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ABSTRACT

Many string manipulations can be performed efficiently on suffix trees. In this paper,
a CRCW Parallel RAM algorithm is presented that constructs the suffix tree associated with
a string of » symbols in O (logr) time with n processors. The algorithm requires @(n2)
space. However, the space needed can be reduced to O(n'*®) for any O<e<1, with a
corresponding slow-down proportional to 1/¢. Efficient parallel procedures are also given
for some string problems that can be solved with suffix trees.
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1. INTRODUCTION

Let x = Xxy,X2....%, be a string of n=|x | symbols and assume that x, is a special symbol # that occurs
nowhere else in x. We use / to denote the alphabe:r of x, i.e., the set of all distinct symbols occurring in x.
(Note that |7 |<n.) Given a substring w of x, a descriptor of w is any pair (i,|w |) such that { is the starting
position in x of an occurrence of w. The suffix tree T, associated with x is the trie (digital search tree) with n
leaves and at most n—1 internal nodes such that; (1) each edge is labeled with a descriptor of some substring of
x, (2) no two sibling edges may have the same (nonempty) prefix, (3) each leaf is labeled with a distinct posi-
tion of x and (4) the concatenation of the labels on the path from the root to leaf i describe the suffix of x
staring at position {. (See Fig. 1 for an example.) In practice, the label of the edge connecting node . 1o its
parent node is stored in . Observe that, in general, there is more than one way o assign consistent labels to

the edges of a suffix ree.

The main problem addressed in this paper is the parallel construction of the suffix tree T, associated with
input string x. For fixed alphabet size, the sequential algorithms in [We-73), [Mc-76] construct T, in linear
time. The time bound becomes O (nlog|! |) if the alphabet size is not a constant. Suffix trees and their com-
panion structures support many string manipulations, such as performing _on-li:le string matching [AHU-74],
finding the longest repeated substring in a string, testing square-freedom of a string [AP-83], [Ap-84], finding
all the squares or repetitions in a string [AP-83], computing substring statistics with or without overiap [AP-
85a], [AP-85b), performing exact [AG-86] or approximate [LV-86] pattern matching, A more detailed list of
applications is given in [Ap-85]. In the context of paralle] computation, various open problems revolve around
T, [Ga-85). The only previous paralle]l algorithm for constructing suffix trees is given in [LV-86]. It runs in

time O (logn) and uses n%/logn processors.

We adopt the concurrent-read concurrent-write (CRCW) parallel random access machine (PRAM) model
of computation. We use n processors which can simultaneously read from and write to a common memory
with ©(n?) locations. In case several processors seek access to the same memory location for write purposes,
one of them succeeds but we do not know in advance which. See [Vi-83] for a survey of resulis conceming
PRAMSs. The overall processors>time cost of our algorithm is O (n logn), which is optimal whenlog|/ | is of

the same order of magnitude as logn. Although the algorithm requires quadratic space, only O (nlogn) loca-
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tions need initialization. Moreover, we show later that the space can be reduced o O (n'9), for any chosen
0<e<]1, with a comresponding slow-down proportional to 1/€.

Our approach to the construction of T consists of two main parts. In the first part, described in Section
2, an approximate version of the tree is built, called the skeleton. This part of the construction is reminiscent
of an early approach 1o subguadratic patiern matching [KMR-72]. The second part, described in Section 3,
consists of refining the skeleton to transform it into 7. The processor allocation technique that is used for the
refinement is of independent interest Allocating processors 1o jdbs is often a crucial task in the design of
efficient parallel algorithms, and there are papers mainly devoted to overcoming allocation problems. For
example, [SV-81] solved the allocation problem in the algorithm of [Va-75] for finding the maximum among
n elements, [BH-83] and [Kr-83] solved the allocation problem in the algorithm of {Va-75] for merging.

[CV-86a], [CV-86b] and [Vi-84] gave deterministic and randomized allocation schemes for list ranking.

Section 4 contains a brief analysis of the various allocation techniques that can be used for a suffix tree,
In Section 5, we show how the space used in our construction can be reduced. Finally, we describe in Section
6 how our suffix tree construction leads to the design of efficient parallel algorithms for on-line string march-

ing, finding a longest repeated substring in a string, and performing approximate pattern matching.

2. CONSTRUCTING THE SKELETON TREE

From now on, we will assume w.1.0.g. that n is a power of 2. We also extend x by appending to it n—1
instances of the symbol #. We use x# to refer to this modified string. We now list some salient featares of the
skeleton tree D, of x, and then give a constructive definition of D, . The basic structure of the skeleton for the
sming of Figure 1 is shown in Figure 2. The skeleton D, of x is a tree with n leaves. Each internal node of D,
has at least two children. The edges in D, point from each node to its parent. Each leaf or intenal node of D,
is labeled with the descriptor of some substring of x# having starting positions in [1,r]. If node | is labeled
with descriptor (i,!), then /=27 for some ¢, O<g<logn. If 1 is a leaf then I=n. If L is an internal node other
than the root, then ¢ is the stagenumber of p. If the label of 1. corresponds to substring w of x, then we write
w=W (L), and we call p the locus of w. Figure 2 shows the skeleton for the string of Fig. 1. A constructive

definition for D, is as follows.
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(i) ‘The root of D, is the locus of the empty word. The root has |/ | sons, each one being the locus of a dis-

tinct symbol of /.

(ii) Assume that all nodes of stagenumber up to [—120 have been inserted in D,. To expand D; 10
stagenumber [<logn , consider the nodes of stagenumber /—1 one by one. For a generic such node 1, let
w=W (). Now do the following.

1 If w=z# for some string z over /, then make pt the (unique) leaf labeled (i ,n), where i is the first com-
ponent of the old label of L.

2 Assume instead w+#z#. Let {5,53,....5; } be @ set of maximum cardinality among the sets formed by dis-
tinct substrings of x# with the properties: |s, |=2|w | and w is a prefix of 5,, t=1,2,....k. (Thus, if { is the
starting position of an occurrence of w in x#, then there is some s, also starting at . In the string of Fig.
1, for example, we have that each occurrence of w=ab in x# .extends into either 5s,=abaa, or s,=aba¥,
or s5=abab . On the other hand, w=aa occurs in x# only as a prefix of s ;=aaba . Note that, in general, an
S, may occur more than once in x#.) We distinguish two cases. (A) k>1, We create ¥ sons of p,
V1V, - - Vg, and make v, the locus of s, 7=1,2,....k. (B) k=1, i.e.,, w occurs always as a prefix of the

same substring 5,. We make [L the locus of s I

Observe that no two nodes of D, can have the same Jabel. A natural parallel construction of D, is based
on the above definiton. We describe such a construction in detail, to acquaint the reader with the basic con-

current steps which are used throughout this paper.

We use n processors py,pa.....p,, where { is the serial number of processor p;. At the beginning, pro-
cessor p; is assigned 1o the i-th position of x, {=1,2,...n. It is convenient to think of each processor as being
assigned two segments of the common memory, each segment consisting of logn+1 cells. The segments
assigned 1o p; are called ID;, and NODE;, respectively. By the end of the computation, ID;[q]
(i=1,2,..n; ¢=0,1,....logn ) contains (the first component of) a descriptor for the substring of x# of length 29
which starts at position { in x#, with the constraint that all the occurrences of the same substring of x pet the
same descriptor. If, for some value of ¢ <logn, NODE;[q] is not empty, then it represents a node p of
stagenumber ¢ in D,, as follows: the field NODE;[q}.LABEL is a replica of /D;[g], and the field

NODE;[q).PARENT points to the location of the parent of . Finally, NODE;[logn] stores the leaf labeled
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(i,n} and thus is nonempty for i=1,2,...,n. For convenience, we extend the notion of /D to all positions i >
through the convention: /D;{g}=n+1 for i >r. The computation makes crucial use of a bullerin board (BB) of
rnx(n+1) locations in the common memory. All processors can simultaneously write to BB and simultane-
ously read from it. We use the following concurreni-write convention. In case several processors ry simul-
taneously to write into the same memory location, one of them succeeds but we do not know in advance
which. In the following, we call winner (i) the index of the processor which succeeds in wiirtng to the loca-

tion of the common memory attempted by p; .

Procedure Skeleton-Tree takes as input the string x and a location of the common memory called
ROOT, and computes the entries of the arrays NODE;[q], ID;[q); (i=1,2,....n, ¢=0,1,...Jogn). The procedure
consists of some initializations, that implement point (i) in the definition of D,, and logn main iterations,
implementing point (ii).

The initializations are as follows. In parallel, all processors initialize their NODE and ID arrays. Next,
processors facing the same symbol of / attempt to write their serial number in the same location of BB . Say, if
x;=sel, processor p; attempts to write { in BB[1,5]. Through a second reading from the same location, p;
reads j=winner(i) and sets ID;[0}«j. (Thus (j,1) becomes the descriptor for every occurrence of symbol s ).
For all i such that winner ({ )=, processor p; sets NODE;[0}.PARENT « ROOT and copies ID;{0]= into

NODE;[0).LABEL . Hence NODE;[0] becomes the locus of 5.

We now describe ireration q, ¢=0,1,...Jogn—1, which is also performed synchronously by all proces-
sors. First, processor p;, i=1,2,...,n, Creates a composite label TID;, by setting: TID; « (ID;[q], ID; g1}
Next, processor p; attempts to write i in BB (TiD;] = BB[ID;[q)ID; 5 [q]]. Now, PIOCESSOr p; Sets:
ID;[g+1)ewinner (i) ,i=1.2,....n. The processors that are not winners become idie for the remainder of the

stage. On the other hand, any winner p; performs the following.

NODE,;[q+1].PARENT « NODE, iqilg]
NODE;{g+1).LABEL « ID;[q+1]
if NODEyp,1.1[q] has only one child then
begin
NODE;[q+1).PARENT «NODEp,;.,[q).PARENT ;
Make N ODE;D‘ [q][q 1 cmpty.
end
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Thus, the winners create new locuses in their associated NODE locations. Whenever a node U is created

that has no siblings, then the pointer from parent (1) is removed and copied into p. This avoids the formation

of chains of unary nodes.

The existence of siblings can be checked as follows. Assume that for each row r of BB, there is a dis-
tinct memory location, say AUX [r ], known to all processors. At each stage, there are siblings iff two or more
successful processors write to different locations of the same row of BB, To find out whether this is the case,
all successful processors writing in the same row r of BB attempt to write their index in AUX [r]. Next, all the
processors in that row except the winner write a special marker in AUX [r). Finally, all the processors in the
same row check the status of AUX [r]. Clearly, processor p; was the only successful processor in row r iff, at
the time of checking, AUX [r}=i.

The correcmess of the procedure follows by straightforward induction. Since no two n-symbol sub-
strings of x# are identical, processor p; (=1.2,....n) must be occupying the "leaf" NODE;[logn] at the end of
the computation. The time complexity is obviously O Qognr). Note that NODE;[q].LABEL not empty implies
NODE;[q].LABEL = (i,27), that s, the label of a node, when defined, is nothing but the address of that node.
Although the LABEL fields are entirely redundant sc far, assuming this node format from the start simplifies

the rest of our presentation. Finally, we remark that BB needs not 1o be initialized.

3. REFINING D,

By the end of the construction of D;, processor p; will be occupying leaf i, i=1,2,...,n. Prior to starting
the transformanon of D, into T, the labels of all nodes of D, have to be modified as follows. Recall that the
current LABEL of a node | is a starting position of W() in x# which is also the address of this node. The
modified label (m-label) to be construcied for | is any pair (i,/) such that, leming W (=W (parent (JL))'w, it
is I=|w | and i is the starting position of an occurrence of w in x#. In the following, we call m -labeled skele-
ton the tree that is obtained by substituting every label of D, with a consistent m-label. Set aside the orienta-
tion of edges, the main difference between 7, and the m-labeled skeleton D, is that in T, there cannot be two
sibling nodes such that their labels describe two substrings of x having a common prefix (i.e., D, is not a trie).

However, the m-labeled D, shares with T, the properties (1-3) listed in defining the latter, provided x# is used



there in the place of x.

A processor can trivially compute the m-label of [ in constant time knowing the LABEL of 11, and the
stagenumbers, say ¢ and g’, of | and parent(W), respectively. Formally, if j is the LABEL of K, then
(j+2¢9 "9 —2‘?') is the m-label of L. The n processors can produce all m-labels in logn parallel steps. Using the
parent pointers, the processors migrate towards ROOT with a synchronous pace based on stagenumbers; the
m-labels of all children of nodes with the same stagenumber are computed at the same time. (Recall that the
difference in stagenumber between a node and its parent is not necessarily 1.) At the beginning, all processors
occupying leaves which are children of nodes of stagenumber logn—1 change the labels of these nodes into
m-labels. Next, the processors compete for the common parent node, say, by attempting to simultaneously
wiite on it the labels (addresses) of the nodes which they currently occupy. The winners are marked "free™:
they ascend to the parent node where they will perform the necessary label adjustment at the appropriate stage.
The losers simply 1ake 2 record of the (old) label used by the winner. The (g—1)-th iteration involves all free

processors on nodes with a stagenumber of ¢ or higher. The operation is the same as above.

A byproduct of the m-label construction process is 2 mapping that assigns some leaves and intemal

nodes 1o processors in such a way that the following property is met.

PROPERTY 1. If a node other than ROOT has k children, then precisely k-1 of the children have been
assigned a processor, Moreover, each one of the k—1 processors knows the address of the
unique sibling without a processor.

The proof of Property 1 is straightforward. Let now (i,/) and (J /m) be the m-labels of two sibling nodes

K and v of D,, and Iet ¢ be the stagenumber of parent (W=parent (v).

FACT 1. The substrings of x# whose descriptors are the m-labels of B and v have a common prefix of
length at most 29-1,

FACT 2. If k is the length of the longest common prefix of x#[i,i+/~1] and x#[j,j+m—1], then
ID;[|logk] 1 = ID,[ | logk] ).

Fact 1 follows from the definition of D,, Fact 2 holds by the construction of the /D ’s.

Assuming a fixed size alphabet, the transformation of the m-labeled D, into T, is carried out in two

steps. First, a tree is produced that is identical 1o T, save the fact that all edges are direcied upward, as in D, .



Next, the directions of all edges are reversed.

The first and more important step is actuated by producing logn ~1 consecutive refinements of
D,=Do#-1), The g-th such refinement is denoted by D%€"~1~D, Informally, D%2*~4-1 i5 a labeled tree
with n leaves and no unary nodes which has much the same structure of the m-labeled D; . In paricular, pro-
perties (1-3) of the definition of T; hold for any refinement of D, . The refinement D is identical 1o 7, except
for the edge directions. Figure 3 shows the second refinement for our example skeleton.

We give now rigorous definitions for Dplogn—-1) g=12, .logn—1. We do so by specifying how
DUoen=¢-1) i5 gobtained from D" 9--D for g=1,2,...Jogn~1. For simplicity, we use k henceforth to
denote logn—g—1. First, two more definitions are needed. A nest is any set formed by all children of some
node in D®). Let (i, and (&) be the labels of two nodes in some nest of D®). An integer ¢, 0<<min! k],
is a refiner for (7,1) and (j,k) iff x#[i i+ —1]=[f,j+2-1].

Assume now that all refinements down to D), logn—1<k <0, have been already pﬁdumd. and that D*)
meets the following condition (k). (i) D®)is a labeled tree with n leaves and no unary nodes; (i) D™’ enjoys
properties (1-3) of the definition of T; (iif) D®) is labeled in such a way that no pair of labels of nodes in the

same nest admits 2 refiner of size 2*.

’

Observe that condition (logn—1) is met trivially by D,. Moreover, part (iii) of condition (0) implies that
reversing the direction of all edges of D would change the latter in a digital-search tree that stores the collec-

tion of alt suffixes of x. Clearly, such a trie fulfills precisely the definition of 7.

We now define DV as the tree obtained by transforming D®) as follows. The manipulations that
transform D ®Y into D®=Y are performed synchronously on all and only the eligible nests of D®), i.., on those
nests that might admit a refiner of size 2%-1), Clearly, the only eligible nests in D, are those whose parent
nodes have stagenumber logn—1. There is only one such nest in the skeleton of Fig. 2, namely, that formed by
leaves 1 and 9 (however, this nest does not have a refiner of size 20°8"~1-! = ;;4). The nests of nodes whose
parents have stagenumber logn—2 become eligible at the inception of the second refining stage (cf. Fig. 3), and

50 ON.

Assume that, in D®, all nodes that are parents of currently eligible nests are suitably marked. Let

(1 Dii2dDr-s{im ok ) De the set of all labels in some eligible nest of D). Let v be the parent node of that



nest. The nest is refined in two steps.

STEP 1. Use the LABEL and ID tables to modify the nest rooted at v, as follows. With the child node labeled
({.l;) associate the split-label (ID,-I[k-—l],!D,-J,,za-x[k—l]). j=12,...m. Now partition the children of v into
equivalence classes, putting in the same class all nodes with the same first component of their split-labels. For
each non-singleton class which results, perform the following three operations.

(1) Create a new parent node | for the nodes in that class, and make 1 a son of v.

(2) Set the LABEL of p to (i 2%~"), where ; is the first component of the split-label of all nodes in the ¢lass.
(3) Consider each child of p. For the child whose cumrent LABEL is _ (i;.1;), change LABEL 10

(420D, 2%y

STEP 2. If more than one class resulted from the partition, then stop. Otherwise, let C be the unique class
resulting from the partition. It follows from assumption (jii) on D %) that C cannot be a singleton class. Thus a
new parent node | as above was created for the nodes in C during STEP 1. Make L a child of the parent of v

and set the LABEL of |t 1o (i J+2%~1), where (¢ 1) is the label of v.

The following theorem shows that our definition of the series of refinements D ®) is unambiguous,

Theorem 1  The synchronous application of Steps 1 and 2 1o all eligible nests of D®) produces a tree that
meets condition (k—1).

perty (i). Since no new leaves were inserted in the transition from D* to D®-D, property () will hold once we

prove that D¥®~1 is 3 tree with no unary nodes.

Clearly, the nest of the children of the root is not eligible for any k>0, Thus for any parent node v of an
eligible nest of D®), parent(v) is defined. By condirion (k), node v has more than one child, and so does

parent (v). Let D™ be the structure resulting from application of Step 1 to D,
If, in D®), the nest of parent(v) is not eligible, then v is a node of D*Y, and v may be the only unary
node in D*? between any child of v in D® and the parent of v in D®. Node v is removed in STEP 2, unless

v is a branching node in D), Hence no unary nodes result in this part of DD,
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Assume now that, in D), both the nest of v and that of parent(v) are eligible. We claim that, in D®,
either the parent of v has not changed and it is a branching node, or it has changed but still is 2 branching
node. Indeed, by definition of D®) neither the nest of v nor that of parent (v) can be refined in only one sin-
gleton equivalence class. Thus, by the end of STEP 1, the following alternatives are left.

1. The parent of v in D is identical to parent(v) in D%). Since the nest of parent(v) could not have been
refined into only one singleton class, then parent(v) must be a branching node in D*-D, Thus this case

reduces to that where the nest of parent (v} is not eligible.

2. The parent of v in D® is not the parent of v in D), Then parent (v) in D™ is a branching node, and also a
node of D®-1). If v is a branching node in D), then there is no unary node between v and paren:(v) in D®,
and the same holds true between any node in the nest of v and v. If v is an unary node in D%, then the unique
child of v is a branching node. Since the current parent of v is also a branching node by hypothesis, then
removing v in STEP 2 eliminates the only unary node existing on the path from any node in the nest of v 1o

the closest branching ancestor of that node. O

In order to specify which nests of D®~1 are eligible, we need to complete the rules for eligibility. In the
light of the preceding discussion, it is easy 10 see that, once a node has become the parent of an eligible nest, it
will not lose this property through the subsequent refinements (as long as it is not eliminated from the tree),
even though the nest itself may undergo changes. Moreover, the nests of nodes created in producing D% are

eligible for the transition from D%V to D*2,

If the nest of D®? rooted at v had a row R of BB all 1o itself, then the mransformation undergone by this
nest in Step 1 can be accomplished by m processors in constant time, m being the number of children. Each
processor handles one child node. It generates the split-label for that node using its LABEL and the JD tables.
Next, the processors use the row of BB assigned to the nest and the split-labels to partition themselves into
equivalence classes: each processor in the nest whose split-label has first component i competes 10 write the
address of its node in the i-th location of R. A representative processor is elected for each class in this way.
Singleton classes can be trivially sported through a second concurrent write restricted to losing processors

(after this second write, a representative processor which still reads its node address in R knows to be in a sin-
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gleton class). The representatives of each nonsingleton class create now the new parent nodes, label them with
the first component of their split-label, and make each new node accessibie by all other processors in the class.

To conclude STEP 1, the processors in the same class update the labels of their nodes.

For STEP 2, the existence of more than one equivalence class needs to be tested. This is done through a
competition of the representatives which uses the root of the nest as a common write location, and follows the
same mechanism as in the construction of D, If only one equivalence class was produced in STEP 1, then its

representative performs the adjusment of label prescribed by STEP 2.

The above discussion suggests that, once each node of, say, D, =D (een-1} i assigned 1o a distinct proces-
sor, D °8"~2) could be produced in constant time. The difficulty, however, is how to assign the nodes (notably,
the newly inserted ones) of D=2 in constant time. It turns out that bringing fewer PIOCESSOrs into the game

leads to a crisp (re-)assignment strategy.

By definition, D*? does not have unary nodes. It is seen then that the manipulations of Steps 1-2 can be
operated in constant time by assigning m—1 processors, rather than m 10 a nest of 1 nodes. The only addi-
tional assumption to be made is that, at the beginning, all m—1 processérs have access to the unique node
which Jacks a processor of its own. Before starting STEP 1, the processors elect one of them 10 serve as a sub-

stitute for the missing processor. After each elementary step, this simulator "catches-up” with the others.

In view of Property I, this shows that n processors can achieve the first refinement of D;. As to the
assignment of the rows of BB to the nodes of D®), simply assign the i -th row to processor p;. Then, whenever
p; is in charge of the simulation of the missing processor in a nest, its BB row is used by all processors in that
nest.

For any given value of k, let a legal assignment of processors to the nodes of D®) be an assignment that
enjoys Property 1.

Theorem 2. Given a legal assignment of processors for D®), a legal assignment of processors for D*-D ¢an
be produced in constant time.

Proof. We give first a constant-time policy that re-allocates the processors in each nest of D®? on the nodes of

D™, We show then that our policy leads 10 2 legal assignment for D ®-1),



-12 -

Let then v be the parent of a nest of D). A node to which a processor has been assigned will be called
pebbled. By hypothesis, all but one of the children of v are pebbled. Also, all children of v are nodes of D®,
In the general case, some of the children of v in D®) are still children of v in D), while others became chil-
dren of newly inserted nodes py,Ma, - - . , . Our policy is as follows. At the end of STEP 1, for each node 1,
of D*? such that all children of U, are pebbled, one pebble (say, the representative processor) is chosen among
the children and passed on to the parent. In STEP 2, whenever a pebbled node v is removed, then its pebble is
passed down to the (unique) son p of v in D@,

Clearly, our policy can be implemented in constant time. To prove its correcmess, we need to show that
it generates a legal assignment for D 1),

it is easy to see that if node v is removed in the transition from D®’ to D&, then the unique son . of v
in D*? is unpebbled in D®). Thus, in STEP 2, it can never happen that two pebbles are moved onto the same
node of D%,

By definition of D%), the nest of node v cannot give rise to a singleton class. Thus at the end of STEP 1,
either (Case 1) the nest has been refined in only one (nonsingletdn) class, or (Case 2) it has been refined in

more than one class, some of which are possibly singleton classes.

Before analyzing these two cases, deﬁnc'a mapping f from the children in the nest of the generic node v
of D® into nodes of D*1), as follows. If node . is in the nest of v and also in D®D then set pi’ = £ () =z
if instead p is not in D®-D, et p’ = £ (1) be the (unique) son of pin D®),

In Case 1, exactly one node p is unpebbled in D%). All the nodes s are siblings in D®-Y and, by our
policy, y’ is pebbled in D%~V iff |1 is pebbled in D ®.

In Case 2, node v is in D *~", Any node |1 in the nest of v is in D*), At the end of STEP 2, the pebble of
node | will go untouched nnless p is in a nbnsingleton equivalence class. Each such class generates a new
parent node, and a class passes a pebble on to that node only if all the nodes in the class were pebbled. Thus, in
DD, a1l the children of v except one are pebbled by the end of STEP 1. Moreover, for each nonsingleton
equivalence class, all nodes in that class but one are pebbled. At the end of STEP 2, for each node K which
was in the nest of v in D%, node p’ is pebbled iff L was pebbled at the end of STEP 1, which concludes the

proof. [
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4. STORING A SUFFIX TREE

In some advanced applications (cf., for example, [AP-83], [AP-85a,b], [LV-86)), T, needs only to be
traversed bottom-up. The structure achieved for of D® would suffice for these tasks. Like any trie, however,
T; is usually employed to perform downward searches, starting at its root. This requires the insertion, for each
original directed edge (,v) of D9, of a matched downward edge (v,1). Correspondingly, each node v must
now store appropriate downward labels for all the downward edges originating from it. Such Jabels supply the
branching information needed in the course of a downward search in T, of a string w. We examine two dif-
ferent ways of defining such information. More precisely, let (i ,{) be the label of the upward edge (1,v). One
way 1S 10 label the matched downward edge (v,1) with the symbol of / that corresponds 1o x;. This entails that
the branching decision at each node be driven by the symbol that occupies a certain position of w. The second
way is to use the value of /D;[0). To use this information during 2 search, an auxiliary table must have been

precomputed that maps each symbol of 7 into its corresponding /D .

In either case, the set of downward labels of each internal node of T, can be stored using a linear list, a
binary trie, or an amray. Resorting 1o arrays enables searching for w in 7 in time O (|w }), but requires space
8({1 I'n) or &(n?) (depending on the labeling convention adopted) to store T,. Lists or binary tries require
only linear space for T,. However, the best time bounds for searching w under the two labeling conventions
become O(|w |log|f]) and O(|w |logn), respectively. Such bounds refer to the implementation with binary
tries. For ordered alphabets, the bound O (}w llog|7 [) extends also to the Iist implementation of the symbol-
based downward labels. We describe below the trie implementation of symbol-labels and the array implemen-

tation of ID -labels, since all the others can be derived from one of these two quite easily.

We show how to implement symbol-based downward labels with iries, 1.e., how to replace each original
internat node of D with 2 binary trie indexing 10 a suitable subset of /. This transformarion can be obtained
in O (log|/ |} time using the legal assignment of processors that holds on D@ at completion. We outline the
basic mechanism and leave the details as an exercise. We simply perform log|/ | further refinements of DO,
for which the /D tables are not needed. In fact, the best descriptor for a string of log|/ ] bits or less is the
string itself. Thus, we let the processors in each nest partition their associated nodes into finer and finer

equivalence classes, based on the bit-by-bit inspection of their respective symbols. Clearly, a processor occu-
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pying a node with upward label ({,[) will use symbol x; in this process. Whenever a new branching node v is
created, one of the processors in the current nest of v climbs to n~=father (v) and assigns the appropriate down-
ward Jabel to | At the end, the processors assign downward labels to the ultimate fathers of the nodes in the
nest.

Finally, we discuss the armay implementation of ID -based downward labels. This representation shall be
needed in Section 6. We assign a vector of size r, called OUT,, to each node v of D©. The vector OUT,
stores the downward edges from v as follows. If [Lis 2 son of v and the upward label of p is (i,7), a pointer to
i is stored in OUT,[ID;[0]]. It as an easy exercise to show that n processors legally assigned to D@, and
equipped with ©(n ) locations each, can construct this implementation of T, in constant time. In fact, the same
can be done with any D®), but the space needed to accommodate QUT vectors for all refinements D% would
become G(nzlogn ). Observe that, since n processors cannot initialize &(n?) space in O (logn) time, the final
collection of OUT veciors will describe in general a graph containing T, plus some garbage. T, can be
separated from the rest by letting the processors in each nest convert the OUT vector of the parent node into a
linked List. This task is accomplished trivially in exira O (ogn) time. The interested reader may refer to [FL-
80). For one of the applications of Section 6, however, we shall need the entire series of D) implemented by

QUT vectors.

5. REDUCING THE SPACE

Both the preparation of D, and its subsequent refinements need ©(n?) space. Procedure Skeleton -tree
needs ©(n?) space due to the array BB, which is used at each iteration ¢ 10 partition the composite labels
(7TD’s) into equivalence classes. In any refining stage, the nest of each node v needs a distinct array of n loca-
tons for partitioning the spli-t-labels of the nodes in the nest into equivalence classes. In this section, we show
that both problems can be solved using only &(n ) space, for any 0 <£<1, at the expense of a corresponding

slow-down proportonal to 1/e.
We analyze the procedure Skeleton -tree first. Consider some substring w of x of length 29, with g >0,
and letw =wwy with |wy[ = |wz| =2971. Let N; and N, be the ID's assigned by the procedure to w, and

wo, respectively. Recall that each of ¥,V is an integer between 1 and n. The difficulty in creating the /D
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for w is that the pair (N},N;) may assume % values.

We show how to solve this problem using only &(z'*%) space. We assume for simplicity that n® is an
integer, but it is easy to generalize our solution to the cases where n° is not an integer. We focus on compus-
ing the /D of the string w above. The same manipulations are performed in parallel for all substrings of x of
length 29. The idea is to express N, by its representation in the base n%. The coefficients (anasy,...,ay

(least-significant coefficient first) of this representation are easily computed in 1/¢ steps as follows:

fori=1to l/edo

end

Iteration g of Skeleton -tree is now modified to contain 1/ subiterations. The input to subiteration §,
8=1,...,1/, is as follows:
(i) An ID for the pair consisting of the left substring and the o~1-mple (a,,...,a5 ). This ID is a number
between 1 and ».
(ii) The ID ag, i.e., 2 number between O and nt-1.
The output of subiteration & is an /D for the pair consisting of the left substring and the &-mple (ay, ..., ag).

This ID is a number between 1 and ».

The concurrent-write contests that take place within any subiteraton of iteration g of the Skeleton—Tree
procedure are similar (o the original ones. The only difference is that now an auxiliary array of size (n+1)xn®
suffices. Details are left to the reader. For any fixed 0 <e<1 the iotal Space requirements are bounded by
O (n*%) and the running time by O ((1/€)logn )=0 (logn).

Our space reduction technique extends easily to the refining stages. We outline the main changes and
omit the tedious details. With reference to the generic intermediate tree D®, we focus on the processors that

handle the nest of some node v. Recall that, in order 1o refine this nest, the processors partition their underly-
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ing nodes into equivalence classes, according 10 the first component of the split-labels. For this purpose, a row
of BB was used in our original construction, namely, the row assigned to the representative processor of the
nest. Assume instead that processor p;, { =1,...,n, is assigned only an array LITTLE -BB; consisting of n®loca-
tions of the common memory, and let p; be the representative of the nest of v. We perform the partition of the
nest in 1/e subiterations, as follows. First, all processors in the nest compute the representation of the first
component of their split-labels in the base n®. There are n* possible values for the first coefficient of this
representation. Thus, the processors in the nest can partition themselves in n® classes through a concurrent-
write contest on LITTLE-BB;. In this way, each class elects a representative processor. The LITTLE -BB
arrays associated with these representatives is similarly used to obtain a second refinement of the classes. This
refinement is based on the second coefficients in the representations of the split-labels in base n=. It should be
clear how 10 proceed with the remaining 1/e~2 subiterations. For any fixed 0 <&<1 the total space require-
ments are bounded by O (n'*%) and the running time by 0 ((1/)iogn =0 (logn). |
If the suffix tree is implemented by QUT,, vectors, as needed in the next section, it would require ©(n2)
space. However, we can reduce the space to €((1/e)n *&)=8(n %) using the ideas of the space reduction

described above.

6. APPLICATIONS

In this section we describe some applications of our parallel suffix tree construction in the design of

efficient paralle] algorithms.

Problem 1. On-line string matching: Suppose a string x =x,,...,x,_;,# is given in advance (for preprocess-
ing). Answer as fast as possible (on-line) queries of the form: "Does the sting z =z,,...,z,, (the pattern)
oceur in x 7"

Solution:

Preprocessing. Construct the suffix tree of x#. In the course of the computation we save: (1) The logn bulletin
boards used in logn iterations of the procedure Skeleron—Tree. (2) All the intermediate trees D®),
k=logn—1,....0. Each of these intermediate trees is implemented by the vectors QUT,, defined in Section 4.

The computation of this step takes O (logn) time using 1 processors.
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On-line Processing of the queries.

Step 1. Recall that in Section 2 we computed ID;[g] (i=1,...n ;¢=0,....logn) for the string x#. The value
IDilq] is a unique name of the subswing x;,...,x4p., Wher ID;[g)=ID;lq] if
Xy sXpyp 1 =X, ... X We start the on-line processing with naming some of the substrings in the
patiemn z. For ¢=0,...,| logm] , the subsirings we are naming are all substrings whose length is 27 which start
at positions {, where i is a multiple of 27 and i+27<m. The names are stored in the vectors PID; [g]. ..,
PID;[q] is the unique name of the s}ubsm’ng 2%, - .., Zi;5_.) The naming is done such that if two substrings of
length 27, one in z and the other in x##, are equal then their names are equal too. For this, we compute the PID
Jabels using the same bulletin boards (BBs) used in the Skeleton—Tree procedure. (These BBs are saved in
the preprocessing stage.)

Step 2. Let PID | logm) ] (that is, the name of the prefix of z whose length is 211%™y be & Observe that if
none of ID;[| logm] ] is equal to & then the prefix of z whose length is 2127 does not occur in x. We con-
clude that the answer to the query is NO. (Le., z does not occurin x.)

Suppose & =ID;[|logm| ] for some 1<i <n—1. We check whether NODE[| logm] ] appears in D {o8n~D),
Note that NODE, [| logm| ] will not appear in D8~ if and only if all the substrings of x whose prefix of
length 2187 is the same as the prefix of z have also the same prefix of length 2Liow +1 If NODE, [ 1ogm| ]
appears in D®%2"~1 then we are guaranteed that it will appear also in D U™ and we proceed to Step 3. This
is, since all the refinements D®# -1 pliogml) geq only with substrings whose length is greater than
2lloaml  Otherwise, ie., NODE,[|logrm] ] does mot appear in D%#-D we check whether z is equal to
Xy - -« +Xr4m-) letier by Jetter. This can be done in logm time using m/logm processors. The answer to the
query is YES if and only if the two strings are equal.

Step 3. We find a node v in the suffix tree such that z is a prefix of W(v) (if such node exists). For this, we use
the vectors PID;[q], of Step 1 and the D®) mees, g=|logm] -1, .. ., 0, of the preprocessing. Node v is found
using some notion of binary search in | logm| iterations.

Iteration q (q =|logmJ -1,...,0). Let v and z* be the input parameters of iteration q. (For iteration | Jogm| —1
v=NODE,[|logm| ) and z" is the suffix of z starting at position 21107 41 .) The invariant property satisfied in

all the iterations is that v is a node in D%*D and z* is a substring whose length is less than 29+ Our goal is to
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check whether z” follows an occurrence of W (v). We work on D'9). There are two possibilities:

(Possibility 1) The node v appears in D@, Possibility 1 has two subpossibilities. (Possibility 1.1) 29 is
larger than the length of z*. In this case we do nothing and the input parameters of the present iteration become
the input parameters of the next iteratior. (Possibility 1.2) 27 is less than or equal 1o the length of z’. Assume
that z* starts at position j of z and b is the value stored in PID;[g]. If the entry OUT,[b] is empty then z
does not occur in x. Otherwise, the input parameters of the next iteration will be the suffix of z”’ starting at
position 29+1 and the node pointed to by OUT,[b].

(Possibility 2) The node v does not appear in D), This means that v had only one son in D “*Y and so it was
omitted from D@ (in Step 2 of refining DY*Y). Let |1 be the single son of v in D @*D, Possibility 2 has two
subposstbilities. (Possibility 2.1) 29 is larger than the length of z’. Assume that the LABEL of pin D9 is
({,1). In this case z’ occurs in x if and only if z’ is a prefix of X;,;_ge.y, . . ., X;4y. We check this letter by letter
in logm time using m/logm processors. (Possibility 2.2) 27 is less or equal to the length of z°. We compare
ID;y19141(¢] (the unique name of x;; _or 4, . .., %) to the unique name of the prefix of z/ whose length is
29. If these names are different then z does not occur in x. Qtherwise, the input parameters of the next itera-
tion will be the suffix of z” starting at position 29+1 and the node p.

Remarks. (a) We did not initialize the vectors QUT,, therefore it could be that we will get a wrong positive
answer. To avoid mistakes, every time we get a positive answer we explicitly check whether z really appears
in x at the position given in the answer. This can be done in | logm| time using m/ogm processors as a last
step. '

(b) The on-line computation can be extended to obtain additional information about z. For example; (1) What
is the number of occurrences of z in x (2) In case there is more than one occurrence, what is the staming posi-

tion of the first (or last or all) occurrence(s) of z in x. (3) What is the longest prefix of z which occurs in x.
Complexity. The preprocessing takes O (logn) time using n processors. Answering a query takes O (logm)
time using m/logm processors.

Problem 2. Finding the longest repeated substring in a string: Given a string x find the longest substring

which occurs in x more than once.,
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Solution: W (v) is defined in Section 2. Let [ W (v)| be the length of W (v).

Step 1. Construct the suffix tree of x# and find | W (v)| of each node v.

Step 2. Find the internal node v with the maximum | W(v)| field. The substring represented by the path from
the root to v is the longest repeated substring in x.

Step 2 can be carried out using the parallel algorithm for finding the maximum given in [SV-81].

Complexiry. Step 1 takes O (logn) time using n processors. Step 2 takes O (loglogn) time using n/loglogn
PrOCESSOrs.

Problem 3. Approximate string matching: Suppose a string x, a patiem z and a parameter k are given. (Let
(resp. m) be the length of x (resp. z).) Find occurrences of z in x with at most & differences, We distinguish
three types of differences: (a) A letter in z comresponds to a different letter in x. (b) A letter in z corresponds

to "no letter” in x. () Aletter in x corresponds to "no letter” in z.

Solution: [LV-86] gave both a serial and a parallel algorithm for the problem. The present paper enables to
design an dltemative parallel algorithm which essentially consists of paralielizing the serial algorithm of [LV-
86]. The alternative parallel algorithm is based on both the parallel prefix tree construction, of this paper, and
parallel algorithm for answering Lowest Common Ancestor (LCA) queries of [ScV-87]. In order to keep this
presentation short we refrain from describing this altemative algorithm in detail. This alternative parallel
algorithm for the approximate string matching problem runs in time O (k +logn) using n+m processors. Note
that the parallel algorithm of [L'V-86] consists of two parts: (1) Analysis of the pattern. (2) Analysis of the
text. Part 1 runs in O (log m) time using m? processors. Part 2 runs in O (k+Hogm) time using n processors.
So, comparison of the performance of these two paraliel algorithms depends on the relative values of n and m

and also on whether the pattem is given in advance for preprocessing.
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Figure 1

The suffix tree T, for x=abaababaacbaababa#. For convenience, the arcs of T, are labeled both with sub-
strings of x and their associated descriptors.
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Figure 2

Basic stucture of the skeleton tree D, for the string of Fig. 1. Solid points are used to
roark non-branching nodes. Such nodes are introduced while consgucting D, but they
are also removed during the construction. Node labels are not reported in the figure.
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Figure 3

No nest of the skeleton of Fig. 2 undergoes changes in the first refining stage. The present figure shows the
effect of the second refining stage. Parent nodes of the nests that were eligible at the inception of this stage are
shown solid. Among the effects of this stage, the old locus of abaa (shown smaller) is eliminated from the
tree. One more refining stage leads to the tree of Fig. 1.
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