
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1986 

ADI Methods on a Shared Memory Machine ADI Methods on a Shared Memory Machine 

John P. Bonomo 

Paul E. Buis 

Wayne R. Dyksen 

Report Number: 
86-622 

Bonomo, John P.; Buis, Paul E.; and Dyksen, Wayne R., "ADI Methods on a Shared Memory Machine" 
(1986). Department of Computer Science Technical Reports. Paper 540. 
https://docs.lib.purdue.edu/cstech/540 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


112- ~~7- J
J.i)fl

:'€vl-t
\\/1.\/ 'i>r

ADI Methods on a
Shared Memory Machine

Jahn P. Bonomo 1

Pa.ul E. Buis 2

Wayne R. Dyksen 3

Department of Computer Sciences

Purdue University

CAPO Report CER-88-622

IWork supported in part by the Air Force of Scientific Research under Grant 84·0385

2Work supported in part by the Nalion<l.l Science Fonndation under Grant CCR-861981T

3\Vork supported in part by the National Science Foundation under Grant DGR-8lI0~S&5

CC/Z -'q, ~ \~ b76



ADI Methods on a Shared Memory Machine

John P. Bonomo

Paul E. Buis

Wayne R. Dyksen

November 18, 1988

Abstract

This paper summarizes the results obtained using various sequential and parallel methods to

solve partial differential equations on a sbared main memory machine, the Sequent Symmetry.

Four numerical methods are used and compared: 1) sequential band Gauss elimination, 2)

parallel band Gauss elimination, 3) sequential Tensor Product Generalized ADI, and 4) parallel

TPGADI. We discuss the various issues involved in the parallelization of a sequential algorithm

to make best use of the Sequent Symmetry.

Keywords: elliptic partial differential equations, collocation, Alternating Direction Indirect

method, tensor products, parallel computation, shared memory machines.

AMS(MOS) subject classifications: 15A06, 15A69, 35J15, 65FlO, 65N35, 65W05,

68Q25.

1 Introduction

Parallel algorithms for numerically solving partial differential equations (PDEs) have been designed

for many years, but with the increased availability of multi-processor machines the analysis of these

algorithms has moved from the theoretical to the experimental arena. This paper summarizes the

results obtained using various methods to solve PDEs on a shared main memory macbine, the

Sequent Symmetry. Four numerical methods are used and compared: 1) sequential band Gauss

elimination, 2) parallel band Gauss elimination, 3) sequential Tensor Product Generalized ADI

(TPGADI), and 4) parallel TPGADI. We begin in Section 2 with a brief description of the Sequent

Symmetry. In Section 3 we discuss tensor products of matrices and analyze the time and space

requirements of tensor product equations. We describe the TPGADI methods in Section 4 and

a specific instance of them using Hermite bicubics in Section 5. In Section G we consider the

issues involved in the parallelization of the Gauss Elimination and TPGADI algorithms. Section 7

contains the experimental results. Finally, in Section 8 we summarize these results.

1



2 Parallel Processing on the Sequent Symmetry

The Sequent Symmetry is a shared main memory multiprocessor machine built by Sequent Com­

puter Systems, Inc. Each processor board contains two CPUs, each consisting of an Intel 80386

32·bit microprocessor with an 80387 floating point processor running at 16·MHz and 64 Kbytes

of system managed local memory. A Weitek 1167 floating point accelerator is optional, but was

not used in our e..'q)eriment. Up to 15 of these processor boards may be installed, along with 40

megabyte memory expansion cards, a SCSI board with an Ethernet interface, and a Multibus card

cage with 12 slots.•ill of these boards are connected to one 10 MHz system bus with a theoretical

bandwidth of 80 Mb/sec. Special bus signals are used to enable the locking of any 4 bytes of

memory for mutual exclusion purposes.

The Sequent Symmetry runs the DYNIX operating system, also developed by Sequent Com­

puter Systems, Inc. DYNIX is a variant of UNIX BSD 4.2 with System V features supported via

a mechanism where the user can choose which UNIX system to emulate. In addition to the usual

system calls, DYNIX provides concurrent processing support in the form of a library of microtask­

ing calls. This library contains a concurrent process creation routine, mJorkO, and a variety of

concurrent process coordination routines based on the hardware locks. This library can be accessed

directly from C and through intrinsic calls in other languages. We use the FORTRAJ.~ compiler

by Silicon Valley Software which provides a preprocessor which transforms marked DO loops into

an mJorkO call to a subroutine containing the body of the loop and all of the required process

coordination code. For example, the following code for matrix addition

subroutine matadd(a,b,c.nro~,nrovs,ncols)

real a(nro~,l). b(nrovmx,l). c(nro~.l)

e$doacross share(e. a. b, neols, nrovs). loeal(i)

do 10 j = " neols

do 10 i = " nrovs

o(i,j) = a(i.j) + b (i, j)

10 continue

return

end

is transformed into code which is essentially equivalent to

subroutine matadd(a,b,c.nroYmX,nrogs.neols)

external dol0'l.matadd

integer m_fork,nroYmX

real a(nrovmx, 1) , b(nroYrnX,l), c(nroYrnX,l)

2



if (M-fork(do10Y.matadd,ncols.nro~.nrovs,b,a,c.j).ne.O)

* s~op 'do 10 matadd'

return

and

subroutine do10Y.ma~add(ncols,nrovmx.nrovs.b,a,c.jy.)

integer m_get_myid.m-get_numprocs

integer j,i.nrovmx.nrovs

real b(nrovmx,1),a(nrovmx,1).c(nro~.1)

do 99997. j = j. ncols. m-get_numprocs()

do 10 i ~ 1. nrovs

c(i.j) = a(i,j) + b(i.j)

10 continue

99997 continue

and

A call to m..forkO creates a number of processes which is at most one less than the number

of processors. These processes are not tied to any particular processor, but like any other process

are moved to the least busy processor whenever they are rescheduled by the operating system.

Processes created with mJ'orkO share some of the memory associated with the parent process,

unlike processes created with the traditional forkO system call which obtain copies of the parent's

memory. After process creation, m..forkO starts the same subroutine with the same arguments

running in each of these processes. Each of these subroutines i~ able to tell which process it is

associated with by calling m..geLmyidO. 'When the subroutine terminates, the process busy waits

until it is needed again by the next mJorkO call. This reuse of processes by m..forkO reduces process

creation overhead; however, if the processes are not needed again, it is wasteful of CPU cycles. These

processes can be terminated by a call to m....kil.lO or suspended by a call to m-park_procsO.

3 Tensor Products of Matrices

Let A = {amn } and B = {bk/} be matrices of order.M X Nand J( x L, respectively. The tensor

product o( A and B, denoted by A ® B, is the matrix of order ill Ii.." x N L given by

anB a12B alNB

a2IB a22B a2NB
A@B;

a,\f1B a,l,{2B a,\1wB

A detailed account of the properties of tensor products is given in [HalSS].

3



The main work done in both Gauss elimination and the TPGADI algorithms involves solving

equations of the form

(At ® H, +H, ® A,)x = b.

In the next section we will see that matrices with this structure can be solved iteratively by

repeatedly solving equations of the form (A@B)x = D and performing multiplications (-4@B)x.

The TPGADI takes advantage of the particular matrix structure by using efficient algorithms for

manip ulatian of tensor products.

Ta take advantage of these algorithms we need use only the factors A and B, and can avoid

explicitly forming the tensor product A®B. When working with (A@B)x,onecan take advantage

of the fact that RNL and !RNxL are isometric by representing the vector x by the matrix X = {Xln }

defined by the isometry

Xln = XI+L(n_I)·

The usefulness of this representation can be seen in the following simplifications of the more general

results given in [dB79,PS73] which give efficient procedures far computing (A 0 B)x and solving

(A l ® A2 )x;; b, respectively.

LEMMA. Let A = {amn}, B = {bk /} and X == {::tin} be ma.trices of order kI X N, J( x Land

Lx N, respectively. Then the]( X M matrix. (A ® B)X is given by

(A ® H)X = (A(HX)Tf.

COROLLARY. Let Ak be matrices of order Nk x Nk' let X and B be matrices of order N2 x NI ,

and consider the linear system

(A, ® A,)X = H.

If All and A;l exist, and if A2Y = Band AIZ = yT, then X = ZT.

4 The Tensor Product Generalized ADI Method

Let AI,: and Bk be matrices of order NI,: X Nk' and consider the linear system

(A, ® H, +H, ® A,)C = F. (1)

While the tensor product (AI ® B2 +Bl @ A2) is an NI N2 X NI N2 matrix, we wish to solve (1)

by computing only with At. B I and A2 , B2 ; that is, we wish to solve the two-directional problem

(1) by using methods employed to solve the one-directional problems. We use the term directional

rather than dimensional since one direction may encompass more than one dimension, as in the

1.fetltod of Planes [DykSG,DykSS].

4



(2)F - [B t ® (A, - Pk+lB,)] C(k)

F - [(A1 - Pk+tB,J ® B,JC(k+t/').

For a given set of positive acceleration parameters Ph I = 1,2, ... the two-directional Tensor

Product Generalized Alternating Direction Implidt (TPGADI) iteration method is defined by

C(O) given

[(At +pk+,B,) ® B,] C(k+l/')

[B, ® (A, +pk+,B,)] C(k+l) =

The TPG.illI method converges to a unique solution C if the matrices Bl 1Al and B2"1 A2 have a

complete set of normalized eigenvectors with corresponding positive eigenvalues Ai and J-Lj, respec­

tively [Dyk87]. Furthermore, if the acceleration parameters PI are set equal to AI (J-LI), then the

TPGADI method is an exact method (except for roundoff) in N1 (N2 ) iterations.

In order to compare the TPGADI method to other schemes, we summarize the computer time

(via operation counts) and computer memory required to implement it. We assume that Ak and

Bk are band matrices with bandwidth 1{k and that all systems of linear equations are solved by

band Gauss elimination with partial pivoting. Since the initial guess C(O) and the acceleration

parameters PI depend on the discretization method used., we assume here that they are given.

The work to compute the I-direction sweep of the TPGADI Method (2) is summarized in Table

1. Thus, the total work to compute the I-direction sweep is 0 (N1 N2(5([(1 + ](2) + 1/2)). An

analogous estimate shows that the work for the 2-direction sweep is the same. Hence, the total

work per iteration is 0 (NI N2 (10(I(1 +1(2) + 1)) operations. If N1 = N2 = Nand [(1 = 1(2 = [(,
then this work estimate simplifies to O(20](N2). The TPGADI iterative method can be a direct

method in N iterations, requiring O(201(N 3 ) operations. Note that the dominant work in the

TPGADI method does not result from factoring tVI or B2 • Instead, the dominant work involves

computing the right side VV and doing multiple back substitutions solving for CCk+I/2).

Consider the straight forward method of applying band Gauss elimination to the matrix A =
(AI ® B 2+ B I I8I A2). If NI = N2 = Nand](l = 1(2 = Ii.", then the matrix A is of order N2 x N 2

with bandwidth J(N - N +]l. Band Gauss elimination with partial pivoting applied to it requires

o(2li 2 N4) operations to perform the LU factorization. and O(3Ii N3) operations to perform the

forward and back substitutions.

Thus, even as a direct method the TPGADI method is asymptotically much faster than straight

forward Gauss elimination as a direct method of solution. This conclusion warrants a few remarks.

First, in order for the TPGADI method to be direct we must either know a priori the eigenvalues

of BI I Al or B2"1 A2 or we must compute them. In many applications arising from PDEs these

eigenvalues are known explicitly. Secondly, one would almost never use the TPGADI method as

a direct method in practice. Given the desired eigenvalues, we would use some subset of them

to achieve moderate accuracy with many fewer than N iterations. In particular, since the low­

frcqucncy components of the error are <u>sociated with the smallest eigenvalues, using only a few in

5



Operation Work

W2 = A2 - Pk+IB2 2K,N,
W = (E, 0 W,)C(') 2N, N,{K, +](,)
W=F-W 1/2N, N,

WI = Al +Pk+IBI 2K1NI
Factor B 2 2KiN2
Solve L2U2Y = W 3NIK 2N2
Factor WI 2KrNI
Solve L1Ut (Ck+l/2)T = yT 3ICININ2

Table 1: Work to compute the I-direction sweep of the TPGADI method

increasing order will often suffice [Lyn6S].

A simple calculation shows that the amount of memory required to factor the matrL,< (AI 0

B2+B I ® A2 ) by Gauss elimination with partial pivoting is O(3ICN3 + 2N2) words. The memory

requirements for the TPGADI method are estimated as follows: AI, B t , A2. B2 each require

O(2ICN) words; WI and W2 also require O(2I(N) words; and W, F and C each require N 2 words.

Thus, the total amount of computer memory required is O(3N2) words, which is nearly optimal

since it is the same order of magnitude as the number, N2, of unknowns.

5 TPGADI with Hermite Bicubics

vVe consider an elliptic problem of the form

Lru + L,u = f in n = [0,11 x [0,11

u 0 on an.

where

(3)

(4)

L:z;'IL = -U2(X)U:z;:t: + UI(X)U:z; + uo(x)u,

L,u -b,(y)u" +b,(y)u, +ba{y).,

vVe assume for simplicity that we have homogeneous Dirichlet boundary conditions. The analysis

is readily extended to problems with nonhomogeneous Dirichlet or Neumann boundary conditions

[Dyk87,HMR85.,!I~IR85bJ.

The domain n is subdivided with a rectangular, tensor prouuct grid with AIN rectangles. We

approximate u(x,y) by
2,'1,[ 2N

U(x,y) = L L Cnm<Pm(x),pn{Y)
m=l n=l

6



where q,m and tPn are the standard one dimensional Hermite cubics with the grid lines as knots.

The Hermite cubics which are zero on an are discarded so that U == 0 on an.
To determine the 4MN unknowns Cnm• we place in each subinterval (x m, Xm+l) and (Yn, Yn+d,

the two Gauss points T2m+I = HX m + xm+l) - 2Ja' T2m+2 = HX m + xm+d + 2Ja and V2n+l =
HYn + Yn+d - 2Ja' tJ:zn+2 = HYn + Yn+l) + 2Js· These collocation points give a fourth order

discretization error for smooth problems [Hou78,PW80j. We then collocate the elliptic problem (4)

at these 4lVIN points to obtain the Hennite biclJbic collocation equations

[ I( ) [ J( i = 1, . .. ,2M
L-z;U Ti,Vj +LyU Tj,Vj):;:f(T;,vi), .

J:;: 1, ...• 2N.
(5)

The structure of the linear system in (5) depends on the ordering of the collocation points and

the basis functions. If they are both ordered in a natural tensor product manner, then (5) may be

written in tensor product form as

(A. 0 B, + B. 0 A,)C = F,

where

i = 1, ,2M

m:;: 1, ,2-"'[,

j=1, ... ,2N
[A,];n =L,,pn(v;), [Byl;n = ,pn(v;),

n= I, ... ,2N,

n= I, ... ,2N
Cnm = cnm '

m:;: I, ... ,2M,
j = 1, ... ,2N

and Fii = f(T;, Vi), .
1:= 1, ... ,2/vI.

Since the support of each Hermite cubic q,m and tPn spans at most two subintervals, it follows that

A-z;, B-z; and All' By have bandwidth two, regardless of lH or N.

Dyksen has shown that the TPGADI method (2) applied to these Hermite bicubic collocation

equations converges [DykST]. In particular, he gives explicit formulas for the eigenvalues of B;l A-z;

and B;l All' and shows that they are distinct, real and positive. Given these eigenvalues, the

TPGADI method can be exact for this problem.

6 Parallelization of the Gauss Elimination and TPGADI Algorithms

For Gauss elimination, parallelization entails simply inserting a doacross directive in the code for

the factorization step. The factorization step is the dominant time component for the sequential

version of this algorithm. The forward and back substitution is not parallelized since it is possible

only to parallelize a few instructions, and doing so is not worth the overhead expense.



For the TPGADI method, each of the steps in Table 1 e..'{cept the factorization is parallelized.

It suffices to use the doacross construct in Sequent FORTRAN. All of the parallelism comes from

loops which have the property that each trip through the loop operates on different data. In an

environment that did not contain the doacross construct, one could manually perform the same

transformation that Silicon Valley Software's Sequent compiler uses as illustrated in Section 2.

Also, if m10rkO did not reuse proces~nce they were created, equivalent behavior could have beef"(L

achieved by creating processes which each execute the main TPGA..DI loop and are coordinated by

m..syncO calls. A version of our code using this technique has no significant time difference.

The Hermite ftkubic collocation is also paralIelized, but the sequential version still takes so C2.G
little time as to be insignificant compared to the solution phase of the parallel code.

7 Experimental Results

We carried out a series of timing experiments on a singly loaded Sequent Symmetry with 28

processors, and measured real time, not processor usage. Process creation time was counted as

part of the solution phase. Also, we ran the program at maximum priority, disabled the automatic

priority modification, and enlarged the maximum working set size parameter of the virtual memory

system. These measures make it unlikely that a process will leave the processor it starts on or be

interrupted by one of the operating system daemons.

For these experiments we used TPGADI with N iterations. This yields a direct method, but is

somewhat naive since full acCUI'acy may be achieved much sooner as described in Section 4.

Table 2 summarizes our results. It shows the speedups and efficiencies obtained versus number

of processors and number of grid lines. The speedup is the time for the sequential version of the

algorithms divided by the time for a parallel version of the algorithm. Efficiency is the speedup

divided by the number of processors used. The values from Table 2 are displayed graphically in

Figures 1 through 6. This shows that as N gets larger, the speedups obtained by the algorithms

approach the optimal speedup. This is as expected since, as the size of the linear system to solve

grows larger, the overhead of process creation time and the non-parallelizable but non·dominating

parts of the algorithm become less significant, and vice versa.

Figures 1 and 2 show that the speedup obtained for a given N does not remain a constant factor

of the optimal speeduPi this results from the phenomenon that as more processors are used the

process creation times becomes a larger percentage of the overall time. Also, since all processors

access memory via a common bus a large number or active processors leads to bus congestion,

reducing efficiency.

For the TPGADI solution phase, an equal distribution or the work among the processors (and

hence increased efficiency) is attained ir tIle number or processors evenly divides the number or

8



linear equations. This is the reason there is a small upward bump in the efficiency curves near 16

processors in Figure 4. Also, for all but the smallest problems, all processors are used almost all

the time. By contrast most steps of Gauss elimination leave several. processors idle near the end

of the submatrix update. Gauss elimination also requires more memory which increases process

startup time since rather large page tables must be duplicated.

Since the TPGADI solution phase has one component that was not paraJlelized - the factor­

ization of a matrix with half bandwidth 2 - the maximum obtainable efficiency can be calculated

by estimating the work from Table 1 to be (20.5N 2 + 16N)/(20.5N2 + 8lY + 8Np) where p is the

number of processors and N is the number of unknowns. Thus for 65 grid lines and 27 processors

the ma..'<..imum attainable efficiency is 92 percent. We attain 73 percent, the difference being due to

process creation overhead, bus bandwidth limitations, and synchronization overhead.

8 Conclusions

TPGADI outperforms Gauss elimination as expected by a factor ofO(N). Furthermore, it also uses

a factor ofO(N) less memory and parallelizes more efficiently. TPGADI has proven to be effective in

solving certain two and three dimensional partial differential. equations [Dyk86,Dyk87,Dyk88]. We

have shown that both theoretically and practically that it can be effectively parallelized. In the case

of the Hermite ;st'cubic ~llocation equations, it significantly outperforms band Gauss elimination

(the only alternative, since the equations have no special properties such as symmetry or self­

adjointness). We conjecture that parallel TPGADI will be even more effective for three directional

problems. It is a direct method in N iterations since each iteration of TPGADI eliminates N2

components of the error. For three directional problems, these advantages will make computation

of N eigenvalues worthwhile even when they are not known a priori. In the case ofHermite.Bicubic

.eollocation, a factor of O(N2) memory savings and a factor of O(N3) time savings will be achieved

not storing and solving a N3 by N3 matrix with Gauss elimination

9



References

[dB79]

[Dyk86]

[Dyk87]

[Dyk88]

[Hal58]

C. de Boor. Efficient c.omputer manipulation of tensor products. ACM Trans. Math.

Software, 5(2):173-182, June 1979.

w. R. Dyksen. A tensor product generalized. ADI method for elliptic. problems on

cylindrical domains with holes. J. Compo Appl. Math., 16:43-58, 1986.

W. R. Dyksen. Tensor product generalized ADI methods for elliptic problems. SIAM

J. Numer. Anal., 24(1):59-76, February 1987.

W. R. Dyksen. A tensor product generalized AD! method for the method of planes.

1988. to appear, Numerical j\£ethods for Partial Differential Equat£ons.

P. R. Halmos. Fin£te·Dimen.s£onal Vector Spaces. D. Van Nostrand Company, Inc.,

Princeton, second edition, 1958.

[HMR85a] E. N. Housti', W. R. Mitchell, and J. R. Rice. Algorithms INTCOL and HERMCOL,

collocation on rectangular domains with bicubic hermite polynomials. AC~\£ Tran.s.

Math. Software, 11:416-418, 1985.

[HMR85b] E. N. Houstis, 'N. R. Mitchell, and J. R. Rice. Collocation software for second order

elliptic partial differential equations. ACM Tran.s..Math. Software, 11:379-412, 1985.

[Houi8] E. N. Houstis. Collocation methods for linear elliptic problems. BIT, 18:301-310, 1978.

[Lyn68] R. E. Lync.h and J. R. Rice. Convergence rates of AD! methods with smooth initial

error. Jl;lath. Comp., 22:311-355, 1968.

[PSi3] V. Pereyra and G. Scherer. Efficient computer manipulation of tensor products with

applications to multidimensional approximation. Math. Comp., 27(123):595-605, July

1973.

[PW80] P. Percell and M. F. Weeler. A C1 finite collocation method for elliptic equations.

SIAAI J. Numer..4nal., 17:605-622, 1980.

10



Gauss Elimina.tion TPGADI

Number of Grid Lines Number of Grid Lines

Processors 9 17 33 9 17 33 65

Sequential 3.02 40.4 591 1.55 12.2 98.5 798

1 3.06 40.8 593 1.58 12.5 99.6 803

0.99 0.99 1.00 0.98 0.98 0.99 0.96

98.6 98.9 100 98.0 98.0 99.0 99.3

2 1.93 23.4 319 0.89 6.58 51.3 407

1.56 1.72 1.85 1.73 1.87 1.92 1.96

78.2 86.1 92.6 86.7 93.3 96.1 98.0

4 1.34 14.0 177 0.53 3.48 26.3 206

2.26 2.89 3.34 2.90 3.53 3.74 3.86

56.4 72.3 83.5 72.6 88.2 93.6 96.5

8 1.19 9.55 107 0.39 1.98 13.8 105

2.54 4.23 5.51 3.94 6.21 7.14 7.54

31.7 64.8 68.9 49.3 77.7 89.3 94.3

12 1.17 7.71 80.1 0.45 1.65 10.7 74.9

2.58 5.23 7.38 3.47 7.46 9.20 10.7

21.5 43.6 61.5 28.9 62.2 76.6 88.8

16 1.33 7.58 72.6 0.42 1.33 7.77 57.1

2.27 5.32 8.14 3.73 9.23 12.7 14.0

14.2 33.3 50.9 23.3 57.7 79.3 87.4

20 1.38 6.60 60.4 0.48 1,40 7.86 51.7

2.19 6.12 9.78 3.25 8.77 12.5 15.4

10.9 30.6 48.9 16.3 43.8 62.7 77.2

24 1.52 6.65 57.3 0.54 1.47 6,44 45.7

1.98 6.07 10.3 2.87 8.37 15.3 17.4

8.27 25.3 43.0 12.0 34.9 63.7 72.8

27 1.62 6.47 54.1 0.58 1.52 6.55 40.2

2.62 3.45 10.8 2.69 8.06 15.7 19.9

6.91 23.1 40.1 9.95 29.9 55.7 73.6

VAX 8600 0.62 4.97 38.9 319

Table 2: Discretization and Solution Times (in seconds)jSpeedup/Efficiencies for Parallel TPGADI

11



Gauss
Elimination

Solution
Speedup

30

20

10

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Optimal
Speedup

N = 33

N = 17

O+,-----,-------,--,------,------.-----r---,-----
1 2 4 8 12 16 20

Number of Processors
24 27

Figure 1: Speedups for Gauss Elimination. Note: N=65 case not tried because sequential version
takes 2.5 hours



TPGADI
Solution
Speedup

30

20

10

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Optimal
Speedup

N = 65

N = 33

N = li

N=9

O+r--,-----,----,---,----,-----,-----,----
1 2 4 8 12 16 20

Number of Processors
24 2;

Figure 2: Speedups for TPGADI Solution



100

Gauss
Elimination
Efficiency

80

60

40

20

N = 33

N = 17

N=9

0+,-----,-----,---,----,..---.---,---,..----
1 2 4 8 12 16 20

Number of Processors
24 27

Figure 3: Efficiencies for Gauss Elimination



100

80

N = 65

60

N = 33
TPGADI
Solution

Efficiency

40

N = 17

20

N = 9

0-+-,--,---,------,--,-------,__--,_--, _
1 2 4 8 12 16 20

Number of Processors
24 27

Figure 4: Efficiencies for TPGADI Solution. Note: Slight bump for 16 processors due to all
processors being used equally since 16 evenly divides sizes of linear systems.



100

N = 33

Gauss
Elimination 10

Times

1

N = 17

N = 9

0.1 +-----,-------,----,----,--,----,----.-,----
1 2 4 8 12

Number of Processors
16 20 2427

Figure 5: Times for Gauss Elimination (seconds)



100

N = 65

TPGADI
Solution 10
Times

1

N = 33

N = 17

N = 9

0.1 +----,----,--------,--,--,-----.---;r;-----
1 2 4 8 12

Number of Processors

Figure 6: Times for TPGADI Solution

16 20 2427


	ADI Methods on a Shared Memory Machine
	Report Number:
	

	tmp.1307986960.pdf.bPjEV

