ably cause large relative errors. If absolute error is used. then the error in tilt might be
40 °where the range of tilt is 360°, thus a 10% error. IT one examines other parameters,

the example shows errors up to 10%. This points out the difficulties encountered in [1]

and any existing algorithm. However. we have also observed [15] that there is a close­

ness between the derived matrix and the actual matrix. Therefore we suggest that the
rotational matrix be used for comparison.

2.4 A Generate-and-Test Computational Strategy

1While Ihe actual reference data satisfies the assumption of the uniqueness theorem in [1], there
is no contraditction in having many solutions. In the case of finile resolution, one could create
many input images (in tenns of infinite resolution) having the same two finia.e resolution input
images. Thereafter, one could recover motion parameters for each set of input images; hence
one presumably may anticipate quite a few solutions.
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Consider an N-poim motion problem. The mechanism of most algorithms is to
take all N points into account (Le., none of lhem will be left out) and generate a unique

solution in "one" step. Such an idea has yet to support a robust algorithm that would
respond to noise gracefully for N less than 20 points. It is. however, evident that the

more feature points a technique requires, the fewer applications it has.

In our two·step approach, the first objective is to generate plausible solutions to

account for a pair of sets of three image points irrespective of other features. The
second objective is to tcst these generated solutions to see if any of them could account
for points not considered in the first place. See Figure 3 for a sketch of these two para­

digms. For a problem of N points, we have N(N-l)(N-2)/6 possible groupings of the

points in threes. While we could generate plausible solutions based on one grouping,

we generate them from all possible groupings instead. It is likely that the position of

some of the points would be very accurate. Hence the plausible solutions generated by

the group consisting of these accurate points would contain the correct one. When one

tests this correct solution against other points, it would presumably be within the

acceptable range. Note that when a plausible solution is tested against the other points,

one should not anticipate a perfect match because we are dealing with noisy images.

Thus one has to design some criterion of tolerance. Since many of them could qualify

as solutions, a question arises: Do they form a cluster? If the problem is of size greater

than eight feature points, then there must exist a cluster because the motion is continu­

ous. From the cluster, one has to choose a representive. The correctness of the algo­

rithm is ensured by the theoretical basis established in [1] for more than eight feature
points. The difference of this strategy from iterative search is that all the candidates are

generated and examined one by one. One advantage of our approach is that the theoreti­

cal error analysis is easier to establish. Another advantage is its redundancy which usu­

ally provides the hope of achieving robusmess in computations.

3. Basic Problem

In this section, we will introduce a basic problem which plays a central role in the

generation phase. This basic problem can be defined as a motion problem for four

coplanar points zlAloZ2A2,Z3A3,Z4A4 subject to the following constraints: A 1,A 2 ,A3

is not collinear in the image; and B 1,B 2,B 3 (correspondence of Ai in the second image)

is not collinear in the image; and A 4 is the midpoint of the triangle defined by
A"A 2,A,_

A general problem of a four-point coplanar patch was solved in [14] and reexam­

ined in [13]. For the basic problem, either technique could be used. The former method

requires first solving linear equations and then finding the singular value of a matrix.

These twO steps are not necessarily well-conditioned. The latter method also involves

solving linear equations and then finding the eigenvalues of a positive definite matrix.

'While the first step of solving linear equations is not necessarily well-conditioned, the
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second step is always well conditioned. For this reason, we have chosen the latter tech­
nique and describe it briefly below in Section 3.1 and 3.2. For details of this approach,
see [13].

3.1 DERIVING THE RATIO OF DEPTHS

As we shall see presently, by using planarity, we can determine all zi/z/i up to a

unknown constant k. This observation is based on the following. Recall that

Rz 1 A 1 =z'lB 1 -T

Rz z A 2 =z'2 B2- T

Rz 3 A 3 =z'3 B 3- T

R Z4A4 =Z'484-T

(1)

(2)

(3)

(4)

Since Z4 A 4 is coplanar with 21 AI> Z2 Az. 23 A3. we know that there exists
alo az. Q3 such that

and

Applying R to both sides of (5) and using (1)-(4), one could rewrite it as

a 1 Z'1 8 1 + Qz Z'2 B2 + Q3 Z'3 B 3 = Z'4 8 4 .

Dividing both sides of (5) and (6) by 24 and Zl4 respectively. one gets

and

Z'l Z'2 Z'3
at -,-B 1 +az-,-B 2 +a3 -,-8 3 =8 4 .

24 24 24

Since A 4 is the midpoint among A 1,A 2,A 3. it is obvious that

21 1 22 1 23 1
at - = -; az - = -; Q3 - =-.

24 3 24 3 24 3

Rewriting (8) in matrix form, we have

(5)

(6)

(7)

(8)

(9)
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(10)

where

By simple calculations, one gets

Z'2 q2 Z'l Z'l Z'3 q3 z'1 Z'l- =- - =02 - and - =- - =03 -.
22 ql 21 21 23 ql 21 21

Z',
Now we denote - by k. Then Z'2/z2;:; 02 k and Z'3/Z3 ;:; 03 k where ~ and ~ arez,
defined as above.

3.2 DERIVING MOTION PARAMETERS

Once ~.~ are obtained. from the previous section, the following three theorems
recover the translational vector T in different cases. [13] contains the details of the
theorems and also includes a simple fonnula for the rotational matrix. In our imple­
mentation, the rotational matrix is derived in section 4.2 :,ased on the other method
instead. Let

Theorem 1:

If the eigenvalues of A t A are all equal. then T ;:; O.

Theorem 2:

If the three eigenvalues, AI. 1..2• A3. of A l A are such that Al ;:; 1..2 :r!= 1...3 and
'VI. V2, V3 are associated. eigenvectors, then T = 'V3.

Theorem 3:

If the three eigenvalues AI. "-2.1..3 of A' A are disUncit and vl' V2. V3 are associ­
ated eignvectors and Al > "-2 > 1..3, then T = v, ± e V3 where e = '1("-2-1..3)/(1..,-1..2).

Recall that if we reverse the order of the frames, then S, which describes the trans­
lation of the motion from the second frame to the first frame, can also be recovered in
the same way T was derived.

4. Deriving Plausible Solutions: Generation Phase
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Consider two perspective images of N points. It is apparent that any wee points in
the 3D-space are coplanar. Our strategy now is to seek a way to apply the technique
for the basic problem to any three noncolIinear image points.

To illustrate this, consider a pair of sets of three points. A 1,A 2 ,A 3 and B 1,B 2 ,B 3.

First we will introduce the midpoint of triangle M1AzA3 as the fourth point All and
demand z.:jA 4 to be coplanar with zlAl>zzAz,Z3A3' In a word, we regard A 4 as the
projection of a point lying on the plane defined by ZtA l.zzA z• Z3A3- Although Z4A4

is purely an artifact, it facilitates the expansion of a set of three points to a set of four
points. One immediate question is where the corresponding point of A 4 , denoted by
B 4 , is in the second image. Because of nonlinearity, the location of 8 4 is at best
known to lie inside the triangle M 1B 2B 3. Thus the location of B 4 depends on the
number of pixels within the triangle B 1,B 2,83. By using pixels (finite resolution) and
allowing a 0.5 pixel error, we reduce the number of cases from infinitely many to
finitely many. For each pixel within 8B1B2B3, we fonndate an instance of a basic

problem corresponding to the pair of A hAZ,A 3,A 4 and B b Bz,B3,B4. Once a pair of
four points is created, the technique for the basic problem may be applied to derive T
and S. Notice that there may be up to four pairs of (TSJ by Theorem 3 of Section 3.2.

5 Testing Plausible Solution

As pointed out above, each possible pair of sets of three points will generate up to
four times as many (T,S)'s as there are pixels in one of the triangle. The testing phase
uses the remaining image points (i.e., Aj,Bj) to prune these (T,S)Z

To do this, we first show that: (i) [Ai x S : i = 1, N) and fB, x T : i = 1, N} are
coplanar, respectively and (ii) the angle between Ai x S and Aj x S equals the angle
between B i x T andBj x T

Clearly, Aj x S is a vector lying on a plane perpendicular to vector S, and Bj x T

is a vector lying on a plane perpendicular to T. Thus {A j x S : i = I, N} and fBi x T :
i = 1, N} can be regarded as two patterns of N coplanar rays emanating from the origin.

To show that the angle between Ai. x S and Aj x S equals the angle between Bi. x T and
Bj x T, recall that RZj Aj = Z'j Bj - T and RS = T. Thus

Zj R(Aj x S) = z'j(B j x T)

From this. one can conclude that the angles must be the same.

:z One could also derive R based on eigenvectors by theorems of section 3.2. Once both R and T

are available, one can substitute them into motion equations. This will lead 10 lhree linear equa­
tions in terms of ZI and :'1. Because of noise, these lhree lines do not intersect, in general, at a
comon point Thus the next step is to design some criterion of acceptance. A possible criterion
could use lhe area bounded by the line segments connecting three intersections.
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To obtain the depth Zi. observe that

Zi IIBi x T II

Z/i IIAjxSl1

Furthennore,

zjA j =-T· T + Zli Bj ' T

Using the above, simple calculations give us·

IIBixTllllTl1
Zi = ..,-,,..,---::,..,--=-=':::--,-,-,=-=,..,--,..,---:::-

IIAixS II (Bi . T) - IIBixT II (Ai· S)

Now our testing strategy is (1) Compute the angle, denoted by ai, between Ai x S
and Aj +1 x S and the angle, denoted by Pi, between Bj x T and Bi+1 x T. (2) Require
the difference I a.j - pj I to be a small angle. In our experiments. we considered two
degrees to be small. (3) Accept a solution if it passes through (I) and (2) and compute
R by the following:

R: S 'T

R:AjxS 'BjxT

R: S x(A j xS)~T x (B j x T)

(4) Compute Zi an1require Zi be positive. (5) Compute RZi Ai + T. (6,,< Compute the
screen coordinates B j based on (5). (7) Require the difference between Bj and Bj to be
as small as possible. In general, we require that all the points should be within a reason­
able pixel-tolerance, e.g. 4 pixels, and a majority of the points should be within a very
strict pixel-tolerance, e.g. one pixel. If a solution passes these tests, then we accept it.
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6. Algorithm

The following algorithm summarizes our method.

Algorithm:

(InpUllmages):

Two Frames: Aj i=1.N and B j i=1..N /* screen images */
For each i<j<k such that {Ai,Aj.Ak } are noncollinear and (Bi,Bj,Bd are nocolIinear

cobegin:
for each pixel B inside MiBjBk

cobegin:

(1) solve [B i Bj Bd Q = B where Q = [qj q2 q,l and let 0,. =Q2Iqj; 0, = q,lqj
(2) compute the eigenvalues and eigenvectors of

[Bi o,.Bj o,Bk][Ai Aj Ad'[A, Aj Ad-' [Bi o,.Bj o,Bk]'
compute T

(3) compute the eigenvalues and eigenvectors of
[Ai Aj/o,. Aklo,l[Bi Bj Bkl'[Bi Bj Bkr' [Ai Aj/o,. Aklo,J'
computeS

(3) compute

Cti: angle between A I xS and AjxS
l3i: angle betweenBlxT andBjxT -

A
(4) if Iaj A~i I <degree_tolerance for every i, then compute R. based on

R:S---">T
: AjxS--}-BjxT

: Aix(AixS)---">Tx(B,xT)

IIBiXTllllTl1
(5) compute Zi = ..,...,...,....""7...,....:,:..::..0:,:=-:..:.:.,:.:..:...:.,...,....----,-

A IIAixS I I~i . T) - I IBixT II (Ai' S)
A

(6) use R, zi,A j to compute Ri­
A

(7) If IBi - Bi [ < pixel_tolerance for every i, then accept the solution.
coend

coend
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7. Experiments

The observable input images are all in screen coordinates. In other words, simula­
tions are based on finite resolution images. By using finite resolution, a 0.5 pixel error
is already inherent in the position of each feature. As to the parameters of the imaging
geometry, the field of view of the camera is 60 0, the focal length is one, and the image

is 512>612 pixels. Three experimental conditions are considered: (I) a pair of finite
resolution images; (IT) randomly add zero to two pixels noise in the x and y directions
to the images generated in (1) and average over 20 samples; (III) randomly add zero to

four pixels noise in the x and y directions to the images generated in (I) and average
over 20 samples. The results are presented in terms of the relative error in T, the
motion parameters, and a measure described below.

Note that the following holds for any x:
1\

II R x -R x II $, II Ii -R II
II x II

1\
The geometric meaning is that the angle between R x and R x (for every x) cannot

1\

exceed 2 sin-1 ( I I R - R I I ). This fact can be seen in Figure 4 where I I R - Ii I I
2 1\

is the length defined by R x and R x. We use this as a measure3.

(I) Finite Resolution:

A set of eight points. of which none of the four points are coplanar, were chosen
arbitrarily. We then applied a motion with 10 0 of tilt, 10 0 of slant, and 10· of rotational

angle to these points followed by a translation given by the vector (2,2,8). We denote
the rotation parameters as (tilt, slant, rotational angle). In other words, the rotation
parameters were (10 ",10 ",10·). We used 2· as the tolerance in step 4 of the above
algorithm and 2 pixels as the tolerance of mismatch for each point on the second image.
Seventy solutions passed the testing phase. Of all these 70 solutions, the error incurred
in the rotational matrx never exceeded 1 0. In other words, a cluster is formed. The
result is described in the first row of the Table A.

em Noise in both x and y components: Zero to Two pixels.

The x and y components of each feature point in the above input images was cor­

rupted by zero, one, or two pixels randomly. The second row of Table A gives the
averages of the derived parameters in 20 experiments.

(III) Noise in both x and y components: Zero to Four pixels

3 The technique used to estimate the norm IIR-~II is based on Gerschgorin's circle theorem
([8J) for eigenvalue and the theorem the norm of A is the square roOl of the largest eigenvalue of
ATA ([8]).
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This case repeated (II) except that the noise ranged from zero to four pixels. The
third row in Table A gives the results over 20 experiments.

We also conducted all the above three experiments using two other sets of motion
parameters (10 ',30 ',20') and (20 ',30 '.40 '). The results are tabulated in the Table B
and the Table C respectively. Notice that the rotational angle around the rotational axis
in our simulations ranged from 10 0 to 40 0 and the slant, the angle between the rotational
axis and the optical axis. ranged from 10 0 to 30 ~ Those represent large rotation angles
relative to those allowed in [16], in which the success of the experiments relies on a
small rotation angle, typically below 5°.

8. Conclusions

The experiments described above confirm that a generate-and-test strategy can be
used successfully for implementing robust visual motion computations. The rotational
matrix can be determined very accurately even though the noise level is increased up to
four pixels. The uniqueness of the motion parameters will require at least eight features
in each of the two images. The mean of the cluster of acceptable motions is chosen as
the final solution. In our current implementation, it takes a substantial amount of cpu
time to compute the solution. However, the algorithm could be implemented much
more efficiently on a parallel machine. Some future questions: (i) Could one have a
basic problem that would reduce the amount of computation? (ii) Could a least-squares
method be incorporated into the computation process?
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Table I:

IX ty tz Tilt Slant Angle

0.281830 0.246854 1.0 -10.877623 9.363212 10.024160

0.362555 0.311039 1.0 -35.339671 17.536793 10.870609

0.25 0.25 1.0 10 10 10
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Table A: RA = (10',10',10), T=(2,2,8)

Noise ER ET Tilt Slant Angle

0.5 1.02 7% -17 14 10

0-2 1.52 10% -9 19 10

0-4 1.63 13% -4 16 10

Table B: RA = (10 ',30 ',20), T=(2,2,8)

Noise ER ET Tilt Slant Angle

0.5 1.13 1% 13 30 20

0-2 1.90 11% 8 30 20

0-4 3.07 21% 8 31 21

Table C: RA = (20 ',30 ',40). T=(2,2,8)

Noise ER ET Tilt Slant Angle

0.5 0.90 1% 22 29 40

0-2 3.33 17% 23 29 39

0-4 3.96 22% 26 29 40
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