View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1987

Shells in an Interactive System
Balachander Krishnamurthy

Report Number:
87-707

Krishnamurthy, Balachander, "Shells in an Interactive System" (1987). Department of Computer Science
Technical Reports. Paper 611.
https://docs.lib.purdue.edu/cstech/611

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4951613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SHELLS IN AN INTERACTIVE SYSTEM
Balachander Krishnamurthy

CSD-TR-707
September 1987

Shells in an Interactive System

Balachander Krishnamurthy

Department of Computer Sciences
Purdue University
W Lafayette, IN 47907

September 7, 1987

Abstract

In considering the process of interaction between the user and the
machine, a frequently used communication medium is the command
interpreter which mediates between the user and the operating sys-
tem. It provides access to all the utilities in the system—revision
control systems, time based schedulers, compilers, mail handlers, and
other application programs. We confine our interests to command
interpreters in an interactive system where the window system is the
front end to the various application programs and the command in-
terpreter is an application program that the user can access. We
seek to replace the traditional command interpreter with 2 shell that
permits the user to specify frequently executed actions in a simpler
manner. By looking at the most frequently executed commands we
can see what commands can be eliminated in the environment of a
workstation with advanced input devices and display techniques. If
a command cannot be eliminated or replaced we seek to provide an
improved interface both globally and specific to a command. Another
motivation is that the interface remain user-oriented. An aid towards
providing a user-oriented interface is dynamic tracking of a user’s pat-
tern of usage. By keeping track of a user’s usage pattern we can build
an interface that evolves with and is specific to the user.

1 Introduction

In this paper, we consider the role of a shell in an interactive system.
Throughout this paper we will treat the term shell as in the UNIX sense,
that of a program that provides a front end to the various operating system
capabilities usually at a higher level. By an interactive system we mean
a software subsystem that usually resides on a workstation connected to
a network of hosts that run traditional operating systems like UNIX. An
interactive system comprises of input devices, a window manager, and a
set of application programs. The window manager demultiplexes the in-
put generated by the user via the devices and directs it to the application
programs which are processes running in distinct physical regions called
windows. The output from these processes is also multiplexed and dis-
played by the window manager in the appropriate window. Qur model of
interaction in an interactive system is explained in a companion paper[6].

The remainder of the paper is divided into eight sections: first, we
provide some historical background to shells in the UNIX environment.
After a look at the syntactic aspects of the shell we see what portion of the
shell has been moved into the window system already. In the next section,
we provide the motivation for our argument to move away from the current
notion of shells in distributed interactive system. We then discuss our
model of a shell. This is followed by a discussion of our modifications to an
existing command interpreter and the analysis of the usage data gathered.
We conclude with a look at our novel history mechanism implemented under
a prototype window system.

2 Motivation

We provide some historical background on the shells available for the UNIX
environment and look at the current role of shells.For the UNIX operating
system, there are three popular command interpreters. The first one was
the Bourne-shell that was designed by Steve Bourne [3]. The next shell
that gained popularity was Bill Joy’s C-skell, originally written in 1978,
Recently another shell has been developed at Bell Laboratories—the Korn-
shell [5], designed by David Korn. While the functions of these command
interpreters are similar, the features vary: C-shell for example has a history

mechanism, by which a user can keep track of the commands he has issued
and re-execute a previously issued command. C-skell also has job control
so that a user can suspend a running task and move it to the background.
The Korn-shell is similar to C-shell in that it has an history mechanism ad
job control, but retains the flavor of the Bourne-skell. Also, the Korn-shell
features an editing interface. A feature comparison of the three command
interpreters can be found in [7].

Command interpreters in the UNIX domain are traditionally used for
creating processes, redirecting input and output, and setting environment
parameters. The three command interpreters are similar to each other in
the sense that they parse the command line and pass it to the underlying
operating system to be executed. Our objection is that, while such an
interface is fine on ordinary terminals, it can and should be superior on
workstations with bitmapped displays and pointing devices for input. Qur
observation was also that only a small subset of commands are being used
a vast majority of the time and we could use this knowledge in designing
a better interface to the commands. If we are able to gather user-specific
information we would be able to construct an user-oriented interface.

3 Syntactic aspect of shells

As mentioned earlier the shell’s role is to provide access to all the utlities in
the system such as revision control systems, time based schedulers, compil-
ers, mail handlers, and other application programs. The mechanics involve
a syntactic component and we consider that first. At the highest level,
the shell accepts command input from the user in an interactive fashion
(asking for correct input or offering corrections), and returns the output of
execution of the command. The user can find out state information — about
his files, his processes, the network, other users etc. After parsing the com-
mand line the shell creates a process to execute the requested command.
The user can use meta-characters as a short cut to specify one or more
arguments. Meta characters are not exclusive to the shell though they are
found in shells more commonly than in other utilities. Example of meta
characters are ‘?’, which matches a single character, and “*’ which matches
zero or more characters. UNIX pipes—a mechanism by which output from
processes can be sent as input to other processes, are made available to the

user via the shell. The user can combine the output of various commands
through the pipes. Arguments can be specified as part of the command
line. Tasks can be redone in the shell with different arguments.

4 Why move away from present notion of
shell?

o Shell is not a context specific tool.

e Input to the shell is restrictive.

Presenting uniform output is difficult.

¢ Commands and arguments to shells are specific to the application
program.

o Shells are processor specific.
¢ There is no provision for graphical command input.

» Moving towards application specific tools lessens dependency on shell.

A shell, intended to provide a uniform front end to various application
programs is not an application specific tool, The various commands that it
offers results in a loss of uniformity in interface. Grafting traditional shells
on to modern window systems without any modifications to its interface
capabilities is not an improvement. The ability to specify files as input is no
longer sufficient. Operations on chunks of text, or windows are frequently
performed in interactive systems. For example, the user may wish to sort
the information displayed in a window or ensure that it is spelt correctly.
Neither of these are traditional editing operations. Operations like sorting
and spelling have been traditionally done on larger and more permanent
objects like files via the shell. An example of a window system equivalent
of such operations is Emacs’ filter-region, which permits marking a region
of text and filtering that region through 2 shell command, such as sort or
spell. The granularity of the argument to traditional shell commands has
thus been altered.

The next major drawback of shells in a distributed interactive system,
after input, is that of output. Once again, the mono-dimensional world of
the shell, prevents presentation of the output in different ways dep ending on
the application. Further, the output domain of all processes created under
the shell is the same shell region. Flexibility in deciding where and how
output should be displayed is lower. Merely having the ability to redirect
output to a device or a file is not enough. For example, it should be possible
to send the output to another window. Objects such as windows can be
treated as arguments to shell commands [1]. The output of two processes
created simultaneously can become interspersed. While pipes provide an
elegant way to filter the output of one process through another process,
there is no mechanism to show intermediate output in the pipeline. It
should be possible to have a graphical interface with the results of different
stages of the pipeline being displayed. The inability of the shell to display
intermediate stages of the pipeline is a result of the shell being a one-in-one-
out mechanism. Commands, even when combined, produce only a single
final output, though the same output can be sent to two different channels
simultaneously.

The interface to each of the commands, as far as flags, options, argu-
ments are concerned is left to the individual command. The shell merely
parses the command line and transfers control to the function that im-
plements the command. Individual application programs have their own
notion of how an individual command line should look like and how it
should be parsed. Some programs prompt the user for proper input if he
entered incorrect arguments, while others do not. Even though the user
Is conversing with a single program—the shell, he has to speak different
languages. Unifying the interface alone is not enough—the user needs to
be able to impose his view of interaction at every step.

Shells do not provide the best interface for all applications. For exam-
ple, to play board games like chess and othello on the machine, the user
would traditionally input moves by typing them in—an awkward and te-
dious interface. However, with the advent of bitmap displays and pointing
devices it has become significantly easier to provide a friendly interface.
For example, the user can just point to an object on the board and move
it. The seeing and pointing paradigm of interaction is a simple interface
model as expounded in [10]. Shells are unnecessary for such applications.

In a distributed interactive system, we detect a clear trend towards
divesting the shell of some of its traditional functions. For example, there
are application specific tools such as mailtoo!, dbztool in interactive systems
such as SunView [11]. Traditionally, the shell provided the front end to the
mail subsystem and the debugger. Separate interfaces have been developed
for these subsystems, complete with a mouse interface. In the past, users
could either enter the mail subsystem and perform their mail transactions or
intersperse other shell commands with mail subsystem specific commands
as in MH [8]. With debuggers, there has always been a notion of entering
a debugger and exiting it after finishing the debugging. In dbztoeol, the tool
is invoked and a new file can be read in. Also, the file being debugged can
be modified rather than exiting and re-entering the debugger.

‘The move toward application specific tools such as mailiool, dbztool,
apart from providing separation of context, eliminates the need for the
application specific commands in the shell. For example, a window that
exclusively deals with a time based scheduler relieves the need to converse
with the shell. A window dedicated to a particular application enables
monitoring of its status at any instant without having to run a shell com-
mand. A separate context provides a more coherent view and the interface
to these application specific tools can be tailored to the user.

5 What needs to be changed?

We will see how several of the features of the shell have been rendered less
useful and how an alternate interface can be provided by our view of a
command interpreter. Let us consider job control. The C-skell provides
job control by which the user can suspend his current process, move it to
the background and presumably execute another command. Alternately, he
can just stop a process that has been running. With the advent of window
systems, job control can be eliminated to a reasonable extent. With each
process potentijally having a window for itself, the user can alter the z-
coordinate of the window and push it behind in the stack of overlapping
windows on the screen. To continue the analogy, the no#ify mechanism of
the shell, by virtue of which the user is notified of the completion status of
the process, can be displayed via changing icons. An example can be found
in the Sapphire window system of the Spice [2] environment where various

stages of the process are displayed via icons.

Another common use of the shell is to manipulate files. The dired pack-
age of Emacs points us in the direction of treating a collection of files
uniformly. In dired the user can edit his directory in a buffer where the
contents of the directory are displayed. Files can be created, deleted, or
edited. While dired does not completely replace the file manipulation ca-
pabilities of the shell (for example, there is no way to manipulate files in
another directory without reading the entire contents of that directory into
a buffer), it is a step in that direction.

We infer that we have to provide a direct interface to several packages.
Bach of the packages that we divest from the shell and provide a direct
interface to, may converse with the shell without the user’s knowledge.
By separating the individual packages from the shell we provide a clear
context to the user. The user is aware that his input is being sent to a
particular application program and the output appearing in that window
is the result of the command he issued to that application program. Such
an interface is not possible in the traditional view of the mono-dimensional
shell. Approaches that force the user to input his commands in one place
and watch the results in some other area on the screen are potentially
distracting,.

While it might seem that divesting the shell of access to application
programs may make it harder for the user to interact with the application
programs, the contrary is true. The users can take advantage of the work-
station and the resident software rather than be limited by the shell built
for an ordinary glass terminal. In the next section we expand on our model
of the shell.

6 Our model of a shell

Having pointed out the deficiencies in the existing notion of a shell in win-
dow systems, we now present an alternate scherme that attempts to answer
most of the questions raised in the earlier sections. We also discuss actions
for which there is 2 need to retain some of the traditional shell notions.

It should be possible for the users to access all the services of the dis-
tributed system via the same shell to ensure transparency. Our approach is
to gather all the shell services that can be provided in the distributed sys-

tem and make them available to the user through a single shell. We do this
by viewing the shell to be an application program in the interactive system.
We gather all the valid commands accessible via the shell and construct a
table of the commands. As several of the application programs have their
own interface, the number of commands that remain to be accessed solely
via the shell is reduced, though the number remains large. A completion
table is formed from the list of valid shell commands, requiring the users
to type only the least disambiguous string. The arguments, options, flags
of the shell commands can be used to prompt the user. As all the valid
shell commands have been gathered, a uniform front end can be provided
to the commands. Such a view of the shell is consistent with our model of
interaction, whereby we gather as much information about the application
program and download it into the window system.[6]

Providing menus for the commands has its drawbacks. One is the large
number of commands that remain valid in the shell, in spite of divesting
the application programs from it. If the menus are of the pop-up variety,
their lifetime is usually a single mouse click as they appear (say) on the
down transition of a mouse button and disappear on the up transition. If
the menus are permanent, they take up valuable screen real-estate. We
can get around this problem in two ways. Several window systems already
provide a way to issue commands without displaying them on the menus,
The technique is called hotspots. The hotspots are disguised commands.
For example, on the Macintosh window system, there are hotspots on the
corners of the windows, that permit the user to alter the size of the window,
to delete or move a window. Hotspots replace the shell level commands such
as remove and move. Scroll bars obviate the need for paginator programs
that are usually provided with shells to browse through files. By combining
the display of a file in a window with the availability of scroll bars, we
have done away with file display commands in the shell, The advantage of
displaying the file in a window is that the display is not transient, as the
user can move around the displayed text at any time.

For an implementation of our alternate approach we divide the com-
mands accessible via the shell based on the nature of output of the com-
mands. Some commands have no output, some have a small amount, while
others have varying amounts of large output. Commands that have no out-
put are handled via the hotspots technique described above. Some com-
mands may force the user to confirm and the confirmation is done via

8

another mouse click or a keystroke. Commands that have small amounts of
output could have the output displayed in the same place as the command
themselves, as in existing shells. Commands that have large and varying
amounts of output have windows of their own. For example, the command
that shows the load average on a cluster of machines can have a window of
its own and constantly redisplay the status. The classification is not meant
to constrain the commands, but to understand the nature of commands
and provide an appropriate execution and display environment for them.

As our target environment includes graphics capability, a bit-mapped
display, and pointing devices such as mice, we have to design a shell that
will take these factors into account. In comparing the ordinary terminal
world and the world of workstations, we notice that the granularity of
the arguments to commands are different. In the latter we have regions of
characters and contents of windows as potential arguments, apart from files
or directories. Also there is multiple continuous display possibility, ability
to dedicate windows to hold output and history of past commands. The
display itself can be partitioned based on individual commands and their
output, all in their own windows. The output of previous commands or a
part of it can be used as input to further commands. Windows permit the
commands and output to be displayed contiguously and provide the same
continuity that a single window shell provides. Operations like sort and
spell can be run on smaller granularity objects such as regions. In some
sense we are integrating traditional shell services in the interactive system
environment.

We wanted to base our design of the interface to the shell on the individ-
ual user’s usage pattern. We contend that only a small percentage of over
300 commands available in C-skell are used frequently. This fact has been
borne out by previous studies [4,9]. In [4] the full paths of the commands
executed on the user's behalf were not studied. In neither of the studies
were the raw command lines used, primarily because the information was
extracted from data already being gathered by the system (e.g. via the
system accounting program sa). As we were interested in exactly what the
user typed to the shell, we altered the shell to log the command lines. We
also logged the full path names of the commands executed. The details of
the modification to the shell and the data gathering are examined in the
next section.

7 Implementation

As the heaviest used shell at Purdue is Bill Joy’s C-shell, we decided to
obtain information about it's usage. Previous information gathering at-
tempts about the usage of a command interpreter have been limited either
to the nature of the commands issued [9] or the existing information in
the system itself. For example [4], uses the information that UNIX gathers
from the system accounting program se. Instead, we decided to modify the
C-shell command interpreter slightly to log the raw command lines as well
as actual command usage dynamically. We ensured that the modifications
did not affect the users of the command interpreter in any way.

The logging of the modified command interpreter usage was done on
different environments. The modified command interpreter was imple-
mented and data gathered on machines across several administrative do-
mains within the Purdue University campus, as well as in an industrial site,
Gould Corporation in Champaign, Illinois. On the Purdue campus, the
users included faculty, graduate and undergraduate students, researchers
in the various departments, systems administrative staff, and secretaries.
The industrial site mainly consisted of systems programmers and other
software developers. In the rest of this section we will look at the precise
changes made to the C-shell and explain how the data was gathered and
analyzed.

7.1 Modifications to the shell

Before we embarked on modifying the shell, a survey of existing information
gathering tools were made and found to be inadequate for our purposes. C-
shells built-in history mechanism was a potential place to get information
on exactly what the user typed. A trivial way to log the commands typed
by the user would have been to use the built in history-logging facility of
C-shell via the savehist mechanism. However, when the user issues aliases
for commands, the aliases, rather than the alias-expanded commands are
stored. Commands typed to the shell within control structures such as
foreach are not placed in the history list. Also, history events, used for
redoing a previously issued command with potential modifications, are not
logged in the history list. Instead, the new command line formed as a result
of the change is logged. Thus, there is no way to find out how many times

10

a previous command is being reissued or how many times a command was
typed incorrectly. Our changes to the shell rectified all these problems, as
we logged the raw command line typed by the user, including lines typed
as part of control structures such as while, swiich, and foreach.

Apart from the raw command lines, we were also interested in the precise
full paih of the commands executed based on the user’s path. Commands
that are executable from the shell follow a notion of path by virtue of which
users could specify the order in which directories should be searched to
find the right command. Information obtained from the system accounting
program sa did not have the full paths of the commands that were executed
on the user’s behalf. We could not find any reference to work previously
done on logging complete path names in the literature. Full path name
logging ability is not built in to C-shell and no system accounting prograimn
maintains this information. Our modifications enabled keeping track of the
full path of the commands executed on the user’s behalf. The C-shell uses
a bit vector scheme to hash the commands in each of the directories in the
user’s path. When a command is issued, C-shell, to find the appropriate
binary to execute, uses a more expensive hashing function to see if the
command might be in the ith component of the path vector. After this, a
cheaper hashing function is invoked, once for each path component checked.
As the command could hash to an incorrect path name, it was possible that
an incorrect string would be executed. When the execution failed because of
the lack of a corresponding binary in that directory, the process of searching
through the path would continue. Executing a full path directly is cheaper,
as the searches (and potential incorrect executions) are obviated.

Logging of full paths was complicated because of C-skell’s hashing mech-
anism. The full path command had to be logged just before invoking the
ezecy systern call as there is no return from ezecw. Success or failure of the
system call is not known e priori. If the call failed because of the hashing
function causing an attempt to execute a non-existent binary, the incorrect
log entry had to be removed. A combination of two system calls fsta?, which
stored the location in the file where the new log entry was to be made, and
firuncate, which truncated the file to the previously marked position, were
used to get around this problem. Apart from the writes to the log files for
logging the commands, these were all the additions made to C-shell.

The actual modifications that were done was small—104 lines were
added to the original source of 12762 lines of code—less than 1% addi-

11

tion. The modified shell had to be functionally equivalent to the regular
C-shell. There was no noticeable difference in the functioning of the modi-
fied shell. The two extra atomic write system calls made by the shell caused
negligible overhead compared to the amount of work the C-shell has to do
to execute a command. The modifications were transparent enough that
even regular and heavy users of the shell (the author included, though there
might be reason to doubt his unbiasedness) could not detect any difference
in the performance. The only real resource being consumed was disk space
to store the logging information. We will look at the actual data gathering
in the following sections.

7.2 Machine environment

The C-shell runs on practically all versions of the UNIX operating system
and on a variety of hardware. Fortunately, Purdue University has a large
number of machines running UNIX and thus we were able to install our
shell on a variety of machines across several administrative domains. The
machines ranged from single user workstations to large time sharing sys-
tems. The various administrative domains were chosen to ensure gathering
of data from diverse user groups. Within the Purdue campus, the machines
were chosen from those available in the Computer Science department, the
university’s computing center, and the Physics department.

The machines in the Computer Science department ran ged from a VAX-
8600 (Arthur) primarily used by the faculty in the Computer Science de-
partment, a VAX-11/785 (Gwen) used by students in the operating sys-
tem and networks course, a VAX-11/780 (Ector) used by secretaries in
the department, 2 VAX-11/780s (Blays and Merlin) used by students in
the systems research groups, and another VAX-11/780 (Mordred) used by
a large number of generic graduate students. All these machines ran 4.3
BSD version of the UNIX operating system. The shell was also installed on
two file servers running Sun OS 3.0 and 3.2, serving several individual sun
workstations (Sun-2/120, Sun-3/50, Sun 3/75), a Sun 3/75 (Surya) with a
local disk. 113 users used the shell in the various machines belonging to
the computer science department.

Beyond the Computer Science department, the shell was installed on a
VAX-11/750 (Newton) also running 4.3 BSD UNIX, used by 90 researchers,
graduate students, and faculty in the Physics department. The shell was

12

installed on a large Sequent Balance 21000 multiprocessor (S) running the
Dynix operating system, with 735 users. The users were primarily under-
graduate and graduate students in various computer science courses, though
several other departments were also represented. Another instructional ma-
chine being used for an introductory computer science course complete with
labs, (N) was a dual VAX 11/780 with 53 users. The shell was also installed
on four other VAX-11/780s (H,I,J,K), all belonging to the computing cen-
ter. While H, I, and K were used primarily by graduate and undergraduate
students for coursework, J was a front end to the Cyber-205 Supercom-
puter. J is also used for systems programming. Another VAX-11/780 (L),
used by researchers and graduate students in the Statistics department with
79 users was also part of our experiment.

Going beyond the academic environment we were successful in getting
the cooperation of the Gould corporation in obtaining data from one of
their development sites in Urba,na—Cha.rnpa.ign.Jr In Gould, the shell was
installed on two Gould PowerNode dual 9080s (Mycroft and Fang) running
UTX32 V2.0, each with 107 and 110 users respectively. A vast majority
(about 85%) of the user community on the Gould machines were people
involved in development software while fractions included support staff,
technical writers, and other miscellaneous users.

In all 2761 users in 19 machines used our shell for a period of at least
four weeks. The data gathered represented usage in a large campus and the
large number of users lend strength to our conclusions. Table 1 describes
the machines on which data was gathered. CS refers to the computer
science domain and CC refers to the computing center which administered
the corresponding machines. Table 2 displays the classification of users as
well the number of users in each machine.

7.3 Gathering data

We first had to ensure that the changes to the shell were not critical as far
as performance, upward compatibility, and functionality were concerned.
We then had to address the issue of how much data had to be collected
and the duration for which the data would be collected. Usage patterns of

TThe author would like to thank Arden White’s help in installing the author’s modifi-
cations and the Gould corporation for permitting the data gathering,

13

Table 1: Machines, domain, model and Qperating System

| Machine | Domain Model | Operating System |
Arthur CS VAX-8600 4.3 BSD UNIX
Blays CS VAX-11/780 4.3 BSD UNIX
Ector CS VAX-11/780 4.3 BSD UNIX
Gwen Cs VAX-11/785 4.3 BSD UNIX
Lionel CS SUN-3 SUN 0§ 3.2
Lucas CS SUN-2 SUN OS 3.0
Merlin CS VAX-11/780 4.3 BSD UNIX
Mordred Cs VAX-11/780 4.3 BSD UNIX
Surya CS SUN-3/75 SUN OS 3.2
Newton | Physics VAX-11/750 4.3 BSD UNIX
H CC VAZX-11/780 4.3 BSD UNIX
I CC VAX-11/780 4.3 BSD UNIX
J CC VAX-11/780 4.3 BSD UNIX
K CC VAX-11/780 4.3 BSD UNIX
L CC VAX-11/780 4.3 BSD UNIX
N CC VAX 11/780(dual) | 4.3 BSD UNIX
S CC Sequent 21000 DYNIX
Fang Gould | PowerNode 6030 | UTX32, V2.0
Mycroft | Gould | PowerNode 6030 | UTX32, V2.0

14

Table 2: Number of users and classification

| Machine | Users | Primary User Classification |

Arthur 23 Faculty
Blays 8 Research
Ector 8 Secretary
Gwen 11 Student
Lionel 8 Research
Lucas 8 Research
Merlin 5 Research
Mordred 41 Student
Surya 1 Faculty
Newton 90 Faculty
H 482 Student
I 444 Student
J 115 Research
K 433 Student
L 79 Student
N 53 Student
S 735 Student
Fang 110 Industry
Mycroft 107 Industry

15

the machines vary with the user community and to ensure that the data
gathered was a representative sample of the usage, we decided that data had
to be gathered for a period of four weeks. We collected data continuously,
ignoring peak activity. Logging was performed on login and interactive
shells only, eliminating non-interactive and remote shell activities. The
amount of data naturally varied with the machines and the number of
users.

We gathered data for four weeks on each of the machines that the shell
was run. As our shell was implemented on different administrative domains
across the Purdue University campus, it was difficult to collect all the data
simultaneously. However, the data was collected for the same duration.
Rather than accumulating the data in several different places, we copied
the data periodically to 2 single machine (Blays) and freed up the disk
usage on all the other machines. At any given time no more than 3 Mbytes
had accumulated on any of the other machines. Our experiment did not
interfere with the users as the shell was fully compatible with the original
C-shell and had no appreciable response difference.

The question of disk usage as far as logging to obtain better results
with the shell is an open one. While it might be possible to do something
similar to alias tracking of the Korn-shell [5], we came to the conclusion
that the amount of floating disk usage because of the logging is small. If the
workstations have a local disk attached, then the problem does not merit
serious concerns at all.

7.4 Analysis of data

Over 40 megabytes of data was gathered in all and data compression tech-
niques were used to store and analyze them. Our main purpose in gathering
data was to verify the hypothesis that a small number of commands were
being used frequently. This was proved beyond any doubt regardless of the
class of users: secretaries, faculty members, researchers, and graduate stu-
dents in other departments. The average number of commands that were
executed over 85% of the time was around 15. (See Table 3). We com-
bined the data within classifications such as faculty, researchers, students
and looked at the most frequently used commands. Table 4 shows twenty
of the most frequently used commands in each of our classification.

16

Table 3: Number of commands vs. percentage

| Percentage | 75 | 80 [85 [90

Arthur 14172127
Blays 14 116 |20 | 25
Ector 1111311620
Gwen 1215 |18 |23
Lionel 89 11215
Lucas 1013 (15|20
Merlin 111131721
Mordred 151821 |27
Surya 12114 |16 | 19
Newton 719 (11114
H 8 (10|12 |14
i 8 [10 |12] 14
J 10112 {14 | 18
K 9 (101215
N 10 |11 (14 |17
Fang 8 (1012 |16
Mycroft 9 1111418

17

Table 4: Most frequently used commands in each classification

[Faculty | Industry [Research | Secretary | Student |

Is set Is Is Is

vi ls cd cd vi

cd ed vi vi cd

set vi jobs xe set

more stty set Troff tset

stty dirs stty mail biff

echo hostname | next troff logout

PE fe cat rm cat

fg more fg troffq a.out

logout jobs rmm pushd more

mail mail biff Pic stty

ps rm mail cp m

m pwd mesg Ipq z29init

pwd grep show eqn pix

date if tset Egn f

tset make echo lpr mesg

jobs logout more stty fg

hostname | eval u page echo

dirs echo rm w mail
18

7.4.1 Classification of commands

From the classification table (4) we could see that the most frequently
executed commands could be classified as follows:

o directory and location related (Is, cd)

¢ terminal related (mesg, sity,tset)

o editor invocation (vi, ze)

e status commands (dirs, f, Ipg, jobs, ps, w)
o display related (cat, pg, more, Ipr)

e operations on files (¢p, grep, rm)

» mail commands (mail, nezt, rmm, show)

7.4.2 Eliminating commands from window system shells

The aim of studying the usage of commands was to show that a few com-
mands dominate the interaction process and better interfaces can be pro-
vided for them. As we noticed in the previous section a few commands
constitute a large percentage of the total number of commands. Several
commands can be replaced by window system equivalents that take advan-
tage of the additional interface features. Replacements of shell services by
window system is the first step to move away from the shell-per-window
paradigm.

In this section we consider the commands that can be targeted for elim-
ination from shells in window systems or replaced with alternate mecha-
nisms. In the next section we show how interfaces can be built for the
commands that are not eliminated.

The first classification consists of commands relating to directory and
location manipulation. Is is the most popular command by far and a re-
markable short cut was to build file name completion into ¢-shell, The user
could type the name of the directory and follow it by the lisi-completion
character. The list-completion mechanism being built into the shell opened
the directory and read the contents and displayed the names of the files
in the current directory. This was in contrast to running the Is command

19

which caused the shell to fork and execute the command. Such a solution
is specific to the Is command and in fact later versions of the UNIX kernel
(4.3 BSD) modified the names routine used in Is, thus speeding up direc-
tory lookup. A specialized solution of this nature, while alleviating the Is
problem is not the general solution we seek. Our suggestion is to display
the files in the current directory at all times. A graphical display of the
directory structure will permit the user to move around the directory using,
a mouse.

The second most frequently used set of commands are the terminal
attribute setting commands. These are non functional in a window system
unless we use the windows as terminal emulators. As we are trying to
move away from the shell-per-window paradigm we can ignore this class of
commands.

The third category is the editor invocation commands. In modern win-
dow systems where there are editing environments such as Emacs, the need
to invoke editors with less capabilities like vi or ze is minimized. Besides,
these editors are not capable of making use either of the advanced input
devices such as mouse, or of the ability to display different parts of the
file being edited in distinct regions. Editing environments are capable of
providing advanced interaction mechanisms.

Status commands continue to remain useful in any environment. The
user is still going to create processes, print files, and inquire about the
status of the machines and users in his immediate environment. Some of the
commands in this category can be however eliminated. For example, dirs,
which displays the stack of directories pushed onto the user’s environment
can be displayed at all times obviating the need for the command to be ever
executed. The stack of directories can be displayed in the banner area of
the window. The display will include the current working directory and can
be displayed in conjunction with the files in the current working directory.

Graphical interfaces to collections of files enable elimination of com-
mands that operate on files. For example, in the Macintosh system, a file
can be removed by dragging its icon to another icon representing a trash
can. Searching within a file is an editing operation provided by the edit-
ing environment. However the advanced window system interface does not
improve the ability of the user to perform operations on collections of files.
Using the meta-character ‘*’ a esh user can search for patterns in a collec-
tion of files. The advanced interface can be then used to display all the files

20

in which the pattern was found. We see the need for retaining some of the
notions of the present shell here.

It is interesting to note that the next category of most frequently used
commands is the set of commands relating to the mail subsystem. A mail
specific interface takes care of the commands in this category. The mail
subsystem can provide the user with some context, permit him to switch
between this context and another. For example, he can begin to compose a
message, move to another window, extract some text from there and insert
1t into the message. We advocate a separate context for related operations.

7.4.3 Interface for commands not eliminated

In the previous section we looked at the commands that can be eliminated
from shells. In this section we see how a general interface can be provided
for commands that have not been eliminated. We also see how specific
interfaces can be provided for certain commands.

Once we have established the most frequent commands that cannot be
eliminated, we can attempt to tailor the user’s interface to these commands.
For example, we can have a fixed menu of the most frequently used com-
mands that is displayed at session startup time. Depending on the user’s
choice of style of interaction this can be made available in a pop-up-menu
also. In Section 8 we will see how a suitable interface can be provided for
the commands used frequently during a current session.

Commands in the status category included some that could not be elim-
inated. We suggest improving the interface for such commands. For ex-
ample, the status of commands running could be displayed as icons as in
Spice’s Sapphire window system.[2] A command that periodically gets up-
dates about the status of other users in the immediate environment elimi-
nates the need for commands like u, w. In general for status commands that
are going to be invoked repeatedly a separate window can be dedicated.

The question of handling inquiries about status of jobs sent to printers
(Ipg) or jobs waiting to be processed by document formatters is answered
slightly differently. Commands dealing with the status of jobs printing
and waiting to be processed by formatters almost always arise after the
corresponding invocation of the commands that print files or submit files
to be formatted. If we caused the commands that invoked the printing
or formatting to automatically report on the status of the jobs we can

21

eliminate status commands to a reasonable extent.

7.4.4 Using raw command data

So far we have seen how to use command information data. QOur data
gathering involved not only logging of full path information but the raw
command lines typed by the users as well. The full path information was
logged so that aliases used by users would not prevent factual data to be
compiled. From the raw command line data we can extract information
about usage of parser metacharacters that are immune from aliasing. Over
two million command lines were examined during the course of data gath-
ering.

The parser metacharacters are used to redirect input and output, to run
jobs in background, to pipe input between processes, to combine commands,
and to invoke the history mechanism. We studied the percentage use of
the various metacharacters in each machine and the combined percentage
according to our classification. The results are presented in Table 5 and
Table 6 respectively.

A small but significant percentage of the command lines were manipula-
tions of the command history. An interface whereby the previous commands
are available in a menu to be selected easily would be an improvement to
textual subsitution or selection from a history list using command numbers
as a handle. There is a direct correlation between the advanced program-
mers as well as users who repeated commands frequently and the running
of jobs in background. For example, from Table 6 we see that secretaries
had the highest pecentage use of the history mechanism.

A subset of the history mechanism usage is the redo (‘I'"Y command. A
high percentage of redo indicates that commands are frequently repeated.
We see that is the case in both the industry and secretary classification.
This fact is borne out by the data presented in Table 3 where the ma-
chines comprising the industry classifcation have fewer commands (13 on
the average) that are executed 85 % of the time.

Jobs that are run in background can be automatically migrated to a
separate window. The user would not have to inquire about the status
of the job, as the window in which the job is running will indicate the
status. As mentioned earlier a changing icon would work just as well in
place of a window for status indication. Once again we notice that the

22

Table 5: Percentage usage of metacharacters

[Host | T [W1 & | < > [1 15 Total |
arthar | 6.5 | 1.3 | 09 [04 | 1.0 | 1.3 | 05 78519
1 57 | 1.1 | 03 [03 | 06 | 03 | 0.2 69214
newton | 25 | 05 | 05 | 05 | 0.6 | 1.1 | 0.3 81754
surya 88 | 06 | 27 | 21 | 35 | 25 | 35 298
fang 56 | 19 [06 | 06 | 06 | 25 [03 117218
mycroft | 47 | 1.0 | 04 [01 | 08 | 1.8 | 0.8 157180
blays 58] 20 [07 | 05 [06 | 08 | 07 8868
] 41 | 1.0 | 05 | 06 | 0.7 | 0.3 | 05 195795
lionel 49 | 20 | 03 | 00 | 01 | 1.2 { 52 3134
lucas 2.9 0.6 0.4 0.1 0.7 1.5 0.3 1920
merlin | 51 | 1.2 | 07 [02 | 02 | 06 | 0.7 1743
ector 65 | 06 | 34 | 02 [1.1 [35 [0.0 22159
mordred [57 [1.8 [06 | 0.7 | 0.9 | 1.0 | 1.0 96599
gwen 62 | 24 | 02 | 00 | 04 | 06 | 15 24845
h 47 | 05 | 03 | 32 | 1.7 | 1.0 | 0.2 286137
i 44 [06] 03 | 30 [16 | 0.9 | 02 280764
k 47 | 06 | 02 | 84 | 1.9 | 0.9 | 0.2 280147
n 52 | 0.9 | 06 | 29 | 1.4 | 1.0 | 02 66214
s 28 1 03 | 02 | 59 | 24 | 03 | 0.1 323529
Average | 5.095 | 1.100 [0.726 | 1.300 | 1.095 | 1.216 | 0.863 | 110317.737

I — History substitution

! — Redo

& — Backgrounding

< — Input redirection

> — Qutput redirection

| — Pipe

; — Command concatenation

Total — Number of raw command lines

23

Table 6: Percentage usage of metacharacters in each classification

Class ! "1& | <> | ;
faculty 45109105104 |0.7(0.7(0.3
industry |5.1|1.5(05(03|0.7[2.1/0.5
research (4.2 [1.1(05|05]0.7(05]0.8
secretary (6.5 |06 3.4)02 (1.1]|3.5]|0.0
student |4.1 (0.5|02]4.0(1.9(0.7]0.2

secretary classification which has the highest percentage use of background
(‘") mechanism also has two status commands in the top 10—iroffg and
Ipg.

The input and output redirection percentages indicates the fact that
students who tend to use data files and output files use the redirection
mechanism more often. It is clear from the data in Table 4 that the most fre-
quently used commands like s, vi, ¢d etc. are unlikely to have input/output
redirection. This fact implies the low percentage of command lines iwth
input/output redirection. In a workstation environment we are likely to
deal with regions of characters and other objects beyond files. The data
shown in the above table is significant in the sense that at least a large
group of users {students) would benefit from an improved interface for ad-
vanced input specification mechanisms. In our classification the number of
students far outnumbered the rest of the classifications put together (Table
2 shows that approximately 85

The ability of sending output from a process as input to another process
via the pipe mechanism is also studied. The table shows that secretaries
who primarily issue word processing commands pipe them through filters.
A quick cross check confirmed this. The most frequently piped-into com-
mands for each classification is presented in Table 7.

In looking at command sequencing, the highest percentage was found
in the research category and the lowest in the secretary category. The
classification of semi-colon being the command sequencing category is not
quite accurate as commands can be sequenced by the background character
as well.

24

Table 7: Percentages of most frequently piped-into commands

[Faculty | Indusiry | Research | Secretary | Student |

PE 18.6 [grep 33.8 [more 17.4 | trof 194 |cdec 26.8
grep 12.9 | more 26.0 | grep 8.8 | Troff 19.2 | more 19.5

more 11.7 |m 5.5 | less 7.2 | eqn 18.1 | lpr 12.2
lpr 11.4 | bm 5.1 |fgrep 7.2 ({ms 15.4 | grep 6.6
m 3.2 | we 3.1 |head 6.9 [tf 13.8 |aout 4.8

troff 3.1 | Ipr 2.7 |[egrep 5.8 [ntroff 3.0 | we 2.1
netlpr 2.8 | tail 1.8 | tail 5.4 [thl 2.5 | epp 1.5
sort 1.6 | iroff 1.8 | bm 3.6 | Eqn 2.1 [cat 1.4
pic 1.4 [egrep 1.6 [we 3.2 | mail 1.6 | fgrep 0.9
splot 1.4 | tperf 1.5 |lpr 2.5 | pic 1.2 | pg 0.9

8 History mechanism

Our analysis of the data gathered from the modified shell showed that
the number of distinct commands typed by the user are few. A history
mechanism that kept track of these distinct cornmands can greatly reduce
the need to retype these commands. Traditionally, history in C-shell had
a textual interface owing to the limitations of the display hardware. The
user could display his last n commands for any value of n between 1 and
the number of commands he has issued thus far. In a command interpreter
designed after C-shell, namely Korn-skell, the author David Korn provided
the user with a one-line editable history window. The user could move up
and down his history list and re-execute a command after editing it if he
so desired.

The history mechanism is used for purposes of keeping track of 2 user’s
session, to re-issue a command, or to undo a command. Qur belief is that
the users tend to:

¢ Execute one of a small number of commands repeatedly.
¢ Re-execute a command after making possible modifications.

¢ Examine the output of the previous execution of a command.

25

s Filter the output from previous commands repeatedly.

We had to provide the facilities that are already provided in C-shell and
Korn-shell and go beyond that. The interface to the history had to be in
keeping with the visual nature of an overlapping window system. As part
of the UNCLE [6] prototype window system built to explore abstraction
mechanisms in the interface between user and application programs, we
considered the shell as one of the application programs. Our novel history
mechanism was part of UNCLE’s interface to the shell. In UNCLE, the
user can, with the transition of a mouse button, pop up a menu consisting
of a stack of panes, one for each distinct prefix of a command line, with
distinct commands sharing the same prefix appearing as separate items in
the same pane. Thus, if a partial list of user’s commands were:

finger

ls /tmp

finger bala
cat fetc/motd
finger @blays
cat foo

Is /usr/src

there would be three panes: labeled ‘finger’, ‘ls’, and ‘cat’. Both the
finger entries appear as items on the ‘finger’ pane. Similar commands are
thus automatically grouped.(Figure 1)

Our history menu is not a log as only distinct command lines are stored.
It can however be used to re-execute a command, or simply insert the
command in the application program window to be edited before execution,
or to display the output of the previous execution of the command. To
conserve memory, we do not save the output of every command executed.
Instead, we let the user explicitly specify the commands whose output he
would like to be saved. Our belief is that the user will specify commands
that he either expects to take a long time to complete or those he would

26

Figure 1: UNCLE history menu

use later, to be displayed in its own window. With our history mechanism
he can come back at a later time and view the output of the command at
leisure. Further, he could run the output through filters.

As we do not view interaction with the window system separately from
interaction with the application programs, a history of the interaction be-
tween the user and the window system is automatically maintained. The
mechanism to maintain the history of user-window system transactions is
the same. By storing the changes made to the interactive environment
separately, we can move back to a former style of interaction. This can
function as a quick undo mechanism.

9 Conclusion

In this paper we considered the role of the command interpreter in an inter-
active system. It was our view that the shell-per-window paradigm whereby
each physically distinct region had a shell running in it was a bottleneck
in exploring superior interfaces to the commands of application programs
accessible via the interactive system. To improve on the existing model
we modified a popular command interpreter to obtain usage data. Ana-
lyzing the results brought out some interesting aspects of interaction. For
example, regardless of the user classification, a small number of commands
were used extensively. Some of them could be eliminated in window system
shells, and others could either be replaced or provided with an improved

27

interface. Qur approach of classifying the predominantly used commands
and exploring mechanisms to improve the interface in each classification
was vindicated to a reasonable extent.

References

[1] G. R. Andrews, R. D. Schlichting, R. Hayes, and T. D. M. Purdin.
The design of the Saguaro distributed operating system. IEEE Trans-
actions On Software Engineering, SE-13(1):104-118, January 1987.

[2) M. R. Barbacci. The Spice Users’ Manual. Carnegie Mellon Univer-
sity, August 1984.

[3] S. Bourne. Unix time-sharing system: The UNIX Shcll. The Bell
System Technical Journal, 57(6):1971~1990, July-August 1978.

[4] S. J. Hanson, R. R. Kraut, and J. M. Farber. Interface design and
multivariate analysis of UNIX command use. ACM Transaction of
Office Information Systems, 2(1):42-57, March 1984.

[5] D. Korn. Ksh—A Shell Programming Language. In Proceedings of the
Summer USENIX Technical Conference, pages 191-202, 1983.

[6] B. Krishnamurthy. Partitioning the Process of Interaction: An Ab-
stract View. Technical Report CSD TR 705, Department of Computer
Sciences, Purdue University, September 1987.

[7] J. Levitt. The Korn shell: an emerging standard. UNIX/WORLD,
IT1(9):74-81, September 1986.

[8] M. T. Rose and J. L. Romine. MH~—Mail Handler. The Rand Corpo-
ration, April 1986.

[9] A. B. Sheltzer and G. J. Popek. Internet Locus: Extending Trans-
parency to an Internet Environment. IEEE Transactions On Software
Engineering, SE-12(11):1067-1075, November 1986.

[10] D. C. Smith, C. Irby, R. Kimball, B. Verplank, and E. Harslem. De-
signing the star user interface. Byle, 7(4):242-282, April 1982.

28

[11] Sun Microsystems Incorporated. Sunview programmer’s guide. Febru-
ary 1986.

29

	Shells in an Interactive System
	Report Number:
	

	tmp.1307986960.pdf.MW3QF

