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Decompositions of Objects Bounded by Algebraic Curves'

Chanderjit Bajaj and Myung-Soo Kim

Department of Computer Science
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West Lafayette, IN 47907.

Abstract

We present a.n algorithm to decompose the edges of planar curved object so that the carrier
polygon of decomposed boundary is a simple polygon. We also present an algoritbm to compute
a simple characteristic carrier polygon. By refining this decomposition further and using the
chords and wedges of decomposed edges, we obtain an inner polygon (resp. an outer polygon)
which is a simple polygon totally contained in (resp. totally containing) the object. We also
consider various applications of these polygons to object decompositions and collision-avoidance
planar robot motion planning problems.

1 Introduction

-Research sIlpporled in p;1rl by NSF grant DCI·85 21356 and a David Ross Fellowship,
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In contrast to the simple carrier polygon construction, the worst-case upper bound for I( can be
arbitrarily large as the inner angle between two adjacent edges approaches to 0 or 27l", however, it
is small in practice. I( (henceforth called the characteristic number) in some sense represents the
shape degeneracy of the object. In the construction of the characteristic, inner and outer polygons,
we assume the object has no vertex: with its inner angle being 0 or 27l". Using these polygons, we
can compute (1) a convex decomposition of the object as a difference of unions of disjoint convex
objects, (2) a decomposition of the object as a union of disjoint certain primitive objects, and (3)
various collision-free paths of a point moving among planar curved obstacles.

The rest of this paper is organized as follows. §2 describes certain preliminary informations
of use in later sections. In §2.1 we describe the boundary representation for a planar object
with algebraic boundary curves. In §2.2 we present a monotone curve segmentation of boundary
curve segments (a pre-processing step of our algorithm) and basic operations on these monotone
curve segments. Algebraic curves are treated in each of two internal representations; namely, the
implicit and the parametric forms, [2,23]. In §3 we present an algorithm to compute the simple
carrier, characteristic, inner and outer polygons. In §4 and §5 we consider various applications of
these polygons to object decompositions and collision-free planar robot motion planning problems
respectively. Finally, in §6 we conclude this paper.

2 Preliminaries

In this section, we describe the algebraic boundary representation of the planar curved object, and
consider monotone curve segmentations and other related geometric operations on monotone curve
segments.

2.1 Algebraic Boundary Representation

A planar object with algebraic boundary curves has the following boundary representation.
A single simple oriented cycle of algebraic curve edges, where each edge is directed and incident

to two vertices. Each edge also has curve equations, which are implicit and/or rational parametric
equations of algebraic curves. An algebraic curve is implicitly defined by a single polynomial
equation f(x,y) = 0 and parametrically defined by the pair (x ::::: ~~f:J,y::::: ~:m), where h, h
and Is are polynomials. Further an interior point is also provided on each impliCItly defined edge
which helps remove any geometric ambiguity in the case of vertices which are singularities of the
algebraic curve, [1,17]. Finally, each vertex is exactly specified by Cartesian coordinates.

The curve equations for each edge are chosen such that the direction of the normal at each
point of the edge is towards the exterior of the object. For a simple point on the curve the normal
is defined as the vector of partials to the curve evaluated at that point. For a singular point on
the curve we associate a range of normal directions determined by normals to the tangents at the
singular point. Further the orientation of the cycle of edges is such that the interior of the object
is to the left when the edges are traversed.

2.2 Computations with Algebraic Curves

We assume some primitive geometric algorithms to manipulate algebraic curve segments, [2,4,5,
7,9,10,13]. Prior work has considered the generation of rational parametric equations for certain
implicitly defined algebraic plane curves, [2], the generation of implicit equations for parametrically
defined algebraic curves, (4], as well as the robust tracing bf algebraic curve segments with correct
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connectivity, especially when tracing through complicated singularities, [5]. Tracing for instance is
very useful in determining whether a given point lies within a general algebraic curve segment. For
this last problem the method of sorting along the curve [13], also provides an efficient solution for
low degree algebraic curves.

We consider the monotone segmentation of a planar curved object and other geometric oper­
ations on monotone curve segments. Our model of computation is the arithmetic model where
arithmetic operations have unit time cost, see [3].

2.2.1 Monotone Segmentation

We :first define monotone edges.

Definition 2.1 Let C be a directed boundary edge without any inflection or singular point. Then
(1) C is convex {::::::::> the gradient ofC turns counter~clockwise along C
(2) C is concave {::::::::> the gradient of C turns clockwise along C
(3) C is monotone {::::::::> C i8 either convex, concave or linear, and the interior of C does not include
any extreme point along the x or y directions.

The monotone segmentation requires adding singular points, inflection points and extreme
points on the curve as extra vertices. First we take care of singular points on curved edges.
Singularities are determined for each curved edge and axe computed by using Lemma 3.1.1: I (i)
and II (i). The boundary of the object is next modified such that nonsingular edges are either
convex, concave or linear segments. Such conditions are easHy met by adding extra vertices to
inflection points of curved edges. Inflection points of curves can be obtained and the edges are
marked convex, concave or linear respectively by using Lemma 3.1.1: I (iv), (v), (vi) and II (iv),
(v), (vi). We may also assume edges are further segmented so that extreme points along x or y
directions added as vertices. These extreme points are computed by using Lemma 3.1.1: I (ii), (iii)
and II (ti), (ill).

Lemma 2.1 (I) Let C : (a,b) --+ R 2 be a curve pammetrized by t E (a,b) and p = C(t)
(Cl(t), C2(t» be a point on this curve. Then
(i) p is a (non.self-intersecting) singular point'¢::::::} cHt) = cHt) = OJ
(ii) p is a non-singular x-extreme point $:::} cz(t) = 0 and c~(t) '# 0,
(iii) P is a non-singular v-extreme point <==> c~(t) = 0 and cz(t) '# 0, and
(iv) p is an inflection point 01 the curve C <==> c~(t). c2'(t) - cHt). cnt) = o.

If C has no inflection point, then
(v) C is convex <=> c~(t)· c2'(t) - c~(t). ci(t) > 0, and
(vi) C is concave {::::::::> c~ (t) . c2'(t) - c~(t) . cr(t) < O.

(II) Let C be a curve implicitly defined by f(x,y) = 0 and p = (x,y) be a point on the curve
C. Then
(i) p is a singular point <==> 1= fz = III =0,
(ii) P is a non-singular x~extreme point <===> I = I" = 0 and Iz::f:. OJ
(iii) p is a y-extreme point <===> I = Iz =0 and fy::f:. 0, and
(iv) p is an inflection point {:::::} f = In' f~ - 2Ix,,' Ixly + f w ' f'1: = o.

If C has no inflection point, then
(v) C is convex <==> Jxx' f; - 2lxy' Ixfy + I"y' 1'1: > 0, and
(vi) C is concave'¢=} Ixx' f; - 2Ix,,' Ix!" + f",,' 1'1: < o.
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Proof: Most of these results are classical, see [23]. 0

We analyze the time complexity of the monotone segmentation.

Lemma 2.2 (1) All the roots of a univariate polynomial equation of degree O(d) can be computed
in O(d3 log d) time.
(2) The common solutions of two polynomial equations of degree Oed) in two variables can be
computed in O(dS log d) time.

Proof: (1) The squarefree part of a univariate polynomial can be calculated in O(dlolt d) time
using fast techniques for the required GCD computation and division steps, [3], and further all
roots can be computed using root isolations in O(d3 logd) time, [18].
(2) We can eliminate one variable from two polynomial equations using the Sylvester resultant in
O(d410g3d) time, [9], and then compute the roots of the resulting univariate polynomial equation
of degree O(d2 ) in O(d6 Iogd) time. Doing this twice for each variable in turD together with the
pairwise substitutions then allows computing the common solutions in overall O(dSlogd) time. 0

Lemma 2.3 For a parametric (resp. implicit) algebraic curve segment C of degree d, a monotone
segmentation can be obtained in O(d3 log d) (resp. O(d6 Iogd+T(d))) time, where T(d) is the time
required for the curve segment tracing.

Proof: The extra points added to C can be computed by solving polynomial equations in a single
variable t (resp. systems of two simultaneous polynomial equations in two variables x and V).
Finally, the solution points on the implicit curve segment C can be found by tracing the curve
segment in T(d) time. 0

2.2.2 Basic Operations on Monotone Curve Segments

We consider primitive operations on monotone curve segments C and D, and a line segment L.

1. The intersection of e and L,

2. The point p at which e has a tangent line L p parallel to L, and

3. The tangent line L p of C from a point q.

Line-Curve Segments Intersection

The intersection points p E C n L can be computed as follows.

Lemma 2.4 (I) lfe is a parametric curve segment given by C(s) = (x(s),y(s)) with aSs S b
and L is a line segment connecting two points P1 = (zl,Yd and P2 = (Z2'Y2), then e intersects
with L at a point P = C(s) = t· PI + (1 - t) . P2 if and only if.9 and t satisfy

{

a" s " b, and 0"t ,,1 (1)
x(s) = t-x, +(I-t) -" (2)
y(s) = t -y,+ (1 - t) - y, (9)

(II) lfG is an implicit algebraic curve segment given by f(x,y) = 0,
a point P = t . PI + (1 - t) . P2 if and only if t satisfies

{
P E C, and 0 "t "1
f(t -x, + (1- t) - x" t - y, + (1- t) - y,) = 0

4
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Proof: Straightforward. 0

Lemma 2.6 For a parametric (resp. implicit) algebraic curve segment C of degree d, the intersec­
tion C n L can be computed in O(d3 log d) (resp. O(d3 log d + T(d») time, where T(d) is the time
required for a curve tracing along C.

Proof: (I) The elimination of t can be done in 0(1) time resulting in a single polynomial of degree
d in a single variable 8. This polynomial can be solved in 0(d3 Iogd) time using root isolation, [18].
There are at most d solutions for s with a ::; s ::; b and the corresponding t to each s can be solved
in 0(1) time.
(II) When we expand the equation (2) in an increasing order of t, it gives a polynomial of degree d
in a single variable t. The expansion can be done in 0(d2 ) time and the polynomial can be solved
in 0(d3 Iogd) time using root isolation. Finally, we need to trace along the curve ·segment C to
check whether these solutions are on the curve segment C in T(d) time. 0

Tangent Line of a Curve Segment Parallel to a Line

The point p at which C has a tangent line Lp parallel to L can be computed as follows.

Lemma 2.6 (I) IfC is given by a parametric curve C(t) = (x(t),y(t» with a::; t.$ band (a,,6)
is a normal direction of L, then p = (x(t), y(t» is given by

{
a 5; t 5; b (1)
<>. x'(t) +il· y'(t) = 0 (2)

(II) IfC is given by an implicit curve f(x,y) = 0, then the point p = (x,y) is given by

{
f(x,y) = 0, and p= (x,y) E C (1)
il·f.-<>·f,=O (2)

Proof: Straightforward. 0

Lemma 2.7 For a parametric (resp. implicit) curve segment C, the point p at which C has a
tangent line L p parallel to L can be computed in O(d3 Iogd) (resp. O(fi6logd+T(d») time, where
T(d) is the time required for a curve tracing along C.

Proof: Similar to Lemma 2.3. 0

Tangent Line of a Curve Segment from a Point

The tangent point p of L at C from a point q can be computed as follows.

Lemma 2.8 (I) If C is given by a parametric curve C(t) = (x(t), y(t» with a ::; t ::; b, then
p = (x(t),y(t)) is given by

{
a 5; t 5; b (1)
(x(t) - <». y'(t) - (y(t) - il)' x'(t) = 0 (2)

(II) If C is given by an implicit curve f( x, y) = 0, then the point p = (x, y) is given by

{
f(x, y) = 0, and p = (x, y) E C
(x - <». f. + (y - il)' f, = 0

5
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Proof: Straightforward. 0

Lemma 2.9 For a parametric (resp. implicit) curve segment C, the tangent point p of L at C
from a point q can b, computed in O(d"logd) (r,sp. O(d'logd +T(d))) tim" where T(d) is the
time required for a cUMJe tracing along C.

Proof: Similar to Lemma 2.3. 0

Now, initially assume there are Q(m) algebraic curve segments of maximum degree d on the
object boundary. Then the monotone segmentation preprocessing can be done in O(m· tP log d)
(resp. O(m. (tt6logd +T(d»» time if all the boundary curve segments are parametric (resp.
implicit). Each parametric (resp. implicit) algebraic curve segment of degree d can be segmented
into O(d) (resp. O(eP» monotone curve segments by adding extra vertices into singular points,
inflection points and extreme points. After this preprocessing step of monotone segmentation, we
let the total number of boundary edges be n, which is O(m· d) (resp. O(m· eP» for parametric
(resp. implicit) curves. In the following, we assume the object boundary is already segmented into
O(n) monotone curve segments and the timing analysis is given in terms of n.

3 Decomposition of Monotone Boundary Edges

In this section, we consider how to construct a simple carrier polygon of a planar curved object with
at most 0(n2) edges, which is optimal since this number is shown to be n(n2 ) in [11]. Further, we
consider how to construct a simple characteristic carrier polygon, an inner polygon and an outer
polygon of the planar curved object. We assume the object boundary has been decomposed into
O(n) monotone edges in a preprocessing step as discussed in §2. In the following, we denote the x
and y-coordinates of a point P# by x# and y# respectively.

3.1 Simple Carrier Polygon

Consider the horizontal vertex visibility partition of both the interior and exterior of a planar curved
object, [11,21}, where the exterior is partitioned within a box enclosing the object, see Figure 1.
Let H be a visibility cell of the partition, and the right and left sides of H be bounded by the edges
C and D respectively, see Figure 2. Note that each side of H may be a proper subsegment of C
or D. Let us assume H is in the interior of the object and C is a convex edge. The cases of H
being in the exterior and/or C being a concave edge can be handled in similar ways. Let PB and
PT be the bottom and top points of the right side of H, and (: be the subsegment of C between PB
and PT. Further, let qB and qT be the bottom and top points of the left side of H, and t; be the
subsegment of D between qB and qT. To make the construction easier, we add PE and PT (resp.
qB and qT) as extra vertices to C (resp. D). Since there are only O(n) such extra vertices, the total
number of edges after this decomposition is still O(n).

We can add extra vertices Pl, Pl, ... , Pkc to the edge (: so that the carner polygonal arc PI)
connecting the vertices PB, PI, '.', Pkc:, PT does not intersect with any other part of the carrier
polygon except at PB and PT and further the carrier polygon determined by these extra vertices has
at most O(n2

) edges. This is achieved by the following construction. At each vertex P, construct a
horizontal line L containing p_and para~lcl to the x-axis. Let Pl, P2, ... ,Pkc (resp. ql, q2, ... , qkn )
be the intersection points of C (resp. D) with these horizontal lines. Then qi is strictly to the left
of Pi (1 $ i $ kc = kD) and the corresponding carrier polygonal arcs Pc and PD do not intersect
except at the end points. Further it follows that the carrier polygon UPe is simple. Since there are
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O(n) such horizontal lines and boundary edges, kC = O(n) and the carrier polygon has at most
O(n2 ) edges. Though O(n2 ) is optimal asymptotically, the above construction does not generate
the minimal number of extra vertices. Steps can be taken to reduce the number of extra vertices
added. For example, when the chord L(PB,PT) of C does not intersect with D except at pa and
PT, we do not need to add any extra vertices. Thus Po is L(PB' PT) with ko = O. Further, when
L(PB,PT) intersects with jj at a point other than PB and PT, we construct Po so that Po does
not intersect with Pn except at PB and 'PT though Pc may intersect with the edge D. Thus, we
have to construct Pn recursively. Assume we have constructed PD by adding a minimal number
of extra vertices to D. Then by scanning H from the top to the bottom, we can add at most kf)
extra vertices to the edge C to make the corresponding carrier polygonal arc Po not intersecting
with PD except at the end points, Bee Figure 3. Thus we have the relation k(; ::; kfJ. Though for
simplicity we assume each boundary edge is segmented into monotone edges and each monotone
edge is further decomposed 50 that each side of H is an edge, we can easily modify the above
construction so that we may need to add extra vertices only to y-extreme points and apply the
same recursive construction to add a minimal number of extra vertices to each y-monotone edge.

Theorem 3.1 Assume all the monotone edges are parametric (resp. implicit) algebraic curve
segments. A simple carrier polygon of an object with at most O(n2 ) edges can be constructed in
O(nloglogn + k· d3 log d) (resp. O(n log log n + k· (d3 logd +T(d)))) time, where k is the number
of edges in the simple carrier polygon.

Proof: The horizontal vertex visibility partition of both the interior and exterior of an object can
be constructed iu O(n log log n + n . d3 log d) (resp. O(n log log n + n . (d3 log d + T(d)))) time, [201.
A simple carrier polygon can be constructed in O(k . d3 log d) (resp. O(k· (d3 10gd + T(d)))) time
by computing O(k) line--curve segment intersections. D

3.2 Simple Characteristic Carrier Polygon

A carrier polygon is characteristic if, for each edge E, 8(E) is totally contained either in the interior
of the object or in the exterior of the object, where 8(E) is the convex region bounded by the edge
E and its chord, see Figure 4. If E is a convex (resp. a concave) edge, then 8(E) is totally contained
in the interior (resp. in the exterior) of the object and is called an additive (resp. a subtractive)
convex region. Assume C and D are the same as C and jj of §3.1 respectively. We can add extra
vertices PI, Pz, •. " Pke to the edge C 50 that the convex regions of the decomposed subsegments of
C are additive convex regions. The case of C being a concave edge can be handled in a similar way
and the convex regions of the decomposed subsegments of C become subtractive convex regions in
this case. This decomposition is achieved as follows. If 8(C) and 8(D) do not intersect, we do
not add any extra vertex to C and 8(C) is an additive convex region, thus kc = O. Otherwise,
let L l be the tangent line from PB to D, PI be the intersection point of L 1 with C, and C1 be
the subsegment of C between PE and Pl. Then, 8(C1) js an additjve convex region. Let C be the
subsegment of C between PI. and 'PT. If 8(6) intersects with 8(D), then we compute a tangent
line L 2 from PI. to D and the intersection point P2 of L2 and C, and repeat the same procedure,
see Figure 5. Otherwise, 8(C) is an additive convex region. Now, we prove the decomposition of
C terminates within a finite number of steps.

Theorem 3.2 Assume no vertex has its inner angle as 0 or 271". Each edge C can be decomposed
into a finite number of subedges C1 , C2, .. . , Cke so that the convex regions are additive.

7



Proof: Suppose C is convex (resp. concave) and there is an infinite sequence of Ci'S (i = 1, 2,
... ) constructed as above. Let Pi be the end point of Ci, then Xs < Xi < Xi+l < XE for all i. Since
Xi is a strictly increasing sequence bounded above by XE, Xi --+ x for some X ::s; XE. Let PL E C be
such that XL = X, then Pi --+ PL. In an arbitrary small neighborhood U of PL, there is an integer N
such that Pi E U and Cj C U for all i 2: N. Let qi be the tangent point of L(Pi_I,Pi) with D, then
qi E U for all i ~ Nand qi --+ PL. We can easily show that D is a concave (resp. convex) edge and
PL is a common vertex of C and D, and further the inner angle at PL < 1i/2 (resp. > 31i/2). Since
L(Pi-l, Pi) is tangent to D at qi with Pi --+ PL and qi --+ PL, C and D have the same tangent line
at pL. Hence, the inner angle of the object at PL is 0 (resp. 21i). It is impossible since we assume
no such vertex on the object boundary. 0

We call the polygonal arc Pa connecting the vertices Ps, PI. , •.. ,Pkc ,PE as the first characteristic
polygonal arc of C, the union UPa as the first characteristic polygon ofthe object, and J( = I;(kc +
1) as the characteristic number of the object. It is easy to show that the edges of characteristic
polygon do not intersect each other transversally and two diITerent vertices do not overlap. However,
a vertex may lie on the interior of some characteristic polygon edge. By decomposing each edge
with a vertex on its chord interior into two subedges, we can make the carrier polygon simple, see
Figure 6. Thus, using at most 2!( edges we can construct a simple characteristic carrier polygon.

Theorem 3.3 Assume all the monotone edges are parametric (resp. implicit). A simple character­
istic carrier polygon ofan object with at most 2!( edges can be computed in D(n loglogn+l( .d3 log d)
(resp. O(n log logn +]( .(d6 • log d +T(d)))) t;me.

Proof: After the horizontal vertex visibility partition is computed, a simple characteristic carrier
polygon can be constructed in D(l(. d3 logd) (resp. D(I(· (dSlogd + T(d)))) time by computing
O(Ie) tangent lines from given points to curve segments. D

3.3 Inner and Outer Polygons

Let C be a monotone edge with PS as its starting point and PE as its ending point. For any two
different points P and q on C, L(p, q) denotes the line segment connecting P and q, and L p denotes
the tangent line of C at p. Let p" be the intersection point of two tangent lines Lps and LpE • We
call the line segment L(PS,PE) as the chord ofC and the polygonal arc A(C) = L(ps,p")UL(p",PE)
as the wedge of C. Let Ps, PI. , ])2, ..• , Pk, PE be a sequence of points on C in the order they appear
along C, then the polygonal arc Pahord(ps'Pl'P2, ... ,Pk,PE) = L(ps,PI.)UL(PI.,P2)U ... UL(Pk,PE)
is called as the chordal polygonal arc of C determined by the sequence Ps, PI, ]Jz, ... , Pk, pE· Let pi
be the intersection point of L pi_ J and L Pi (i = 1, ... , k+1), where Po = PS and PHI = PE. Then the
polygonal arc p~angcnt(pS'PI.,P2,... ,Pk,PE) = L(ps,pjJUL(P'i,P2) U... UL(Pk,PkH) UL(PkH,PE)
is called as the tangential polygonal arc of C determined by the sequence Ps, PI, pz, ... , Pk, PE,
see Figure 7.

If we further decompose the object boundary with the first characteristic polygon so that the
chords of convex (resp. concave) decomposed edges and the wedges of concave (resp. convex)
decomposed edges are totally contained in the interior (resp. the exterior) of the object, then the
union of these chords and wedges defines an inner(resp. outer) polygon which is totally contained
in the interior (resp. the exterior) of the model. In the following, we will consider the construction
of inner polygonal arcs Pahord of edges C. The outer polygonal arcs p~ongcnt of edges C can be
constructed in a similar way.

8



We first consider the case of C being a convex edge. Let Pa be the first characteristic polygonal
arc of C , then C is to the right of pJ and D is to the left of Pa. We may assume PE f:. qB or
PT' f:. qT. If D is a convex: edge, then Pa is the chord L(PBIPT) of C and the chords of C and D do
not intersect except at an end point. Further, the chords of C and D are contained in the interior
of the object. We call L(PB, PT) and L(qB, qT) as the inner polygonal arcs of C and D respectively.
Now, if D is a concave edge, there are points ql, q2, .·'1 qke on D which are tangent to the line
segments L(PB,pd, L(Pl,P2), ... , L(Pke'PT) on Pa, where PB, Ph 1'2, •• " Pke' PT are the vertices
of pa in the order they appear along C. Note that ql = qB if PB = qB, and kc = 0 if D n Pa = 0.
We add an extra vertex p'j to each subedge of C between Pi-l and Pi (i = 1, ... , kc + 1), where
Po = PE and Pke+l = PT, see Figure 8.

We call the polygon pbnner connecting PB,r/l' PI, ... ,Pke'P'keH ,PT' as the inner polygonal arc
of C. p/pner is strktly to the right of pJ except at the points PB,P1,P'2,". ,Pkc'PT. Further, we
add an extra vertex q'i to each subedge of D between qi-l and qi (i = 1, ... , kc + 1), where qo
= qB and qJ,·c+l = qT· We choose qlke+l so that the tangent line of D at this point is parallel to
the line segment L(Pke'PT)· Note that qB = q/l = ql if PB = qB, and qT = q'kcH if PI' =: qT·

We call the tangential polygonal arc pf)ngent(qB, q'l' ql, ... ,qke , q'/.:e+l' qT) as the inner polygonal
arc Pbnner of D. Pjjner is to the left of Pa and strictly to the left of Pa at the horizontal lines
Y = Yl, Y = Y2, •. " Y = Ykc· Thus, pbnner and pbnner do not intersect except at the end points.

We consider the case of C being a concave edge. Since the case of D being convex can be
handled in a similar way as above, we assume D is concave. Let £1 (resp. L2) be the tangent line
from PE (resp. qB) to D (resp. C), and p. be the intersection point of L1 and L2, see Figure 9.
Since P* lies on L l and L2, p. is to the right of D and to the left of C. Thus, P" is in the horizontal
visibility cell H. Let L~ (resp. L~) be the tangent line from p. to D (resp. C), and L be a line
containing the point p* and having its slope strictly less (resp. greater) than the slopes of L 1 and
L1(resp. L 2 and L2).

Further, let 'I (resp. q') be a point on C (resp. D) at which C (resp. D) has a tangent line paral­
lel to the line L. We call the tangential polygonal arc Pbangent(PBIP',PI') (resp. pJ;ng"nt(qB, q/, qT»
as the inner polygonal arc pbnner of C (resp. pjjner of D), see Figure 10. Since pbnner (resp. pbnner )
is strictly to the right (resp. to the left) of L, pbnner n piJmer = 0.

Since pbnn"r and piJm"r do not intersect except at the end points, the imler polygon pinner =
upbnner is a simple polygon.

Theorem 3.4 Assume all the monotone edges are parametric (resp. implicit). Both simple inner
and outer carrier polygons of an object with at most 21( edges can be computed in O(n loglogn +
J( . d3 log d) (resp. D(n log log n + J( • (d' . log d + T(d)))) t;me.

Proof: Similar to Theorem 4.3. D

3.4 The Case of Multiple Disjoint Objects

So far we have considered only a single object in the plane. However, the above method can also
be applied to multiple disjoint objects in the plane once the horizontal vertex visibility partition is
given for the interiors and the exterior of the objects.

When there is more than one object in the plane, we cannot directly use the algorithm of [21] to
compute the horizontal vertex visibility partition of the exterior of objects in D(nloglogn) time,
where n is the total number of edges of the objects. We can show this by reducing the problem of
sorting D(n) real numbers to the problem of computing the horizontal vertex visibility partition of
the exterior of D(n) small triangles within D(n) time, see Figure 11. We assume all the numbers are
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distinct and € ~ 0 is smaller than the mInimum distance between any two distinct numbers. Then
for each real number aj we construct a triangle with vertices (i, ai), (i - €, aj - €) and (i +€,aj - E).
Assume that we can construct the horizontal vertex visibility partition of the exterior of these O(n)
triangles inside an enclosing box in O(nloglogn) time. Then there is exactly one vertex of each
height ai and each vertex (i,aj) is visible from the right side of the enclosing box. The sequence
of ai'S in the order the vertices (i, ai)'s are horizontally visible while tracing along the right side of
the enclosing box is the same as the sorted sequence of the given O(n) real numbers. Our above
Msumption then would allow us to sort O(n) real numbers within O(nloglogn) time, which is
impossible. Thus Q(nlogn) is the lower bound for this problem in general.

We can easily construct the horizontal vertex visibility partition of the exterior of multiple
disjoint objects with totally O(n) edges in O(nlogn+n.dO(l» time using a plane sweep algorithm.
Though this is optimal in the worst cMe M in the above example, it may be possible to improve
the time complexity when there are only O(k) disjoint objects with O(n) total number of edges.
H it is possible to connect these O(k) disjoint objects into a single connected object using O(n)
extra edges within O«n + klogk). dO(l» time, we can use the O(nloglogn) time algorithm to
compute the horizontal vertex visibility partition of the exterior of this single object.' The visibility
partition of the exterior of the objects could be constructed by deleting the extra edges added
and merging some adjacent visibility cells together. The total time complexity could then be
O(nloglogn + (n + klogk). dO(l». We thus raise the following problem.

Problem 3.1 Can O(k) disjoint objects with O(n) total number of edges be connected into a single
connected object in O«n +klogk). dO(l» time using at most O(n) extra edges.

4 Object Decompositions

We consider various applications of the polygons px and pinner constructed in §3 to the object
decomposition problems. Dobkin, Souvaine, and Van Wyk [11] show an O(nloglogn) algorithm to
decompose a simple splinegon into a union of differences of unions of possibly overlapping convex
pieces. Our decompositions, described below, involve O(K) regions, where /( is often linear in
practice. Further, the decomposition structures we compute in terms of unions and differences
are somewhat simpler than that of (Il]. Also when the simple characteristic polygon has a small
number of edges, for example ]( is almost linear, our decomposition method proves to be more
useful.

4.1 Convex Decomposition

We can decompose the simple characteristic polygon px into unions of disjoint convex polygons
UjPj, (see [14] for a survey on convex decomposition algorithms for simple polygons). Let UjUj
(resp. UkVk) be the union of all the additive (resp. subtractive) convex regions. Then, the original
object can be represented as (UiFj) U (UjUj) rv (U',YA:). Further, the interiors of the Pj'S and U/s
are disjoint, and the interiors of the U;'s and VA: 's are disjoint, however, the interiors of the Pi'S
and Vk'S may have non-empty intersections. Thus the orders of union operations in the unions
(UiPi) U (UjUj) and UkVk are interchangeable. Further, as long as ViPi has been computed first,
the order of adding each Uj and subtracting each Vk is interchangeable. The construction of px
is highly parallel and would be useful in a parallel implementation of the object decomposition
algorithm.
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4.2 Disjoint Decomposition

The main purpose ofobject decomposition is to simplify a problem for complex object into a number
of simpler subproblems dealing with "nice" boundary. In most of the cases a decomposition in
terms of a union of disjoint convex pieces is useful and this is always possible for simple polygons.
However, this fact is certainly not true for a planar curved object. In §4.1 we thus considered an
alternative way, namely in decomposing an object into unions and differences of convex objects.
However, in some applications involving a Minkowski operation (i.e. convolution, see [7]) which
commutes with set union, but not with set difference, we may consider decomposing an object into
a disjoint union of certain primitive objects. For objects A and B, the Minkowski addition A ffi B
= {a+b I a E A and b E B} and the Minkowski subtraction A8B = {a- b I a E A and bE B}.
When A = UjBj and B =Uj,S'jl, we have A ffi B =U(Si ffi st,) and A e B = U(Si e Bi,).

One way to decompose a planar curved object into a disjoint union of certain primitive objects
is as follows. First, we decompose an inner polygon pin.ner into a union of disjoint convex polygons
UjPi. The difference between the object and the inner polygon pinner is the union (UjUj) U (UkVk),
where each Uj is an additive convex region bounded by a convex edge and its chord and each VI.:
is a region bounded by a concave edge and its wedge, see Figure 12. We can thus represent the
original object as a disjoint union (UjPj ) U (UjUj) U (UkVk).

The horizontal vertex visibility partition of the interior of an object also represents the original
object as a disjoint union UjHj, where Hi is a horizontal visibility cell with linear top and bottom
edges and monotone right and left side edges.

5 Planar Gross Motion Planning

In this section, we consider the applications of various decomposition methods to collision-free
planar robot motion planning problems for curved objects with fixed orientation. Since this problem
can be transformed into an equivalent point motion planning problem among algebraic curved C­
space obstacles [7], we consider only point motions in the following.

5.1 Voronoi Diagram for the Outer Polygons

AJ?J discussed in §3.4, we can construct disjoint outer polygons of multiple disjoint planar obstacles
within O(n log n + Ie . dO(l») time, where K is the characteristic number of the obstacles. The free
space of these outer polygons is a topological retract of the free space of original obstacles. Since
each outer polygonal edge and its corresponding obstacle boundary edge are horizontally visible
from each other, a point p which is inside an outer polygon, but not in any obstade, can move along
a horizontal line segment into an outer polygonal edge without colliding with any obstacle. Thus,
we may assume the start point PS and the goal point PG are in the free space of outer polygons.
Now, we can consider the topological retraction of the free space of outer polygons onto the Voronoi
diagram of outer polygons using the method of [15J and construct a collision-free path i from the
starting point to the goal point. Since the outer polygons of obstacles have total O(K) number of
edges, this method is attractive when K is almost linear or reasonably small.

5.2 Voronoi Diagram for the Simple Carrier Polygons

We can construct disjoint simple carrier polygons of disjoint obstacles within O(n logn +k . dD(l»)
time, where k is the total number of edges in the carrier polygons, which is at most O(n2). We
first consider how to move a point p which is inside a carrier polygon, but not in any obstacle,
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without colliding with obstacles. Let H be the horizontal visibility cell containing the point p and
in the exterior of obstacles. Assume C and D are the right and left sides of H. Since p is inside a
carrier polygon, either C or D is concave. We may assume C is concave and p is contained in the
convex region S(C). We move p until it hits a carrier polygonal edge or the left side D. If it hits
D first, then we can move p along D until it hits a carrier polygonal edge, see Figure 13. Thus, we
may assume the start point PS and the goal point PG are in the free space of the carrier polygons.
Then a Voronoi diagram of these disjoint simple carrier polygons and a path avoiding collisions
with these carrier polygons can be constructed within O(klogk) time, [15]. Though this path may
intersect with some obstacles, this collision could occur only with convex edges of the obstacle,
see Figure 14. Since we assume each convex edge is monotone, it is obvious in which direction we
have to move along the colliding convex edge. Further the construction of a simple carrier polygon
is more efficient than the construction of an outer polygon in the worst case. As long as we are
a.llowed to follow the boundary of obstacle in motion planning, this method would be more efficient
than the Voronoi diagram based method of §5.1 when the characteristic number J( is large.

5.3 Horizontal Visibility Cells Graph

Using the horizontal vertex visibility partition of the outside of obstacles we can decompose the
free space into O(n) simple cells. Then we can represent the connectivity of these cells in terms
of a graph and check the connectivity of this graph between the two cells containing the starting
point PS and the goal point PG by doing a search on this connectivity graph, see Figure 15. There
is a collision-free path between the starting and goal points if and only if there is a connected edge
path between the starting cell and goal cell in this graph. Once we have a sequence of connected
cells on this graph, we can construct a collision-free motion path in various ways, see Figure 16.

6 Conclusion

We presented an O(nloglogn + J( • dO(l)) time algorithm to compute various decompositions
of a planar algebraic curved object boundary, where I( is a number which captures the shape
degeneracy of the object. The exponent of the O(dO(l») is O(d"logd) (resp. O(d'logd +T(d)))
for parametrically (resp. implicitly) defined algebraic curves. Also in practice essentially all planar
curved objects considered are those bounded by curves of maximal degree d :$; 4 of wblch all d = 2
and most d = 3 curves are parametrizable. Our algorithms rely on simple data structures and are
implementable. Using these decompositions, we presented algorithms for object decompositions
and collision-free planar robot motion planning problems in an algebraic curved environment.
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