
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1986

Optimal Cost Parallel Algorithms for Lexicographical Ordering Optimal Cost Parallel Algorithms for Lexicographical Ordering

Costas S. Iliopoulos

Report Number:
86-602

Iliopoulos, Costas S., "Optimal Cost Parallel Algorithms for Lexicographical Ordering" (1986). Department
of Computer Science Technical Reports. Paper 521.
https://docs.lib.purdue.edu/cstech/521

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

OPTIMAL COST PARALLEL ALGORITHMS
FOR LEXICOGRAPmCAL ORDERING

Costas S.lliopoulos

CSD-TR-602
May 1986

OPITMAL COST PARALLEL ALGORITHMS

FOR

LEXICOGRAPffiCAL ORDERING

by

Costas S. lliopoulos

Purdue University

Dept. of Computer Science

West Lafayette, IN 47907

-2-

ABSTRACT

for sorting n integers from the range!!.) algorithm
p

Optimal cost parallel algorithms for lexicographical ordering on a CREW PRAM are

log n
presented here. An 0 (I ()

og nIp

{I•...• n} usingp :::;; n processors is given here. Also an algorithm for sorting n strings of

size lover an alphabet of size s is presented. that requires 0 (log n[) .!!!.. + !....) units of time
log (nllp p p

and it makes use ofp $ min {nillog I, s /log s } processors. Both algorithms are of oplimal cost

withp ::; nX andp ::; min {(n l)1 -:z: • s /log s } for any 0 < x < 1 respectively.

1. INTRODUCTION

The classification of various computational problems into groups according to their compu-

tational complexity is one of the major tasks of Theoretical Computer Science. The class P of

problems that are polynomial time solvable on sequential models (e.g. Turing machines, RAM) is

genernlly agreed to be sequentially feasibly solvable problems. Here we are interested in the

classification of problems according their computational complexity on parallel models of com-

putation. A well known complexity class of efficiently solvable problems in parallel is NC

(Nick's (Pippenger) Oass), Le., problems solvable by parallel algorithms in polylog time

(0 (logk n) for some constant k. with n the size of the input) with a polynomial number ofpro-

ceSSOl'S. We shall focus on a subclass of problems in P , the set LINEARTIME - ie. the set of

problems solvable in time proportional to !he size of the input. We are interested in characteriz-

ing the computational behaviour of problems in LINEARTIME on parallel models of computa-

tion.

- 3 -

The computational model used here is CREW PRAM (Concurrent Read- Exclusive Write

Parallel RAM). The processors are unit-cost RAM's that can access a common memory. Some

processors can access the same memory location: they can concurrently read but they can not

concurrently write. All operations involving different memory locations can be done con-

currently.

Here we measure the complexity of parallel algorithms by the pair (t,p) where t denotes

the time and p the number of processors. both dependent on the size of the input. A family of

optimal parallel algorithms for a problem in UNEARlThffi is defined to be the one that satisfies

pr=O(n) for lSp=:;;'poCn):f,n (1.1)

withpo en) close to n. Note that an algorithm usingpo processors satisfying suffices to define the

family since if we leave only p processors available then each processor simulates Po IP proces-

sors and slill (l.1) holds. We denote by ZC (Zvi's (Galil) class see [6]) the subclass of problems

in LINEARTThffi that have optimal cost parallel algorithms for CREW PRAM. Currently only

two non-trivial problems have been shown to be in ZC, the Selection problem (see [2] and [8]- a

parallel version of [3]) and String Matching (see [6]).

Here we present an algorithm for sorting a set of n integers from the range {I. ... ,s} that

. O(lognrequIreS
log nIp

.E- + !....) wtilS of time and makes
p p use of p processors with

p ~ min {n , S Ilog s}. This algorithm has optimal cost I p = 0 (n + s) for

1 ::; P ~ min {n I-x, s /log s }, for some 0 < x < 1. The only known optimal cost algorithm

is a probabilistic algorithm due to Reif in [7]. Furthennore in the case that the range of the

integers is {l. ... ,n}, the above family of algorithms includes an algorithm that requires

O(1og n) units time by using n processors, matching the Ajtai-Kolmos-Szemcredi sorting net-

work bounds in [1].

Also we present an algorithm for lexicographic ordering that requires

O(log nl
logn/lp

nl s- + -) and makes use of p
p p

processors with p ~ min { n/llog / ,s 1 log s },

-4-

where n is lhe number of strings given. s is the size of the alphabet and 1 the size of the strings

(all of equal size). The above algorithm is ofoptimal cost

t P = O(nl + s) for 1 $p :5 min{(nl)l-x, s flog sJ, for some 0 < x < 1

Furthermore under the consuaint that the size of alphabet is bounded. by n. we show an optimal

cost algorithm with complexity

(lo,Po) = (nXIog It n l - x I110g I) for any 0 <x <1

All algorithms presented here can be adapted to the BREW PRAM (Exclusive Read-

Exclusive Write PRAM - as CREW PRAM with the constraint that two processors can not access

the same memory location concurrently) without significant change of their asymptotic complex-

ity.

2. SORTING A SEQUENCE OF INTEGERS FROM A BOUNDED RANGE

Here we consider the lexicographical ordering problem in !.he resLricted fonn that all strings

are length 1. The restricted problem has as follows:

INPUT: A sequence of integers a1. ... • On from the set {I, ... IS}.

OUTPUT: A permutation Gon n points such that

Cf,,(i) ::: CXo-Ci +1) for 1::;; i < n

2.1. An Outline Of The Algorithm And The Main Procedures

We assume that all common memory positions are set to zero. The method has as follows:

(i) (Initialization) Here we make use of an (.!!..) x s matrix: M, where p is the number of pro­
p

cessors available. Each processor Pr , for 1 S; r :5p is assigned a subset S, of O(n J p)

elements of the input sequence (Xl, ... I On and for each element q in S, ,it augments the

entry m,q by 1. The output will consist of:

(I) the values m,q for 1 ::;; r ::;; n • 1 ::;; q ::;; s of the matrix: M, where m,q denotes the

number of the occurrences of the element q in the subset S,.

- 5 -

(2) a list INDEX (r) for each row I containing the indices of all the columns that an entry

occurred.

(ii) Compacting the columns. We partition the matrix M into submatrices that have nIp

rows of M - called "nIp strips" in the sequel- and we compact all nIp strips in parallel;

then recursively apply the method to the reduced by a factor nIp output matrix. We com­

pact an un Ip strip" into a single row (m 'tl> ... ,m'!S) by doing for each row of the (nIp)

strip the following:

(1) We partition the set INDEX(r) into subsets SA: of size rnIp1and we assign a processor

Pk to each subset S,t.

(2) In parallel each processor Pkupdates the corresponding columns ofM' using the mi.q 's

foreachq E SJc'

(iii) Compacting the row. The result matrix M' above will consist of a single row that can be

compacted by means of the "partial sum tree" melhod (see Willie [9] and [5]) in 0 (sip)

units of time, where p ~ s 110g s is the number of processors used.

The procedure for the initialization step (i) above has as follows:

- 6 -

begin

I <-rnlpl;

forall 1 5 r ::;; p pardo

for j = rl to (r + 1)1 do

ifm,.) =0 IhenINDEX(r) <-INDEX (r)U{Clj};

od

comment The list INDEX yields the set of all distinct integers that appear in {a,./ • ...• <Xcr+l)/}

odpar

end. 0

The procedure for compacting the columns step (ii) has as follows:

Procedure COMPCOL (M)

Initialize as it was described above;

rorall lin I p -strips" pardo

Let the current srip be the q -th one;

for every row r of the q-th strip do

Corall t E INDEX(r) pardo

m'ql ~ m'ql + mrt for every row in the q-th strip;

INDEX(q) <- INDEX(q) U{t};

odpar

od

COMPCOL(M') ;

odpar.D

2.2. Analysis Of The Algorithm

The complexity and the number of processors required from the above method is given by

the following theorem:

-7-

THEOREM 2.1 There exists a family of parallel algorithms that sorts a sequence of n integers

taken from the set {I, ...• s} in

p ::; min {n ,S flog s } processors.

Proof

O(log n
log (nip)

n s
-+-)
p P

units of time and using

We shall analyze the algorithm in three stages: (i) initialization, (ii) compacting the

columns and (iii) compacting the rows.

(i) In the initialization one processor is assigned to a set of elements of cardinality rnIp1

subset of the input set and for each aj of this subset. it increases the fJ.j entry of the associ-

ated row of the matrix M. One can see that this requires 0 (n I p) units of time and p pro-

cessors.

(ii) One may observe that the list INDEX (r) is always in a compact format and ifINDEX(k)(r)

denotes INDEX (r) at the k-th recursive call, then its size is dominated by

IINDEX (')(r) I s; r(nlp)'l

Therefore the number of processors needed for each strip equals to r(n Ipil at the k-th

recursive call. Moreover one can see that the number lin I p -strips" at the k-th recursive

call equal to n I (n Ip yt+l, and thus the number of processors needed at a recursive call of

the procedure equals to p.

One can see that one recursive call requires 0 (n I p) unilS of time and that the number of

recursive calls is bounded by log n . Therefore COMPCOL requires 0 (10~;) E..) units
log (nip) log np p

of time in the worst-case.

(ii) From [9] one can see that the compacting of a list by using p :5 s I log s processors can be

done in o(sIp) units of time.

From the above analysis the theorem follows. 0

- 8 -

COROLLARY 2.2 There exists a parallel algorithm for sorting fl integers from the range 1 to n

inO(log n
log (nip)

.!!..) units of time usingp S' n processors.D
p

COROLLARY 2.3 There exists an optimal cost algorithm for sorting n integers in the the range

{l,•n} in 0 (fix) units of time using n I-x processors. for any 0 <.x < 1.0

3. LEXICOGRAPHICAL ORDERING

Here we consider several instances of the following problem:

INPUT: A set of strings

Xi = (ali. a2i • ...• ali), 1 S'l S' n
of length lover a totally ordered alphabet:I:, where the cardinality IL I of L equals to s.

OUTPUT: A sequence of strings Xo(i). 1 S' i S' n. such that

Xo(i) S' Xa(i + I) (3.1)

The relation (3.1) holds. if and only if, there exists an integer q such that tXqa(i) < <Xqa(i + 1) and

for all j S' q. CXjo(i) = a.ja(i + I)'

Below. we present an algoritlun for lexicographical sorting in the case of the size s of the

alphabet L is an arbitrary variable. and an algorithm for the case that s is a polynomial in terms of

n.

3.1. The Algorithm For Arbitrary Size Alphabets

As first step we compute the subalphabets Am ,for 1 ::;; m :::;; I, i.e.• the ordered set of sym-

boIs that occur in the m-th position of the sLrings XI> ... ,XII' The computation of the Am's.

will provide us with a bounded alphabet to work with, avoiding computations involving the

alphabet ~ whose cardinality s might be very large.

- 9 -

begin

Sort {(k, aki) for 1:5 k S I and 1:5 i :5 n}; (3.2)

comment Preserving the order of the pairs (k,nk,;) by the first component. we sort !.he pairs

by the second component using the algorithm ofTheorem 2.1.

A, <- {(k, aki)} for 1 S k SI;

comment The computation of the subalphabet Am is done by removing the duplicates of the

sorted list { (k ,nAi)} by a generalization of the "partial sum tree" algoriLhm (see [9]).

end.D

Using Theorem 2.1, one can show that:

LEm1A 3.1 The computation of the subalphabets above requires 0 (1
1°f7l

)
og nip

ofume, wherep is the number of processors used withp ::;; min {nI, S 110g s} 0

al s) .- + - umts
p p

As initialization procedure we partition the strings Xi. for 1 :5 i :5 n into substrings Wji

ISiSa.lSj$p':=r~l,suchthat

Xj =W1j W2i .-, Wp'i with IWji I =rllp1 =:q

and then we sort the lists Lj = {Wji: 1:5 i ::;; n} for l:5j :5p' in parallel. The choice of

p' = {ji follows the facts lhat the number oflists Lj 's is..Jji and the sorting of each list requires

Vii processors, thus the total number of processors needed is p equal to the number of processors

available. A procedure for sorting one of these lists is given below:

procedure INITIALSORT [Wi = «(lu, ... ,CXqi), 1 SiS n]

Wi f-(lli,forl Si Sn;

fork =2toq do

Sort (w. , (lkl), ... , (w"" (l.bl) over the alphabetA,t- as in (3.2) ;

Wi f- Wi (lid for 1 SiS 11;

od.D

It is not difficult to show that:

- 10 -

LEMMA 3.2 The procedure INITIALSORT requires 0 (I ~Og '{,;-)
og nl 'P

..[ji .::;; n is the number of processors used. D

nl) . f· h- umts 0 tIme, w ere
p

We shall make use of a recursive procedure called LEXSORT that having as input a set of

strings. return the set sorted. An outline of the procedure has as follows;

(i) If the strings to be sorted are of length r11..JPl we use mITIALSORT to sort them, other-

wise

(ii) We partition each string of the list into two substrings of equal length, thus creating two

lists of strings !hat we sort in parallel.

(iii) If the strings in the initial list were Xj = Yi Wi I 1 ::; i .::;; n then we sort them by sorting the

,
pairs (yj, Wi) over the alphabet ufwiJ.

;=1

The pseudo-code below describes the method in detail.

-11-

Procedure LEXSORT [Ca Ii I •.• ,ami) for 1 ::; i ::; n , for some 1 ::; m $[]

begin

ifm = flogll then return INITIALSORT [(ali, ... I ami),1 :5 i ::; n];

else k rmlZl;

{Y" ...• Y.J LEXSORT[(a", ... ,aki), 1 ~i ~n]; (3.3)

{WI•...• will ~ LEXSORT[(a,t + I j ••.. ,ami), 1 :::;; i ::; n]; (3.4)

comment The above two steps are executed in parallel and the Yi 's and Wj'S

represent sorted sequences of strings of length k.

Letw/for 1::;; j s: n : Xi) = qjYjw/Pj such that Iw/I = m - k,for some stringsqj, Pj.

A ~ the sorted sequence of Wi. 1 ::;; i ::; n, without duplicates;

Son {(yj. w/): 1,5; j S; n} over the alphabet {WI' ...• WII};

return the sorted sequence Ya(j) W'aU)'

end. 0

(3.5)

(3.6)

THEOREM 3.2 There exists a family of parallel algoritluns for lexicographical ordering that

requires 0 (log nl
log n[Ip

E!. + .!.)
p p

units of time and makes use of p processors with

p Smin {nillogi ,s 110gs}.

Proof

Step (3.5) requires 0 (n l{ji) units of time and makes use of fi S' n flog n processors

for using "partial sum tree" computation.

Step (3.6) requires 0(1 ~Og~) .;',.) units of time and ..rp ~ n Ilog n processors by
og nl p 'p

using the algorithm of Corollary 2.2, and the fact that IA I ::;; n.

The number of recursive calls is at most 0 (log1). Therefore the lime required is bounded

by

- 12-

OC log" nl + logn !!..lO I)
lognlvp p log nip p g

using Lemma 3.2 for the time analysis of INITIALSORT. Furthennore using Lemma 3.1 one can

show the overall time required for lexicographical sorting.

At the parallel execution of steps (3.3) and (3.4) one can see that we can have at most ..Jji

LEXSQRT calls running in parallel and each requires..fji processorn (for OOTIALSORT).

Therefore the number ofprocessors required is at most p . 0

COROLLARY 3.3 There exists a family of opLimal algorilhms for lexicographic ordering, whose

complexity satisfies the equation

t p = 0 (nl + s), Corp .:s:; min {(n /)1-.%. s flog s }far sameD < x < 1

where t and p denote the lime and the number of processors respectively. 0

3.2. The Algorithm For Bounded Size Alphabets

Here we assume that the size of the alphabet ~ is s = 0 (n). By modifying the computation

of the subalphabcts Am for 1 S m s:; n, we can improve the complexity of the lexicographical

problem. The computation of the subalphabelS can be done as follows.

begin

forall j = I to..fj pardo

fork =jl/vp to U + I)I/vp do

Sort {(k, U,,), I ,; i ,; n} as in (3.2);

A. <- {a", I ,; i ,; n} as in (3.2);

od

odpar

end

One can show that the above computation requires 0 (I log nW; .!!......L) units of time and makes
ognl p p

use of..Jji processors.

-13 -

By modifying the lexicographical algorithm ofTheorem 3.1 one can show:

THEOREM 3.4 There exists a parallel algorithm for the lexicographical ordering over an aIpha-

bet of size 0 (n) that requires 0 (log n 1
lognllp

!!!..) with 1 5: P 5: nlllog 1. 0
p

COROLLARY 3.5 The above algorithm has optimal cost for p 5: n I-Xl/log I, for any

o< x < I, requiring O(nZ log 1) units oftime.D

4. CONCLUSIONS

The problems that we encounter in designing an algorithm on a CREW PRAM for lex.ico~

graphical ordering can be summarized as follows:

(i) Sorting n integers over the range {I, ... I n}. We shall surprised to see a subpolyno-

mial (in tenns of time) optimal algorithm for this problem. It is not difficult to see that any

improvements on the parallel complexity of the integer sorting problem will reflect directly to the

complexity of the lexicographical ordering problem. Also it worth mentioning that for p=n our

algorithm of Corollary 2.2 matches the cost of the sorting network of AIjai-Kolmos-Szemerendi

in [1].

(ii) The arbitrary size s of the alphabet ~ makes necessary the computation of the subalpha-

bets At (see section 3.1) that have size O(n); lhis allows us to make use the bounds of Corol-

laries 2.2 and 2.3 instead ofTheorem 2.1 that would lead to a non-optimal cost of 0 (sl + nl).

(iii) The existance of an optimal cost algorithm for the problem ofsorting a set of strings of

variable length is an open question.

5. REFERENCES

[1] Ajtai.M.•Kolmos, J" and Szemcredi,E.. An O(n log n) sorting network Combinator-

iea 3. 1 (1983), pp 1-19

- 14-

[2] Ald, S .• An optimal algorithm/or Selection lnfo.Proc.Letters 19(1984)47-50

[3J Blum, M., Floyd, R.W., Pran, Y.R., Rivest, RL., and Tarjan, R.E., Time bounds!or

selection J. Computer and System Sciences, 7,4 (1972), pp 448-461.

[4] Cole,R., Yap, C.K.. A parallel median algorithm Info.Proc.Letters 20 (1985) 137­

139

[5J Dekel,E., Sahni,S.• Binary trees and parallel scheduling algorithms IEEE Transac­

tions on Computers, Vol 32, 3, (1983)

[6] Galil, Zvi, Optimal parallel algorithms in VLSI: Algoriduns and Architectures. Ber~

tolazzi and Luccio F. (Editors) North-Holland (1985)

[7J Reif, J.H., Optimal parallel algorithms for integer sorting and graph connectivity

26-th Symposium on Foundations of Computer Science. (1985)

[8] Viskin. u., An optimal parallel algorithm for selection Manuscript, Courant Inst.,

(1983)

[9] Wyllie, J.C., The complexity of parallel computations Ph.D. Thesis, Cornell liniv.,

N.Y., (1979)

	Optimal Cost Parallel Algorithms for Lexicographical Ordering
	Report Number:
	

	tmp.1307986960.pdf.nTTFT

