
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1987

Self-Alignments in Words and Their Applications Self-Alignments in Words and Their Applications

Alberto Apostolico

Wojciech Szpankowski
Purdue University, spa@cs.purdue.edu

Report Number:
87-732

Apostolico, Alberto and Szpankowski, Wojciech, "Self-Alignments in Words and Their Applications"
(1987). Department of Computer Science Technical Reports. Paper 631.
https://docs.lib.purdue.edu/cstech/631

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SELF-ALIGNMENTS IN WORDS
AND THEIR APPLICAnONS

Alberto APOSlOlico
Wojciech Szpankowski

CSD-1R-732
December 1987

SELF-ALIGNMENTS IN WORDS AND THEIR APPLICATIONS

Alberto Aposzolico and Wojciech Szpankowsld*

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

Abstracl

This paper deals with the probabilistic analysis of some quantitative measures associ
ated with periodicities in words, notably, the various values attained by the lengths of
the longest common prefix of pairs of suffixes of a given word. Such values, that are
called here self-alignments, playa crucial role in sever3J. algorithmic constructions,
such as building the suffix tree or inverted file of a word, detecting squares and other
repetitions in a word. computing substring statistics, etc. The probabilistic analysis of
self-alignments is then used to study the expected time complexities of straightfor
ward algorithmic solutions to these problems, and to compare such performances with
those attained by more complex constructions.

Key words and phrases: Combinatorial algorithms on words, average case analysis of algo
rithms, Bemoulli model, self-alignments, periodicities in words. suffix trees, subsrring statistics.

INTRODUCTION

Periodicities and related phenomena in words are known to play a central role in many

facets of theoretical computer science, notably, in coding theory, in the theory of formal

languages and in the design and analysis of algorithms. In this latter field, several efficient algo-

rithmic constructions have been set up to date both to detect and exploit the presence of repeated

subpatterns and other kinds of more or less unavoidable regularities in words. In this paper, we

focus on a class of algorithmic problems that share the following common feature. The efficiency

with which these problems can be solved depends in a crucial wayan the speed with which the

following basic question is, once or repeatedly, answered: given a word X, and two arbitrary

suffixes W and Z ofX, what is the (or length of the) longest common prefix of W and 21 Some

of these problems have met already optimal solutions. For otheIS, efficient solutions are available

that may nevertheless be susceptible of further improvements. For all these problems. however,

• Supponed in pan by NSF under grant NCR-87021l S

-2-

aIgoritiunic design was so far mostly finalized to the optimization of the asymptotic worst-case

behavior. As is often the case. the constructions resulting from this endeavor are generally quite

elegant, but also quite involved. In general, this inflates the COILStants hidden in the corresponding

figures of asymptotic performance. By contrast, straightforward constructions exist that appear

conceptually rather naive, but do not present, even in the asymptotic sense. an unbearable compu

tational overhead with respect to the more elaborate solutions. Since the worst cases for these

problems are often represented by rather unrealistic, even pathological inputs. it seems natural to

inquire about the expected performance of their naive algorithmic solutions, and compare such

performances with those of more clever methods. The results of this paper suggest that, under

reasonable probabilistic assumptions. the straightforward algorithms for the problems on words

that are considered here have an expected asymptotic time complexity that is for some problems

only slightly worse, and for some other problems equal or even better than the time complexity of

the corresponding clever solutions.

1his paper is organized as follows. In Section 2, we introduce some measures for what can

be loosely defined as correlatiomi among subwards of a given word. We find it convenient to

assume such a word unbounded, but the upper bounds that we derive based on this assumption

will hold a fortiori far smngs of finite length. In particular, we derive the dismbution function of

the longest common prefix of two suffixes of a given word. Using this we prove that the average

values of the largest and the average longest common prefix of all suffixes (the so called height

and depth respectively) are 0 Oogn). In Section 3, we apply our probabilistic results to the aver

age case analysis of the straightforward versions of some important algorithms on words. We

summarize the main results of that section, referring to the case of a binary input smng emitted

by a symmetric source. For such a stting, we find that building the suffix tree or inverted file asso

ciated with a word, which takes linear time by clever methods [MC], takes 0 (n logn) time by the

naive method; detecting all squares in a word, which takes optimal O(nlogn) time by clever

- 3 -

methods [AP, CR, MLl, takes 0 (nlogn) expected time by the direct method; computing the full

statistics wilhour overlap of aU substrings of a word, which takes O(nlog2n) time by clever

methods [API, AP2], takes O(nlogn) expected time by the direct method, etc. The same asymp-

totic bounds hold in the case of nonuniform distributions, although the CODStants involved grow

with the highest probability associated with a source symbol. Section 4 concludes our discussion

by relating the present results [0 those obtained by previous swdies on general tries [SZI, 522,

SZ3].

2. AUTOCORRELATION PARAMETERS IN WORDS

In this section, we inttoduce some basic definitions and present a thorough analysis of self-

alignments of a word in a probabilistic framework.

2.1 Basic definitions and summary of maio results

LetX = XtX2X3' •. be a smog of unbounded length formed by symbols from an alphabet:E

of cardinality V. and let Sj = XjXi+l' .. be the i -th suffix of X. i=l.2, For every off-diagonal

pair (i. j) of positions of X. we define Cij as the length of the longest sning that is a prefix of

both Sj and Sj' We leave Cij undefined when i=j. Thus. Cij = k iff i"!:-j and Sj and Sj agree

exactly on their fust k symbols, but differ on their (k+l)-st. Oearly. Cij = Cji for all meaningful

choices of i and j.

Let now n be any :fixed integer. The following three expressions define, in succession. the

n-th height H" ofX , the n-th shallowness h" ofX, and the n-th depth D II ofX .

n

H" = max {Cij} ,
lS,i<jS,1I

h" = min { max {C,).
lS,is,1I lj".j~ J

max {Cj "}
" -'.,.=sLi.=s",",-,,,,,·",-.__' _

D" = L
;=1

(2.la)

(2.lb)

(2.lc)

-4-

Intuitively, Hn. measures the length of the longest substring Z of X that starts at some position

j S n ofX and such that the occurrence ofZ that starts at j can be fully recopied from some pre-

vieus occurrence of Z in X. The depth Dn represents the average length of the string Z which can

be recopied. The height H" and its companion parameters express mutual structural correlations

among the substrings of string X . Such correlations playa crucial role in many combinatorial and

algorithmic constructions. and our three definitions above reminisce in various ways of notions

already appeared in the literature, notably. in [LZ, GO]. For a given n. the (symmetric) table 001-

lecting all meaningful values C jj is the n·th self-alignment matrix of X. In the following, we

refer to a generic off-diagonal entry of this matrix by one of the tenns self-alignment or common J

the latter term. being mnemonic for "length of the longest prefix common [0 a generic pair of

suffixes ofX". The following example illustrates the notions introduced so far.

EXAMPLE 2.1. lIlustrating definitions

LetX = ahbabaa ... and n = 5. Then Sl =X. Sz = bbabaa ... , S3 = babaa ...• S4 = ahaa ...

and Ss = baa The corresponding self-alignment matrix C = {Gij }. i=I.2....5;.j=I.2•...5 is as

follows:

• 0 0 2 0
0 • 1 0 1

C= 0 1 • 0 2
2 0 0 • 0
0 1 2 0 •

From G and the expressions (2.1), we obtain HfI = 2. hfl = 1. Dfl = 9/5.

o

In some applications. another Quantity based on the self-alignment matrix arises, namely:

"
min {C--I C-- > O}

ISjsfI IJ IJ
M = L -'--=--!.~---

j=1 n
(2_1d)

-5-

Hence, x" measures the row-wise average of the row-by-row minima attained by all and only the

positive commons.

We deal here with the probabilistic analysis of the above quantities under the Bernoulli

assumptions: the symbols ofX are drawn independently from 1:, and the i-th symbol oIl: occurs. .

v
in X with probability Pi, i = I, 2 • . . .• v. L Pi = 1. We first compute the distributions of all

i=l

random variables Cij (i = 1, 2,..., n. j = I, 2 •... , n) in the Bernoulli model, and then we use

such distributions to evaluate the average values EHn•EDn and Ehn of the nth height, depth and

shallowness of X. respectively. Towards this end, observe that our assumptions (notably, the

unboundedness of X) entail that the distributions of Cij vary with i and j in a way that depends

on the differences d = lj-i I rather than on the specific individual values of i and j. In other

words, all random variables Cjj having the same value of d = Ij-i I have the same distribution,

and we denote this random variable by Cd' For example, C 1,2. C 2,3 •... , CII_1,11 have the same

distribution as C I (i.e., d = 1). Thus, it is appropriate to reason in teons of the random variables

Cd. where d = I, 2 •... , n - 1. We remark, however, that. the random variables in a family

such as C 1,d+1> C2,d+2 , ... , CII-d,ll are dependent.

Our main results of this Section are summarized in the following proposition.

PRoposmON (i). Let d be any finite integer smaller than n. and let I and r be the unique

integers defined by k = dl + r. Then,

Pr{Cd =k} =Pr{Cd =/d + r} ={ £pl+'}' { f pl+! (1 -Pil}
1.1 1=1 { V }d-'-!

i~ pf+1 (2.2a)

where k = 0, 1 , ... , and Pi is the probability of selecting the i -th symbol from the alphabet 1:.

For the symmetric disbibutionPI = P 2 = '" = Pv = IIV, expression (2.2a) simplifies to

pr{Cd=k}=[~r[1- ~] (2.2b)

- 6 -

(ii). The n -th average height EH,. satisfies

2
EHn :5 .,---=---;- log n + c

log p;;;k
(2.30)

where log represents the natural logarithm, Prruu. = max Pi I and c is a constant In the sym
l.s:i.s:V

metric case we have the stronger result

EH" - 210gv n J

where - denotes "asymptotically equal to".

(iii). The following inequalities hold, respectively, for the average depth and shallowness

1
ED" S -,-----'-;,- log n + c'

log Pm:u

1
Ehn S' ----'-_-=,- log n + en

log pm:J1l,

In the symmetric case,

ED" -logy n

Ehn -logy n

and, in addition,

Ex. -logy (1 - lin)

Remarks

(2.3b)

(2.4)

(2.5)

(2.40)

(2.5b)

(2.5c)

o

(i) The evaluation of the distributions of the Cd'S is crucial for the rest of the paper, and in par-

ticular, for computing EHn • ED" and Eh". Formula (2.2a) is surprisingly simple in the

light of the strong dependencies between Sj and Si-+do More in general, we observe that

Pr {Cd = k} does not depend on the fine structure of string X.

(ii) We conjecture that EH" - (2Jlog p~)logn. The constant 2JIog p;;;k becomes very large

in strongly asymmetric cases, that is. for Pmax close to one. On the other hand, the constant

- 7 -

at log n in Ehn. is too large. Later, we indicate that this constant can be reduced to

Inog p ~D • where Pmin = min Pi and this seems to be asymptotically correct
ISiSV

(iii) In practice, we are interested in finite strings in the form X$ = XIX2·· . x",$. where $ is a

symbol not in the alphabet :E. Even though the suffixes ofX are now finite, OUf results still

hold in these cases, since one can consistently set Pr {Cij = k} = a for k > n-j in formulas

(2.2).

•

2.2 Probability distribution function of Cd

We compute the probability distribution functions Pr{Cd = k} for d = I, 2 , ...• n-l. To

simplify notation, we assume a binary alphabet (i.e., V = 2), but it will be understood that our

derivations extend trivially to any finite alphabet. We set by p = P 1 and q = q2 = 1 - p. with

obvious meaning.

The following known fact of combinatorics on words (cf., e.g., [LO]) plays a crucial role in

our discussion.

Fact 1. Let (Si, Sj) be any pair of suffixes ofX such thati <j and j-i=d. and let Cij=k~O.Then,

string 2 which is a common prefix ofSj and Sj with 12 I=k can be written as Z = U1U', where

IU I = d I J u' 1=r < d. and U' is a prefix of U, and U
'

is the string resulting from the concate-

nation ofJ copies of U.

D

The probabilistic implications of the above fact are illustrated by the following example.

EXAMPLE 2.2. Computing Pr {C3 =k}, d =3, V =2

To fix the ideas, we consider S I and S 4. To enhance visual impact, we write

S 4 = Y 1 Y2 Y3 •...• , so that the alignment of S 1 and S 4 is represented as in Fig.I.

Sl
S,

Xl

YI

- 8 -

X2 X3 Yl Y2 Y3

Y2)'3 Y4 Ys Y6

Figure 1.

Y4 Ys
)'7 Y8

Fact 1 enables us to limit consideration to the following three cases.

CASE1:k~d-I=2

LetP = p2 + q2. Then, by our main probabilistic assumption, we immediately obtain

Pr{C, = O} = Pr{xi ;4YI} = 1 -P

Pr{C, = l} = Pr{xi = Yr. x,;4 y,} = P(I - P)

Pr{C, = 2} = Pr{xl = y,. x, = Y" x,;4 y,} = P'(l - P)

CASE 2. 3 = d "k ,,2d - I = 5

We look first at Pr{e 3 = 3} = Pr {xl = Y10 X2 = Y2> %3 = Y3. Y4 ;!. Yt}. Note that the events

{x 1 = YI} and {Y.:l ;t YI} are dependent, while {X2 = Yzl and {x 1 = Y3} are independent We

proceed as follows.

The crucial observation is in the second line of the above, where we replace the joint distribution

Pr {xl =)'1 ¢. Y4. X2 = Y2. %3 =)l3} by a product of probabilities of independent events. Along

the same lines, we have

Pr{e3 = 4} = Pr{xl =Yl =Y4. X2 = Y2 ¢. Ys. X3 =YJ}=

- 9 -

and

Note that, in this case. we have a factor P in our probability. This factor disappears for k ;;:: 2d.

CASE 3. k ~2d=6

In this case, we know from Fact 1 thatZ = UIU' with IU I = d = 3, IU'I = r. r<3 and

IZ I = d ·Z+r. Thus, we can group all symbols of Z into d = 3 independent clusters and compute

separately the probabilities in each group. For example, for r = I, we have

Pr{C3 =31 +1}=Pr{xl=Yl= ... =Y31+!,x2=Y2= ... ¢.Y31+2,x3=Y3= ... =Y3/}

o

In summary, in Case 1 all symbols are independent by our main assumption, so the proba-

bility is easy to evaluate. In Case 2 we have some symbols which appear twice, hence depen-

deney starts playing a role in computing the probability. Finally, for k .2: 2d. the dependency is

strong, but entirely predictable in its essence and structure.

In general, we can write k = dl + r in a unique way. Fact 1 enables now to distnoute the k

symbols of a common among mutually independent d groups, and me value of r indicates in

which group an inequality holds. Hence

Pr{Cd, = til + r}=Pr{xl =Y1 = ... = Y&+1 •... , ;t"r+1 =Yr+l = ... ;!: Ydl +r+l , ...•

(2.60)

In particular, for I = 0 we have:

Pr{Cd = r} = Pr{xl = Y1o;t"2 = Y2 •... , ;t"r+l ;!: Yr+1} = p r el - P)

where P =p2 + q2. For / =I, we obtain:

(2.6b)

- 10-

(2.6c)

Generalization to alphabets of arbitrary size is straightforward, whence formula (2.2a) ofProposi·

tion (i). For the symmetric case, simple substitution of lIV for the symbol probabilities of (2.2a)

yields (2.2b).

2.3 The average height, depth and shallowness

In this subsection, we prove Proposition (li) (formulas (2.3aH2.5». To compute the aver-

age height, depth and shallowness, we need to evaluate the average value of the maximum of

some dependent random variables. For the exact computation of such a maximum, we would

need the joint distribution of all Cij. i I j = I, 2 I •••• n. For our purposes, however, a good

upper bound is sufficient We shall derive such a bound on the basis of our knowledge of

Pr {Cd = k} alone, using the following slight generalization of ideas already in [LRl, LR2] (cf.

also [SZ2]).

Lemma 1. Let YI. Y2 •... , Ym be a sequence of random variables with distribution function

F 1(Y). F 2(Y) , ... , Fm (Y), respectively. Let Rj (y) = Pr {Yi 2:: y} be the complement function of

the distribution function Fj(y) (function R is sometimes called the reliability function). Finally,

let Mm = max Yj and M.m = min Yj • Then:
ISiSm tSiSm

(i) If am is a solution of

then

(ii) If bm is a solution of

m

:E Rk(am) = 1,
.1:=1

_ m ~

EMm ,;; am +:E :E RkU)·
..1:=1 j =Q.

(2.7)

(2.8)

(2.9)

- 11 -

then

m ~

EM,. "bm - L L F,U)·
01:..1 j_b..

(2.10)

(iii) If YI • YZ .···, Ym are identically distributed with distribution (reliability) function F(y)

(R (Y», and. moreover,

then

I-F(cy) =0
1 - F(y)

for c > I, (2.11)

lim _EM_m_ = lim EM,n = 1 .
m _ am m -+... bm

Thatis,Mm - am andM,n - bm where am and bm solve

respectively.

Proof. (i) Observe that, for any a (cf. [LRl]),

_ m

Mm ~ a + L [Y, - ar
k=1

(2.12)

(2.13)

(2.14)

where r+ denotes max{O, t}. Since IYk - a t is a nonnegative random variable, then [FE]

Ery.\: - a]+ = JRk(y)dy, so that, (assuming for simplicity that Yj is a continuous random vari-
a

able) (2.14) implies

_ m

EMm ~ a + L JR,(x)dr
k=1 Q

(2.15)

Minimizing the right-hand side (RHS) of (2.15) with respect to a yields (2.7) and (2.8) with the

optimal am given by (2.7).

(ii) Use the fact

- 12-

m

Mm ~ b + L [Y. - br
.l::=l

where a- = min{a, O} and follow the above reasoning. (Alternatively, simply note that

max{YI.Y2 .···, Yml=min{-YI.-Y2 •···• -Ymlandapply(i)).

(iii) This part is much more difficult and is established in [LR2].

D

We now use Lemma 1 to estimate the height EHn = max {Cij }. Note that there are
ISi<:jSn

m = n(n -1)/2 - n Z/2 random variables, namely, n -1 variables CI> n - 2 variables

Cz,··· I and one variable en-I' Proposition (i) gives the probability Pr{Cd = k}. To estimate

an for EHn • we use (2.7) which is now written:

•L (n - d) Rd(a.) = 1
d-I

(2.16)

with Rd(k) = Pr {Cd 2:: k}. We first compute the reliability function Rd(k) and then solve (2.16).

Theorem. With k = d/ + r.

{V }d~
~pf+l
1=]

(2.17)

Proof. The claim follows from an argument analogous 10 lhat used in establishing Proposition

(i), once the condition that Sj and Sj+d must disagree on their k+l-st symbol is dropped. For

example, in the binary case. we get (cf. (2.6a) and Figure 1):

Pr{Cd ~dl +r}=Pr{xl =Yl = ... =Y41+1.···. I r+l =Yr+l= ... =Ydl.···. Xd =Yd = ... =YdI}=

(2.18)

Note that (2.18) can be Ie-written as

D

- 13 -

(2.19)

where f equals the imeger part of the ratio kId, denoted l ~ J .Then, an is a solution of (2.16)

with Rd(an) given by (2.17). Nevertheless, to obtain asymptotics for an. we need a simpler form

ofRd(k). From (2.19), one immediately gets

(2.20)

Using (2.20) we estimate the solution an of (2.16) appealing to the following lemma.

Lemma 2. If!1t (k) ::;: Rd(k) S Rd(k) for all k = 0. 1 , and ~ (resp, a,,) is a solution of

(2.16) wim Rd(k) replaced by !tI(k) (resp., Rd(k)), men

(2.21)

Proof. This follows directly from the monotorncity of the reliability function Rd(k).

o

Our next step is to compute all. from (2.16), after which, by (2.8)

~ n

ERn ~ an +:E :E (n - d)RdU)
j -110. del

(2.22)

We prove first that if all satisfies (2.16), then the second term in RHS of (2.22) is 0(1). Note that.

by (2.16) and (2.20),

•

j=a..
i (n - d)RdU) = i i (n - d)Rd(an + k) =o[i (n - dJRd(a.) i p;..] = 0(1)
dOll .1:0.0 d=l dOll 1=0

(2.23)

To conclude our analysis, we need an estimate of the an which solves (2.16). Using the

inequality (see [MI. Sect. 2.14])

- 14 -

we find

±(n _ d)Rd(an):::; m(pQ· + 1+ qa. + I) d,;,f Lea,,)
d=l

(2.24)

By Lemma 2 the solution an of (2.16) is upper bounded by a solution ofL(an.) = I, where L(an)

is the RHS of (2.24). The asymptotic value of all is given in the next lemma.

Lemma 3. Let!m be a solution of

Then for large m

Proof. Let m ~ 00, and for simplicity assume Prnu = p. Then one finds

lim am plog,,(l1I7I t'+O(l) = 1
m~~

lim am qlDg,(amr1+O(I)= lim (rtm)-£=O
m-t_ m-t_

where log qllog p = 1 + e. and e > O.

(2.25.)

(2.26b)

o

Lemma 1 and formula (2.23) of Lemma 3 complete the proof of formula (2.3a) in Proposi-

tion (ii). Formula (2.3b) follows immediately from the above discussion and part (iii) ofLemma

1.

To prove (2.4) of Proposition (iii), observe that E max C;" =
ISjSl'li# 'J

log n

logp~
+ 0(1) since

only n-l random variables are involved in the maximum operation. ForEhfl • we note that

E min max C··::;; min E { max Cr}
ISiSlIlSjSfl.j;oi 11 lSiSlI lSjSn,j..-i '1

and we can apply the previous analysis. In fact, in this case, it is not difficult to see that the

- 15 -

minimum of E m~ Gij is achieved when we follow the least likely path, hence, we can curb the
}

constant at log n down to 1IIog p;;Jn'

Finally, to prove (2.5e) of Proposition (iii), we proceed as follows. Note that

min {Cij IGij > OJ is maximum in the symmetric case, so that we can restrict our
ISiSjSnJ>ti

analysis to that case. Then, Pr {Cd = k} = pJ: (l - p), k = 0. 1 •...• and p =lIV. To obtain the

minimum of Gjj over all positive off~diagonalCij's, set Gil = 0<1 when Cij = 0, and Gil = Cij oth

erwise. Then Pr{CiJ = k} = p.t-l(l - p) k = I, 2 , ... IJ and the common distribution function

for all i and j is F(k) = 1-pl. By Lemma 1 formula (2.13) bn satisfies n F(bfl) = 1 which

implies b,. = logy (1 - lin). Appealing again to part (iii) ofLemma 1 completes the proof.

3. APPLICATIONS

Several important combinatorial and algorithmic problems on words can be posed and

solved in terms of the self-alignments of a string. Such a strong degree of unification derives from

the fact that the most efficient solutions known for these problems are supported by a peculiar

notion of digital search index associated with a string, an index that represents, in particular, a

compendium of the self-alignments of that smng. Various incarnations have been proposed for

such an index during the past decade, but they do not differ significantly in their substance and

power. The interested reader is referred to [AA] for more information. Here we shall adopt the

version known as suffix tree, originally introduced in [Me]. In this section, we analyze the impact

of our probabilistic analysis on questions that revolve around the construction and the more or

less sophisticated use of suffix trees and companion structures.

Given a string X of length n-l on the alphabet:E, and a symbol $ not in:E. the suffix tree

Tx associated with X is the digital search nee that collects the n suffixes of X$. In the compact

version of Tx, chains of unary nodes are collapsed into single arcs. Each arc of Tx is labeled

with a substring ofX$, in such a way that suffix Sj ofX$ is described by the concatenation of the

- 16 -

labels on the unique path of Tx that leads from the root to leaf i. Similarly, any vertex ex: of Tx

distinct from the root describes a subword W(a) of X in a natural way: venex ex is called the

proper locus of W(a). In general, the locus of W in Tx is the unique vertex ofTx such that W is

a prefix of Weal and W(FATHER(a» is a proper prefix of W. A pair of pointers to a common

copy of X is commonly used for each arc label, whence the overall space taken by Tx is 0 (n).

In the following, we assume a bounded size for I:. Removing this assumption yields an

extra multiplicative factor of loglEI in all of the time bounds that we mention. The obvious

approach to the construction of TX is to stan with the empty tree To and insen the suffixes of X

one by one into consecutive updates of the tree, as follows

for i :=1 to n do Ti'f- insen (Ti - lt Sj) •

Before we address some algorithmic issues of this suffix tree, we first discuss some complexity

questions of the tree using our notion of self-alignments from Section 2.

It is easy to see that the straightforward implementation of insert may require S(n2) overall

time in the worst case (cf. also [AH, Chapt. 9). Such an implementation consists of starting at the

root of the current version of the tree and then follow the edges whose labels describe the longest

prefix headj of Sj such that headj has a locus in the tree. Although this process can be carried out

without ever forming chains of unary nodes in the tree, the work charged by insert(Tj_1,s..) is

proportional to the length of the longest prefix of S.. that has a locus in Ti_ l . In other words, this

work is irrespective of whether the compact or noncompact version of Tx is being built It should

be obvious from our previous discussion that the noncompact version of Tx with each arc

labelled by a symbol from the alphabet 1: upper bounds all other constructions ofTx. Moreover.

for such a (digital) tree, using a slight modification of the arguments proposed in [SZ2], we can

easily show that the height of the tree H!. the depth of the tree D!, and the shonest path in the

tree h! are simply related to the n-th height Hn of a word X. the n-th depth Dn • and the n-th

- 17-

shaIlowness hn as defined in (2.1). Namely. HI=Hn + I, D!=Dn + 1 and h!=h" + 1. This

observation enables to use our Proposition of Section 2, in conjunction with Remark (iii), to

derive the expected time required for the direct construction of Txo In fact, jheadj I=~~ Cij.
J«

whence by Lemma 1 the average length of headj is D(Icgi). Thus, building Tx by brute force

requires 0 (nlogn) time on average (i.e., the expected value of the external path length; see also

below). Along the same lines. our analysis implies that for a random suffix tree the average

height is bounded by 2 10& n + 0 (1). the average depth is lo~ n + 0 (1), and the shorrest path

is 10gb n + 0 (I), where a = p;;;h and b = P~D' In particular, the average of the external path

length is n 19ob n +0 (n). Moreover, it is not difficult, using our analysis, to prove that the aver-

age number of nodes is 0 en).

Clever constructions such as in [Me] avoid the necessity of tracking down each suffix start-

ing at the root The crucial fact used is that if head; =aW (i = 1.2•...n) with a E~, then W is a

prefix of headj +1. However, the exploitation of this fact requires that some rather bulky auxiliary

structures be introduced and managed during the construction of Tx. Even when the current

update of the tree and its auxiliary attachments can be kept in the main memory throughout the

construction, the management of auxiliary structures render !he constant hidden in the time com-

plexity significantly larger than that involved in the direct construction. When, as is often the

case, tree and auxiliary strucnlles become rapidly too large to fit in the main memory, the traffic

to and from secondary storage risks to beset the advantages ofhaving produced an asymptotically

more efficient

We now analyze the implications of our analysis on some structural and algorithmic prob·

lems on words whose solutions rely on Tx . A feature common to most of these problems is that

their solutions require some postprocessing of Tx if the tree is built by the linear time algorithm,

while such solutions could be easily embodied in the direct construction. We divide the applica-

lions of Tx into two classes. In the first class, that we call of direct applications, we place

- 18 -

problems that have linear time solutions provided that Tx is built in linear time. For these appli

cations, our probabilistic analysis of the brute force construction of Tx leads to a time perfor

mance that can be practically quite close to that the more sophisticated methods, but never

matches that performance in the asymptotic sense. In the second class, that we call of advanced

applications, the asymptotic expected time performance associated with the brute force approach

matches and can be even better that that achieved by more elaborate approaches.

3.1 Direct Applications

The main direct applications of Tx are in (i) me construction of inverted files for on-line

pattern matching and (il) some important universal data compression schemes. We analyze (i)

fi"t

By treating Tx as the state transition diagram of a finite automaton it is possible to decide

whether or not any given panern W occurs in X, in 0 (J WI) time. The overall cost of building

Tx (preprocessing) and perfoIming many queries on it can be thus advantageous over conven

tionallinear time pattern matching. Irrespective of the type of construction used for Tx , one can

always maintain that each venex of Tx bears the label of the smallest leaf in its subtree. Then, it

is possible to find in 0 (I WI) steps for arbitrary W what is the first occurrence ofW inX (in par

ticular, this answers whether W is a prefix of X). To find the last occurrence of W in X in

o(I WI) time for any W requires a walk through Tx' after its linear time construction, but Tx can

be easily prepared for such queries during the brute force construction. Irrespective of the type of

construction, the problem of finding all occurrences of W can be solved in time proportional to

IW I plus the total number of occurrences (either visit the subtree of Tx rooted at the locus of W

or preprocess Tx once for all by attaching to each node the list of the leaves in the subtree rooted

at that node). Along the same lines, one can weight each node ofTx with the number of leaves in

the subtree rooted at that node. This weighted version serves then as a statistical index for X, in

the sense that, for any W, we can find the frequency of W in X in 0 (I WI) time. TIlls weighting

- 19-

cannot be embedded in the linear time construction of Tx• while it is trivially embedded in the

brute force coDStruction. There are other straightforward uses of Tx• such as finding the longest

repeated substring in X J finding the position identifier of a given position, etc., for which we refer

to [AA, ARl, and for which the average time complexity is associated with the height or depth of

X discussed in our Proposition of Section 2.

We tum now to (li). The suffix tree Tx is the natural habitat for a class of sequential data

compression techniques based on textual substitution. This class embodies the few optimization

problems in the realm of textual substitution that can be solved in polynomial (actually linear)

time. Moreover. the techniques in this class also feature asymptotic optimality in the information

theoretic sense [LZ, ZL].

The idea is that of interweaving the construction of a (possibly partial) suffix tree with a

parse of the textstring into phrases, where each phrase is susceptible of a compact encoding. For

example, suppose that we have compressed the prefix of X up to position i, and let Pi - 1
be the

encoded version of this prefix. By definition, the prefix headj of Si occurred already in X. Thus,

headj can be encoded simply by a pair of pointers, say, to the starting and ending position of this

previous occurrence in X. Appending this pair to Pi - 1 yields Pi' and the process continues. One

byproduct of our analysis is a confirmation of the intuitively obvious fact that a "very random"

smng is not compressible. For such a sequence, the expected length of each phrase is 2·1ogn, Le.,

exactly the length in bits of the pair ofpointers!

3.2 Advanced applications

We analyze here (i) the problems of testing the square-freedom of a string X or finding all

squares in it, and (ii) the related problem of building indexes for the statistics without overlap of

all substrings of a smng X .

We examine (i) first. A square of X is a word on the form WW, where W is a primitive

- 20-

word, Le., a word that cannot be expressed in any way as VA: with k > 1. Square free words, Le.,

words that do not contain any square subwords have attracted attention since the early works by

A. Thue in 1912 [TH]. A copious literature, impossible to repon here, has been devoted to the

subject ever since. Clearly, an indefinitely long square free word cannot be built on a binary

alphabet, but Thue found that such a string can be constructed on an alphabet with at least three

symbols. Before addressing some of the algorithmic issues on squares, it seems of interest to see

that our analysis accommodates this discontinuity.

Let Psf be the probability of not having any square subword that starts at some given posi-

non of an unbounded word X on a V -ary alphabet ~. If the position chosen is, say. position 1.

then it is easy to see that Psf can be expressed in tenns of the random variables {Cd }d=l defined

in Section 2 as

Pif = Pr{C,'; O. C, S 1 •... , Cd'; d - 1 •... } (3.1)

The evaluation of this joint probability is extremely difficult, but we can obtain a simple estimate

of it. We appeal to the following lemma

Lemma 4. For any sequence of random variables XI ;X2 •...• Xn the following holds

"1- L Pr{X1; > Xj;}:=;; Pr{Xl S XI. X2 $x2'···' XII S:xn} SPr{X1 S:xI} (3.2)'-j
Proof. The RHS of (3.2) is trivial. For the LHS we oblain (cf. [FE])

"PriXI S Xl ••.•• Xn S xn} = I - Pr{Xl > XI or X2 > X2 .•. or XII > xn} 2: 1- L Pr{X1; > XI;}

'-j o

By Lemma 4, we can estimate our joint probability Pif in (3.1) by computing Pr{C 1 = O} and

Pr {Cd> d - I} for all d > 1. But by our Proposition (i) formula (2.2). we immediately find

Pr{C j =O}= I-P

- 21 -

Pr{Cd > d _lj=pd

V 2
where P = L Pi . Therefore.

i=1

1-2PSPSI_P
I-P if

In the case of uniform distribution, we have P = ltv. and

(3.3)

V -2
V-I SPif S

V-I
V

(3.4)

Note that for binary alphabet V = 2, 0 ~ psf < 0.5. But we know that. in this case, Psf = 0, so

the lower bound is achievable. On the other hand, for any V > 2 we have Psf ~ 0.5, so with

positive probability we can construct square free words over an V -ary alphabet with V > 2. Note

also, that for larger V. the bounds in (3.4) are tight. For example, for V = 5, 0.75 s; Psf :5 0.8.

This suggests that, for most random strings, a square is an unlikely event to oceurre at any fixed

position.

We now retum to the algorithmic problems. By marking all nodes leading to S I it is possi-

ble to spot all square prefixes of X as a byproduct of the construction of Tx . The same straight-

forward strategy can be used for square suffixes. On the other hand, efficient algorithms for test-

iog square-freedom or detecting all squares in X require quite elaborate constructions

[ML,CR,AP]. The number of distinct occurrences of squares in a word can be 8(nlogn), which

sets a lower bound for all algorithms that find aU squares [CR]. For instance, infinitely many

Fibonacci words, defined by:

Wo=b ; Wt=a
Wm+1=Wm Wm_1 for m>l

have 6(nlogn) distinct occun-ences of square subwords. Interestingly, the same applies to the

number of different square subwords in Wm' The algorithms [ML, CR, AP] find all squares in X

in 0 (n logn), hence, optimal time. The construction of [AP] uses suffix trees in conjunction with

- 22-

the following criterion: X contains a square occurrence at position j iff there is a primitive word

W and a vertex 0: in Tx such that i and j =i+IW I are consecutive leaves in the subtree of Tx

rooted at ex: and, moreover, IW(a) I:::(i-j).

It is an easy exercise to implement such a criterion through the brute force constrUction of

Txo If. on the other hand, linear time construction is used, then the following postprocessing is

necessary. Starting from the leaves of Tx, we visit the tree bottom-up. For each interior venex

visited we construct Ihe saned list of the labels of its leaves. The sorted list of any such venex is

obtained by merging the sorted lists of its offspring vertices. The strategy runs in 0 (n log n) time

if Tx is nearly balanced or completely unbalanced. Optimal handling of intermediate cases

involves a rather complicated construction that makes use of an ad /we data strocture suited to the

efficient repeated merging of integers in a known range [AP]. On the other hand, the above brute

force implementation of the same criterion leads, by our probabilistic analysis. to an optimal per

formance from the average complexity viewpoint

We devote the remainder of this section to problem (ii). The (primitive rooted) squares in

X have consequences on Ehe amount of storage needed to allocate the Slatistics without overlap of

all subsaings of X. By this, we mean the construction of an index similar to Tx , but such that,

given any word W. we can find in 0 (I WI) time the maximum number k of distinct occurrences

of W such that it is possible to write X=W tWW2W'W3" 'WWk+l with Wd possibly empty

(d=1,2,...,k+l).

The construction of such an index requires inserting a number of auxiliary unary nodes in

Tx. The role of such nodes in the augmented tree is to serve as proper loci for subwords whose

loci in the original tree cannot repon the number of their nonaverlapping occurrences in X. We

refer to [AA, API, AP2] for details. The connection between the auxiliary nodes of Tx and the

squares in X is as follows [API]. If a is an auxiliary node of the augmented Tx. then there are

subwords U and Y in X and an integer k~l such that W(a)= U = y k and there is a substring W

- 23-

in X such that W = V mV' with V' a prefix of V and m~2J:. An 0 (nlogn) upper bound on the

number of auxiliary nodes needed in Tx can be readily set, based on the above fact and on the

upper bound on the number of positioned squares in a word. However, it is an interesting open

question whether there are words whose minimal augmented suffix trees do in fact attain that

bound. Auxiliary nodes can be insened and weighted through a fairly complex, o (nlog2n) post-

processing of Tx. once the tree has been built in linear time rAPt, AP2]. On the other hand. these

manipulations can be carried out along with the brute force consbUcbon of Tx•with no substan-

rial penalty. It follows from our analysis that, from the probabilistic view point the brute force

construction of an augmented suffix tree can be expected to be asymptotically faster by a factor of

logn in comparison to the more advanced constructions.

4. CONCLUDING REMARKS

It seems interesting to compare the basic parameters of suffix trees and radix search trees

[KN] (in short cries). In tries n independent keys X1J X2 , ...• Xn are stored. where each key is

a (possibly infinite) sequence of symbols over a V -ary alphabet Note. that in suffix tree the keys

S1J S2 , ...• Sn are dependent while in the crie it is assumed that the keys are statistically

independent A thorough analysis of cries from the average complexity viewpoint is presented in

[SZI]. In particular, it is proved that the average depth EDn = ~ log n + 0 (1) where E is

v
enttopy of the alphabet, that is, E = - L Pi In Pi. For the average height the following result is

i=1

2 v
known [SZ2. FL]: EHn =-:='-'-1 log n + 0 (1) where P =L pl. However, for the indepen-

IogP- ;..1

dent keys it can be proved [SZl] that the variance of the depth varDn is either 0(1) for sym-

E2 -E2
mecric alphabet (e.g. varDn = 3.507... for V =2) or varDn =---''--E",,-IOg n + 0(1), for the

v
asymmetric tries. where E 2 = L Pi In2Pi. This implies that asymmetric tries are of an order of

i=l

- 24-

magnitude less balanced that the symmetric ones. An open question remains how to evaluate the

variance of the depth and the height for suffix trees.

Another issue of some interest is how much the compact version of suffix tree is better than

the noncompact one. We can answer that question indirectly comparing regular tries (indepen-

dent keys) with the compact version of the trie known as PATRICIA hie (also with independent

keys). In [SZ3] it is proved that the average depth for PATRICIA is EDn = ~ logn +0(1),

hence the difference between the depths of regular and PATRICIA tries 0 (1). The variance of the

depth is either 0 (1) for symmeuic case or 0 (logn) for asymmetric PATRICIA, exactly as in the

regular mes (see above). For example, for binary tries and PATRIClA tries the variances are

either 3.507.. or 1.00.. respectively [SZ3]. It is also known that for symmetric PATRICIA the

average height is asymptotically equal to logyn rather than 2·logyn as for regular tries [PI].

REFERENCES

[AA] A. Apostolioo, The Myriad Virtues of Suffix Trees, Combinatorial Algorithms on WoriU.
pp. 85-96, Springer-Verlag, ASI FI2 (1985).

[AH] A.V. Abo, lE. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algo
rithms, Addison·Wesley (1974).

[AP] A. Apostolioo and F.P. Preparata, Optimal Off-line Detection of Repetitions in String,
Theoretical Computer Science, 22, 287-315 (1983).

[APt] A. Apostolioo, P.F., Preparata, Structural Properties of The String Statistics Problem,
Journal ojCompuler and Systems Science, 31, 2, 394-411 (1985).

[AP2] A. Apostolico, F.P., Preparata, Data Structures and Algorithms for the String Statistics
Problem, PurdueCS D-TR-547 (1985).

[CR] M., Crochemore, AD. Optimal Algorithm for Computing the Repetitions in a Word, In!
Proc. Letters 12, 5, 244-250 (1981).

[CR1] M., Crochemore, Recherche Lineaire d'un Carre dans un Mot, CR. Acad. Sc. Paris, t296,
Series I, 781-784 (1983).

[FE] W. Feller, An Introdut:tion to Probability Theory and its Applications, John Wiley & Sons
(1968).

[Fl.] P. Flajolet, On the Performance Evaluation of Extendible Hashing and Trie Searching,
Acta Informatica, 20, 345-369 (1983).

[GL] H. Gelber and S.R. Li, The Occurrence of Sequence Patterns in Repeated Experiments
and Hitting Times in a Markov Chain, Stoch. Proc. Appl., 11, 101-108 (1981).

[GO] L. Guibas and A. W. Odlyzko, String Overlaps, Pattern Matching, and NODuansitive
Games, Journal a/Combinatorial Theory, Series A, 30,183-208 (1981).

- 25-

[KN] D. Knuth, The Art of Computer Programming. Sorting and Searching. Addison-Wesley
(1973).

[LI] S.R Li, A Martingale Approach to the Study of Occurrence of Sequence Patterns in
Repeated Experiments, Ann. Probab., 8, 1171-1176 (1980).

[LO] M. Lothaire, Combinatorics on Words. Addison-Wesley (1982).

[LRl] T. Lai and H. Robbins. Maximally Dependent Random Variables, Proc. Nat. Acad. Sci.
USA, 73, 286-288 (1976).

[LR2] T. Lai and H. Robbins, A Class of Dependent Random Variables and Their Maxima, Z.
Wahrscheinlichkeitscheorie, 42, 89-111 (1978).

[LZ] A., Lempel, J., Ziv, On the Complexity of Finite Sequences, IEEE lnjomuztion Theory 22,
1,75-81 (1976).

[MIl D.S. Mininovic, Analytic Inequalities. Springer-Verlag (1970).

[Me] E.M. McCreight, A Space Economical Suffix Tree Construction Algorithm, JACM, 23,
262-272 (1976).

[ML] M.G., Main, R.I.. Lorentz, An O(nlogn) Algorithm for Finding all Repetitions in a String,
Journal ofAlgorithms, 422-432 (1984).

[MI.1] M.G., Main, R.J., Lorentz, Linear Time Recognition of Square-Free Strings, Combina
torial Algorithms on Words", (A. Apostolico and Z. Galil, eds.) Springer-Verlag (1984).

[NI] P.T. Nielsen, On the Expected Duration of a Search for a Fixed Pattern in Random Data,
IEEE Information Theory, 702-709 (1973).

[PI] B. Pittel, Asymptotic growth of a class of random trees, The Annalas ofProbability ,18,
414 - 427 (1985).

[SZI] W. Szpankowski, Some Results on V-ary Asymmetric Tries, Journal 0/ Algorithms, 9
(1988).

[SZ2] W. Szpankowski, On the Analysis of the Average Height of a Digital Trie: Another
Approach, Purdue University, CSD TR-646 (1986).

[SZ3] W. Szpankowski, How much on the average is the Patricia trie better, Proc. of 24-th
Annual Allerton Conference on Comnumications, Control, and Computing. 314-323
(1986).

[TIl] A. TIme, Uber die gegenseitige Lage gleicher Teibe gewisser zeichenreichen, Skr. Vid.
Kristiana l,MathNaturv. Klasse I, 7-fJ7 (1912).

[WE] P. Weiner, Linear Pattern Matching Algorithms, Proc. a/the 14·th Annual Symposium on
Switching andAutomaJa Theory, 1-11 (1973).

[ZL] J., Ziv, A., Lempel, A Universal Algorithm for Sequential Data Compression, IEEE
Information Theory, 23. 3, 337-343 (1977).

	Self-Alignments in Words and Their Applications
	Report Number:
	

	tmp.1307986960.pdf.qo6Lf

