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Matching and Motion of Four Points in Two Views

Chia-Hoang Lee

Department of Computer Sciences

Purdue University

West Lafayette. IN 47907

ABSI'RACT

Two images of a 4·points object which undergoes 3D rotation, translation without

knowing its correspondence are given. The problems are (i) How to match the

corresponding elements in the two images due to the movement of the object? Can all the

possible mapping be found? (ii) What underlying motions and associated depth com

ponents of these points could account for the two images? (iii) What is the structure of

the object? This paper presents a method which addresses all these issues in the same

framework. The method reduces a 4-points problem into a set of testable conditions and

a 3-points problem. This forms the basis for deriving all possible interpretations and

relates the correspondence and motion problem together. Examples are provided to illus

trate each step of the method. Several applications including "Structure from motion"[2l,

and "Perception of structure from motion"[7][8] are also described.

August 19, 1986



1. Introduction

The correspondence problem is a fundamental issue in computer vision. One direc

tion of research in image sequence analysis [2][3][4][9] often assumes the correspon

dence of the elements among frames has beeen established. The difficulty of research in

stereopsis also lies in the correspondence problem.

This paper discusses the correspondence problem of four points in 3D space: The

problem is formulated as follows: Consider an object consisting of four points in 3D

space. Let the projections of these four points into image plane be observables. One can

rotate, translate the object and observe the effect on the projections of the four points in

the image plane. Oearly, there are 24 possible mappings between these two sets of four

points. Some of the mappings could not be accounted for but some, which will be called

as admissible mappings. could be attributed to rigid motion. The problems are: What are

the admissible mappings ? and, What are the structures of object and underlying motion.

Notice that there are no attributes associated with any of these points.

2. Problem Statements

Figures 1a and Ib depict two views of four points undergoing rigid motion. The

task is to find out admissible mappings, motions, and structure of an object in 3D space.

It seems that there is no systematic way of doing this. Further, it is awkard to solve a

system of nonlinear equations in R 6 (see next section) for each possible mapping.

In this study, motion which rotates about the optical axis will be excluded. Such

motions, called degenerate, can be detected [1] while the structure of an object can not be

inferred since there is no multiframe information at all. It is easy to realize that one

would not claim to have a sequence of images by rotating a 2D-picture. This type of

degenerate motion has an effect which could not distinguish coplanar or noncoplanar

points.
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A general version of this problem can be seen in [1]. Suppose two views of a n

points object is observed. What are the possible admissible mappings which can be attri

buted to some underlying motion and relative position of these points? In [1], we show

how to reduce a n-points problem to several 4-points problems and assume that the map

ping of four points objects has heen established. In this study, we explore the problem of

correspondence of four points in detail.
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3. Method

Assume that two sets of four points in the image plane are given. To explore the

problem, we first hypothesize that a mapping between the four points has been desig

nated. Pursuing thereon. a computational method is developed to determine the

motion(s) which underly the movement of four points and to determine their relative

positions. In addition. several compatible conditions are also developed to check if a

mapping (correspondence of points) can be admissible or not. Furthermore we show that,

for each mapping, four-points problem is equivalent to several testable conditions and a

three-points problem.

Let lbe 3D coordinates of four points be denoted by 0, A l' A 2' A 3 and 0, B), B 2'

B 3 respectively in the two scenes. Notice that translation is adjusted to zero and "rota

tional axis is adjusted to pass through one of the four points. The relative positions of

the~e points are referred to with respect to 0 and the observables are the first two com

ponents of the space coordinates. Write depth component of Ai and B j to be Sj and tj

respectively; A ~ [A 1 ,A2 , A 3 ] and B = [B) ,B2 , B 3 ]. Obviously, lbere must exist

some 3D rotation R such that the following relation holds since the designated mapping

is assumed to be a correct one.

CA)

CA) implies that An ~ RBu for all n E R 3 and lbus IIAu II = IIR Bu II. If u is

chosen to be [I 0 0]' or [0 I 0]' or [0 0 I]' then one obtains three constraints lbat lbe

length of Ai'S remain the same before and after motion. If u is chosen to be [1 1 0]' or

[I 0 I]' or [0 I I]' then one obtains three constraints that the inner product of any two

vectors remains the same before and after motion. The following six equations denoted

by (B I-B6) represent the constraints just mentioned.

(BI)
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<J} +s1 = III + f1

a,2 +sf = P,' + ff

0.12 + s IS2 = J}12 + tl t Z

0.13 + 818 3 = J}13 + 11t 3

<Xo3 + S7:'3 = Pn + f2 f3

Here, I would point out that if there e><ist (a P) such that

(B2)

(B3)

(B4)

(B5)

(B6)

[::~ :::] [~J = [
a31]
a32

and [b 11 b21 ]
b '2 b 22

(C)

Then these four points are coplanar under the assumption that degenerate motion is

excluded [1]. If this case happens then the third columns of A and B are redudant and

linearly dependent on the first two columns. The situation that (e) occurs will be dealt

with at the end of this section.

It can be seen that the existence of a solution for (BI-B6) is a necessary and

sufficient condition for the existence of a rotation to account for the correspondence. The

proof is simple: Rewrite these six equations into A t A = B tB. Thus the relation

(B-1)' A' A B-1 =I which implies (A B-1)' (A B-1) =I holds. From [6], one knows

that A B-1 = R for some 3D rotation R .

Next, the above six equations can further be reduced into another six equations

denoted by (DI-D6) as below:

0lI S1
2 + 012 S182 + 013 sl = F 1

0z1 s,' + Ilz2 s1s3 + Ilz3 s,' = F2

6" sl + 6,2 s2s3 + 6,3 S32 = F3

a12+st =J}12+ tt
al+s1 =pl+f1

a,2 + sf = P,' + ff

(Dl)

(D2)

(D3)

(D4)

(D5)

(D6)
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Other 0ij'S can be written similarly but not listed here. Another three equations similar

to (DI)(D2)(D3) in " , I ,;; i ,;; 3, are required to make the new system of equations

equivalent to (BI-B6).

We will study how to solve for s,'s from (DI)(D2)(D3). If s,'s can he computed' ,

then it becomes

very easy to derive ti's or reject the solutions from (BI-B6). However, it is still difficult

and cumbersome to solve for a system of three quadratic equations in R 3. Apparently,

one has to at least solve an eighth-order polynomial in a variable if a brute force

approach is used. Before we introduce another two observations which lead to a simple

and efficient computational algorithm, some compatibility conditions for a mapping to be

admissible will be presented. These compatibility conditions are straightforward. Since

each one of the three equations are quadratic, conditions which make conics degenerate

into empty set exist. Three of them are listed below and will be referred to compatibiltiy

conditions when examples are described.

Condition (1): Assume F 1 <0. If0Il < 0 or 013 < 0 then there is no solution.

The proof is simple. Arrange the left hand side to be the sum of two square tenns or

reference any book discussing conics. Using the same reasoning, one can write down

another two conditions.

Condition (2): Assume F 2 <0. If Iiot < 0 or Bn < 0 then there is no solution.

Condition (3): Assume F 3 <0. If 1;,\ < 0 or 1;,3 < 0 then there is nn solution.

"First one can eliminate sf and S3 from equations (02)(03) to obtain a quadratic equation in S1

and S:z, Second one can solve two quadratic equations in R:Z (note not inR 3). Lastly, with solution
of Sj IS one can derive 'j'S or reject the solution from system of equations (BI-B6). The footnote
however would not work (they are dependent) and is used as a reminder.
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Based on these three necessary conditions, one can check whether the hypothesized

mapping can be admissible or nol Even though these three conditions are satisfied, it

does not guarantee existence of solution for equations (BI-B6). Other conditions are

needed.

Example 1: The following data represents a hypothesized mapping (see Figure 2)

between Aj's andBj's

o = (0 0), Al = (4 0), A 2 = (I I).
o = (0 0), B 1 = (5 0), B 2 = (I 2).

We have 0;[ = 16, ~[= 25,cxi =2, Jli = 5,0;12 =4, ~12 = 5. Thus one obtains 511 = -3,

512 =2, 513 =-9, F 1 ~26. According to compatibility condition (I), the mapping is not

admissible.

We now develop the first observation. Let Ai and Bi be the first two components of

Ai andBj respectively. LetB3 =a B 1+b 8 2, Since A =RB and Au =RBu for all u

E R 3 hold. We will choose u to be [a b -I]' then we have a Al +b A 2 -A3 ~ R

[0 0 *d]t. Obviously, we have a Al + b A 2 - A 3 = *d r3 where r3 is the third column

of R. It can be proved that *d is nonzero if these four points are noncoplanr[l] and the

motion is nondegenerate. Thus we know that the first two components of r3 up to a

scalar since Ai's are observables. Using the same technique. we can obtain the first two

components of the last row of R by interchanging lhe roles of lhe two frames. In fact,

one could aheady find out many properties about the motion based on this infonnation

[1], but we will pursue another route. For convenience, we write R as follows:

[
* * al]* * a2

bl b2 '33

Note that (b I b 2) or (a I a 2) is detennined up to a sign and unknown scalar, and the

magnitude of (b I b 2) and (a I a2) must be the same.
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The second observation is to choose u = [u 1 U2 u3]' such that u is perpendicular to, ,

the last row of A and the last row of B. If there is a motion underlying such mapping

(correspondence), then u must exist Using Au = RBu, we have [*m *n 0]' = R

[*p *q 0]' where *m. *n, *Po *q are unknown and will be derived next (u is still unk

nown). This means that the dot product of (b I b 2 r,,), the last row ofR, and (*p *q 0)

should be zero. Therefore *p = b2, *q = -b 1; or *p = - b2, *q = b 1. Using the same

technique. one can derive that *m = a2, *n == - a 1; or *m = -a2, *n = a 1. The scale is

not important here as long as the magnitudes of (b I b2) and (a I a2) are kept the same.

Now we have four constraints for u l,u2,u3'

(E)

Although there are four cases for the right hand side of (E), only two needs to be

explored because the other two are simply the negative of these two cases. We will write

them down for easy reading.

[:~] = [;}] or = [~~2]
", -bl -bl

Obviously, the existence of solution for this linear system is a precondition to have solu

tion for the original problem. Furthermore the rank of this 4 by 3 matrix is 3. Suppose

the rank is two inSlead of three, then the last column can be written as a linear combina

tion of the first two columns which essentially satisfies the coplanarity condition (C) and

violates the assumption. Thus only one solution at most can exist for each case. If no

solution (i.e the system of equations are not consistent) exists for either one of the cases,

then the hypothesized mapping is definitely not admissible. This condition will be

referred to as the U-condition in the example. Thus, (u 1u2 u3) can be derived; and
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With this condition, we can now derive another compatibility condition to check if

the hypothesized mapping is consistent or not. Square these two relations, and one

obtains

u; tt + u£ t1 + u; t} + 2"1"2 '1 t 2 + 2"1"3 t 1 t3 + 2"2 "312 13 = 0

Thus a consistency condition can be derived as:

i=3 ij=3
Condition (4); LU? ( at - Pt )+ 2 L ui Uj (aij - Pij) = 0

i=l iJ=l;i.<j

convenient way (see previous footnoot) of solving the system of three nonlinear equa

tions (DI)(D2)(D3) in R3. Notice that this relation is not independent to the equations in

(BI-B6) which was aheady shown to be equivalent to A = R B. Indeed, it says that if

one adds these two relations into (BI-B6). the enlarged system must be consistent. For

convenience of discussion and without loss of generality. "3 ofu is nonnalized to -1.

o. 2 +8 2 -p2+ t 2 (Pl)1 1 - 1 1

al+s"t =pz' + t"t (P2)

a,' +s} =pl+ t} (P3)

0.12 + 8182 = 1312 + titz (p4)

0.13 + S1S3 = 1313 + tlt3 (P5)

ex" + s:>'3 = I3n + t2t3 (P6)

Ul$l+ u2 82=83 (P7)

u1 t]+U z t2=t3 (P8)

Exantining the enlarged system, one could find that (P3)(P5)(P6) can be replaced by

Ur (ar-pf) + 2 ul u2 (aI2 -Pd + u"t (a"t - P"t) = a} - Pl. (P3')

u, (ar- pf) + U2 (a'2 - P12l = a,3-P13· (P5')
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(p6')

(F)

It is now clear how the relation facilitates our approach to answer the orginal ques

tion. They give us some consistency conditions (U-condition, condition (4), (p3'), (PS'),

(P6'» and reduce a four-points problem into a three-points problem. Actually, these two

observations lead one to realize that a four-points problem is equivalent to both testable

conditions and a three-points problem. For a three-points problem, one can use equations

(DI)(D4)(D5). Thus, we have

611 sI" + 612 s1s2 + 613 so' = F 1 (I)

aI" + st = ~I" + 't (2)

~+s'=~+~ m
Deriving solutions becomes an easy task now. (2) and (3) require that s t must he greater

than I3r - a.[ and s} must be greater than pi - ai. Thus, the intersections of these two

regions and conic represented by (1) are all the possible solutions for 81082 for the three

points problem.

811 81
2 + 0l2 s 1s 2 + 013 sl =F1

2 2 R2
81 ~(l1-1-'1

s' "al- ~
Next, one could use (BI)(B2) to find out '1 and '2. Since there could have two values of

t1,t2' one needs to check (B4) to choose the correct pair of tllt2 and s3l3 follows easily

from the relation.

Now we discuss the situation of (C) where coplanarity condition occurs. The condi

tion (C) can be written as A, =a A 1 + ~ A 2 and B, =a B 1 + ~ B 2. It is thus easy to

see that (B3)(B5)(B6) can be derived from (BI)(B2)(B4). Thus the situation is exactly

the same as the above system (F). In fact, the compatibility condition, V-condition, and

consistency condition are not needed in this case. The original problem is itself a three

points problem.
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In the case of planar patch, the task itself is a three-points problem. One of the nice

property about the planar patch is that if we know these four points are coplanar, then an

algorithm can be developed to find the mapping easily (or perceptually if you prefer).

Figure 1b is in fact generated from planar patch, the reader is encouraged to guess what

the mapping should be before he proceeds. An algorithm could easily be suggested by

Lemma 1 although it is not written down explictly.

Lemma 1: Let r be a coplanar patch in space as depicted in Figure lb. The intersection

point M remains inside the convex bull spanned by A,B.C,D.

Proof: Since M is inside the convex hull before the motion, then

M = k1A + k2B + k3C + k4D

for some k j such that k 1 + k 2 + k 3 + k 4 = 1. Apply rotation R , we have

RM = k,RA + kzRB + kzRC + k4RD

Therefore, the intersection remains in the convex hull. Furthennore, the ratios

k I. k2> k 3• k 4 remain the same. In particular, M = a A + b B ; M = c C + d D for some

a,b,c,d. This suggests that we can use a.b,c,d as an index to decide the correspondence.

Q.E.D..

In the general case (the knowledge about planar patch is not given), the above algo

rithm can be used to decide if there is a coplanar interpretation or not. Of course, this

does not guarrantee the existence, we need to check the feasibility of three-points prob

lem, since the fourth point is redudant The reader is now advised to connect the line

between the opposite corners as Figure 5. It is clear that what the correspondence should

be.
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4. Simulations and Applications

Two examples and three applications are described in this section. The input of the

first example consists of two views of four noncoplanar points with correspondence esta-

bUshed. We use this example to illustrate each step described in the theory. The second

example uses the same two views of the first example without priori knowledge of

correspondence. A complete simulation of this four-points problem is presented For each

of 24 possible mappings. compatibility conditions. V-condition and consistency condi-

tions are examined. If a mapping passes all the conditions, then a solution is derived.

The first application is to deal with "Structure From Motion" studied by Ullman [2].

He showed that "Three different views of four noncoplanar points can uniquely deter-

mine the structure uniquely". We show how to apply the theory to this problem. The

second application is to show that "Increase of observable points will not narrow down

the number of solutions (motion)". The third application is related to a recent paper "Per_

ception of structure from motion" [7] [8].

Example 2: The tilt and the slant of rotational axis are both 30 degrees and the rota

tional angle is also 30 degrees. The coordinates of points before and after transfonnation

are given below. The left hand side represents those before motion and the right hand

side represents those after motion. Note that the translation is adjusted to zero and one of

the points.O. is chosen as reference and fixed point Only the first two components are

observable to the method described above.

o = (0.0 0.0 0.0), 0 = (0.00 0.00 0.00)
B 1 = (4.0 2.0 3.0), Al = (3.253 2.976 3.091).
B 2 = (2.0 3.0 5.0), A 2 = (1.402 2.580 5.419)
B, = (6.0 5.0 3.0), A, = (3.780 6.494 3.678)

The rotational matrix can be computed according to [5] as follows:

[
0.8911 -0.4185 0.1752]
0.4475 0.8743 -0.1875

-0.0747 0.2455 0.9665
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According to the formula described above. the first two components of the last column is

proportional to [AI Ail [Bt Bil-' B3 - A3• Thus, one obtains (0.8762 -{).9374)' wbich

differs from the true vector by a scalar 5. Using the same technique, one obtains

[B I Bil [A, AiI-t A3 - B3 ~ (-{).7086 2.3270)' for the first two components of the last

row. It is clear that it differs by a scalar 9.48. Next., one has to adjust the magnitude of

these two vectors so that they have the same magnitude and then call them (a 1 a2) and

(b 1 b2). Now one examines the detenninants of the following two matrix. In order to

have a solution, at least one of them must be zero. In this case, the determinant of (B.2) is

zero and the determinant of (B.I) is not zero. Therefore the solution of u is uniquely

determined up to a scalar.

[all
a21 a31

a2 ]at2 all a32 -al
b ll bit b 31 b2
b t2 bll b 32 -bl

[a II

a21 a31
a2lal2 all a32 -al

b ll b21 b 31 b2

b 12 b22 b32 -bl

(B.I)

(B.2)

One obtains the solution u = (2.133 -1.761 0.801) as opposed to the accurate

u = (1.940 -1.601 0.7284). For reader's convenience, we will write equations

(DI)(D2)(D3) down:

4.3715 St - 3.509 S I s2 + 0.5574 si = 0.6417

4.5315st - 4.744 sl s3 + 0.5574 s; = 3.1013

4.5315si - 9.871 s2 s3 + 4.3715 s; = 4.553

(ql)

(q2)

(q3)

Now, if one tries to use the new relation 2.133 s I -1.761 s2 + 0.801 S3 = 0 with (q2) or

(q3) or both, then one would not obtain any new conic (see previous footnote). In the

following, we compute ai's, Pi'S ,aij'~ij.

Pt =20.0, pi = 13.0, P; =61; at =19.442, a'f =8.628, a; =56.46;
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~'2 = 14.0, ~13 =34, ~23 =27; a12 =12.24, a13 =31.62, an =22.06;

Now we will nonnalize u3 to -1 as discussed before. One computes the left hand side and

right hand side of (P3') (P5') and (P6') as follows:

4.531532 =
2.372189 =
4.93595 =

4.531544
2.3772183
4.955951

Now, the problem is reduced to the following three equations:

4.3715 sf - 3.509 sl s2 + 0.5574 sf = 0.6417

20.0 + sf = 19.44 + 'f
13.0 + sf = 8.62 + 'f

From the last two equations, there is no restriction for 81 and 82' The only requirement is

the first equation. We show a couple of solutions other than those we started:

S 1 =0; S2 =1.072; S3 =2.357;

" =0.748; '2 =2.351; '3 =3.177

Thus we have

[
3.253 1.402 3.780]
2.976 2.580 6.494
0.748 2.351 3.177

Another solution could be

[

4.0
= R 2.0

0.0

2.0
3.0

1.072

6.0 ]
5.0

2.357

S, =-1.0; s2 =-4.941; s3 =-8.199;

'1 =1.248; '2 =5.365; '3 =8.471

Thus we have

[
3.253 1.402 3.780] [4.0 2.0 6.0]
2.976 2.580 6.494 = R 2.0 3.0 5.0
1.248 5.365 8.471 -1.0 -4.941 -8.199

Example 3: We use the data created in example 2. The tilt and the slant of rotational

axis ate both 30 degrees and the rotational angle is 30 degrees. O.E ,.E2.E 3 ate chosen

as below and O,A I.A2.A3 are the corresponnding points attributed to the rotation. This

mapping is an admissible one.
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o = (0.0 0.0 0.0), 0 = (0.00 0.00 0.00)
B 1 = (4.0 2.0 3.0), Al = (3.253 2.976 3.091).
B 2 =(2.0 3.0 5.0), A 2 =(1.402 2.580 5.419)
B, = (6.0 5.0 3.0), A, = (3.780 6.494 3.678)

Table I shows that 24 mappings all pass three compatibility conditions. Eight mappings

fail on U-condition and only 2 mappings pass the consistency conditions. In a word. only

two mappings are admissible. One is what we have already known. The other one is to

map 0 to A3• B 1 to A2• B2 to A I' and B 3 to O. The solution we obtain is as below: (One

needs to adjust lhe relative positions of these points since A3 is now the reference point

in the second frame).

[
-2.378 -D.527 -3.780]
-3.91 -3.518 -6.494

-1.743 0.59 3.69 [
4.0 2.0 6.0]

= R 2.0 3.0 5.0
2.0 0.0 -2.999

To see the validity of the solution, readers only need to check whether the length and the

inner product remain invariant.

Next we present an application of this theory to "structure from motion" introduced

in [2]. Ullman shows that the structure of a 4-points object can be uniquely detennined if

three different views are given. The correspondence is assumed in his analysis. We will

follow its assumption although there are easy ways to check whether the correspondence

in these three views is possibly valid or not I will not elaborate further here.

Application 1: (Structure From Motion)

This example uses the data in Example 2 where one starts with 0, B 1. B 2 ,B 3' The

second frame is generated by rotating 30 degrees about axis with tilt 30 degrees and slant

30 degrees. One further obtains the thin! frame by rotating 45 degrees about the axis

with tilt 45 degrees and slant 20 degrees. Two equations can be derived as below. From

the first and second frame, one obtains ulsl + u2 s2 + u3s3 = O. which is already shown

before. From the first and the third frame, one obtains v IS 1 + v2 s2 + v3s3 = O.

1.6381 -1.9082 + 1.548, = 0
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1.948, - 1.60 82 + 0.72 8, = 0

One can then obtain s 1 = 1.09,82= 1.81,83= 1.07 up to a scalar by taking the cross pro

duct ofu and v. Substituting these into equation (ql), one derive 2.58 as the scalar. Thus

8, = 2.8,82 = 4.6, 8, = 2.7 as opposed to 8, = 3.0,82 = 5.0 ,8, = 3.0.

Application 2: (Five or more points in two views)

Now consider five points in two views. We claim that the fifth point has no role in

pinning down the number of the solution (motion). Suppose we have two motions which

can account for the four points. We will show that these two motions can also account

for correspondence of the fifth point by adjusting the depth of the fifth point. Suppose R,

can account for the fifth point. Our task is to show that R2 can also account for the fifth

point by adjusting its depth component As before, I shall use notation O,B ,,B2,B, with

the fifth point denoted as D. We know that

Examining the first two components, we get

D =aB, +BB 2+yB,

Examining the first two components of R 2 (D Sd i , one obtains R; D + Sd 11 where

R; is the principal 2x2 minor of R 2; and 11 is the first two components of the third

column of R 2. Our goal is to see if we can choose a sd so that R; D + Sd 11 becomes

R ,D. Clearly, one has

.- .-.-.-
R2 D +sd I, =aR2 B ,+ BR 2 B 2+yR2 8,+8d I,

=a(~-s,I,)+ B(~ -82It) +y(R 2B, -8,1,) +8d I,

= a R 2 B , + BR 2 B 2 + YR 2 B,+ (8d - a 8t - B82 - Y8, )1,

= a R, B, + BR, B 2 + YR, B,+ (8d - a 8, - Bs2 - Y8, )1,

Obviously sd can be chosen such that the coefficient of the last tenn of the above equa

tion is zero. Thus R 2 can also account for the correspondence of the fifth point Here
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Application 3: (perception of structure from motion)

Recently, a paper entitled "Perception of Structure from Motion" [7][8] discusses

lower bounds in relation to the structure from motion problem. This problem was first

treated in [2] where three views of four noncoplanar points can uniquely determine the

structure (relative depth) of these four points. In [7][8]. the authors go one step further to

investigate the lower bounds issue. The following are two quoted paragraphs:

We prove that two orthographic projections of four noncoplanar points admit

only four interpretations (up to a reflection) of structure. This fonns the basis

for an algorithm to recover structure from motion ...see Abstract of [7][8].

Theorem 2: Two orthographic projections of four rigidly linked noncoplanar

points are compatible with at most four interpretations. (see [7][8], section 4.

page 6)

Here, we would like to point out that the result (unfortunately) is wrong. In the fol-

lowing. a counterexample with five solutions (the reflection is not counted) is presented.

Other solutions in fact could be given, but five solutions are sufficient to invalidate their

result. In fact, example 2 would serve the purpose.

The following are four solutions where column vectors of the matrix on the right

hand side represent space coordinates in the first scene; and coluIIUl vectors of the matrix

on the left hand side represent space coordinates in the second scene due to some motion.

[3.253 1.402 3.780] [4.0 2.0 6.0 ]
2.976 2.580 6.494 ~ R 2.0 3.0 5.0
0.748 2.351 3.177 0.0 1.072 2.357

[3.253 1.402 3.780] [ 4.0 2.0 6.0]
2.976 2.580 6.494 ~ R 2.0 3.0 5.0
1.248 5.365 8.471 -1.0 -4.941 -8.199

(soU)

(so1.2)



[
3.253 1.402 3.780]
2.976 2.580 6.494 = R
5.055 8.732 5.735

[
3.253 1.402 3.780J
2.976 2.580 6.494 = R
0.8405 2.09 2.356

-17 -

[
4.0 2.0 6.0 ]
2.0 3.0 5.0

-5.0 -8.478 -5.32

[
4.0 2.0 6.0]
2.0 3.0 5.0

0.383 0.0 -1.020

(sol.3)

(sol.4)

The above four solutions and the original one which we started already make five

solutions. To check these solutions, the readers are advised to examine the invariant of

the length of each vector, and the invariant of the inner product of each two vectors.
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5. Discussion and Conclusion

Given two views of four points, how many interpretations could possibly exist?

Naturally one would decompose the task into two phases: Correspondence Problem and

Recovery (motion, structure) Problem. To the best knowledge of author, almost all stu

dies would assume the mapping (correspondence) has been established. However, it is

not clear what would happen to their individual algorithms should the mapping be wrong.

As for the correspondence problem, most of the studies would rely on attributes associ

ated with point or patch and use the best match as criterion for correspondence.

In this paper, a theory which addresses the correspondence problem and recovery

problem in the same framework is presented. The method reduces a four-points prob

lem' into a set of testable conditions - including three compatibility conditions (1)(2)(3),

V-condition, and four consistency conditions (4)(P3')(P5')(p6') - and a three-points prob

lem. If a mapping passes all these testable conditions, then the four-points problem

becomes a three-points problem. This forms the basis for deriving all possible solutions

and relates the correspondence and recovery problem together.

Examples are used to illustrate each step of the theory. Several applications includ

ing "Structure from Motion"[21. and "Perception of structure from motion" [7] [81 are also

described. It is hoped that a similar theory can be found in the case of perspective projec-

tion.

If these four points are coplanar and the mapping is correct. then all these testable conditions
automatically holds. In fact. it is a three-points problem in itself.
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Maoping COffioatibilitv V-Condition Consistency
O,A t ,A Z,A 3 ok ok ok
O,A 1,A3,A z ok - -
O,A z,Al>A 3 ok - -
O,A z,A3,A t ok - -

0, A3, A 1> Az ok ok -
O,A 3,A Z,A t ok ok -
AI. 0, A z•A 3 ok - -
All O,A 3,A z ok ok -

A 1> Az.O, A3 ok ok -

A 1,A2.A 3.O ok ok -

A t ,A 3,O,A z ok ok -

A t ,A 3,Az.O ok ok -

Az• 0, A 1. A3 ok - -

A 2,0,A3,A] ok ok -
A 2.A 1,O,A3 ok ok -
Az.A t ,A 3,O ok ok -

A z,A 3.O,A t ok - -

A z,A 3.A h O ok - -

A3,O,A t ,AZ ok ok -
A 3,O,A2.A t ok ok -

A 3,A t • G,A z ok - -
A 3,A t ,A z,O ok ok -
A 3,Az,O,A t ok ok -
A3,Az,A lo ° ok ok ok

OK= Success
- ~ Failure

Table 1: Example 2
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