View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1986

A Logarithmic Time Parallel Algorithm for Partitioning
Costas S. lliopoulos

Report Number:
86-603

lliopoulos, Costas S., "A Logarithmic Time Parallel Algorithm for Partitioning" (1986). Department of
Computer Science Technical Reports. Paper 522.
https://docs.lib.purdue.edu/cstech/522

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4951583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A LOGARITHMIC TIME PARALLEL
ALGORITHM FOR PARTITIONING

Costas S. Iliopoulos
Department of Computer Sciences
Purduae University
West Lafayette, IN 47907

CSD TR #86-603
June 1986

A LOGARITHMIC TIME PARALLEL ALGORITHM FOR PARTITIONING

Costas S. Hiopoulos
Purdue University
Dept. of Computer Science
West Lafayette, IN 47907

US.A.

ABSTRACT

Here a parallel algorithm for computing the coarsest refinement of a partition of a set S
with respect to a given function that requires O (logn) units of time and makes use of O(n?)
processors, where »n is the cardinality of the set §; the model of computation used, it is a Con-
current Read Exclusive Write Parallel RAM (abbreviaied CREW PRAM). Furthermore an O (n2)

cost algorithm for the same problem is presented.

1. Introduction

The classification of various computational problems into groups according to their compu-
tational complexity is one of the major tasks of Theoretical Computer Science. The class P of
problems that are polynomial time solvable on sequential models (e.g. Turing machines, RAM) is
generally agreed to be sequentially feasibly solvable problems. Here we are intercsted in the
classification of problems according their computational complexity on parallel models of com-
putation. A well known complexity class of efficiently solvable problems in parallel is NC
(Nick’s (Pippenger) Class), i.e., problems solvable by parallel algorithms in polylog time

(O(log* n) for some constant k, with » the size of the input) with a polynomial number of pro-

CESSOIS.

Here we show that the "single-function coarsest partition” problem is in the class NC,

Given a set S of elements and 2 partiion = { A, A,, '+, A, } of S, and a function
f:§ — S, we want to compute a partion w={ B,, By, ‘- ', By} lhat satisfies the following
conditons:

(i) The partition 7’ is a refinement of %, i.c.,

B; cA;, Vi, for some 1< j; <k

(ii) The paniition T respects the function f ,that is
fB)c B, Vifor some 1<j; <m
(iif) Partition 7 is the coarsest one, satisfying conditions (i) and (ii).

In [5], Paige and Tarjan give an O(n) optimal algorithm for the one function partitioning
problem improving the worst-case complexity bounds for the same problem given by Aho, Hop-
croft and Ullman in [1]. Furthermore Hoperoft in [2] yields an O (# log n) algorithm for the
many functions coarsest partition probiem, i.e., the partition is required o respect a set of func-
tions fj,....fx; Paige and Tarjan in [6] gave an O (nlog n) algorithm for the relational partition-
ing problem, i.e., the refinement should respect a binary relation. Here we shall deal only with

the single function coarsest partition problem.

The computational model used here is CREW PRAM (Concurrent Read- Exclusive Write
Parallecl RAM). The processors are unit-cost RAM’s that can access a common memory. Some
processors can access the same memory location: they can concurrently read but they can not
concurrently write. All operations involving different memory locations can be done con-

currently.

Here we measure the complexity of parallel algorithms by the pair (¢ , p) where ¢ denotes

the time and p the number of processors, both dependent on the size of the input. Also the pro-

-3-

duct £ p is called the cost of the algorithm; the cost of an algorithm is essentally the running
time of the algorithm with one only processor available and therefore can be used for finding the
speeding up factor.

Here we present an algorithm for computing the coarsest refinement of a partition of a set S
with respect to a function f, whose complexity is dominated by O{log nr) units of time and uses
0 (n?) processors. A modificd version of this algorithm can be shown having a reduced cost of

O (n?),inthe expence of the running time, which in this case is O (n*) forsome 0 € x < 1,

Among the applications of the partilioning problem is the reduction of the number of
states of finite automata, (see [2]), tree isomorplism (see [1] and [6]), graph isomorphism
refinement and Congruence Closure (see [7]) and a surprising applicalion to the automation of

woven fabric on looms (see [5]).

2. An Outline of The Algorithm
Letn={A; Ay --- ,Ax} be the inilial partition of S. A key operation in our algorithm
is the partitioning with respect to f ™™ for some integer m (see [2]); a refinement of ©t with respect
to f™(A;). for1 £i £k isdefinedtobe
v ={B; =A; Nf™A), 1<i<k, 1)<k}, 2.1)
After refining the initial partition with respect to =, we associate each element of S with
apair (i, j) called fingerprint (denoted by f;), where i is the index of the set that s belongs to

inw and j is the index of the set that s belong to in 7.

The main step consists of computing refinements of the initial partition 7 with respect to
f™™ ,for 1 £ m <n in parallel together with the corresponding fingerprints. After the implemen-
tation of the above n parallel steps, we have the sets of fingerprints Fy, F, -+ , F,. Based on
these, it is determined if two or more elements belong to the same set at the final refinement. If

these elements have Lhe same fingerprints in every step, then they belong to the same set in final

-4.-

partiion. Sorting networks are used for computing the final partition by comparing the finger-
print sets.

The sequel is organized as follows: in section 3 we present an algorithm for the parallel
computation of fingerprints, in sections 4 we give a parallel algorithms for computing powers of
the given function f: f(S), f %8), -+, f"(S), in section 5 we discuss the fingerprint soning
and in section 6 we present the overall algorithm and we give a proof of its correctness and its

running time analysis.

3. An Algorithm for splitting the Blocks

We recall that the *‘fingerprint’” of an element s is an ordercd pair of integers (i, j) such
that the block B;; of the partition &’ (sce (2.1)) contains s. We can view the blocks of the partilion
T as

By={s:f"(s)e A and s € 4; } 3.1)

that it is equivalent to (2.1). Al this point we are not focusing in computing the actual Bj;’s but
we want to find out the fingerprints of each element of S. The formulation (3.1) is more helpful
complexity -wise, since the size of the inverse image can be larger by a factor of O (n) than the
image of the function f .

The computation of the intersection makes use of ‘‘associate addressing”’. In the common

memory we have a list L such that L (s) = m , where 5 belongs to A,, and s is an element of §

3.1. Lemma
There exists an algorithm on CREW PRAM that compates the above list L in constant time and
makes use of O (n) processors. [

Given the initial partition © and the function f™, one can compute the fingerprints f; » as

follows:

3.2. Algorithm
begin
for each s in S pardo
SFem & (L{s) , LCST(s)))
odpar

end 1

3.3. Proposition

Algorithm 3.2 correctly computes the fingerprint with respect to /™ in constant ttme and it makes

use O (r) processors.[]

4, Compnting Powers Of The Function f

First we present an algorithm for computing powers of 2 of the function f, ie., f 2
1<i <[log n]. This procedure will be used as a subroutine for the computation of all powers

of the function f later.

4.1. Algorithm

INPUT: W.l.o.g we assume that § = {1, --- , n}and afunctionf : § — §.
OUTPUT: For each element s of S, f 2 (s) for 1 < i <[log n].
begin
1. fork =1to[logn] do
2. foreachs in § pardo
3. e 2k
4. F2E) — £
cornment The values of £2¢(s) , for all s in S are stored in the common memory.

odpar

od

end. O

4.2. Theorem

Algorithm 4.1 correctly computes the required powers of 2 of the function f in O (log n) units of

time and makes use of O (») processors.[]

In order to compute f*(S), we make use the above algorithm for computing powers of 2 of

the function f , together with the binary expansion of £ as follows:

43. Algorithm

INPUT: AsetS ={l, --- ,n}andafunctionf : S — S.

QUTPUT: Atable forf*(S),forl sk <n,Vs e S.

begin

1. compute f%(s), for1 <i s [logn], V s € S using algorithm 4.1;
2. foreachs in S pardo

3. fork = 1ton with step [logn| pardo

4. FE(s) e fRHTH T 2gy,

comnment We make use of the binary expansion of k.

5. for j = 1to[logn]| do

6. FIHEGE) — FUTHE 06y
7. od

8. odpar

9. odpar

end.[}

4.4. Theorem

Algorithm 5.1 correctly compuies F¥(s). 1 <k < n, for each element of S in O (log n) units of

time and makes use of O (% log n) processors.
Proof The correctness of the algorithm is obvious.

Step 1 requires G(log n) units of time and makes use of O (n) processors, from Theorem
4.2.. Step 4 requires log & = O (log n) units of dme and only one processor.
Loop 5-7 requires O (log n) processors an O (log n) unils of dme. Loop 2-9 requires

O (n%log n) processors and O (log n) units of time. [

5. Comparing Fingerprints

We now have n sets of finger prints F;, 1 Si <n wih F; ={f.; .5 € § }. Two ele-
ments from § are in the same set in the final partiion if and only if they have the same finger
print in every set F;, 1 £ < n. A formal recursive definition of these refinements , has as fol-
lows:

7, = {B,% :=°B,,(,"‘1) N f*@;) , for some m,j } 5.1)

Also in the sequel B,%~1 is said to be the parent set of B;*) if and only if B;*) c B¢ 1.

Consider the sets of fingerprints Fy, F, -+ - , F,. Each element in § has a finger print
corresponding to each F;. We can construct a vector (f; 1, f52, - -, fe,») which is a list of
each of these corresponding finger prints. We can sort these vectors lexicographicly, using the

parallel algorithms given in [3].

5.1. Theorem [3]

There exists a parallel algorilhm on CREW PRAM that lexicographicly sorts n words all of

length / over an alphabet X of size O{(n) in

-8-

lognl ni

o(
log nllp p
units of time and uses p < nl processors. O]

)

Therefore given the sets Fy , F,,, the computation of the final partition can be done in
O (log n) units of time and using O (n2) processors. One may observe that Theorem 5.1 yields an
O(n? cost algorithm, that requires O(#*) units of time and O (n*>*) processors, for any

0 <x < n , thus mproving the cost.

6. The Overall Algorithm, its Analysis And Correctness

The pseudo-code below gives the overall algorithm that was outlined in section 2; it is a

combination of algorithms given in section 3, 4 and 5.

6.1. Algorithm
begin
Compute f*(s), 1 € k < n,forall s in S using algorithm 4.3;
for m =1 ton pardo
Compute f; , forall s in S, using algorithm 3.2;
Compute the final partition as in section 5, using algorithm 5.1;
odpar

end. O

In oxder to show the comeciness of algorithm 6.1, we first prove the following three lem-

mas;

6.2. Lemma

Let B s be as in (5.1). Then we have that:

M f*@)= U B® forsomesetofindicesL;, 1< i <k.
el

-9

(ii) There is no pair B,*), B in (i) with the same parent set.
Proof (i) Obvious by the definition of B*)s in section 5.

(ii) Proof by induction. One can sce that
flap=y 8W, 1<i<k

le s
and that each B! has 4;, for some j;, as parent set and all parent sets are distinct.

Now assume that (ii) holds for ¥ = m. Then we have
FrA) =@ = U B
{el’
Assert that B{™ * " and B{™ + 1 are children of B,®). Then we have that

Blfm +1) c f—l(BlEm)) Qf_l(B,rSm - 1)) (6.1)

BV < fBIM) < FBM) (6.2)
where B, ~1 and B{" 1) are the parent sets of B{™ and B;{™ respectively.

One can see that from (6.1) and (6.2) is implied that B, has been splitted from the refinement

with respect to f 7, a contradiction.[]

63. Lemma

The following holds:

B®=B&-Dp lpk-y 1<t <n
forsome!, m,r.

Proof From the definition of B;%*? in (5.1) we have
B® =B U fH@=BE " n iy BED)
L
Suppose that there exist a, b in B% D such that a € £} (B;{*E' Dyand b e f1(B& V) for
some Iy, [inL. Thena € F'BF " Pand b e F1BE~?), where B* 2 and B ~2 are
the parent sets of B;* =% and B;* ~ 1 respectively. But refining with respect to £~ ar the

(k-1)-th level it would have to locate @ and b, into different sets - a contradiction. Therefore

there is at most one r € L such that

-10-

BE-Dnaf@E-Mxpg O

6.4. Lemma
Let np = {B{®, --- , B} be a partition of S. Then let

B® =BV nfl@E"Py=@ for some J; (6.3)
Then

7, = {B;® : for all i}
is the coarsest refinement of & that respects the function f .

Proof
One can sec that |®g 1| > || or |®g + 1| = |me|. If the later occurs, then easily fol-
lows that [, | = |7y 1] = | e 421 = ---. Also since the cardinality of S is n, this will occur

forsome &k < n.

Assume that 7, does not respect the function f. Then we have that

FB&)’0ic B and fBY) n B =@, for some i, j
which implies that

B < (B) and B n fU(BI) 2 P
and thus {%,,| > {=x, | acontradiction.C]

6.5. Theorem
Algorithm 6.1 correctly computes the coarsest refinement of = with respect to the function £.

Proof It follows from lemmas 6.2, 6.3 and 6.4. O

6.6. Theorem
Algorithm 6.1 requires O{log n) units of time and uses O (n?) processors.
Proof 1t follows from Theorems 3.3, 4.4 and 5.1.00

Following the remarks below Theorem 5.1 one can show :

-11-

6.7. Thecrem

There exists an O (#%) cost algorithm on CREW PRAM for the one function coarsest partition

problem.[]

7. Conclusions

Paige and Tarjan [5] gave an O(n) sequential algorithm for the single-function partition
problem; their analysis of the problems may lead to better than O (r%) cost parallel algorithms.
But the existence of an optimal cost O (n) parallel algorithm is still an open problem together
with the question whelher the ‘‘many-functions coarsest partition problem”’ (see [1]) belongs in
NC. Answers to these questions may help in understanding of the parallel behaviour of problems
closely related to partitioning like doubly lexical ordering, chordality of a graph and relational

pariitioning (see [5]).

8. References

(1] Aho, AV, JE. Hopcroft, J.D. Ullman, Design and analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974,

[2) Hopcroft, J.E., An nlogn algorithm for minimizing states in a finite automarion, in: Kohavi
and Paz, ed., Theory of Machines and Computations, Academic Press, NY, 1971, pp.

189-196.

[3]1 Diopoulos, C.S., Optimal cost parallel algorithms for lexicographical ordering. Purdue
University, Tech. Rep. 602, (1986)

[4] Paige, R., Tagjan, R., A linear time algorithm to solve the single function coarsest partition
problem, llth ICALP, Lecture notes in Computer Science 172, Springer, Berlin, 1984.

[5] Paige, R., Tafjan, R., A linear time solution to the single function coarsest partirion prob-

lem, Theoretical Computer Science 40 (1985) 67-84.

-12-

[6] Paige, R., Tarjan, R., Three efficient algorithms Based on Partition refinement, manuscript.

[71 Downey, P, Sethi, R,, Tarjan, R., ‘‘Variations on the Common Subexpression Problem’’,

JACM 27, 4 (1980) 758-771.

	A Logarithmic Time Parallel Algorithm for Partitioning
	Report Number:
	

	tmp.1307986960.pdf.ezD86

