
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1986 

On the Behavior of Programs with Remote Procedures On the Behavior of Programs with Remote Procedures 

Dan C. Marinescu 

Report Number: 
86-636 

Marinescu, Dan C., "On the Behavior of Programs with Remote Procedures" (1986). Department of 
Computer Science Technical Reports. Paper 553. 
https://docs.lib.purdue.edu/cstech/553 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


ON THE BEHAVIOR OF PROGRAMS
WITH REMOTE PROCEDURES

Dan C. Marinescu

CSD-TR-636
November 1986



ON THE BERAVIOR OF PROGRAMS WITH
REMOTE PROCEDURES

Dan C. Marinescu
Computer Science Department

Purdue University
West Lafayette, Indiana 47907



-2-

Summary

There are preciously few data concerning program execution in a distributed computing

environment. The networking software has evolved considerably over the last few years and the

availability of Remote Procedure Call (RPC) protocols as well as lower costs and higher sophisti

cation and computing power of workstations, invites wide spread use of RPC by the casual appli

cation programmer. This paper discusses briefly RPC programming and reports measurements

pertinent to RPC execution. A model of a program which invokes a mix of RPC 's is presented.

FinallyJ measured data for different mixes of remote procedure types are analyzed using this

model and program execution types are estimated for variable rate ofRPC '5.

PROBLEM FORMULAnON

Communication in a distributed system has been explored from different angles, e.g. from

the point of view of operating systems, of the hardware architectures, of programming languages

and data base systems, but rarely from the end user's perspective.

Operating systems provide now different levels of support for the communication to remote

machines and it has become possible to write application software in a distributed fashion. The

task of the application programmer is greatly simplified when a Remote Procedure Call (RPC)

protocol is available, since the use of low level primitives like sockets is by no means trivial and

it closely resembles performing 110 operation at physical level.

There are several reasons why it is desirable to perform computations remotely. First of all,

the remote host may be capable of performing the computation faster than the local host, as it is

the case in scientific and knowledge processing environments when using a highly parallel sys

tem or an image processing machine, a LISP machine etc. Database applications offer a variety of

cases where remote computations are necessary, for example a query of a large remote data base.

Remote operations are also executed implicitly, for example when running a program with a large



-3-

working set size on a diskless workstation. In all these cases, it is important to undeffitand the

implication of performing remote operations upon the actual execution time of the program.

An accurate model of a dislributed system is much too complex for a tractable analysis and

it leads generally to multi-server, multi-queue problems. Even approximate models lead to the

analysis of networks of queues and usually the delay analysis of such a system requires at least

the first two moments of the arrival and of the service process at each node. The experiments

necessary to gather such data are difficult and this explains why such data are seldom available.

We present an unsophisticated approximate analysis based on simple measurements. This

analysis provides good guidelines for the design of a program performing remote computations.

We examine several questions of interest from the application programmer's view point, i.e. how

often can he afford to perform an expensive Remote Procedure (RP), or when the remote host

can perform the computation faster, what is the speeding up factor. and, in general, what is the

execution time of a program with a certain mix of remote procedures.

There are cases also when the remote services are provided implicitly by the operating sys~

tern, as in the case of paging. Then the performance degradation can be significant if the user is

not aware of the remote server's location.

In all cases it is important to understand the implications of: the server's location, its load,

and the communication delay when remote computations are perfonned. As expected, the access

through a long haul network leads to longer delays. As a general rule tuning of a distributed

application is a rather challenging task and it requires a certain level of understanding of the net

working environment.

The paper presents briefly techniques for RP programming and then RP measurements are

discussed. In the next sections, a trivial model of program execution is examined, numerical

results for different mixes of RP are presented, and an analysis of program execution time is car

ried out



- 4 -

PROGRAMMING WITH REMOTE PROCEDURES

A good analysis of the remote procedure call mechanism, can be found in Spector [2].

Essentially, in a client-server relationship, the client process passes the flow of control to the

server in a request to perform a certain action and blocks until the server process located on a

remote machine completes its execution and sends back the result. To hide the details of tran

sporting the data from one location to another, and the problem of addressing in a networking

environment. Berkeley Unix (fM) has introduced the concept of a socket as an endpoint of com

munication as seen from the user's perspective. Sockets are manipulated like file descriptors.

Due to the asymmetry of the client-server relationship, a client process can request a connection

with a server which can accept or not the connection request

Two transport mechanisms are available: one based on the unreliable but more efficient

transpon protocol UDP, (User Datagram Protocol), and one on the reliable but less efficient, TCP

(Transport Control Protocol). The tnmsport mechanism has to be specified at socket creation

time. Obviously both client and server need to use the same transport mechanism.

To design a distributed application, one has to create the server process on the remote host

and obtain its unique identification, given by the port number and network address of the host

where it runs. An RPC protocol is then a rule concerning the forntat of the data packets, so that

each time the client process establishes a connection with one of its servers, the server is capable

to understand the semantics of the request. This was essentially the procedure followed in order

to perform the measurements reported in the next section.

This brief presentation of the low level communication primitives available in Berkeley

Unix (TM) and their use in order to perfOrnt remote operations. deliberately skipped over a

number of details concerning: the problem of handling different data types, especially on

machines with different architectures, the problem of embedding the error control and flow con

trol mechanisms in the RPC protocol, especially when using an unreliable transport protocol as



-5-

UDP. and last but not least, a set of details related to the techniques of communicating through

sockets, as socket binding, the use of network utility functions to obtain the port number associ

ated with a given service or to obtain the network address of a host, etc.

In order to facilitate the development of system software and to provide a friendlier access

to the networking functions, Remote Procedure Call protocols have emerged lately. For example

SUN provides an RPC protocol [3], with three levels of interfaces. At the first level, all the

details of communication are hidden from a user who has access to a library of RP 's available

system-wide.

A second level provides two primitive operations, one to define new RP 's and to register

them for system-wide use, registerpc and a second one, callrpc to actually use them. To register

a procedure, the server must provide the service identification (program number, version number

and procedure number), a name for the procedure as well as the types of its input and output. A

client can call this remote procedure by invoking the callrpc primitive giving as arguments the

name of the RP, the service identification, the type and a pointer to the input parameters and a

type and pointer for the result. At the lowest level, the RPC protocol allows a greater flexibility.

One may use TCP rather than UDP, may perfonn authentification at either the client or the server

site or may use its own memory allocation schemes.

MEASUREMENTS

The measurements reponed here were carried out in order to determine the parameters

necessary for a model of the execution of a program with remote procedures. A very simple RPC

protocol based upon UDP was designed. Several server processes were activated on different

machines located at different "distances" from the host where a client process was running. A

server running on the same machine as the client is said to be at distance 0, one in the same Eth

ernet at distance I, and one in another local subnet, connected through a gateway, at distance 2.



-6-

The client sends a packet to the remote host where an RPC server identifies the type of the

remote procedure requested by the client, extracts the input parameters, and branches to the

proper procedure on the remote host. Upon completion of the computation, the results are sent to

the RPC server which packs them together and sends them back to the client.

We have defined eight types of remote procedures according to

the size of input (arguments) to the remote procedure,

the amount of computations performed remotely.

the size of output (returned values) produced as a result of the remote procedure exe

cution.

Each of these parameters could be s (small) or 1 (large). For example, an <s,l,I.> type

means small input, large computation and large output. The observation of the traffic in the

local network (Ethernet) of our department has shown a bimodal distribution of the packet length.

About 50% of the packets carried by the network have a length in the 64-241 bytes range and the

remaining 50% have length in the 970-1150 byte range. In our measurements small packets

(input or output to/from the remote procedure) contain less that 100 bytes while large packets

contain I Kbyte of data. A small computation requires the execution of a few dozens of instruc

tions while a large computation was defined as an empty loop executed 100,000 times.

At the time when the measurements were carried out, the 10 Mbps Ethernet was connecting

several VAX 780 and 785, one file server, less than a dozen SUN workstations. a multiprocessor

system, FLEX 32, graphic workstations and several other processors. all running Berkeley UNIX

('I'M) 4.2 aSD. The traffic load through the Ethernet was relatively low, it rarely exceeded 5% of

the channel capacity, and the file server was responsible for 10-30% of the traffic. Since then, a

VAX 8600 as well as several new SUNs and a new file server. have been added and the traffic

load is now in the 10% range of the channel capacity. The client was running on a VAX 785 with



-7-

a low load. and several servers were active on

(A) The client machine (VAX 785).

(B) A VAX 780 connected to the Ethernet and acting as a gateway.

(e) A dual VAX connected to the gateway through a 10 Mbps token passing ring

(PRONEf).

(0) A SEQUENT BALANCE 8000 connected to the INTERNET and located in Califor-

nia.

The results of our measurements are reponed in Table 1.

95% Confidence Interval for the Response
Time (msec) for different server locations

VAS 785 VAX 780 Dual VAX 780 Sequent

Remote Procedure Type Balance 800
Machine A MachineB MachineC MachineD

(client's (acts also as a (connected (long haul
is location) gateway) through the network)

gateway)

sss (11,11) (24,24) (26,28) (866,898)
ssl (12,12) (48,48) (60,62) (1911,1971)
Iss (19,21) (42,44) (54,56) (2185,2237)
1s 1 (22,24) (68,70) (86,88) (3174,3216)
sis (292,298) (523,535) (390,392) (1426,1454)
s 11 (341,351) (663,689) (425,429) (2532,2592)
11 s (353,365) (793,837) (418,422) (2728,2766)
111 (375,389) (933,989) (458,464) (3816,3876)

Table 1. Measured Response Time (in msec) for different types
of Remote Procedures on several hosts.

The error rates were low for the local machines and considerably higher for the long haul

networks. The results reported here are based upon a large number of measurement points. 4,000

for machines A and B, 2,000 for C and 1,000 for D. The measurements were carried out over a

period of one month at random points in time, at various loads of the server machines and at



-8-

various levels of traffic.

The results reported are affected by: errors determined by the limited accuracy of timing

measurements in Berkeley Unix (TM), which are in the 10% range, by the variatioIL'i in the server

machine load, by the dispersion of communication delays detennined by variations in the netw

work traffic. For these reason, rather than presenting average values for the response time, Table

1 shows the 95% confidence intervals for the measured data. We notice that:

(a) The RP 's with small computations on local machines (B and C), have a small 95%

confidence interval of the response time. The variation in the traffic load is primarily

responsible for the slight variation in the response time observed for each machine.

(b) The response time of RP's with large computations on local machines (B and C)

have a slightly larger dispersion of the response time and this can confidently be attri

buted to the variations in the load of the server machines. The faster machine C, has a

smaller 95% confidence than the slower, but closer machine, B.

(c) In case of the remote machine, D, the variations on the communication delay through

a long haul network are the dominant facton> as we conclude by comparing the 95%

confidence interval of the related RP , one with small computation and one with large

computation (e.g. <s s I> and <s 11».

A QUEUEING MODEL FOR A PROGRAM WITH REMOTE PROCEDURE CALLS

Queueing models for program behavior have been investigated in the past, see for example

Ramamoorthy [4] and Spiro [5]. The basic idea is to construct the program flow graph and to

neat it as the state1:rl,lnsition diagrams of a Markov chain. The study of program behavior is then

reduced to the investigation of a homogeneous, finite-state, discrete-parameter Markov chain with

an absorbing state. Clearly, the homogeneity assumption leads to an approximate analysis since

in a given state, the future program behavior may depend upon the past history. Since there are a



-9-

finite number of statements, hence, a finite number of execution regions, the Markov chain is

finite.

The absorbing state corresponds to the program termination. If 81 to 811 _1 are the transient

states and orn is the absorbing state of a Markov chain with n states, then the transition probability

matrix of the chain can be partitioned into a sub-stochastic (n-I) by (n-I) matrix Q describing

the transitions only among the transient states, and two more vectors, as follows:

1

c

o

Q I
I

-------r-----
I
I

p

Here C is a column vector and 0 a row vector of n-l zeros. The fundamental matrix defined as:

M =(I-Qr1

always exists and has the following property (see for example Trivedi, [6]):

The (i ,j)-th element of M. mij. is the average value of the random variable Vij with i ,j < n.

Here, Vij is the number of times the program visits state Sj before entering the absorbing state,

given that it started in state si. In order to model the execution of a program which invokes

remote procedures, we construct the program flow graph of Figure 1 with one state, sQ.

corresponding to execution on the local region, n states s1 , ... , s/I' each corresponding to the

execution of one remote procedure and an absorbing state.

In this graph Pi is the probability of executing RP j after an execution on the local machine.

The model does not allow for recursive RP 'so The transition matrix among transient states is:



- 10-

0 PI P, P,
I 0 0 0

Q=

I 0 0 0

The fundamental matrix is:

pipo

pipo
M=

pipo

The average number of execution ofRPj is:

Pi
Vj = - j = 1. 2 , .. .. n.

Po

The average number of passages through the local execution is:

I
'Vo=-·

Po

RP I

P

I
Local

Po

P,

P,

RP,

Figure 1. The program flow graph



- 11 -

The total execution time of the program is then:

• •
T = L Vj tj = Vo to + ~ Vj tj

I={J j=l

with tj the execution time in the corresponding state. The model assumes that the execution time

of remote procedure RPj is exponentially distributed with average tj.

EXPERIMENTAL RESULTS

We now apply the model described in the previous section and use the measurements

presented earlier to estimate the execution time of programs with remote procedures. One can

easily associate with each of the eight types of RPC 's defined with an actual remote operation.

For example, the <S,S,S> type corresponds to operations performed in handling remote switches,

used by voting algorithms or performed by remote commands like cd. The <5,1,1> may

conespond to a query operation. Similarly. <s,I,1> or d,I,!> could be related to paging over the

network and <1,1,1> to remote execution of computationally intensive tasks, for example the

inversion of a matrix, etc.

The objective of our analysis is to compute 'Y, the ratio between the execution time with

remote procedure calls and the equivalent execution time where the remote procedures were exe-

cured locally, as function of the rate at which remote procedures are executed. The following

notation is used:

TR expected execution time with RP 's

TL expected equivalent execution time with all computation perfOlTIled locally

n the number ofRP types

Pj I ::;; j ::;; n, the probability of executing RPj



- 12-

tj average execution time corresponding to RPj

to average execution time in one cycle on the local machine

t~ average execution time for the equivalent system where all RP 's are executed locally

Vj number of executions ofRPj (visit count for RPj )

v0 number of visits to the local execution region

A number of cases will be analyzed. First of all we examine the average case when the pro-

gram cycles through all types of RP 's, a second example is concerned with the case when only

RP 's with small execution time are invoked. Then an approximate model for paging over the

network is analyzed, and finally a shell script is modeled. The section is concluded with a discus-

sian of the results.

Average Case Analysis for a Uniform Mix of RP 's

The important assumptions for this case is that all RP 's in our generic group, <5,S,S> •... ,

<1,1,1> are executed with equal probability. In this case n = 8.

A simple computation indicates that in this case

Vo - 1

n

Hence

Vo - 1 n
TR = Vo to + ---"-- L t;

n 1=1

or

with

"L tj
;=1t,,=--,

n



-13 -

For large Vo> TR can be approximated by:

According to previous notations, we have:

Hence

"0(/0 + ttl)

\'0(10 + til')
=

To compute ttl' we assume that on average, we have an equal number of small and large

remote computations. The equivalent local execution time of a large remote computation is

obtained as the difference between the average time of an <s,l,s> and of an <S,S,S> computations

performed on the local machine A. The equivalent local short computation time is very small and

assumed zero. Hence, we use for te. the value 142 msec (see Table 1).

The following obselVation is valid for this example and for all the following ones. Since our

model assumes that each local execution is followed by a remote procedure can and to is the time

for local execution in one cycle, then

procedure calls are executed.

1 is the rate, in RPC's per InSec, at which remote
to + In

The values ofy are summarized in Table 2 for to in the range 10-1 to 104 msec.

to (in msec) 10-1 I 10 102 10' 10'
t.

A 181.00 1.27 1.27 1.25 1.16 1.03 1.003
B 396.25 2.79 2.77 2.67 2.05 1.22 1.025
C 241.25 1.69 1.69 1.65 1.41 1.08 1.009
D 2353.00 16.55 16.46 15.54 10.13 2.93 1.218

Table 2. The gamma factor for a homogeneous mix

Figure 2 presents the gamma factor function of the RPC rate for machines Band C. In case of the



-14 -

long haul network access (machine D) the increase in execution time is significant, the gamma

factor is 16.55 for 0.42 RPClsec. decreses to 2.93 for 0.29 RPC/sec and is 1.218 for 0.08

RPC/sec.

The Small Computation Case

In this case we consider only the mix consisting of the four types of RP 's performing small

computations remotely «5,S,S>, <1,s,s>, <5,S,1> and <1,5,1». Hence l~ = 0 and ris given by:

Y= '.=1+-
'0

The values of y are summarized in Table 3. The value of In is computed considering an uniform

mix of small RPC 's where all types occur with the same probability.

to (in msec) 10-1 1 10 102 10' 10''.
A 16.5 166 17.5 2.65 1.16 1.016 1.0016
B 46.0 461 47.1 5.60 1.46 1.046 1.0045
C 57.5 576 58.5 6.75 1.57 1.057 1.0057
D 2057 20571 2058 206.70 21.57 3.057 1.0257

Table 3. The gamma factor for small computations

In case of local network we observe that the speed of the remote machine is no longer the dom-

inant element in detennining the gamma factor. In particular host B, which is a slower machine,

but located only one hop from A looks better than C, a faster machine, but located two hops

away.

Paging Over the Network

Paging is an implicit remote operation associated with execution of large programs on disk-

less workstations. The paging rate depends upon the ratio between the available memory and the

program's working set size.



- 15 -

In our model paging is assimilated with a mix of <5,1,1> and <1.1,1> operations. If the page

being replaced has not been modified, paging is modeled as an <s,I,1> operation while if the page

has been updated. paging is modeled as an <1,1,1> operation.

The gamma factor is given by:

to + trp
Y=

to + tip

The paging time on the local machine, tIp will be assumed fixed and a reasonable value for

it is 25 msec. For each machine, the remote paging time is approximated by:

trp = 0.5 l<s,l,I> + 0.5 Id,I,I>

The resulting values are summarized in Table 4.

~ec)
10-1 1 10 10' 10' 10'

A 364 14.56 14.03 10.68 3.71 1.33 1.03
B 821 32.71 31.61 23.74 7.36 1.77 1.07
C 444 17.76 17.11 12.97 4.35 1.40 1.04
D 3204 127.65 123.26 91.82 26.43 4.10 1.31

Table 4. The gamma factor for paging

Figure 3 shows the gamma factor for machines Band C in case of paging. For machine D, the

performance degradation is sensible even for low paging rates: 127.65 for 0.31 pages/sec. 26.43

for 0.30 pages/sec, decreses to 4.10 for 0.23 pages/sec and reaches 1.31 for for 0.075 pages/sec.

A Shell Script

As a last case. we consider the ex.ecution of a shell script on a diskless workstation. This is

an ex.ample of the application of the model described earlier to a case when RP's are executed

with different frequencies. As a basis for our estimation of frequency afuse af different RP 's we

use the results reported by Sheltzer and Popek for the most frequently used interactive commands



- 16-

on the collection of LOCUS system at UCLA [1].

Command Type Frequency of
Execution (%)

Is <s,l,1>
vi <s,l,1>
cd <s,s,s>
more <s,I,1>
nn <s,l,s>
dirs <s,l,s>
jobs <8,S,S>
fg <8,S,S>

make <s.l.s>
grep <s.l.s>
finger <s.l,s>
cp <s,l,s>

11.9
8.7
8.5
7.5
3.3
2.6
2.6
3.2
2.2
2.1
1.9
1.3

Table S. The frequency of execution of commands in LOCUS

Examining Table 5, we observe that by considering only two types of computations in

modeling a remote procedure, small and large we are forced to some gross approximations.

Probably more than two quantization levels for the remote computations are necessary to have a

more accurate model. For example a make should be modeled as a very large computation.

Assuming that the rest of remote computations belong to the <s,l,1> class, we use in our

model the data summarized in Table 6.

Type

<s,s,s>
<s,I,s>
<s,I,1>

Frequency (%)

13.3
13.4
73.2

Table 6. The frequency of execution of RP 's in a shell script

In this case t~ is given by:

t~ = 0.133 l~,<s~~> + 0.13 1~,<sJ~> + 0.732 t~,<s,IJ> = 0 + 0.866 x 284 = 246 msec



- 17 -

/n will be calculated for each machine according to the expression:

/n = 0.133 t<spY,.Y> + 0.134 ts,l,.Y> + 0.732 t<s,l,l>

The results are summarized in the following table.

~C) 10-1 1 10 10' 10' 104
t.

A 294.26 1.19 1.19 1.18 1.13 1.03 1.00
B 568.91 2.31 2.30 2.26 1.93 1.25 1.03
C 368.54 1.49 1.49 1.47 1.35 1.09 1.01
D 2185.65 8.88 8.85 8.57 6.60 2.55 1.18

Table 7. The gamma factor for a shell script

Figure 4 shows the gamma factor for machines B and C. In case of D, a machine accesible

through a long haul network the gamma factor is: 8.88 for 0.457 RPC/sec, 6.6 for 0.437

RPClsec, 2.55 for 0.313 RPClsec and finally 1.18 for 0.082 RPClsec.

Discussion of the Results

The approximations presented earlier assume a number of execution cycles much larger

than one. An execution cycle consists of an execution on the local machine and one remote exe-

curion.

The results presented in these sections are somehow optimistic for several reasons. First,

the RPC protocol used was very simple. The measurements were perfonned only in case of a

successful RPC. While a more sophisticated RPC protocol would retry in case of a failure and

thus the response time would increase, in our measurements the unsuccessful case was simply

discharged. Using more sophisticated RPC protocols like SUN's the results would probably be

more conservative especially if the TCP rather than UDP protocol is used. The TCP protocol



- 18 -

must be used when more than 8 Kbytes of data are transmitted as parameters.

Second, the approximations used to compute the equivalent execution time of a remote pro

cedure on a local machine was conservative.

Third, during our measurements on the local network the actual load on both the network

and remote servers was low.

As a general observation, on local machines, RPC's executed at a rate of 1 or less per

second lead to acceptable degradation of the computing speed. Paging at a rate higher than one

page/second can be very expensive.

In case of a long haul network access, paging over me network becomes unthinkable for

rates larger than one page every 4 seconds. Remote command execution is reasonable for rates

not larger than one command every three seconds (which is realistic).

CONCLUSIONS

The results presented have an orientative value, they are intended [0 illustrate the methodol

ogy to study the program behavior in a distributed system. The approximations made in con

structing the model of the program behavior and especially the measured data used as parameters

of the model, affect the results as discussed earlier.

A more accurate model needs a set of RP types larger than the one considered here. A

qualitative improvement of the model would be to allow for parallel RPC 's and for non-blocking

ones. In case of a non-blocking RPC the client does not block waiting for the result but continues

its execution flow and is interrupted when the results become available, like an asynchronous I/O

operation.

The speed of Ihe remote hosts. Iheir actual load, the communication overhead, all are

significant factors in determining the actual performance of the program.



- 19 -

It would be extremely interesting to repeat the procedure discussed here in a network with

50 or more workstations and at least five file servers, especially in a scientific environment, with

large CPU bound-programs and an assortment of parallel machines. In such an environment, one

could probably observe speeding-up factors due to execution of intensive computations on fast,

remote machines.

ACKNOWLEDGMENTS

The author expresses his thanks to Andrew Royappa, who has carried out the measure-

ments.

LITERATURE

[1] A.B. Sheltzer and G.J. Popek, Internet LOCUS: Extending Transparency to an Internet

Environment, IEEE Trans. on Soft. Eng., Vol. SE-12, (11) 1067-1076 (1986).

[2] A.Z. Spector, Performing Remote Operations Efficiently on a Local Computer Network,

CACM 25, (4), 246-259 (1982).

[3] ••••, SUN rvrrCROSYSTEMS. Networking on the SUN Workstation Reference Manual,

(1986).

[4] C.V. Ramamoorthy, Discrete Mar/coll Analysis of Computer Programs, Proc. ACM

National Conference, 286-392 (1965).

[5] J.R. Spim, Program Behallior: Models and Measurements, Elsevier, New York (1977).

[6] K.S. Trivedi, Probability and Statistics with Reliability, Queueing and Computer Applica

tions, Prentice Hall (1982).



2.8

2.6

2.4

2.2

2

Gamma
Factor

1.8

1.6

1.4

1.2

---
1

o 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2
Frequency ofRemote Procedures, in RPC's!sec

Figure 2. The gamma factor for machines B (solid) and CCdashed) function ofRPC rate (homogenous mix case)



33-

31-

29-

27-

25-

23-

21-

19-

Gamma
17 -Factor

15 -

13-

11-

9

7-

5

3

1-

,,,,,,,,,,,,,,,,,,,,,,,,,,,
-'--------

_

~='""'::c:-_ -----

I I I I I I I I I I I I I •
o ~ M M M 1 U U U l~ 2 U U U

Frequency ofRemote Page, in page/sec

Figure 3 The gamma factor for machines B (solid) and C(dashed) function of the paging rate in pages/sec



2.3

2.2

2.1

2

1.9

1.8

1.7
Gamma
Factor

1.6

1.5

1.4

1.3

1.2

1.1

1

--

o 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75
Frequency ofRemote Procedure Calls, in RPCIsec

Figure 4. The gamma factor for machines B (solid) and C (dashed) function of the command execution rate for a shell scripL


	On the Behavior of Programs with Remote Procedures
	Report Number:
	

	tmp.1307986960.pdf.e5SHM

