
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1988 

Comments on Mohr and Henderson's Path Consistency Comments on Mohr and Henderson's Path Consistency 

Ching-Chih Han 

Chia-Hoang Lee 

Report Number: 
88-733 

Han, Ching-Chih and Lee, Chia-Hoang, "Comments on Mohr and Henderson's Path Consistency" (1988). 
Department of Computer Science Technical Reports. Paper 632. 
https://docs.lib.purdue.edu/cstech/632 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


COMMENTS ON MOHR AND HENDERSON'S
PATH CONSISTENCY ALGORITHM

Ching-Chili Han
Chia-Hoang Lee

CSD·1R·733
January 1988



Comments on Mohr and Henderson's Path Consistency Algorithm

Ching-Chih Han
and

Chia-Hoang Lee

Department of Computer Science
Purdue University

West Lafayette, m 47907

ABSTRACT

Mohr and Henderson have presented new algorithms for arc and
path consistency in [1]. Though the underlying ideas of their algorithms
are correct, the path consistency algorithm PC-3 is in error. In this paper
we point out the errors in this algorithm and give a correct one. The
time complexity and space complexity of the revised algorithm are also
analyzed.

1. Introduction

In a recently published paper by Mohr and Henderson (M-H), new algorithms for
arc and path consistency were presented. We show that the algorithm for path con
sistency is in error and give a refined solution.

The idea of the arc consistency algorithm introduced by Mackworth [2] is based
on the notion of support. Mohr and Henderson further made this support evident by
using some data slIUctures to record the relevant supporting information. They use a
counter for each arc-label pair [(ij),b] to indicate the number of labels at node j that
support (are consistent with) the label b at node i. In addition, for each label c at node
j, the member (i,b) of set Sjc is the label b at node i that is supponed by label c at node
j. They also use a table, M, to keep track of which labels have been deleted from which
nodes, and a list, List, to control the propagation of constraints. This idea has also been
applied to the path consistency algorithm PC-3 stralghtforwardly. However, the path
consistency algorithm is not completely correct. In section 2, we will point out the
errors and give a counterexample. In section 3, we will give a correct path consistency
algorithm PC-4. Note that a fonnal treatment of the concept of path consistency was
first provided by Montanari [4].

This work is supported by Lhe Nauonal Sciencc FoundaUOll under the grant IRI-87020S3.



- 2-

2. A Counterexample to Algorithm PC-3

Arc consistency algorilhms check the binary relation between each pair of nodes
and delete any inconsistent labels from the admissible labeling set of each node. How
ever, in path consistency algorithms, we cannot delete labels from the admissible label
ing set of a node since we are considering the relations between two nodes instead of
the labelings at a single node. To show that the algorithm PC-3 is not completely
correct. let us examine the following example depicted in Figure 1. (Counter[(iJ).b.c]
should be Counter[(iJ).k.b.c] on lines 26 and 27 of algorithm PC-3 in [I]) We wlll fol
low [2] and use matrix fonns to represent binary relations.

N ={l.2.3}

A ={b.c}

E ={(1.2).(1.3).(2.3)}

A, ={b.c}

A 2 ={b.c}

A 3 ={b.c}

b c

b [: ~]R 12 = c

b c

b
[~ ~]R 13 = c

b c

b

[~ ~]R2j =
C

TRij = Rji

Note that matrix Rij is the relation between i and j whose rows correspond to the possi
ble labels for node i and columns to the possible labels for node j. (In algorithm PC-3
Rij(b,c) is represented by R (i,h,i,c).) For the entries of Rij. we use 1 to represent true
and 0 to represent false. It is easy to see that (e, b, b) is the only solution of the above
constraint satisfaction problem. However, after the first iteration of the for loop from
line 2 to line 19 (see [I]). the data structures will be as follows:



-3-

M[l,b] = 1,
M[2,b] = 1,
All other M's are zero,
A, = (cJ,
A2 = (cJ,
A, ~ (b, cJ,

All S's are empty,
List ~ ((1, b), (2, b)}.

The two b's are removed from the sets A 1 and A 2 because there are no labels at node 3
that can support the relation R(1, b, 2, b). But we know that (c, b, b) is the solution of
the constraint satisfaction problem. If set A2 does not contain label b, then (e, b, b)
cannot be a final solution of the constraint satisfaction problem. The error comes from
the deletion of label b from set A2 at line 17. Even though there is no label at node 3
that supports the binary relation R(1, b, 2, b), label b should not be deleted from set A2,
since it may satisfy the constraints with other labels at node 1. We should, instead, just
delete the binary relation R(1, b, 2, bJ, i.e., set R(1, b, 2, b) equal to false.

After algorithm PC-3 is finished, the final result will be:

Al = ()
A 2 ~ (cJ

A, = (cJ

This is not a correct result since from it we can not find the solution (e, h, b) of the
constraint satisfaction problem. We will give a revised path consistency algorithm,
PC~4. in the next section and analyze its time and space complexities.

3. Revised Algorithm PC-4

Figure 2 is the revised algorithm PC-4 for path consistency. In algorithm PC-4, M
is a table with index [i, b, j, c] (in fact M is a boolean matrix). Set Sibjc contains
members of the form (k, d), where the binary relations Rik(b,d) and Rki(d,b) are sup
ported by the binary relation Rij(b,c). We also use counters with indices of the form
rei, b, i,e), k]. Counter[(i, b, i, cJ, k] is the number of adolissible pairs (i, b)·(k, d) that
support the binary relation Rij(b,c), where d is any admissible label at node k. Note
that Counter[(i, b, i, c), k] is essentially always equal to Counter[(i, c, i, bJ, k]. If both
of them equal to 0, then there is no admissible label at node k that can support the

binary relation Rij(b,c). Hence, Rij(b,c) must be set to 0 (false).

Step 1

1 M:=O; Sibj,:=Empty_set; List:=Empty; Counter:=O;

2 for (i,J) e E do



-4-

3 for k = I, n do
4 for b E Ai do
5 for C E Aj such that Rjj(b, c)=l do
6 begin
7 Total:= 0;
8 fordeAkdo
9 if R",(b, d) = I and Rk/d, e)=1 Iben
10 begin
11 Total := Total + I;
12 Append(Sibkd, (j, c»;
13 Append(Sj'kd, (i, b»;
14 end;
IS if Total = 0 Iben
16 begin
17 M[i, b, j, e]:=I; MU, e, i, b]:=I;
18 Ri/b, e):=O; Rji(e, b):=O;

19 end else
20 begin
21 Counter[(i, b, j, c), k] :~ Total;
22 Counter[(j, e, i, b), k] := Total;
23 end;
24 end;
25 initialize List witb [(i,bJ,e)lM[i,bJ,e]=MU,e,i,b]~1 and i<;;J;

Step 2

26 while List not Empty do
27 begin
28 choose (k, d, I, e) from List and remove it from List;
29 for (j, c) e Skdl, do
30 begin
31 Counter[(k,dJ,e),n:~Counter[(k,dJ,e),n-l;

32 Counter[(j,e,k,d),n:=Counter[(j,e,k,d),n-l;
33 remove (j,e) from Skdl,;
34 remove (k,d) from Sj,,,;
35 if Counter[(k, d, j, c), n=o Ihen
36 if M[k, d, j, e]=O Ihen
37 begin
38 M[k, d, j, e]:~I; MU, e, k, d):=I;
39 Append(List, (k, d, j, c»);



- 5-

40 Rki<d, c) :~ 0; Rjk(e, d) :~ 0;
41 end;
42 end;
43 for V, c) E SHd do
44 begin
45 Counter[(I,eJ,e),kj :=Counter[(I,eJ,e),k]-1;

46 Counter[v,e,l,e),k] :=Counter[V,e,I,e),k]-1;
47 remove v,e) from Skkd;

48 remove (I,e) from Sj'kd;

49 if Counter[(I, e, j, c), k]=O tben
50 if M[I, e, j, e]=O tben
51 begin
52 M[I, e, j, e]:~1; Mfj, e, I, e]:=1;

53 Append(List, (I, e, j, c));

54 R'j(e, c) :~ 0; Rj/(e, e) := 0;
55 end;
56 end;
57 end

Figure 2. Algorithm PC-4

The complexity analysis of the algorithm PC-4 is similar to that of the algorithm
PC-3. The maximum number of times line 11 to line 13 will be executed is on the

order of n3 a3 since lEI is of order n2 and lAil = IAjl = IAkl 5: a (and k is from 1 to n in
the for loop). For step 2, there are two ways to analyze its time complexity. First,
since there are at most O(n 3a 2 ) counters and each has a maximum value of a, line 31

to 34 and line 45 to 48 can be executed at most order O(n 3a 3 ) times. (Remember that
the index of Counter is of the form [(i, b. j, c), k]. There are O(n 3 ) different i's, j's,
and k's and Oea2 ) different b's and e's.) Second, the while loop is executed at most
n2a 2 times since each edge can be put into List at most once for each different pair of
labelings of its two ends. The for loop is bounded by the size of SkdIe which is of order
na. So the total time for step 2 is O(n 3a 3). Therefore, the time complexity of the
whole algorithm is O(n3a 3).

The space complexity of PC-4 is:

Number of counters::;; O(n 3a 2 ),

Sum of the size of the different sets Sibjc ::;; na x L !Ajl x !Ajl ::;; n3a 3

(i,j)eNxN

(Since each set Sibjc is of size na.)



- 6-

So the space complexity of the whole algorithm is O(n3a 3 ). Note that PC-4 has the
same time and space complexity as PC-3.

4. Conclusion

Mohr and Henderson made an important observation which leads to the refinement
of the arc and path consistency algorithms. However, they misuse labels at each node
for the binary relations between a pair of nodes in the context of path consistency. In
fact, one cannot delete the labels from the admissible labeling set of a node if there is
any path inconsistency. Instead, one should remove the inconsistent relations by setting

the relations to zero. This is the main error in the algorithm PC-3, and we have fixed it
in the algorithm PC-4. Furthermore. the time complexity and space complexity of PC-4

are both O(n 3a3 ).

5. Acknowledgements

The authors would like to thank the anonymous referees for their constructive
remarks.

REFERENCES

1. R. Mohr and T.C. Henderson, Arc and Path Consistency Revisited. Artificial Intel
ligence 28 (1986) 225-233.

2. Alan K. Mackworth, Consistency in Networks of Relations, Artificial Intelligence
8 (1977) 99-118.

3. Alan K. Mackworth and Eugene C. Freuder, The Complexity of Some Polynomial
Network Consistency Algorithms for Constraint Satisfaction Problems, Artificial
Intelligence 25 (1985) 65-74.

4. V. Montanari, Networks of Constraints: Fundamental Properties and Applications
to Picture Processing, Inform. Sci. 7 (1974) 95-132.



- 7 -

Figure 1. A counterexample to algorithm PC-3.


	Comments on Mohr and Henderson's Path Consistency
	Report Number:
	

	tmp.1307986960.pdf.R9poE

