
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1986

A Logarithmic Time Parallel Algorithm for Partitioning A Logarithmic Time Parallel Algorithm for Partitioning

Costas S. Iliopoulos

Report Number:
86-603

Iliopoulos, Costas S., "A Logarithmic Time Parallel Algorithm for Partitioning" (1986). Department of
Computer Science Technical Reports. Paper 522.
https://docs.lib.purdue.edu/cstech/522

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A LOGARITHMIC TIME PARALLEL
ALGORITHM FOR PARTITIONING

Costas S. Iliopoulos

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD TR #86-603
June 1986

A LOGARITHMIC TIME PARALLEL
ALGORITHM FOR PARTITIONING

Costas S. Iliopoulos

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD TR #86-603
June 1986

A LOGARITHMIC TIME PARALLEL ALGORITHM FOR PARTITIONING

Costas S. Eopoulos

Pu rdue University

Dept. of Computer Science

West Lafayette, IN 47907

U.S.A.

ABSTRACT

Here a parallel algorithm for computing the coarsest refinement of a psi tion of a set S

with respect to a given function that requires O(logn) units of time and makes use of O(n2)

processors, where n is the cardinality of the set S; the model of computation uscd. it is a Con-

current Read ExcIusive Write Parallel RAM (abbreviated CREW PRAM). Funhermore an 0 (n2)

cost dgorithm for the same problem is presented.

1. Introduction

The classification of various wmputationd problems into groups according to their compu-

tational complexity is one of the major tasks of Theoretical Computer Scienm. The class P of

problems that are polynomial time solvable on sequential models (e.g. Turing machines, RAM) is

generally agreed to be sequentially feasibly solvable problems. Here we arc interested in the

classification of problems according their computational complexity on parallel models of com-

putation. A well known complexity cIass of efficiently solvable problems in parallel is NC

(Nick's (Pippenger) Class), i.e., problems solvable by parallel algorithms in polylog time

(0 (logk n) for some constant k , wilh n h e size of the input) with a polynomial number of pro-

A LOGARITHMIC TIME PARALLEL ALGORITHM FOR PARTITIONING

Costas S. lliopoulos

Purdue University

Dept. of Computer Science

West Lafayette, IN 47907

U.S.A.

ABSTRACT

Here a parallel algoritlun for computing the coarsest reftnement of a partition of a set S

with respect to a given function that requires O(logn) units of time and makes use of O(n 2)

processors. where n is the cardinality of the set S: the model of computation used. it is a Con

current Read Exclusive Write Parallel RAM (abbreviated CREW PRAM). Furthennore an 0 (n 2)

cost algorithm for the same problem is presented.

1. Introduction

The classification of various computational problems into groups according to their compu

tational complexity is one of the major tasks of Theoretical Computer Science. The class P of

problems that are polynomial time solvable on sequential models (e.g. Turing machines, RAM) is

generally agreed to be sequentially feasibly solvable problems. Here we are interested in the

classification of problems according their computational complexity on parallel models of com

putation. A well known complexity class of efficiently solvable problems in parallel is NC

(Nick's (Pippenger) Qass), Le" problems solvable by parallel algorithms in polylog time

(0 (logk n) for some constant k, with n the size of the input) with a polynomial number of pro-

Here we show zhat the "single-function coarsest partition" problem is in the class NC.

Given a set S of elements and a partilion .x= (A 1 , A2, . . - ,Ak } of S, and a function

f : S -, S , we want to compute a partition d={ B Bar a - a , B, } that satisfies the following

conditions:

(i) The partition d is a refinement of n, ire.,

B; dj,. V i , for some 1 5 ji I k

(ii) The paflition d respects the function f ,that is

f (Bi) 5 Bj, , V i for some I I ji I m

(iii) Partition d is the coarsest one, satisfyiig conditions (i) and (ii).

In [5], Paige and Tarjan give an O (n) optimal algorithm for he one function pdtioning

problem improving thc worst-case complexity bounds for the same problem given by Aho, Hop-

croft and W a n in [I]. Furthemore Hopcroft in 121 yields an 0 (n log n) algorithm for the

many functions coarsest partition problem, i.e., the partition is required to respect a set of func-

tions f ...fk ; Paige and Ta jan in [6] gave an 0 (n log n) algorithm for the relational parti lion-

ing problem, i.e., the refinement should Tespect a binary relation. Here we shall deal only with

the single function coarsest partition probIem.

The computational model used here is CREW PRAM (Concurrent Read- Exclusive Write

Parallel RAM), The processors are unit-cost RAM'S that can access a common memory. Some

processors can access the same memory location: they can concurrently read but they can not

concurrently write. AU operations involving different memory Iocations can be done con-

cumntly.

Here we measure the complexity of parallel algorithms by the pair (t , p) where 1 denotes

the time and p the number of processors, both dependent on rhe size of the input. AIso the pm-

- 2-

cessors.

Here we show that the "single-function coarsest partition" problem is in the class NC.

Given a set S of elements and a partition 1t= {A 1, A 2, ...• A,l: } of S, and a function

f: S -t S. we want to compute a partition 1t'={ B l' B 2, ...• Bm } that satisfies the following

conditions:

(i) The partition r(is a refinement of n, j .e.•

Bj cAj " Vi, for some 1 ::;jj $ k

(ii) The partition r(respects the function! ,Utat is

f (B j) ~ Bif' V i for some 1 ::; jj $ m

(iii) Partition r(is the coarsest one, satisfying conditions (i) and (ii).

In [5], Paige and TaIjan give an O(n) optimal algorithm for the one function partitioning

problem improving the worst-case complexity bounds for the same problem given by Aho, Hop

croft and Ullman in [1]. Furthermore Hopcroft in [2] yields an 0 (n log n) algorithm for the

many functions coarsest partition problem, i.e., the partition is required to respect a set of func

tions f }I""ft; Paige and TaIjan in [6] gave an 0 (nlog n) algorithm for the relational partition

ing problem, Le., the refinement should respect a binary relation. Here we shall deal only with

the single function coarsest partition problem.

The computational model used here is CREW PRAM (Concurrent Read- Exclusive Write

Parallel RAM). The processors are unit-cost RAM's that can access a common memory. Some

processors can access the same memory location: they can concurrently read but they can not

concurrently write. All operations involving different memory locations can be done con

currently.

Here we measure the complexity of parallel algorithms by the pair (t ,p) where t denotes

the time and p the number of processors, both dependent on the size of the input. Also the pro-

duct r p is called the cosr of the algorithm; the cost of an algorithm is essentially the running

time of the algorithm with one only processor available and zherefore can be used for finding the

speeding up factor.

Here we present an algorithm for computing the coarsest refinement of a partition of a set S

with respect to a function f , whose complexity is dominated by O(log n) units of time and uses

0 (n2) processors. A modified version of this algorithm can be shown having a reduced cost of

0 (n2), in h e expence of the running time, which in this case is 0 (n X) for some 0 I x 5 1.

Among the applications of the partilioning problem is the reduction of the number of

states of finite automata, (see [Z]), m e isomorplisrn (see [I] and [6]) , graph isomorphism

refinement and Congruence Closure (see [7]) and a surprising application to the automation of

woven fabric on looms (see [5 1).

2. An Outline of The Algorithm

Let 71 = { A 1, A2. - . ,.tik} be the initial partition of S . A key operation in our algorithm

is the partitioning with respect to f - for some integer m (see [2]); a refinement of 7~ with respect

to f - (Ai) . for 1 5 i S k is defined to be

d = { B i j :=Aj n f a (A i) , 1 I i Ik , 1 5 j <k), (2.1)

After refining the initial partition with respect to f -, we associate each element of S with

a pair (i , j) calledfingetprinr (denoted by f,,), where i is the index of the set that s belongs to

in ~c and j is the index of the set that s belong to in d.

The main step consists of computing refinements of the initial partition 7c with respeci to

f , for 1 5 m In in parallel together with the corresponding fingerprints. After the implemen-

tation of the above n parallel steps, we have the sets of fingerprints F t , F2, - . , F, . Based on

these, it is determined if two or more elements belong to the same set a t the final refinement. If

these dements have Lhe same fingerprints in every step, then they belong to the same set in final

(2.1)

- 3-

duet c p is called the cost of the algorithm; the cost of an algorithm is essentially the running

lime of lhe algorithm with one only processor available and therefore can be used for finding the

speeding up factor.

Here we present an algorithm for computing the coarsest refinement of a partition of a set S

with respect to a function f . whose complexity is dominated by 0 (log n) units of time and uses

o(n2) processors. A modified version of this algorithm can be shown having a reduced cost of

o(n 2), in the expenee of the running time, which in this case is 0 (n X
) for some 0 ~ x ~ l.

Among the applications of the partitioning problem is the reduction of lhe number of

states of finire automata, (see [2]), tree isomorplism (see [1] and [6]), graph isomorphism

refinement and Congruence Closure (see [7]) and a surprising application to the automation of

woven fabric on looms (see [5]).

2. An Outline of The Algorithm

Let 1t = { AI. A 2, ... ,A.d be the initial partition of S. A key operation in our algorithm

is the partitioning with respect to f-m for some integer m (see [2]); a refinement of 1t with respect

to f-m (Ai)' for 1 ::;; i ::;; k is defined to be

7t' = {Bi} := Aj (") f-n1(A i), 1 ~ i S. k , 1 S. j ~ k},

After refining the initial partition with respect to f-m., we associate each element ofS with

a pair (i, j) called fingerprint (denoted by fs,m)' where t is the index of the set that s belongs to

in 1t and j is the index of the set that s belong to in r(.

The main step consists of computing refinements of the initial partition 1t wilh respect to

f-m , for 1 S. m ~n in parallel together with the corresponding fingelprints. After the implemen

tation of the above n parallel steps, we have the sets of fingerprints Ft. F2, ... • Fn • Based on

these, it is determined if two or more elements belong to the same set at the final refinement. If

these elements have Lhe same fingerprints in every step. then they belong to the same set in final

partition. Sorting networks are used for computing the final partition by comparing the linger-

print sets.

The sequel is organized as follows: in section 3 we pment an algorithm for the parallel

computation of fingerprints, in sections 4 we give a parallel algorithms for computing powers of

the given function f : f (S), f 2 (~) , - . - , f (S), in section 5 we discuss the fingerprint sorting

and in section 6 we present the overall algorithm and we give a proof of its correctness and its

running time analysis.

3. An Algorithm for splitting the Blocks

We recall that the "fingerprint" of an eIement s is an ordercd pair of integers (i , j) such

that the black Bii of the partition d (see (2.1)) contains s. We can view h e blocks of the partition

das

Bij = { s : fm(s)€ Ai and s E A, 1)

that it is equivalent to (2.1). At this point we are not focusing in computing lhe actuaI BijYs but

we want to find out the lingerprints of each element of S. The formulation (3.1) is more helpful

complexity -wise, since the size of the inverse image can be larger by a factor of 0 (n) than the

image of the function f .

The computation of the intersection makes use of "associate addressing". In Lhe common

memory we have a list L such that L (s) = m , where s belongs to A, and s is an element of S

There exists an algorithm on CREW PRAM that computes the above list L in constant time and

makes use of 0 (n) processors. 0

Given the initial partition TC and the function f m , one can compute the fingerprints f ,, as

follows:

- 4 -

partition. Sorting networks are used for computing the final partition by comparing the finger

print sets.

The sequel is organized as follows: in section 3 we present an algorithm for the parallel

computation of fingerprints, in sections 4 we give a parallel algorithms faT computing powers of

the given function f: f (8), f 2(S), .. - ,fn (8), in section 5 we discuss the fmgerprint sorting

and in section 6 we present the overall algoritJun and we give a proof of its correctness and its

running time analysis.

3. An Algorithm for splitting the Blocks

We recall that the "fingerprint" of an element s is an ordered pair of integers (i, j) such

that the block B ij of the partition rr: (see (2.1» contains s. We can view the blocks of the panition

1C'as

Bij = {s : jm(s) E Ai and S E A j } (3.1)

that it is equivalent to (2.1). At this point we are not focusing in computing the actual Du's but

we want to find out the fingerprints of each element of S. The fonnulation (3.1) is more helpful

complexity -wise, since lhe size of the inverne image can be larger by a factor of 0 (rt) than the

image of the function f .

The computation of the intersection makes use of "associate addressing". In lhe common

memory we have a Jist L such that L (s) == m , where s belongs to Am and s is an element of S

3.1. Lemma

There exists an algorithm on CREW PRAM that computes the above list L in constant time and

makes use of 0 (n) processors. 0

Given the initial partition 1t and lhe function jm , one can compute the fingerprints fs,m as

follows:

3.2. Algorithm

begin

Tor each s in S pardo

f s m + (LO) , L(f m (s)

odpar

end

33. Proposition

AIgorithm 3.2 correctly computes the fkgerprint with respect to f" in constant time and it makes

use 0 (n) processors.0

4. Computing Powers Of The Function f

First we present an algorithm for camputing powers of 2 of the function f , i.e., f 2',

1 5 i 5r log n 1. This procedure will be used as a subroutine for the computation of all powers

of the function f later.

4.1. Algorithm

INPm W.1.o.g we assume that S = {I, - - - , n} and a function f : S -, S.

OUTPUT: For each element s of S, f "(s) for 1 I i S r log n 1 .

begin

1. for k = I to [log nl do

2. for each s in S pardo

3. e t 2 k - 1 ;

4. fa($> + f c<fce>>;
comment The vaIues off 2e (s) , for all s in S are stored in the common memory.

odpar

- 5 -

3.2. Algorithm

begin

for each sinS pardo

!S,T1l (- (L(s) ,L(fm(s)))

odpar

end 0

3.3. Proposition

Algorithm 3.2 correctly computes the fingerprint with respect to1m in constant time and it makes

use 0 (n) processors.D

4. Computing Powers Of The Function I

First we present an algorithm for computing powers of 2 of the function f, i.e., 1 21
,

1 S i sf log n 1. This procedure will be used as a subroutine for the computation of all powers

of lhe function f later.

4.1. Algorithm

INl:'UT: W.1.o.g we assume that S = {I, ... ,n} and a function I : S ~ S.

OUTPUT: For each element s of S, f 2
1
(s) for 1 :s; i S r log n 1.

begin

1. for k = 1 to fIognl do

2. for each s in S pardo

3. e (- 2ft. -1 ;

4. f2e(s) (- fe(f~(s»;

comment The values off2e (s) ,for all s in S are sLared in the common memory.

odpar

od

end.

4.2. Theorem

Algorithm 4.1 correctly computes the required powers of 2 of rhe function fin 0 (log n) units of

time and makes use of 0 (n) processors.n

In order to compute f k (~) , we make use the above algorilhm for computing powers of 2 of

the funclion f , together with the binary expansion of k as follows:

43. Algorithm

INPUT: AsetS ={I , . - - , n}andafunctionf : S + S .

OUTPUT: ~ t a b ~ e f o r f ~ (~) , f o r l 2 k 5 n . b ' ~ G S .

begin

1. compute f 2i(s), for 1 5 i S rlognl , 'd s E S using algorithm 4.1;

2. for each s in S pardo

3. for k = 1 to n with step [~og n7 pardo

4. fk@) f Z n + 2 ' + - - . +2" ($1;

comment We make use of the binary expansion of k .

5. for j = 1 to [log nl do

6. f j + k (s) c f ~ f j " ~ - l (s)) ;

7. od

8. odpar

9. odpar

end.0

-6-

od

end. 0

4.2. Theorem

Algorithm 4.1 correctly computes the required powers of 2 of the function finO (log n) units of

time and makes use of 0 (n) processors.D

In order to compute /k.CS), we make use the above algorithm for computing powers of2 of

the function f ,together with the binary expansion of k as follows:

4.3. Algorithm

INPUT: A set S = {t, ... ,n} and a function j : S -7 S .

OUTPUT: A table for jkCS), for 1 :::; k :::; n, V S E S.

begin

1. compute fli (s), for 1 S i :::; flog n1. V S E S using algorithm 4.1;

2. for each sinS pardo

3. for k = 1 to n with step flog n1 pardo

4. fk(s) f- f2~ + '1:' + "". + 2'"CS);

comment We make use of the binary expansion of k .

5. for j = 1 to pognl do

6. jj+kCS) f-jlf i + Jc - 1(s»;

7. od

8. odpar

9. odpar

end.O

4.4. Theorem

Algorithm 5.1 correctly WmpUkS f k (s) , 1 I k I n , for each element of S in 0 (fog n) units of

time and makes use of 0 (n2/ log n) processors.

Proof The correcmess of the algorilhm is obvious.

Step 1 requires 0 (log n) units of time and makes use of 0 (n) processors, from Theorem

4.2.. Step 4 requires log k = 0 (log n) units of time and on1 y one processor.

Loop 5-7 requires 0 (log n) processors an 0 (log n) uni 1s of time. Loop 2-9 requires

0 (n2/log n) processors and 0 (log n) units of lime. Cl

5. Comparing Fingerprints

We now have n sets of linger prints F i , 1. 5 i < n with Fi = { f tDi : s E S 1. Two ele-

ments from $ an: in the same set in the find partition if and only if they have &e same finger

print in every set Fi, 1 I i I n . A fonnal recursive definition of these refinements , has as fol-

lows:

7 ~ k = {3bk) := 3Lk-l) n f - k (~ j) , for some m j }

Also in the sequel B,,!,~-') is said to be the parent set of B { ~) if and only if l?ik) L l3Ak-').

Consider the sets of fmgerprinb F1, F2, - - . , F,. Each eIement in S has a finger prjnt

mrrcsponding to each Fi. We can construct a vector (fSsI, f s 2 , - - - , frtn) which is a list of

each of these corresponding tingcr prints. We can sort these vectors lexicographicly, using the

parallel dgorithms given in [33.

5.1. Theorem [3]

There exists a parallel aIgorithm on CREW PRAM that lexicographicly sorts n words all of

length 1 over an dphabet X of size 0 (n) in

-7-

4.4. Theorem

Algorithm 5.1 correctly computes fk(s). 1 ~ k ~ n, for each element of SinO (log n) units of

time and makes use of 0 (n 2/log n) processo~.

Proo/The correcmess of the algoril.hm is obvious.

Step 1 requires 0 (log n.) units of time and makes use of 0 (n) processors, from Theorem

4.2.. Step 4 requires log k = 0 (log n) units of time and only one processor.

Loop 5-7 requires 0 (log n) processors an 0 (fog n) uni IS of time. Loop 2-9 requires

o (n.2110g n) processors and 0 (log n) units of Lime. 0

5. Comparing Fingerprints

We now have n sets of finger prints Fj , 1 :;; i :;; n wilh F j = {fs ,i : S E S }. Two ele

ments from S are in the same set in the final partition if and only if they have the same finger

print in every set Fj. I :s;; i :s;; n. A formal recursive definition of these refinements , has as fol

lows:

1tk = {BPI.) := Bj"k-l) I'lf-k(Aj) , for some m,j} (5.1)

Also in the sequel B;,,"-l) is said to be the parent set ofBlk) if and only if Bik
) !:: B~k-l).

Consider the sets of fingerprints Flo F2. ." • FrJ' Each element in S has a finger print

corresponding to each F i • We can construct a vector (fs,l' fs). • ...• Is,>!) which is a list of

each of these corresponding finger prints. We can sort these vectors lexicographic1y. using the

parallel algoril.hms given in [3].

5.1. Theorem [3]

There exists a parallel algorilhm on CREW PRAM lhat lexicographicly sons n words all of

length lover an alphabet L of size 0 (n) in

log nl nl - 1 O(log n l ~ r , P - . .
units of time and uses p I nl processors.

Therefore given b e sets F 1 , ,F,, , the computation of the final partition can be done in

O (log n) units of time and using 0 (n2) processors. One may observe that Theorem 5.1 yields an

0 (n2) cost algorithm, that requires 0 (n X) units of time and 0 (n2-=) processors, for any

0 5 x I n , thus improving zhe cost.

6. The Overall Algorithm, its AnaIysis And Correctness

The pseudo-wde below gives the overall algorithm that was outlined in section 2; it is a

combination of algorithms given in section 3 ,4 and 5.

6.1. Algorithm

begin

compute f '(s), 1 5 k 5 n. for aIl s in S using algorithm 4.3;

form = 1 to n pardo

Compute f,, for all s in S , using algorithm 3.2;

Compute the final partition as in section 5, using dgorithm 5.1;

odpar

end.

In order to show the correctness of algori thrn 6.1, we first pmve the following three lem-

mas:

6 3 . Lemma

Let B,(~) ' s be as in (5.1). Then we have that:

(i) f -k (A ~) = y 3tk) for some set of indices Li . 1 5 i I k .
I € &

-8-

O(log nl nt)
log nllp p

units of time and uses p :::; nl processors. D

Therefore given the sets Fl. ,Fn' the computation of the final partition can be done in

o (log n) units of time and using 0 (n 2) processors. One may observe Lhat Theorem 5.1 yields an

O(n2) cost algorithm, mat requires O(n X
) units of time and O(n 2- x) processors, for any

o:::; x ~ n , thus improving the cost

6. The Overall Algorithm, its Analysis And Correctness

The pseudo-code below gives the overall algoritlun that was outlined in section 2; it is a

combination of algoritluns given in section 3,4 and 5.

6.1. Algorithm

begin

ComputeIt (s), 1 ~ k :::; n, for all sinS using algorithm 4.3;

for m = 1 to n pardo

Compute Is.m for all sinS, using algorithm 3.2;

Compute the final partition as in section 5, using algoritlun 5.1;

odpar

end. 0

In order to show the correctness of algorithm 6.1, we first prove the following three lem-

mas:

6.2. Lemma

Let 8 t(Ie). s be as in (5.1). Then we have that:

(i) I-I: (Ai) = U BP;) for some set of indices L;. 1 ::; i :::; k.
/ e L;

(ii) There is no p i r Elik), l3Ak) in (i) with the same parent set.

Proof (i) Obvious by the definition of B { ~) ' s in section 5.

(ii) Proof by induction. One can see that

f -'(A~) = y , 1 < i 5 k
I € &

and that each has Aj,, for some j,, as parent set and all parent scts are distinct.

Now assume that (ii) holds for k = m . Then we have

f* - ' (A,) = ~ - I C ~ - ~ (A ,)) = u C~-~(B*(~)))
I € L*

Assert that ~d~ ' ') and BL"' + '1 are children of B,(~). Then we have that

where ~ l f ~ - '1 and gLrn - are the parent sets of ~ i ~) and BA") respectively.

One can see that from (6.1) and (6.2) is implied that B , (~) has been splitted from the refinement

with respect to f - , a contradiction.

63. Lemma

The following holds:

ProofFrom the delinition of ~ l (~) in (5.1) we have

~ , (k) = ~ ; k - 11, f-k(,++Bik - 1) , f -I(~ , (k - 12)
I E L

Suppose that there exist a , b in I3ik - such that a E f -' (~ f - '1) and b E f -' (Bik - '1) for

somell, 12inL. Thena E f - ' (~ l ~ - ~)) a n d b E f - ' (~ A ~ - ~)) , w h e r e B f - ~) a n d ~ L ~ - ') are

the parent sets of ~d~ - '1 and Z3Ak - respectively. But refining wilh respect to f -' at the

(k-1)-th level it would have to locate a and b , into different sets - a contradiction. Therefore

there is at most one r E L such that

- 9-

(ii) There is no pair Bl~k) • Bl~k) in (i) with the same parent set.

Prooj(i) Obvious by the definition ofBlk)'s in section 5.

Oi) Proofby induction. One can see that

j-l(Ai) = U BP). 1 ~ i ~ k
lEU

and that each HP) has Aj ,. for some j,. as parent set and all parent sets are distinct.

Now assume that Oi) holds for k = m. Then we have

f-m - l(Aj) =f-I(f-m(A j » = U (f-I(Bim))
, E L.'

Assert lhat Bl~m + I) and BJ~"' + I) are children of Bt,m). Then we have that

where B/f -1) and BJ~m -1) are the parent sets ofB,~m) and Bl~m) respectively.

(6.1)

(6.2)

One can see that from (6.1) and (6.2) is implied that B,<m) has been splitted from the refinement

with respect to l-m , a contradiction.D

6.3. Lemma

The following holds:

for some l, m, r .

ProofFrom the definition ofBlk) in (5.1) we have

Blk) = B~k -1) n I-k (A j)= BJt - 1) n I-I(U Blk -1»
, E L

Suppose that there exist a, b in B/l- I) such that a E I-I (Bl~t -I» and b E I-I (B,~k -1» for

the parent sets of B,~t - 1) and Bl~k - I) respectively. But refining with respect to /-1 at the

(k-l)-th level it would have to locate a and b. into different sets - a contradiction. Therefore

there is at most one r E L such that

6.4. Lemma

Let q, = {B fO), - - , B,(O)) be a partition of S . Then let

B ~ @) = B fi - 1) n f - l (~ l , (~ - 1)) @ for some 1; Ji

Then

.n, = {B~(") : for all i}

is the coarsest refinement of R that respects the function f .

Proof

One can see that I KL + 1 1 > I nk I or I nk + 1 (= I nk I . If the later occurs. then easily fol-

lows that I ?ck I = I nk + 1 I = I XI, + 1 = - - - . Also since the cardinality of S is n , this will occur

for some k I n.

Assume that IT,, does not respect the function f. Then we have that

f (~i("3 b/r B?) and f (~ , 6 3 n BPI + g, for some i , j
which implies that

B,-@) G f - ' (BP~ and n f -'(B? 1) + @
and thus I lr,+, I > (z,, I a contradiction.0

65. Theorem

Algorithm 6.1 correctly computes the coarsest rclinement of 7c with respect to the function f.

ProofIt folIows from lemmas 6.2,6.3 and 6.4.

6.6. Theorem

Algorithm 6.1 requires 0 (log n) units of time and uses 0 (n2) processors.

ProofIt follows from Theorems 3.3,4.4 and 5.1 .17

Following b e remarks below Theorem 5.1 one can show :

-10 -

6.4. Lemma

Let 1Co = {B fO) ,

Then

, BiO)} be a partition ofS. Then let

B.(A:) =Bit. - I) () /-1(8 (Ie - 1» :#. t;t
I J; 1, '" for some Ii (6.3)

1tn = {Bi(n) : for all i}

is the coaISest refinement of1t that respects the functionf .

Proof

One can sec that l1tk + 1I > l1tk I or l1tk + 11 = l1tk I. If the later occurs. then easily fol-

lows that 17tk I = l1tk + 1 I = Ix/c + zI = Also since tile cardinality of S is n , this will occur

for some k ~ n.

Assume that xn does not respect the funclion f. Then we have that

f (Bll '!) Io/~ B}lI) and / (Bl",!) () Bjra) -:F-~, for some i, j
which implies that

Bln) S f-l(B}n."i) and B;<n) 1\ f-I(B}n» -:,t. ~

and thus Ittll +1 I > 17tn I a contradiclion.D

6.5. Theorem

Algorithm 6.1 correctly computes the coarsest refinement of x wilh respect to the function f.

ProofIt follows from lemmas 6.2, 6.3 and 6.4. 0

6.6. Theorem

Algorithm 6.1 requires D(log n) units of time and uses o(n 2) processors.

Proo/It follows from Theorems 3.3,4.4 and 5.1.0

Following the remarks below Theorem 5.1 one can show:

6.7. Theorem

There exists an 0 (nZ) cost algorirhm on CREW PRAM for the one function coarsest partition

prob1em.U

7. Conclusions

Paige and Tarjan [5] gave an 0 (n) sequentid algorithm for the single-function partition

problem; their analysis of the problems may lead to better than 0 (n2) cost parallel algorithms.

But the existence of an optimal cost 0 (n) parallel algorithm is still an open problem together

with the question whelher the ' 'many-functions coarsest partition problem" (see [I]) belongs in

NC. Answers to these questions may help in understanding of the parallel behaviour of problems

closely related to partitioning like doubly lexical ordering, chordality of a graph and relational

partitioning (see [5]).

8. References

[I] Aho, A.V., J.E. Hopcroft. J.D. UIlman, Design and analysb of Computer Algorithm,

Addison-Wesley, Reading, MA, 1974.

[2] Hopcroft, J.E.. An nbgn algorithm for minimizing states in a jn i te aurornanon, in: Kohavi

and Paz, ed., Theory of Machines and Computations, Academic Press, NY, 1971, pp.

1 89-196.

[3] lliopoulos, C.S., Optimal cost parallel algorirlvns for lexicographical ordering. Purdue

University, Tech. Rep. 602, (1986)

[4] Paige, R., Ta jan, R., A linear time algorithm to solve rhe singlefunctiori coarsestpartition

problem, IIth ICIU;P, Lecrure notes in Computer Science 172, Springer, Berlin, 1984.

[5] Paige, R., Tarjan, R., A [inear time solurion to the single function coarsest parrin'on prob-

lem, Theoretical Computer Science 40 (1985) 67-84.

-11-

6.7. Theorem

There exists an 0 (n 2) cost algorithm on CREW PRAM for the one function coarsest partition

problem.0

7. Conclusions

Paige and Tarjan [5] gave an 0 (n) sequential algoritlun for the single-function partition

problem; their analysis of the problems may lead to better than 0 (n 2) cost parallel algorithms.

But the existence of an optimal cost 0 (n) parallel algorithm is still an open problem together

with the question whether !he "many~functions coarsest partition problem" (see [1]) belongs in

NC. Answers to these questions may help in understanding Df the parallel behaviour of problems

closely related to partitioning like doubly lexical ordering. chordality of a graph and relational

partitioning (see [5]).

8. References

[1] AhD, A.V., J.E. Hopcroft, J.D. Ullman, Design and analysis of Computer Algorithms,

Addison-Wesley. Reading, MA. 1974.

[2] Hopcroft, J.E., An nlogn algorithmfor minimizing states in a/mite amomanon, in: Kohavi

and Paz, ed., Theory of Machines and Computations, Academic Press, NY, 1971, pp.

189-196.

[3] Diopoulos. C.S., Optimal cost parallel algorirllms for lexicographical ordering. Purdue

University, Tech. Rep. 602, (1986)

[4] Paige, R., Tarjan. R., A linear time algorithm to solve rhe single/unction coarsest partition

probJem,llth ICALP, Lecture notes in Computer Science 172, Springer, Berlin, 1984.

[5] Paige, R., TaIjan, R., A linear lime solution to the single junction coarsest parririon prob

Lem, Theoretical Computer Science 40 (1985) 67-84.

[6] Paige, R., Ta jan, R., Three efficient algorifhm Based on Partition refinement, manuscript.

171 Downey, P., Sethi, R., Ta jan, R., "Variations on the Common Subexpression Problem",

JACM 27,4 (1980) 758-771.

- 12-

[6] Paige, R, TaIjan, R., Three ejJident algorithms Based on Partition refinement, manuscript.

£7] Downey, P., Sethi, R., TaIjan, R., "Variations on the Common Subexpression Problem",

JACM 27, 4 (1980) 758-77L

	A Logarithmic Time Parallel Algorithm for Partitioning
	Report Number:
	

	tmp.1307986960.pdf.ezD86

